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Abstract—This article focuses on the exponential synchroniza-
tion problem of T–S fuzzy reaction–diffusion neural networks
(RDNNs) with additive time-varying delays (ATVDs). Two con-
trol strategies, namely, fuzzy time sampled-data control and
fuzzy time–space sampled-data control are newly proposed.
Compared with some existing control schemes, the two fuzzy
sampled-data control schemes cannot only tolerate some uncer-
tainties but also save the limited communication resources for the
considered systems. A new fuzzy-dependent adjustable matrix
inequality technique is proposed. According to different fuzzy
plant and controller rules, different adjustable matrices are
introduced. In comparison with some traditional estimation tech-
niques with a determined constant matrix, the fuzzy-dependent
adjustable matrix approach is more flexible. Then, by construct-
ing a suitable Lyapunov–Krasovskii functional (LKF) and using
the fuzzy-dependent adjustable matrix approach, new exponen-
tial synchronization criteria are derived for T–S fuzzy RDNNs
with ATVDs. Meanwhile, the desired fuzzy time and time–space
sampled-data control gains are obtained by solving a set of lin-
ear matrix inequalities (LMIs). In the end, some simulations
are presented to verify the effectiveness and superiority of the
obtained theoretical results.

Index Terms—Additive time-varying delays (ATVDs), expo-
nential synchronization, fuzzy-dependent adjustable matrix
inequality technique, fuzzy time sampled-data control, fuzzy
time–space sampled-data control, T–S fuzzy reaction–diffusion
neural networks (RDNNs).
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I. INTRODUCTION

DURING the past decades, fuzzy control has provoked
increasing interests of many researchers from various

fields. Fuzzy control is regarded not only as a useful but also
simple method to control many nonlinear complex systems,
especially for systems or control processes with uncertain-
ties [1]–[9]. For example, fuzzy control has been used to
control two-wheeled robots in [4]. In [5], fuzzy control has
been applied to stabilize the Rössler chaotic systems. In [6],
the determination of the optimal green period ratios and traf-
fic light cycle times have been realized by fuzzy control.
In [7], fuzzy control has been applied to nonlinear networked
systems. In [8], fuzzy control has been considered to solve
the guaranteed cost control problem of uncertain stochastic
fuzzy systems. In [9], fuzzy control has been used to solve
the output tracking problem for T–S fuzzy systems with satu-
rating actuators. Among diverse fuzzy control models, the T–S
fuzzy model is one of the most popular ways to analyze and
design fuzzy systems. Based on the T–S fuzzy model method,
many T–S fuzzy systems have been diffusely investigated since
they have substantial applications, such as the truck–trailer
system [10], Mars entry vehicles [11], and so forth.

Recently, much attention has been paid to neural networks
(NNs) due to their benefits in learning algorithms and handling
data. As a result, extensive applications of NNs are found in a
variety of areas, including financial market, image decryption,
fixed-point computations, and signal processing [12]–[15].
As one of the most important dynamical behaviors of NNs,
synchronization is in the spotlight. Synchronization is a uni-
versal phenomenon in many real systems and has considerable
engineering applications in secure communication, biological
systems, and mechatronic systems [16]–[18]. Thus, it is far
reaching to study the synchronization of NNs.

In the existing literature, most of the NN models are built
under the hypothesis that the interests of all neurons are evenly
distributed. In fact, due to the influence of environmental fac-
tors, the reaction and diffusion phenomena inevitably exist in
NNs. Therefore, it is meaningful to consider the spatial evo-
lutions of NNs. Reaction–diffusion NNs (RDNNs), in which
the neuron states are dependent on both time and space, can
perfectly describe the time and spatial evolutions. In com-
parison with the traditional NNs, RDNNs could realize better
approximations of actual systems. Until now, many interesting
results on RDNNs are obtainable in [19]–[23]. For instance,
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in [19], the impulsive synchronization problem of RDNNs has
been investigated by an impulse-time-dependent LKF method.
In [20], by constructing a new LKF with the neuron activa-
tion function information, stochastic synchronization has been
considered for the Markovian RDNNs with actuator failures.
In [23], by fuzzy control, the stabilization problem has been
studied for T–S fuzzy RDNNs.

In the meantime, the time delay is often encountered in
RDNNs because of the finite switching speeds of amplifiers
and the congestions of signal transmission. The existence of
time delay may cause oscillation or the instability to deteri-
orate the performance of RDNNs. It is, therefore, important
to study RDNNs with time delay. Note that in the existing
works of RDNNs [19]–[23], the time delay is considered as
a single component in the state variables. In implementation,
due to the different transmission conditions in the different
segments of RDNNs, signals transmitted from one point to
another may lead to additive time-varying delays (ATVDs)
with different properties. Thus, it is necessary to consider
ATVDs for RDNNs. However, to the best of our knowledge,
the synchronization of T–S fuzzy RDNNs with ATVDs has not
been considered, which is the first motivation of this article.

In order to realize the synchronization of RDNNs with
time delays, various control strategies have been proposed,
such as quantized feedback control [24], pinning impulsive
control [25], and adaptive control [26]. With the develop-
ment of communication and digital technologies, sampled-data
control has stimulated increasing attention [27]–[29]. Based
on sampled-data control, the synchronization of RDNNs has
been extensively investigated [30]–[33]. For example, in [30],
by time sampled-data control, the exponential synchroniza-
tion problem has been studied for RDNNs with sampled-data
communications. In [31], by spatial sampled-data control, the
exponential synchronization of RDNNs with time delays has
been investigated. In [33], by proposing a time sampled-
data controller and a discontinuous LKF, synchronization
criteria have been established for RDNNs with time delays.
Although some new results for synchronization of RDNNs
with sampled-data control have been presented in [33], a
mistake occurs in V1(t) of the constructed LKF. The matrix
dimensions of V1(t) are not matched because of Dk ∈ R n×n

and ([∂ei(t, x)]/∂xk)
T ∈ R 1×n. Moreover, in the existing

works of RDNNs [30]–[33], all sampled-data control schemes
are designed with the assumption that there is no uncertainty
in control processes. In practice, due to the impact of environ-
ment and restrictions of equipment, uncertainties commonly
exist in the control processes of RDNNs. Hence, it is profound
in both theory and application to design a fuzzy sampled-data
control scheme for RDNNs. However, few works have consid-
ered such a control scheme for synchronization of T–S fuzzy
RDNNs with ATVDs.

Motivated by the above-mentioned discussions, by design-
ing fuzzy time and time–space sampled-data control, we
intend to study the exponential synchronization of T–S fuzzy
RDNNs with ATVDs. The main contributions are highlighted
as follows.

1) Two control strategies, which are fuzzy time sampled-
data control and fuzzy time–space sampled-data control,

are proposed for T–S fuzzy RDNNs. The two fuzzy
sampled-data control schemes can not only tolerate some
uncertainties but also save the limited communication
resources of T–S fuzzy RDNNs.

2) A fuzzy-dependent adjustable matrix inequality tech-
nique is first proposed. Compared with some tradi-
tional estimation techniques with a determined constant
matrix, the fuzzy-dependent adjustable matrix inequal-
ity technique is more flexible and helpful to reduce the
conservatism.

3) The ATVDs are considered for T–S fuzzy RDNNs,
which generalize the existing models of RDNNs with
a single time-varying delay. So the present model here
can satisfy broader application requirements.

Notations: Let col{· · · } denote a column vector, diag{· · · }
denote a block-diagonal matrix, R n denote the n-dimensional
Euclidean space, and R n×n denote the set of n×n real matri-
ces. In, 0n, and 0n,m represent n × n identity matrix, n × n
and n × m zero matrices, respectively. Sym{S} = ST + S.
C([ − � ∗, 0] × �,R n) represents all continuous functions
from [ − � ∗, 0] × � to R n. For φ(s, x) ∈ R n, the norm is
denoted by ‖φ(s, x)‖ = (

∫ ᾱ

α
φT(s, x)φ(s, x)dx)(1/2).

II. PROBLEM FORMULATION AND PRELIMINARIES

Based on the T–S fuzzy model method [34], the T–S fuzzy
RDNN with two ATVDs is described as follows.

