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MADNet: A Fast and Lightweight Network for
Single-Image Super Resolution

Rushi Lan , Long Sun , Zhenbing Liu, Huimin Lu , Cheng Pang , and Xiaonan Luo

Abstract—Recently, deep convolutional neural networks
(CNNs) have been successfully applied to the single-image super-
resolution (SISR) task with great improvement in terms of
both peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM). However, most of the existing CNN-based SR mod-
els require high computing power, which considerably limits
their real-world applications. In addition, most CNN-based meth-
ods rarely explore the intermediate features that are helpful
for final image recovery. To address these issues, in this arti-
cle, we propose a dense lightweight network, called MADNet,
for stronger multiscale feature expression and feature correla-
tion learning. Specifically, a residual multiscale module with an
attention mechanism (RMAM) is developed to enhance the infor-
mative multiscale feature representation ability. Furthermore,
we present a dual residual-path block (DRPB) that utilizes the
hierarchical features from original low-resolution images. To
take advantage of the multilevel features, dense connections are
employed among blocks. The comparative results demonstrate
the superior performance of our MADNet model while employing
considerably fewer multiadds and parameters.

Index Terms—Channel attention, dense connections, image
super resolution, lightweight, multiscale mechanism.

I. INTRODUCTION

S INGLE-IMAGE super resolution (SISR) is an essential
and classical problem in low-level computer vision that
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is related to reconstructing a visually high-resolution (HR)
image from its low-resolution (LR) input. In practice, SISR
is generally difficult to process due to its ill-posed nature,
wherein multiple HR images can map to the same LR ver-
sion. Addressing SISR has proven to be useful in many
practical cases, such as video streaming [44], [50]; remote
sensing [16], [58]; and medical imaging [31], [45], [48].

To mitigate this problem, numerous SR approaches
have been proposed from different perspectives, includ-
ing interpolation-based [17], reconstruction-based [33], and
example-based methods [23], [25], [40], [41], [49]. The for-
mer two kinds of methods are simple and efficient but suffer a
dramatic drop in restoration performance as the scale factors
increase, and the example-based methods that try to analyze
relationships between LR and HR pairs achieve satisfactory
performance but involve time-consuming operations.

Recently, due to the powerful feature representation capa-
bility of the deep convolutional neural network (CNN), CNN-
based methods have been proposed to learn a nonlinear
mapping from an interpolated or LR version to its corre-
sponding high-quality output. By entirely utilizing the inherent
relations among images in training datasets, these models have
provided outstanding performance in SR tasks [5], [7], [18],
[22], [27], [30], [56], [57]. Ranging from the SRCNN [5],
which has only three convolution layers (Conv layers), to
the recent RCAN [56], which has over 400 layers, these
approaches obviously illustrate that as the model becomes
deeper, the performance improves.

Although CNN-based models have achieved state-of-the-art
performance, these methods face some limitations.

1) Most CNN-based frameworks gain improvement by sub-
stantially increasing the depth or width of the network;
this means that they rely heavily on computation
to produce the HR images, limiting their real-world
applications.

2) Most existing CNN-based SR models seldom utilize the
multiscale representation for image super resolution and
do not fully use the hierarchical features.

Consequently, it is important to design a lightweight archi-
tecture that is practical to solve the mentioned problems. The
general way to build a lightweight network is to reduce the
number of model parameters and computational operations
(multiadds). Based on this concept, we provide a feasible solu-
tion for the challenge that combines the multiscale mechanism
and the dense connection. Specifically, an efficient feature
extraction network (EFEN) is proposed for exploring feature
maps, and an upsampling network (UN) is used for enlarging
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Fig. 1. Multiadds versus PSNR. Comparison between our MADNet model
and other advanced lightweight networks on the Urban100 test set (×3). Our
MADNet model outperforms other methods. The multiadds are calculated by
assuming that the size of the output image is 1280 × 720.