Plant Rule m: IF ς1(t) is ϑm
1 and . . . and ςp(t) is ϑm

p , THEN

∂ϕ(t, x)

∂t
= D ∂2ϕ(t, x)

∂x2
− Amϕ(t, x) + B(1)

m f (ϕ(t, x))

+ B(2)
m f (ϕ(t − �1(t) − �2(t), x)) + �(t)

ϕ(t, α) = ϕ(t, ᾱ) = 0, t ∈ [t0,+∞)

ϕ(s + t0, x) = φ(s, x) ∈ C
([−� ∗, 0

]× �,R n) (1)

where m ∈ ג = {1, 2, . . . , r}, r is the number of
fuzzy rules, ς1(t), . . . , ςp(t) are the premise variables, and
ϑm

1 , . . . , ϑm
p are the fuzzy sets. x is the space variable belong-

ing to � = [α, ᾱ], α and ᾱ are constants. ϕ(t, x) =
col{ϕ1(t, x), ϕ2(t, x), . . . , ϕn(t, x)} ∈ R n is the state vec-
tor with ϕi(t, x) being the ith neuron at time t and in
space x. f (ϕ(t, x)) = col{f1(ϕ1(t, x)), . . . , fn(ϕn(t, x))} ∈
R n stands for the neuron activation function. D =
diag{d1, d2, . . . , dn} ∈ R n×n, in which di ≥ 0 represents
the transmission diffusion coefficient along the ith neuron.
Am = diag{am1, am2, . . . , amn} ∈ R n×n with ami > 0.
B(k)

m = (b(k)
mij)n×n ∈ R n×n (k = 1, 2) are the connection

weight matrices. �(t) = col{�1(t), �2(t), . . . , �n(t)} ∈ R n

is the external input. The second and third equations are
the Dirichlet boundary condition and initial condition, respec-
tively. �1(t) and �2(t) are time-varying delays and satisfy
0 ≤ �1(t) ≤ � ∗

1 , �̇1(t) ≤ μ1, 0 ≤ �2(t) ≤ � ∗
2 , and

�̇2(t) ≤ μ2, and �(t) � �1(t)+�2(t),� ∗ � � ∗
1 +� ∗

2 , and
μ � μ1 + μ2.

By employing the weighted average fuzzy blending
approach, the overall T–S fuzzy RDNN with ATVDs can be
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described as

∂ϕ(t, x)

∂t
=

r∑

m=1

θm(ς(t))

{

D ∂2ϕ(t, x)

∂x2
− Amϕ(t, x)

+ B(2)
m f (ϕ(t − �1(t) − �2(t), x))

+ B(1)
m f (ϕ(t, x)) + �(t)

}

ϕ
(
t, α

) = ϕ(t, ᾱ) = 0, t ∈ [t0,+∞)

ϕ(s + t0, x) = φ(s, x) ∈ C
([−� ∗, 0

]× �,R n) (2)

where ς(t) = col{ς1(t), . . . , ςp(t)}, θm(ς(t)) is the normalized
membership function with

θm(ς(t)) = ϑm(ς(t))
∑r

k=1 ϑk(ς(t))
≥ 0

ϑm(ς(t)) =
p∏

l=1

ϑm
l (ςl(t)),

r∑

m=1

θm(ς(t)) = 1

and ϑm
l (ςl(t)) means the membership grade of ςl(t) in ϑm

l .
Viewing system (2) as the drive system, we introduce the

response system as

∂σ(t, x)

∂t
=

r∑

m=1

θm(ς(t))

{

D ∂2σ(t, x)

∂x2
− Amσ(t, x)

+ B(2)
m f (σ (t − �1(t) − �2(t), x))

+ B(1)
m f (σ (t, x)) + �(t) + U(t, x)

}

(3)

where σ(t, α) = σ(t, ᾱ) = 0, t ∈ [t̃0,+∞), σ(s + t̃0, x) =
φ̃(s, x) ∈ C([−� ∗, 0] × �,R n), and U(t, x) ∈ R n is the
control input signal.

Denote the error signal η(t, x) = σ(t, x) − ϕ(t, x) =
col{η1(t, x), η2(t, x), . . . , ηn(t, x)}. From (2) and (3), one
obtains the following error system as:

∂η(t, x)

∂t
=

r∑

m=1

θm(ς(t))

{

D ∂2η(t, x)

∂x2
− Amη(t, x)

+ B(2)
m f̃ (η(t − �1(t) − �2(t), x))

+ B(1)
m f̃ (η(t, x)) + U(t, x)

}

(4)

where η(t, α) = η(t, ᾱ) = 0, t ∈ [t∗0,+∞), η(s + t∗0, x) =
φ∗(s, x) ∈ C([−� ∗, 0]×�,R n), and f̃ (η(t, x)) = f (σ (t, x))−
f (ϕ(t, x)).

The following assumption and lemmas are needed to derive
the main results.

Assumption 1: For any z1, z2 ∈ R , there exist scalars l−i
and l+i such that fi(·) in (1) satisfies

l−i ≤ fi(z1) − fi(z2)

z1 − z2
≤ l+i , z1 �= z2 i = 1, 2, . . . , n.

Lemma 1 [35]: For appropriate dimensional matrix
Y > 0 and vector g(z), the following inequality
holds: − ∫ y2

y1
gT(z)Y g(z)dz ≤ (y2 − y1)χ

T(t)E TY −1Eχ(t)
+ 2χT(t)E T

∫ y2
y1

g(z)dz, where the appropriate dimensional

matrix E and vector χ(t) are independent on the integral
variable.

Lemma 2 [36]: For C > 0 ∈ R n×n, and all functions
y ∈ C([α, ᾱ],R n) with y(α) = 0 or y(ᾱ) = 0, the following
inequality is true:

4
(
ᾱ − α

)2

π2

∫ ᾱ

α

dyT(x)

dx
C

dy(x)

dx
dx ≥

∫ ᾱ

α

yT(x)C y(x)dx.

Moreover, if y(α) = y(ᾱ) = 0, one finds
(
ᾱ − α

)2

π2

∫ ᾱ

α

dyT(x)

dx
C

dy(x)

dx
dx ≥

∫ ᾱ

α

yT(x)C y(x)dx.

Lemma 3 [37]: Let scalars 0 < δ1 < 2δ. If there exists an
absolutely continuous function V : [t0 − ε,+∞) → [0,+∞)

satisfying V̇ (t) ≤ −2δV (t)+ δ1 sup−ε≤θ≤0 V (t + θ), t ≥ t0,
then V (t) ≤ e−2δ∗(t−t0) sup−ε≤θ≤0 V (t0 + θ), t ≥ t0, where
δ∗ > 0 is a unique positive solution of δ∗ = δ − [(δ1e2δ∗ε)/2].

III. MAIN RESULTS

In this section, we will investigate the exponential synchro-
nization of T–S fuzzy RDNN with ATVDs via two different
control schemes. First, by proposing a fuzzy time sampled-
data control scheme and a new fuzzy-dependent adjustable
matrix inequality technique, a novel exponential synchro-
nization criterion is derived for the T–S fuzzy RDNNs (2)
and (3). To show the superiority of the fuzzy-dependent
adjustable matrix approach, an exponential synchronization
criterion by a traditional method is given for comparison.
Then, in order to further save the limited network communi-
cation resources, we design a fuzzy time–space sampled-data
controller. Based on the fuzzy time–space sampled-data con-
trol scheme, new sufficient conditions are further derived to
exponentially synchronize the T–S fuzzy RDNNs with ATVDs.

A. Fuzzy Time Sampled-Data Control for Exponential
Synchronization of RDNNs With ATVDs

Let the time sampling sequence be 0 = t0 < t1 < · · · <

tp < · · · . The time sampling interval hp satisfies the following
condition:

0 < hp � tp+1 − tp = h, p = 0, 1, 2, . . . (5)

where h is a positive constant.
In order to save the limited communication resources of

RDNNs and tolerate some uncertainties in the designing pro-
cess of the controller, according to the parallel-distributed
compensation method [10], the fuzzy time sampled-data con-
troller for rule j is given by the following.

Controller Rule j: IF ς1(t) is ϑ
j
1 and . . . and ςp(t) is ϑ

j
p,

THEN

U(t, x) = Kjη(tp, x), j ∈ ,ג t ∈ [tp, tp+1
)

(6)

where Kj ∈ R n×n (j ∈ (ג are the gains to be designed. Then,
the overall fuzzy time sampled-data controller is inferred by

U(t, x) =
r∑

j=1

θj
(
ς(tp)

)Kjη
(
tp, x

)
, j ∈ ,ג t ∈ [tp, tp+1

)
. (7)
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Substituting (7) into (4), we find

∂η(t, x)

∂t
=

r∑

m=1

r∑

j=1

θm(ς(t))θj
(
ς(tp)

)

×
{

D ∂2η(t, x)

∂x2

− Amη(t, x) + B(1)
m f̃ (η(t, x))

+ B(2)
m f̃ (η(t − �1(t) − �2(t), x))

+ Kjη(tp, x)

}

, t ∈ [tp, tp+1
)

η
(
t, α

) = η(t, ᾱ) = 0, t ∈ [t∗0,+∞)

η
(
s + t∗0, x

) = φ∗(s, x) ∈ C
([−� ∗, 0

]× �,R n). (8)

Remark 1: In implementation, due to the impact of the envi-
ronment and restrictions of equipment, uncertainties ubiqui-
tously exist in the designing process of the controller. Note that
the existing control methodologies in [24]–[26] and [30]–[33]
are designed with an ideal hypothesis that there is no uncer-
tainty in the designing process. Fuzzy control is commonly
known as a useful method to present the control processes
with uncertainties. Meanwhile, sampled-data control is more
effective to save the communication resources of RDNNs in
comparison with the control methods in [24]–[26]. Thus, the
fuzzy time sampled-data controller is designed in (7) for expo-
nential synchronization of T–S fuzzy RDNNs (2) and (3).
Compared with the existing control schemes in [24]–[26]
and [30]–[33], the fuzzy time sampled-data controller (7) is
more effective to tolerate some uncertainties and save the
limited communication resources of RDNNs.

Lemma 4: Let y(t) be a different function [c1, c2] → R n.
For

⎧
⎪⎪⎨

⎪⎪⎩

Plant Rule m : IF ς1(t) is ϑm
1 and · · · and

ςp(t) is ϑm
p

Controller Rule j : IF ς1(t) is ϑ
j
1 and · · · and

ςp(t) is ϑ
j
p

if there exists a symmetric matrix Ymj ∈ R n×n satisfying

�mj =
[S1 S2 + Ymj

∗ S3

]

> 0, m, j ∈ ג

then the following inequality holds:

−
∫ c2

c1

wT(s)�w(s)ds

≤
r∑

m=1

r∑

j=1

θm(ς(t))θj
(
ς(tp)

)

×
[

2χT(t)FT
mj

∫ c2

c1

w(s)ds

+(c2 − c1)χ
T(t)FT

mj�
−1
mj Fmjχ(t)

+ yT(c2)Ymjy(c2) − yT(c1)Ymjy(c1)

]

(9)

where w(t) = col{ẏ(t), y(t)}, � =
[S1 S2

∗ S3

]

, ST
i =

Si ∈ R n×n (i = 1, 3), and any matrix S2 ∈ R n×n.

Matrices Fmj (m, j ∈ (ג and vector χ(t) are with appropriate
dimensions.

Proof: For symmetric matrices Ymj ∈ R n×n (m, j ∈ ,(ג one
finds the following zero equality:

0 =
r∑

m=1

r∑

j=1

θm(ς(t))θj(ς(tp))

×
[

yT(c2)Ymjy(c2)

− yT(c1)Ymjy(c1) − 2
∫ c2

c1

yT(s)Ymjẏ(s)ds

]

. (10)

From (10) and Lemma 1, we have

−
∫ c2

c1

wT(s)�w(s)ds

=
r∑

m=1

r∑

j=1

θm(ς(t))θj(ς(tp))

×
[

−
∫ c2

c1

wT(s)�w(s)ds

+ yT(c2)Ymjy(c2) − yT(c1)Ymjy(c1)

− 2
∫ c2

c1

yT(s)Ymjẏ(s)ds

]

=
r∑

m=1

r∑

j=1

θm(ς(t))θj
(
ς(tp)

)

×
[

−
∫ c2

c1

wT(s)�mjw(s)ds

+ yT(c2)Ymjy(c2) − yT(c1)Ymjy(c1)

]

≤
r∑

m=1

r∑

j=1

θm(ς(t))θj(ς(tp))

×
[

2χT(t)FT
mj

∫ c2

c1

w(s)ds

+ (c2 − c1)χ
T(t)FT

mj�
−1
mj Fmjχ(t) + yT(c2)Ymjy(c2)

− yT(c1)Ymjy(c1)

]

. (11)

This completes the proof.
Remark 2: It is worth mentioning that the fuzzy-dependent

adjustable matrix inequality technique in Lemma 4 is first
proposed. According to a different fuzzy plant rule m and
the controller rule j, different adjustable matrices Fmj and
Ymj are introduced in (9). Thus, compared with the traditional
estimation technique in Lemma 1 [35] with a determined con-
stant matrix, the fuzzy-dependent adjustable matrix inequality
technique is more flexible.

Next, by constructing an appropriate LKF and using
the fuzzy-dependent adjustable matrix inequality technique,
a new synchronization criterion is derived for T–S fuzzy
RDNNs (2) and (3). For simplicity, we denote h(t) = t −
tp, L− = diag{l−1 , l−2 , . . . , l−n }, L+ = diag{l+1 , l+2 , . . . , l+n },
Ii = [0n,(i−1)n In 0n,(10−i)n] (i = 1, . . . , 10), ξ1(t, x) =
col{η(t, x), f̃ (η(t, x))}, ξ2(t, x) = η(t, x) − η(tp, x), z(t, x) =
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{
1

h(t)

∫ t
tp

η(s, x)ds, t �= tp,

η(tp, x), t = tp,
, ξ3(t, x) = col{η(tp, x), z(t, x)},

ξ4(t, x) = col{(∂η(t, x)/∂t), η(t, x)}, and

ζ(t, x) = col

{

η(t, x), η(tp, x), f̃ (η(t, x)),
∂η(t, x)

∂t
, z(t, x)

η(t − �(t), x), f̃ (η(t − �(t), x)), η(t − �1(t), x)

η
(
t − � ∗

1 , x
)
, η
(
t − � ∗, x

)
}

.

Theorem 1: Let scalars � ∗
i ≥ 0, μi (i = 1, 2), h > 0, and

0 < δ1 < 2κ < 2γj be given. If there exist symmetric matrices
P > 0 ∈ R n×n, Q1 > 0 ∈ R n×n, Q2 > 0 ∈ R 2n×2n, Hi >

0 ∈ R n×n (i = 1, 2), Ri > 0 ∈ R n×n (i = 1, 2), W > 0 ∈
R 2n×2n, and S =

[S1 S2
∗ S3

]

> 0 ∈ R 2n×2n, diagonal matrices

G(i)
mj > 0 ∈ R n×n (i = 1, 2), and any matrices M ∈ R n×n,

Y(i)
mj ∈ R n×n (i = 1, 2, 3), Fmj ∈ R 2n×4n, and K∗

j ∈ R n×n,
for any m, j ∈ ג satisfying MD ≥ 0 and

R(1)
mj =

[
R1 Y(1)

mj
∗ R1

]

≥ 0 (12)

R(2)
mj =

[
R2 Y(2)

mj
∗ R2

]

≥ 0 (13)

Smj =
[
S1 S2 + Y(3)

mj
∗ S3

]

≥ 0 (14)

�(0; h, 0) < 0 (15)
[

�(0; h, h) e−2κhϒT
3 FT

mj

∗ − 1
h e−2κhSmj

]

< 0 (16)

then the T–S fuzzy RDNNs (2) and (3) can achieve expo-
nential synchronization under the fuzzy time sampled-data
controller (7), where �(�; hp, h(t)) = ∑6

i=1 �i(�; hp, h(t))
with

�1
(
�; hp, h(t)