features. The EFEN subnet is the key part of our method. To
build this module, we introduce a residual multiscale module
with an attention mechanism (RMAM) for better multiscale
feature correlation learning. Our RMAM adaptively exploits
the discriminative information at different scale spaces. Such
a mechanism allows our model to focus on more informa-
tive features and enhance the multiscale representation ability.
Moreover, for propagating the feature and gradient data, a
dual residual-path block (DRPB) is proposed. By stacking
the DRPB, we can utilize the hierarchical features from LR
images. In addition, we employ a dense connection struc-
ture for incorporating features from various layers, which can
make full use of multilevel features. As shown in Fig. 1,
our network obtains state-of-the-art reconstruction results with
fewer multiadd operations.

In summary, our main contributions are listed as follows.
1) We propose an RMAM that can not only effectively

extract multiscale features but can also utilize the dis-
criminative information among different channels.

2) We introduce a residual learning-based block, called
DRPB, to map the low-level feature to high-level space
and gathers more information to the greatest extent
possible.

3) We employ a dense connection structure among DRPBs
that can integrate multilevel features such as those at
local or global levels, and thereby enhance the repre-
sentational capability.

The remainder of this article is organized as follows. In
Section II, we briefly review the relevant works on the
proposed method. In Section III, we provide the architec-
ture of our proposed model in detail and discuss the relation
between the state-of-the-art models and our proposed one. In
Section IV, we show the implementation details and datasets,
as well as an ablation study and experimental results. Finally,
we conclude the proposed methods in Section V.

II. RELATED WORKS

Single-image super resolution has been broadly studied for
many years. In this section, we briefly introduce some works
that are related to our proposed model.

A. CNN-Based Lightweight Super-Resolution Networks

CNN-based SISR models [4], [5], [7], [8], [18], [24],
[27], [56], [57] have shown dramatic improvements in recent
years given their powerful nonlinear representation ability.
Dong et al. [5], [6] first introduced a shallow CNN-based
method called SRCNN, which only contains three Conv lay-
ers and obtains impressive performance. The input image of
SRCNN, however, is a bicubic-interpolated image that reduces
high-frequency information and adds a relative amount of
computational cost and time. Later, to reduce the computa-
tional cost caused by the preprocessed input, FSRCNN [7] and
ESPCN [32] explored two different upsampling approaches:
1) the deconvolution layer [52] and 2) the subpixel convolution
layer. In their networks, they enlarge images at the end part
of the models and thus trim down the number of parameters
and operations.

Meanwhile, VDSR [18] employs the global residual learn-
ing to train a very deep network, providing proof of the
fact that increasing the depth of the network can improve
the reconstruction performance. Subsequently, an increasing
number of works have been mainly concerned about improve-
ment by designing more complex CNN architectures. For
example, by combining residual learning and the channel
attention mechanism, Zhang et al. [56] proposed the RCAN
model, which has more than 400 layers and can achieve
great SR performance. However, increasing the reconstruction
performance by increasing the model complexity with a deeper
network is not free: it comes at the cost of a tremendous
increase in computational resources and time. Furthermore,
this approach limits real-world applications [1]. Thus, it is
still a challenging task to build lightweight SR networks [42].

The Laplacian pyramid super-resolution network
(LapSRN) [21] has been introduced to address the speed and
accuracy of the SR problem, which takes the LR image as
input and progressively reconstructs the subband residuals
of HR images. DRRN [37] shares the parameters through
a recursive mechanism to not only reduce the number of
parameters but also improve the reconstruction accuracy.
Ahn et al. [1] proposed an architecture that conducts a
cascading mechanism upon a residual network to achieve
lightweight and efficient reconstruction. Hui et al. [15]
designed a novel information distillation network (IDN) to
maintain the speed of real-time reconstruction.