)

= Sym
{IT

1 PI4
}+ 2κIT

1 PI1 − δ1IT
2 PI2 + IT

1 Q1I1

− (1 − μ1)e
−2κ� ∗

1 IT
8 Q1I8 + [IT

1 , IT
3

]Q2
[IT

1 , IT
3

]T

− (1 − μ)e−2κ� ∗[IT
6 , IT

7

]Q2
[IT

6 , IT
7

]T

+ IT
1 (H1 + H2)I1 − e−2κ� ∗

1 IT
9 H1I9

− e−2κ� ∗IT
10H2I10

�2
(
�; hp, h(t)

)

= � ∗
1 IT

4 R1I4 − e−2κ� ∗
1

� ∗
1

ϒT
1 R(1)

mj ϒ1 + � ∗IT
4 R2I4

− e−2κ� ∗

� ∗ ϒT
2 R(2)

mj ϒ2,

�3
(
�; hp, h(t)

)

=
(

κh2

2
+ hp − 2h(t)

)
[IT

2 , IT
5

]W[IT
2 , IT

5

]T

+ (
hp − h(t)

)
Sym

{
[IT

2 , IT
5

]W
[

0
−I5 + I1

]}

�4
(
�; hp, h(t)

)

= (
hp − h(t)

)[IT
4 , IT

1

]S[IT
4 , IT

1

]T + e−2κhIT
1 Y(3)

mj I1

+ e−2κhSym

{

ϒT
3 FT

mj

[I1 − I2
h(t)I5

]}

+ �e−2κhh(t)ϒT
3 FT

mjS−1
mj Fmjϒ3 − e−2κhIT

2 Y(3)
mj I2

�5
(
�; hp, h(t)

)

= Sym
{(I3 − L−I1

)TG(1)
mj

(L+I1 − I3
)}

+ Sym
{(I7 − L−I6

)TG(2)
mj

(L+I6 − I7
)}

�6
(
�; hp, h(t)

)

= Sym
{(IT

4 + γjIT
1

)M
(
−I4 − AmI1 + B(1)

m I3 + B(2)
m I7

)}

+ Sym
{(IT

4 + γjIT
1

)K∗
j I2

}
− 2

(
γj − κ

)
π2

(
ᾱ − α

)2 IT
1 MDI1

and ϒ1 = [(I1 − I8)
T , (I8 − I9)

T ]T , ϒ2 = [(I1 − I6)
T , (I6 −

I10)
T ]T , and ϒ3 = [IT

1 , IT
2 , IT

4 , IT
5 ]T . In the meantime, the

desired fuzzy time sampled-data controller gains are given as

Kj = M−1K∗
j . (17)

Proof: For t ∈ [tp, tp+1), choose the following LKF for error
T–S fuzzy RDNN (8):

V (t) =
10∑

i=1

V i(t) (18)

where

V 1(t) =
∫ ᾱ

α

ηT(t, x)Pη(t, x)dx

V 2(t) =
∫ ᾱ

α

∂ηT(t, x)

∂x
MD ∂η(t, x)

∂x
dx

V 3(t) =
∫ ᾱ

α

∫ t

t−�1(t)
e2κ(s−t)ηT(s, x)Q1η(s, x)dsdx

V 4(t) =
∫ ᾱ

α

∫ t

t−�(t)
e2κ(s−t)ξT

1 (s, x)Q2ξ1(s, x)dsdx

V 5(t) =
∫ ᾱ

α

∫ t

t−� ∗
1

e2κ(s−t)ηT(s, x)H1η(s, x)dsdx

V 6(t) =
∫ ᾱ

α

∫ t

t−� ∗
e2κ(s−t)ηT(s, x)H2η(s, x)dsdx

V 7(t) =
∫ ᾱ

α

∫ 0

−� ∗
1

∫ t

t+β

e2κ(s−t) ∂ηT(s, x)

∂s
R1

∂η(s, x)

∂s
dsdβdx

V 8(t) =
∫ ᾱ

α

∫ 0

−� ∗

∫ t

t+β

e2κ(s−t) ∂ηT(s, x)

∂s
R2

∂η(s, x)

∂s
dsdβdx

V 9(t) = (
hp − h(t)

)
h(t)

∫ ᾱ

α

ξT
3 (t, x)Wξ3(t, x)dx

V 10(t) = (
hp − h(t)

)
∫ ᾱ

α

∫ t

tp
e2κ(s−t)ξT

4 (s, x)Sξ4(s, x)dsdx.

It is noted that V i(t) (i = 1, 2, . . . , 8) is continuous
and V i(t) (i = 9, 10) vanish before and after tp. Then,
limt→tp V (t) = V (tp), from which one derives that V (t) is
continuous in time.

Calculating V̇ (t) along the trajectories of error T–S fuzzy
RDNN (8), it yields

V̇ 1(t) = 2
∫ ᾱ

α

ηT(t, x)P ∂η(t, x)

∂t
dx (19)
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V̇ 2(t) = 2
∫ ᾱ

α

∂2ηT(t, x)

∂x∂t
MD ∂η(t, x)

∂x
dx (20)

V̇ 3(t) ≤ −2κV 3(t) +
∫ ᾱ

α

ηT(t, x)Q1η(t, x)dx − (1 − μ1)

× e−2κ� ∗
1

∫ ᾱ

α

ηT(t − �1(t), x)Q1η(t − �1(t), x)dx

(21)

V̇ 4(t) ≤ −2κV 4(t) +
∫ ᾱ

α

ξT
1 (t, x)Q2ξ1(t, x)dx − (1 − μ)

× e−2κ� ∗
∫ ᾱ

α

ξT
1 (t − �(t), x)Q2ξ1(t − �(t), x)dx

(22)

V̇ 5(t) = −2κV 5(t) +
∫ ᾱ

α

ηT(t, x)H1η(t, x)dx

− e−2κ� ∗
1

∫ ᾱ

α

ηT(t − � ∗
1 , x

)H1η
(
t − � ∗

1 , x
)
dx

(23)

V̇ 6(t) = −2κV 6(t) +
∫ ᾱ

α

ηT(t, x)H2η(t, x)dx

− e−2κ� ∗
∫ ᾱ

α

ηT(t − � ∗, x
)H2η

(
t − � ∗, x

)
dx

(24)

V̇ 7(t) ≤ −2κV 7(t) + � ∗
1

∫ ᾱ

α

∂ηT(t, x)

∂t
R1

∂η(t, x)

∂t
dx

− e−2κ� ∗
1

∫ ᾱ

α

∫ t

t−� ∗
1

∂ηT(s, x)

∂s
R1

∂η(s, x)

∂s
dsdx

(25)

V̇ 8(t) ≤ −2κV 8(t) + � ∗
∫ ᾱ

α

∂ηT(t, x)

∂t
R2

∂η(t, x)

∂t
dx

− e−2κ� ∗
∫ ᾱ

α

∫ t

t−� ∗
∂ηT(s, x)

∂s
R2

∂η(s, x)

∂s
dsdx

(26)

V̇ 9(t) = (hp − 2h(t))
∫ ᾱ

α

ξT
3 (t, x)Wξ3(t, x)dx

+ 2(hp − h(t))
∫ ᾱ

α

ξT
3 (t, x)W

×
[

0
−z(t, x) + η(t, x)

]

dx (27)

V̇ 10(t) = −2κV 10(t) − e−2κh
∫ ᾱ

α

∫ t

tp
ξT

4 (s, x)Sξ4(s, x)dsdx

+ (
hp − h(t)

)
∫ ᾱ

α

ξT
4 (t, x)Sξ4(t, x)dx. (28)

According to Jensen’s inequality [38] and reciprocally
convex inequality [39], one has from (12) and (25) that

−e−2κ� ∗
1

∫ ᾱ

α

∫ t

t−� ∗
1

∂ηT(s, x)

∂s
R1

∂η(s, x)

∂s
dsdx

= −e−2κ� ∗
1

∫ ᾱ

α

∫ t

t−�1(t)

∂ηT(s, x)

∂s
R1

∂η(s, x)

∂s
dsdx

−e−2κ� ∗
1

∫ ᾱ

α

∫ t−�1(t)

t−� ∗
1

∂ηT(s, x)

∂s
R1

∂η(s, x)

∂s
dsdx

≤ −e−2κ� ∗
1

� ∗
1

r∑

m=1

r∑

j=1

θm(ς(t))θj
(
ς(tp)

)
∫ ᾱ

α

[
ξ6(t, x)
ξ7(t, x)

]T

× R(1)
mj

[
ξ6(t, x)
ξ7(t, x)

]

dx (29)

where ξ6(t, x) = η(t, x) − η(t − �1(t), x) and ξ7(t, x) = η(t −
�1(t), x) − η(t − � ∗

1 , x).
Similarly, we have from (13) and (26)

−e−2κ� ∗
∫ ᾱ

α

∫ t

t−� ∗
∂ηT(s, x)

∂s
R2

∂η(s, x)

∂s
dsdx

≤ −e−2κ� ∗

� ∗
r∑

m=1

r∑

j=1

θm(ς(t))θj
(
ς(tp)

)
∫ ᾱ

α

[
ξ8(t, x)
ξ9(t, x)

]T

× R(2)
mj

[
ξ8(t, x)
ξ9(t, x)

]

dx (30)

where ξ8(t, x) = η(t, x) − η(t − �(t), x) and ξ9(t, x) = η(t −
�(t), x) − η(t − � ∗, x).

From (14), (28), and Lemma 4, one can obtain

−e−2κh
∫ ᾱ

α

∫ t

tp
ξT

4 (s, x)Sξ4(s, x)dsdx

≤
∫ ᾱ

α

r∑

m=1

r∑

j=1

θm(ς(t))θj
(
ς(tp)

)
e−2κh

×
[

2χT(t)FT
mj ×

[
ξ2(t, x)

h(t)z(t, x)

]

+ h(t)χT(t)FT
mjS−1

mj Fmjχ(t)

+ ηT(t, x)Y(3)
mj η(t, x) − ηT(tp, x)Y(3)

mj η(tp, x)

]

dx

(31)

where χ(t) = col{η(t, x), η(tp, x), (∂η(t, x)/∂t), z(t, x)}.
By Assumption 1, for any diagonal matrices G(k)

mj > 0 ∈
R n×n(k = 1, 2; m, j ∈ ,(ג one obtains

2
r∑

m=1

r∑

j=1

θm(ς(t))θj
(
ς(tp)

)(
f̃ (η(t, x)) − L−η(t, x)

)T

× G(1)
mj

(
L+η(t, x) − f̃ (η(t, x))

)
≥ 0 (32)

2
r∑

m=1

r∑

j=1

θm(ς(t))θj
(
ς(tp)

)

×
(

f̃ (η(t − �(t), x))

− L−η(t − �(t), x)
)TG(2)

mj

(L+η(t − �(t), x)

− f̃ (η(t − �(t), x))
)

≥ 0. (33)

For any matrix M ∈ R n×n, one has from system (8) that

0 = 2
∫ ᾱ

α

r∑

m=1

r∑

j=1

θm(ς(t))θj
(
ς(tp)

)
(

∂η(t, x)

∂t
+ γjη(t, x)

)T

×
[

M
(

−∂η(t, x)

∂t
+ D ∂2η(t, x)

∂x2
− Amη(t, x)
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+ B(1)
m f̃ (η(t, x)) + B(2)

m f̃ (η(t − �(t), x))

)

+ K∗
j η(tp, x)

]

dx (34)

where K∗
j = MKj.

By the Dirichlet boundary condition in (8), integration by
parts, and (34), one finds

2
∫ ᾱ

α

∂ηT(t, x)

∂t
MD ∂η2(t, x)

∂x2
dx

= 2
∂ηT(t, x)

∂t
MD ∂η(t, x)

∂x

∣
∣
∣
∣

x=ᾱ

x=α

− 2
∫ ᾱ

α

∂2ηT(t, x)

∂x∂t
MD ∂η(t, x)

∂x
dx

= −2
∫ ᾱ

α

∂2ηT(t, x)

∂x∂t
MD ∂η(t, x)

∂x
dx (35)

and

2γj

∫ ᾱ

α

ηT(t, x)MD ∂η2(t, x)

∂x2
dx

= −2γj

∫ ᾱ

α

∂ηT(t, x)

∂x
MD ∂η(t, x)

∂x
dx. (36)

From (36) and Lemma 2, one finds that

2κV 2(t) − 2γj

∫ ᾱ

α

∂ηT(t, x)

∂x
MD ∂η(t, x)

∂x
dx

= −2
(
γj − κ

)
∫ ᾱ

α

∂ηT(t, x)

∂x
MD ∂η(t, x)

∂x
dx

≤ −2
(
γj − κ

)
π2

(
ᾱ − α

)2

∫ ᾱ

α

ηT(t, x)MDη(t, x)dx. (37)

Combining (19)–(37), we have for tp ≤ t < tp+1

V̇ (t) + 2κV (t) − δ1 sup
−� ∗≤s≤0

V (t + s)

≤
∫ ᾱ

α

r∑

m=1

r∑

j=1

θm(ς(t))θj
(
ς(tp)

)
ζ T(t, x)

× (
�(1; hp, h(t)) + δ1IT

2 PI2
)
ζ(t, x)dx

− δ1V 1(tp)

=
∫ ᾱ

α

r∑

m=1

r∑

j=1

θm(ς(t))θj
(
ς(tp)

)
ζ T(t, x)

× �
(
1; hp, h(t)

)
ζ(t, x)dx

=
∫ ᾱ

α

r∑

m=1

r∑

j=1

θm(ς(t))θj(ς(tp))ζ
T(t, x)

×
[

h − h(t)

h
�(1; h, 0) + h(t)

h
�(1; h, h)

]

ζ(t, x)dx. (38)

Using the Schur complement to (16), for ζ(t, x) �= 0, one
obtains from (15), (16), and (38) that for tp ≤ t < tp+1

V̇ (t) + 2κV (t) − δ1 sup
−� ∗≤s≤0

V (t + s) < 0. (39)

According to Lemma 3, we can obtain from (39) that
V (t) ≤ e−2δ∗(t−t0)V (t0). Then, we can conclude that the T–S
fuzzy RDNN (2) is exponentially synchronized with (3) under
the fuzzy time sampled-data controller (7). This completes the
proof.

Remark 3: Based on the Lyapunov stability theory, choosing
an appropriate LKF is crucial for deriving stability criteria.
In this article, (18) is chosen as the LKF. V1(t) is the basic
term. V2(t) is constructed to counteract the reaction–diffusion
term 2

∫ ᾱ

α
[(∂ηT(t, x))/∂t]MD[(∂η2(t, x))/∂x2]dx in (34). It is

well known that delay information and sampling information
are effective to reduce the conservatism of stability criteria.
In line with this, Vi(t) (i = 3, 4, . . . , 8) are introduced to
capture the information of the time delays �1(t) and �2(t)
[if only single delay is considered, for example, �1(t), then
Vi(t) (i = 4, 6, 8) do not needed]. Vi(t) (i = 9, 10) are used
to capture the information of sampling.

Remark 4: It is noted that the fuzzy-dependent matri-
ces R(k)

mj (k = 1, 2), Smj, Y(3)
mj , Fmj, and G(k)

mj (k = 1, 2)

are introduced in (29)–(33). It means that different matri-
ces are chosen for different plant and controller rules, which
effectively improve the feasible region of the synchronization
conditions in Theorem 1.