B. Multiscale Representations

Multiscale feature representations have been widely
used in a large number of visual tasks, such as
image classification [34]–[36], object detection [28], seman-
tic segmentation [51], and image super resolution [26].
GoogLeNet [35] uses parallel filters with different kernel sizes
to enhance the multiscale representation capability in order
to find an optimal local sparse structure. After that accom-
plishment, the improved Inception versions [34], [36] were
designed, stacking more filters in each branch of the par-
allel paths to further expand the receptive field. Moreover,
Res2Net [9] currently exhibits a new module to further
improve the multiscale feature representation ability of CNNs.
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Fig. 2. Architecture of our proposed model (MADNet), which contains two subnetworks: an EFEN and a UN. The former includes three DRPBs; the latter
is constructed by three sets of Conv layers and a pixel-shuffle layer.

In the Res2Net module, the input features are divided into
several groups, and each group of the parallel groups utilizes
a smaller filter to extract features and connects with others via
residual shortcuts.

Recently, Li et al. [26] introduced a multiscale residual
network to exploit the image features to achieve a significant
performance gain for image super resolution. However, they
simply concatenate the information with two different filter
sizes while ignoring the granular-level multiscale feature and
thus cannot cover a large range of receptive fields and cause
a computational burden. Importantly, for image SR, features
with more multiscale information are more accurate for recon-
struction, while an SR model with fewer parameters is more
feasible for real applications.

C. Attention Mechanism

Attention in human perception refers to how visual systems
adaptively exploit a sequence of information items and
selectively focus on salient areas [12]. Recently, several
attempts have introduced attention processing to improve
the performance of CNNs for various computer vision
tasks [12], [43], [47], [56].

Hu et al. [12] employed an attention module to exploit
the interchannel relationship. In their work, the squeeze-and-
excitation (SE) module utilizes global average-pooled features
to calculate channelwise attention and achieves considerable
improvement for image classification. Woo et al. [47] further
exploited this schema for both spatial and channelwise atten-
tion. In addition, Wang et al. [43] proposed a novel attention
block for video classification in which nonlocal operations are
used to capture spatial attention.

III. METHODOLOGY

In this section, we first present the network framework of
MADNet in detail, and then suggest the multiscale module,
which is the core of the proposed method. After that, the
loss functions are illustrated and the discussions among the
proposed method and other related algorithms are provided at
the end of this section.

A. Network Framework

As shown in Fig. 2, the proposed MADNet consists of two
components: 1) an EFEN and 2) a UN.

The EFEN utilizes two successive Conv layers with kernel
sizes of 3 × 3 and 1 × 1 for simply detecting low-level fea-
tures from the input image. Then, to extract the global and
local image features, the output is fed to the DRPBs, and
all the results of the intermediary block are connected to the
following block as dense connections. Let ILR represent the
original input image and ISR be the output; then, this stage
can be formulated as

FFEA = HEFEN(ILR) = HDRPB(HLL(ILR)) (1)

where HEFEN(·) is the feature extraction function and can be
divided into the shallow feature extraction step HLL(·) and the
representation learning step HDRPB(·). FFEA denotes the output
feature map from EFEN.

Finally, we concatenate all of the feature maps for further
feature fusion. After fusing, these features are processed by two
Conv layers and a pixel-shuffle layer to generate the HR image

ISR = HUP(FFEA) = HGEN(HCON(FFEA)) (2)

where HUP(·) denotes the upsampling procedure and contains
two stages: 1) HCON(·) means feature concatenation and fusion
and 2) HGEN(·) represents the subsequent processing.

B. Efficient Feature Extraction Network

We now describe our EFEN (see Fig. 2) in detail. It is
stacked with two Conv layers and three DRPBs, while a sin-
gle DRPB gains a sequence of our proposed residual module,
that is, it operates with the multiscale module and attention
mechanism. The details regarding this structure are presented
as follows.