To show the superiority of the fuzzy-dependent adjustable
matrix approach, the following corollary by the traditional
estimation technique in Lemma 1 [35] is given for compari-
son. Replace the fuzzy-dependent matrices R(k)

mj (k = 1, 2),

Fmj, and G(k)
mj (k = 1, 2) by constant matrices R(k) (k =

1, 2), F , and G(k) (k = 1, 2). If the traditional esti-
mation technique in Lemma 1 [35] is used to estimate
−e−2κh

∫ ᾱ

α

∫ t
tp

ξT
4 (s, x)Sξ4(s, x)dsdx, then (31) is changed into

−e−2κh
∫ ᾱ

α

∫ t

tp
ξT

4 (s, x)Sξ4(s, x)dsdx

≤ e−2κh
[

h(t) × χT(t)FTS−1Fχ(t)

+ 2χT(t)FT
[

ξ2(t, x)
h(t)z(t, x)

]]

dx. (40)

Then, from Theorem 1, we have the following corollary.
Corollary 1: Let scalars � ∗

i ≥ 0, μi (i = 1, 2), h > 0, and
0 < δ1 < 2κ < 2γj be given. If there exist symmetric matrices
P > 0 ∈ R n×n, Q1 > 0 ∈ R n×n, Q2 > 0 ∈ R 2n×2n, Hi >

0 ∈ R n×n (i = 1, 2), Ri > 0 ∈ R n×n (i = 1, 2), W > 0 ∈
R 2n×2n, and S =

[S1 S2
∗ S3

]

> 0 ∈ R 2n×2n, diagonal matrices

G(i) > 0 ∈ R n×n (i = 1, 2), and any matrices M ∈ R n×n,
Y(i) ∈ R n×n (i = 1, 2), F ∈ R 2n×4n, and K∗

j ∈ R n×n, for
any m, j ∈ ג satisfying MD ≥ 0 and

R(1) =
[R1 Y(1)

∗ R1

]

≥ 0 (41)

R(2) =
[R2 Y(2)

∗ R2

]

≥ 0 (42)

�∗(0; h, 0) < 0 (43)
[

�∗(0; h, h) e−2κhϒT
3 FT

∗ − 1
h e−2κhS

]

< 0 (44)
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then the T–S fuzzy RDNNs (2) and (3) can achieve exponen-
tial synchronization under the fuzzy time sampled-data con-
troller (7), where �∗(�; hp, h(t)) = ∑

i=1,3,6 �i(�; hp, h(t))∑
i=2,4,5 �∗

i (�; hp, h(t)) with

�∗
2

(
�; hp, h(t)

)

= � ∗
1 IT

4 R1I4 − e−2κ� ∗
1

� ∗
1

ϒT
1 R(1)ϒ1 + � ∗IT

4 R2I4

− e−2κ� ∗

� ∗ ϒT
2 R(2)ϒ2,

�∗
4

(
�; hp, h(t)

)

= (
hp − h(t)

)[IT
4 , IT

1

]S[IT
4 , IT

1

]T

+ e−2κhSym

{

ϒT
3 FT

[I1 − I2
h(t)I5

]}

+ �e−2κhh(t)ϒT
3 FTS−1Fϒ3

�∗
5

(
�; hp, h(t)

)

= Sym
{(I3 − L−I1

)TG(1)
(L+I1 − I3

)}

+ Sym
{(I7 − L−I6

)TG(2)
(L+I6 − I7

)}

and the other notations are given in Theorem 1. Meanwhile, the
desired fuzzy time sampled-data controller gains are given as

Kj = M−1K∗
j . (45)

B. Fuzzy Time–Space Sampled-Data Control for Exponential
Synchronization of RDNNs With ATVDs

Dividing � into N sampling intervals, we can obtain the
space sampling sequence α = x0 < x1 < · · · < xN = ᾱ. The
space sampling interval �q satisfies the following condition:

�q � xq+1 − xq ≤ �̄, q = 0, 1, . . . , N − 1 (46)

where �̄ is a positive constant.
Consider the fuzzy time–space sampled-data controller for

rule j as follows.
Controller Rule j: IF ς1(t) is ϑ

j
1 and . . . and ςp(t) is ϑ

j
p,

THEN

U(t, x) = Kjη
(
tp, x̃q

)
, x̃q = xq + xq+1

2
j ∈ ,ג t ∈ [tp, tp+1

)
, x ∈ [xq, xq+1

)
(47)

where Kj ∈ R n×n (j ∈ (ג are the gains to be designed.
Then, the overall fuzzy time–space sampled-data controller is
represented by

U(t, x) =
r∑

j=1

θj
(
ς(tp)

)Kjη
(
tp, x̃q

)

j ∈ ,ג t ∈ [tp, tp+1
)
, x ∈ [xq, xq+1

)
. (48)

Substituting (48) into (4), we have

∂η(t, x)

∂t
=

r∑

m=1

r∑

j=1

θm(ς(t))θj(ς(tp))

×
{

D ∂2η(t, x)

∂x2

− Amη(t, x) + B(1)
m f̃ (η(t, x))

+ B(2)
m f̃ (η(t − �1(t) − �2(t), x))

+ Kjη
(
tp, x̃q

)
}

t ∈ [tp, tp+1
)
, x ∈ [xq, xq+1

)

η
(
t, α

) = η(t, ᾱ) = 0, t ∈ [t∗0,+∞)

η
(
s + t∗0, x

) = φ∗(s, x) ∈ C
([−� ∗, 0

]× �,R n). (49)

Theorem 2: Let scalars � ∗
i ≥ 0, μi (i = 1, 2), h > 0, �̄,

and 0 < δ1 < 2κ < 2γj be given. If there exist symmetric
matrices Z > 0 ∈ R n×n, P > 0 ∈ R n×n, Q1 > 0 ∈ R n×n,
Q2 > 0 ∈ R 2n×2n, Hi > 0 ∈ R n×n (i = 1, 2), Ri > 0 ∈
R n×n (i = 1, 2), W > 0 ∈ R 2n×2n, and S =

[S1 S2
∗ S3

]

>

0 ∈ R 2n×2n, diagonal matrices G(i)
mj > 0 ∈ R n×n (i = 1, 2),

and any matrices M ∈ R n×n, Y(i)
mj ∈ R n×n (i = 1, 2, 3),

Fmj ∈ R 2n×4n, and K∗
j ∈ R n×n, for any m, j ∈ ג satisfying

MD ≥ 0, (12)–(14), and
[−δ1MD K∗T

j

∗ − π2

�̄2 Z

]

< 0 (50)

�̂(0; h, 0) < 0 (51)[
�̂(0; h, h) e−2κhϒT

3 FT
mj

∗ − 1
h e−2κhSmj

]

< 0 (52)

then the T–S fuzzy RDNNs (2) and (3) can
achieve exponential synchronization under the fuzzy
time–space sampled-data controller (48), where
�̂(�; hp, h(t)) = ∑5

i=1 �i(�; hp, h(t)) + �̂6(�; hp, h(t))
with �̂6(�; hp, h(t)) = Sym{(IT

4 + γjIT
1 )M(−I4 −

AmI1 + B(1)
m I3 + B(2)

m I7)} + Sym{(IT
4 + γjIT

1 )K∗
j I2} −

[(2(γj − κ)π2)/((ᾱ − α)2)]IT
1 MDI1 + (I4 + γjI1)

TZ(I4 +
γjI1). Furthermore, the fuzzy time–space sampled-data
controller gains are given as Kj = M−1K∗

j .
Proof: Similar to the proof of Theorem 1, here we only

list the different parts. Note that η(tp, x̃q) = η(tp, x) −∫ x
x̃q

[(∂η(tp, β))/∂β]dβ. For any matrix M ∈ R n×n, one has
from system (49) that

0 = 2
r∑

m=1

r∑

j=1

θm(ς(t))θj
(
ς(tp)

) N−1∑

q=0

∫ xq+1

xq

�T(t, x)

×
[

M
(

−∂η(t, x)

∂t
+ D ∂2η(t, x)

∂x2
− Amη(t, x)

+ B(1)
m f̃ (η(t, x)) + B(2)

m f̃ (η(t − �(t), x))

)

+ K∗
j η(tp, x) − K∗

j

∫ x

x̃q

∂η(tp, β)

∂β
dβ

]

dx (53)

where �(t, x) = (∂η(t, x)/∂t) + γjη(t, x), K∗
j = MKj.