DRPB: The DRPB contains M = 3 proposed multiscale
modules. To utilize different level features and enhance the
representation capability of our model, we adopt a dense
connection structure for the EFEN, that is, the dth DPRB
relays intermediate features to all of the next blocks. The mth
multiscale module [see Fig. 3(c)] in the dth DPRB can be
represented as

Fd,m = Hd,m
(
Fd,m−1

)
(3)
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(b)(a) (c)

Fig. 3. Exploring different residual forms. We compare the performance
of these structures in terms of PSNR, and experimentally show that the dual
residual-path schema is more effective to extract features. (a) RPB1. (b) RPB2.
(c) DRPB.

where Hd,m denotes the function of the mth multiscale module
in the dth DPRB, and Fd,m and Fd,m−1 are the corresponding
output and input. To gain more informative features, the dual
residual path is used to generate the block output

Fd = Fd,m−1 + Fd,m+1
(
Fd−1 + Fd,m

)
(4)

where Fd−1 and Fd are the outputs of the (d − 1)th and dth
DPRB, respectively. Such a connection schema allows more
low-frequency information to be bypassed during training. In
fact, to confirm the effectiveness of this combination form, we
compare several types of residual blocks and elaborate on the
details in Section IV.

RMAM: Multiscale representations are essential for vari-
ous vision tasks [9], such as semantic segmentation, object
detection, and image classification. The multiscale feature
extraction ability of CNNs leads to effective representations.
In addition, we focus on solving the efficiency limitation that
is essentially presented in real-world SR applications. To bal-
ance the performance and computational budgets, the channel
split strategy is introduced in the residual layer. Meanwhile,
the channel attention mechanism [12] is employed to learn
discriminative representations. It was empirically found that
our multiscale module is not only efficient but also accurate.

Multiscale Structure: Most previous CNN-based SR mod-
els do not consider multiscale representations. To exploit such
information, MSRN [26] was introduced to detect features
at different scales for accurate super-resolution construction.
However, the receptive fields within MSRN are limited, and
the computational complexity is fairly higher. Inspired by
Inception [34] and RFB [28], we propose a multiscale module
[see Fig. 4(d)] to learn the multiscale representation ability.

First, we apply a 1 × 1 Conv to reduce the dimension of the
input data for lessening computational burden and then send
them to the following four parallel branches. Except for the
left (i.e., it includes a 3 × 3 convolution layer), other branches
contain two normal convolutional layers (e.g., 1 × 1, 3 × 3)
and a depthwise convolution with a dilation rate r = 2, 3,
and 5, respectively, denoted by MS(·). These smaller filters
first obtain features from the processed input feature maps fi
and then use a large range of receptive fields to describe the
information. Specifically, the output of the previous branch is
connected to the next branch via an elementwise sum. This
procedure is repeated several times until the outputs from all
branches are processed. This procedure can be defined as

Fi =
{

Conv3(fi) i = 1
MSi(fi) 1 < i ≤ 4

(5)

Fig. 4. Comparison of different multiscale modules. From top to bottom are:
(a) inception module (simplified form) [34], (b) RFB module [28], (c) MSRB
module [26], and (d) RMAM module.

where Conv3(·) denotes the process of the left branch, and Fi

is the output. Then

FUi =
{

Fi i = 1
F1 + · · · + Fi−1 1 < i ≤ 4

(6)

where FUi(·) means the mixed features that potentially receive
feature information from all preceding feature splits.

After extracting the feature maps, we fuse these features at
different scale spaces. The feature maps from all branches are
concatenated and sent to the SE block for exploring discrim-
inative representations among channels. For better preserving
the inherent information, the output features are then fused
with the original input tensors in a residual-like manner. From
our observation, this schema is useful for utilizing features at
different scale spaces.

Channel Attention Mechanism: The attention mechanism
is popular in numerous vision tasks since it adaptively
recalibrates the channelwise feature responses by explicitly
modeling interdependencies between channels [12]. Recently,
this strategy was introduced to further improve CNN-based
SR performance [56].