Based on Lemma 2, for any Z > 0 ∈ R n×n, we have
from (53) that

−2
N−1∑

q=0

∫ xq+1

xq

�T(t, x)K∗
j

∫ x

x̃q

∂η(tp, β)

∂β
dβdx



2392 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 51, NO. 5, MAY 2021

≤
∫ ᾱ

α

�T(t, x)Z�(t, x)dx +
N−1∑

q=0

(∫ x̃q

xq

+
∫ xq+1

x̃q

)

×
⎡

⎣

(∫ x

x̃q

∂η(tp, β)

∂β
dβ

)T

K∗T
j Z−1K∗

j

∫ x

x̃q

∂η
(
tp, β

)

∂β
dβ

⎤

⎦dx

≤
∫ ᾱ

α

�T(t, x)Z�(t, x)dx

+ �̄2

π2

∫ ᾱ

α

∂ηT(tp, x)

∂x
K∗T

j Z−1K∗
j
∂η(tp, x)

∂x
dx. (54)

Combining (19)–(33), (35)–(37), (53), and (54), we obtain
for tp ≤ t < tp+1 that

V̇ (t) + 2κV (t) − δ1 sup
−� ∗≤s≤0

V (t + s)

≤
∫ ᾱ

α

r∑

m=1

r∑

j=1

θm(ς(t))θj
(
ς(tp)

)
ζ T(t, x)

×
(
�̂
(
1; hp, h(t)

)+ δ1IT
2 PI2

)
ζ(t, x)dx

− δ1V 1(tp) − δ1V 2(tp) + �̄2

π2

r∑

j=1

θj
(
ς(tp)

)

×
∫ ᾱ

α

∂ηT(tp, x)

∂x
K∗T

j Z−1K∗
j
∂η(tp, x)

∂x
dx

=
∫ ᾱ

α

r∑

m=1

r∑

j=1

θm(ς(t))θj
(
ς(tp)

)
ζ T(t, x)

× �̂
(
1; hp, h(t)

)
ζ(t, x)dx +

r∑

j=1

θj
(
ς(tp)

)
∫ ᾱ

α

∂ηT(tp, x)

∂x

×
(

−δ1MD + �̄2

π2
K∗T

j Z−1K∗
j

)
∂η(tp, x)

∂x
dx. (55)

Then, using the Schur complement to (50) and (52), from
Lemma 3, (51), and (55), the T–S fuzzy RDNNs (2) and (3)
can achieve exponential synchronization under the fuzzy time–
space sampled-data controller (48). The proof is completed.

Remark 5: By sampling the time t, we design the time
sampled-data controller (7). Note that the state vector ϕ(t, x) of
RDNN (1) is related to both time t and space x. When sampling
both t and x, we design the time–space sampled-data con-
troller (48). Compared with time sampled-data controller (7),
the time–space sampled-data controller (48) uses less sampling
signals, which can further save the communication resources
of RDNNs.

Remark 6: In LMI-based conditions, the number of deci-
sion variables (NDVs) and the dimensions of the LMIs are
two key factors for computational complexity [40]. In gen-
eral, NDV is used as an index of computational complexity. By
computation, the NDVs of the fuzzy time sampled-data control
approach in Theorem 1 and the fuzzy time–space sampled-data
control approach in Theorem 2 are 11n2r2+n2r+2nr2+10n2+
6n and 11n2r2 +n2r+2nr2 +10.5n2 +6.5n, respectively. Note
that in order to derive less conservative synchronization crite-
ria, the fuzzy-dependent adjustable matrix inequality technique
in Lemma 4 is used to estimate the derivative of the con-
structed LKF (18). By introducing more adjustable matrices,

Algorithm 1 MASP Search Algorithm
Step 1: For given 0 < δ1 < κ < 2γj(j = 1, 2, . . . , r), specify

the ranges h with increments �h > 0. Set h = �h.
Step 2: Use MATLAB LMI Toolbox to solve LMIs in

Theorem 1 with specified h.
Step 3: If there exists a feasible solution, then let h = h+�h,

and go to Step 2. Otherwise, go to Step 4.
Step 4: If h = �h, output “No feasible solution satisfying

Theorem 1.” Then reselect values of 0 < δ1 < κ < 2γj(j =
1, 2, . . . , r), go to Step 1. Otherwise, go to Step 5.

Step 5: Output h = h − �h, which is the MASP. With
the output MASP h, and using MATLAB LMI Toolbox to
solve the LMIs in Theorem 1, we obtain the corresponding
feasible matrices. Then, from (17), we find the controller gains
Kj(j = 1, 2, . . . , r).

the conservatism of the obtained synchronization criteria can
effectively be reduced, which will be verified in the next sec-
tion. The limitation of the fuzzy-dependent adjustable matrix
inequality technique is that it reduces the conservatism but
increases the NDVs, which will increase the computational
complexity to some extent. How to weigh the conservatism
and computational complexity will be considered in our future
work.

IV. SIMULATION EXAMPLES

In this section, some simulations are presented to verify
the effectiveness and superiority of the theoretical results. In
order to show how the theory results from the previous sections
are applied in this section, Algorithm 1 is given to find the
maximum-allowable sampling period (MASP) h and controller
gains Kj(j = 1, 2, . . . , r).

Example 1: Consider the T–S fuzzy RDNN (1) with the
membership functions θ1(ς(t)) = 1

2 (1 + sin t) and θ2(ς(t)) =
1
2 (1 − sin t) for rules 1 and 2, respectively, and the following
parameters:

A1 =
[

1 0
0 1

]

, B(1)
1 =

[
2 −0.1

−5 3

]

B(2)
1 =

[−1.5 −0.1
−0.2 −2.5

]

, A2 =
[

1.2 0
0 1.2

]

B(1)
2 =

[
3.6 −0.4
−8 8

]

, B(2)
2 =

[−3.6 −0.24
−0.6 −6

]

D =
[

0.6 0
0 0.6

]

, � = {x| − 1 ≤ x ≤ 5},
�1(t) = | sin(0.1t)|, �2(t) = | cos(0.1t)|
�(t) = 0, fi(ϑi(t, x)) = tanh(ϕi(t, x)) (i = 1, 2)

from which we obtain � ∗
i = 1, μi = 0.1 (i = 1, 2), l−1 =

l−2 = 0, and l+1 = l+2 = 1. Take the initial conditions of
the drive system (1) as φ1(s, x) = 1.5υ(x) and φ2(s, x) =
−2υ(x), and the response system (3) as φ̃1(s, x) = 1.425υ(x)
and φ̃2(s, x) = −2.1υ(x), where υ(x) = cos([π(x − 2)]/6).

Next, we shall discuss the following two cases.
Case 1: Fuzzy time sampled-data control for exponential

synchronization of RDNNs (2) and (3).



ZHANG et al.: FUZZY SAMPLED-DATA CONTROL FOR SYNCHRONIZATION 2393

Fig. 1. Trajectories of states with U(t, x) = 0. (a) η1(t, x). (b) η2(t, x). (c) ‖η(t, x)‖.

Fig. 2. Trajectories of controlled states and the corresponding fuzzy time sampled-data controller (7). (a) η1(t, x). (b) η2(t, x). (c) U1(t, x). (d) U2(t, x).

Fig. 3. Evolution of ‖η(t, x)‖ with fuzzy time sampled-data controller (7).

Case 2: Fuzzy time–space sampled-data control for expo-
nential synchronization of RDNNs (2) and (3).

When U(t, x) = 0, the trajectories of states ηi(t, x) (i = 1, 2)

and ‖η(t, x)‖ are depicted in Fig. 1. From Fig. 1, we find the
synchronization of drive–response systems (2) and (3) cannot
be realized if there is no control input.

For Case 1: We first verify the effectiveness of Theorem 1.
Choosing κ = 0.03, δ1 = 0.04, γ1 = 7, and γ2 = 9, by
Algorithm 1, we can find the MASP h = 0.0683. The corre-
sponding fuzzy time sampled-data controller gains are K1 =[−14.9429 0.3877

0.2703 −17.8713

]

and K2 =
[−13.4753 0.3461

0.2506 −17.3788

]

.

With the above controller gains, Fig. 2 shows the controlled
trajectories of states ηi(t, x) (i = 1, 2) and the correspond-
ing fuzzy time sampled-data controller (7). The evolution of
the controlled ‖η(t, x)‖ is plotted in Fig. 3. From Fig. 3, one
finds the exponential synchronization of the drive–response
systems (2) and (3) is realized, which illustrates the effec-
tiveness of Theorem 1 and the fuzzy time sampled-data
controller (7).

Then, we show the superiority of the fuzzy-dependent
adjustable matrix approach. For various κ , the MASPs h by
Theorem 1 and Corollary 1 are given in Table I. From Table I,

TABLE I
MASP h FOR VARIOUS κ IN CASE 1

we find, for various κ , the MASPs h by Theorem 1 are all
bigger than those by Corollary 1. It is noted that Theorem 1 is
obtained by the fuzzy-dependent adjustable matrix approach,
and Corollary 1 is obtained by the traditional estimation tech-
nique in Lemma 1 [35]. Thus, compared with the traditional
estimation technique in Lemma 1 [35], the fuzzy-dependent
adjustable matrix approach is more effective to reduce the
conservatism.

For Case 2: Take κ = 0.35, δ1 = 0.6799, �̄ = 0.06,
γ1 = 15, and γ2 = 16. By Theorem 2, one obtains the
MASP h = 0.0206 and the fuzzy time–space sampled-

data controller gains as K1 =
[−21.4595 0.1697

0.5273 −27.5542

]

and

K2 =
[−21.6003 0.1625

0.8195 −27.5568

]

. With the above parameters, the

trajectories of states ηi(t, x) (i = 1, 2) and the corresponding
fuzzy time–space sampled-data controller (48) are displayed
in Fig. 4. Fig. 5 displays the evolution of the error signal
‖η(t, x)‖. From Fig. 5, it is clear that the trajectory of ‖η(t, x)‖
converges to zero, which shows the effectiveness of Theorem 2
and the fuzzy time–space sampled-data controller (48).

Example 2: This example presents the application of the
obtained results to image encryption, which is based on the
following algorithm.

Consider the T–S fuzzy RDNN (1) with the following
parameters:

A1 = I3, B(1)
1 =

⎡

⎣
1 + π

4 20 0.001
0.1 1 + π

4 0.001
3 −0.56 −0.12

⎤

⎦
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Fig. 4. Trajectories of states ηi(t, x) (i = 1, 2) and the corresponding fuzzy time–space sampled-data controller (48). (a) η1(t, x). (b) η2(t, x). (c) U1(t, x).
(d) U2(t, x).

Fig. 5. Evolution of error signal ‖η(t, x)‖ with fuzzy time–space sampled-
data controller (48).

A2 = 1

2
I3, B(2)

1 =

⎡

⎢
⎢
⎣

−1.3
√

2π
4 0.1 −0.001

0.1 −1.3
√

2π
4 0.01

2 −0.85 0.02

⎤

⎥
⎥
⎦

B(1)
2 =

⎡

⎣
2 + π

2 40 0.002
0.2 2 + π

2 0.002
6 −1.12 −0.24

⎤

⎦, D = 10−4I3

B(2)
2 =

⎡

⎣
−1.3

√
2π

8 0.05 −0.0005
0.05 −1.3

√
2π

8 0.005
1 −0.425 0.01

⎤

⎦

�1(t) = 0.4, �2(t) = 0.5, � = {x| − 0.5 ≤ x ≤ 0.5}
θ1(ς(t)) = 1 − 0.1 sin2 t, θ2(ς(t)) = 0.1 sin2 t, �(t) = 0

and fi(ϑi(t, x)) = [(|ϕi(t, x) + 1| − |ϕi(t, x) − 1|)/2] (i =
1, 2, 3), from which one has l−i = 0, l+i = 1 (i = 1, 2, 3).
Take the initial conditions of the drive system (1) as φ1(s, x) =
1.5υ(x), φ2(s, x) = −2υ(x), and φ3(s, x) = 0.5υ(x), and
the response system (3) as φ̃1(s, x) = 1.425υ(x), φ̃2(s, x) =
−3υ(x), and φ̃3(s, x) = 0.55υ(x), where υ(x) = cos(πx).

The drive system (1) exhibits chaotic behavior as shown in
Fig. 6.

Taking κ = 0.03, δ1 = 0.04, γ1 = 7, and γ2 = 9, by
Theorem 1, we find the MASP h = 0.1578. The corresponding
controller gains are

K1 =
⎡

⎣
−7.1702 −16.2038 0.3703
−0.0846 −7.3688 −0.0247
−2.8976 −21.2411 −4.7118

⎤

⎦

and

K2 =
⎡

⎣
−6.3356 −17.3634 0.4061
−0.0722 −6.4514 −0.0259
−2.1958 −21.9220 −4.1847

⎤

⎦.

Algorithm 2 Image Encryption and Decryption Algorithm
Based on Fuzzy Sampled-Data Synchronization

Step 1: Process the original image. Read the pixel values of
the original image with size m×n. The pixel value is denoted
by pij (i = 1, 2, . . . , m, j = 1, 2, . . . , n).

Step 2: Generate a chaotic sequence by the drive system after
time tb, where tb is the time after the synchronization realized.
Select m̄ instants of time tb ≤ t̄1 < t̄2 < · · · < t̄m̄ and n̄ spatial
points α ≤ x̄1 < x̄2 < · · · < x̄n̄ ≤ ᾱ such that m̄ × n̄ = m × n.
Then the data ϕ(t̄i, x̄j) (i = 1, 2, . . . , m̄, j = 1, 2, . . . , n̄) is
the generated chaotic sequence. Reshape the chaotic sequence
to a matrix with size m × n. The matrix elements are denoted
by cij (i = 1, 2, . . . , m, j = 1, 2, . . . , n).

Step 3: The encrypted signals are derived as follows:

eij = mod ([‖cij‖ × 108], 256) ⊕ pij

where ⊕ is the XOR operation.
Step 4: The encrypted image is derived by writing the

eij (i = 1, 2, . . . , m, j = 1, 2, . . . , n).
The decryption process is the reverse of the encryption

process, which is omitted here.

With the above controller gains, Fig. 7 shows the controlled
trajectories of states ηi(t, x) (i = 1, 2, 3). From Fig. 7, we find
the synchronization between systems (2) and (3) is achieved.

Then, according to Algorithm 2, the Lena grayscale origi-
nal image, encrypted image, and decrypted image are shown
in Fig. 8(a), and their corresponding histograms are given in
Fig. 8(b). From Fig. 8, one finds that our obtained results
can successfully solve the image encryption problem of secure
communication.

V. CONCLUSION

In this article, we have studied the exponential synchro-
nization problem of T–S fuzzy RDNNs with ATVDs. By
proposing the fuzzy time and time–space sampled-data control
schemes, and the fuzzy-dependent adjustable matrix inequal-
ity technique, and constructing the suitable LKF, we have
obtained some new exponential synchronization criteria for
T–S fuzzy RDNNs with ATVDs. The two fuzzy sampled-data
control schemes are more applicable since they cannot only
tolerate some uncertainties but also save the limited com-
munication resources for T–S fuzzy RDNNs with ATVDs.
The fuzzy-dependent adjustable matrix inequality technique
was first proposed. Compared with some traditional estimation
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Fig. 6. Chaotic behavior of system (1). (a) ϕ1(t, x). (b) ϕ2(t, x). (c) ϕ3(t, x).

Fig. 7. Trajectories of controlled states. (a) η1(t, x). (b) η2(t, x). (c) η3(t, x).

(a)

(b)

Fig. 8. (a) Lena grayscale original image, encrypted image, and decrypted image and (b) their corresponding histograms.

techniques with a determined constant matrix, the fuzzy-
dependent adjustable matrix approach is more flexible and
helpful to reduce the conservatism. Finally, we have discussed
some simulations to verify the effectiveness and superiority of
the obtained theoretical results. It is noted that a new time-
dependent fuzzy LKF approach has been proposed in [41],
which can effectively capture the information of membership
functions. In our future work, the time-dependent fuzzy LKF
approach will be considered for T–S fuzzy RDNNs and the
fuzzy-dependent adjustable matrix inequality technique can be
extended to other T–S fuzzy systems.
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