Let V = [v1, . . . , vn] denote the input data that contain n
feature maps, and the spatial shape of each feature map is
H × W. Then, the statistic Sc of the cth feature map fc is
calculated as

Sc = HAVGP(fc) =
∑H

i=1
∑W

j=1 fc(i, j)

H × W
(7)

where HAVGP(·) means the global average pooling opera-
tion, and fc(i, j) represents the corresponding value of fc.
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The attention statistic of the feature fc is

Ac = F(w1δ(w2Sc)) (8)

where F(·) is the ReLU activation function, and δ(·) represents
the sigmoid function and can be treated as a gating mechanism.
w1 is the weight of a dimension-increasing layer (i.e., 1 × 1
convolution layer for upscaling) and w2 denotes the weight of
a dimension-reduction layer (i.e., 1 × 1 convolution layer for
downscaling). The downscaling layer first reduces the number
of input channels by a reduction factor r with w2, activated
by an activation function δ, and then upscaling to the original
spatial space with w1. The attention statistic Ac that is used to
rescale the input feature map fc

f̂c = Ac · fc. (9)

Densely Connected Structure: Due to our DRPB and the
multiscale module, the information can be perceived from very
different scales. To go a further step to assimilate multilevel
features, we densely connect each DRPB. The mth block
DPRBm (see Fig. 2) can be represented as

DPRBm = Concate(HLL, DPRB1, . . . , DPRBm−1). (10)

Concatenating the preceding features as the input of DPRBm,
the output is also connected to the subsequent block employ-
ing the same process. Such a dense connection struc-
ture [13] allows more abundant low-frequency information to
be bypassed during training.

C. Upsampling Network

As stated in Section II, our proposed model directly
processes original input images so that it can extract features
efficiently. The final high-quality image ISR is reconstructed in
the UN, and all of the features from EFEN are concatenated
at the input layer of the UN; thus, the dimension of the input
data is rather large. Therefore, we use 1 × 1 to reduce the
input dimension before generating the HR pixels.

Then, the magnification layer reshapes the feature maps to a
high-level space and outputs nine channels where each channel
represents each real-valued tensor of the upsampled pixel.

D. Loss Function

We consider two types of loss functions that measure the
difference between the HR output ISR and its correspond-
ing ground truth IGT. The first one is the mean absolute
error (MAE), also called the l1-norm, which is formulated as
follows:

L1 = ‖ISR − IGT‖1. (11)

Alternatively, the mean-square error (MSE) can be used; how-
ever, in previous work [27], it was experimentally found to be
a poor choice to recover clear images.

Given the perception that MAE or MSE tends to lead a
smooth result, we additionally introduce a total variation (TV)
regularizer [10], [29] to constrain the smoothness of ISR

LTV = ‖∇h(ISR)‖2 + ‖∇v(ISR)‖2

=
∑

i,j

√(
ISRi,j+1 − ISRi,j

)2 + (
ISRi+1,j − ISRi,j

)2 (12)

where ∇h(·) and ∇v(·) denote the gradient operator among the
horizontal and vertical direction, respectively.

Thus, the second loss function is defined as follows:

LF = L1 + λLTV. (13)

We train our model with these losses, empirically finding
that the LF loss can obtain a better performance than the L1
loss and λ = 1e−5 works well. As shown in Fig. 7, the LF

loss enables our model to produce sharper SR results.

E. Relation to Other CNN Methods

Relation to Res2Net: The motivation for exploiting the
multiscale potential is similar between the Res2Net [9] mod-
ule and our RMAM. However, there are three main differences
in our mechanism.

1) In general, Res2Net is used in high-level computer
vision tasks (e.g., semantic segmentation and object
recognition), and some inherent operations of this model
are not suitable for image SR such as batch normal-
ization (BN) layers, which increase the computational
complexity and hinder the reconstructed performance of
the network. Thus, we remove these layers.

2) The procedure of extracting features is different. In
Res2Net, the input features are evenly split into several
groups, and each group is processed by a correspond-
ing 3 × 3 convolution except for the first part, where
the convolutional output is added to the preceding
feature and then fed into the next. However, in our
model, we stack three convolutional layers with different
kernel sizes and dilation rates for effectively extracting
information. All of the previous outputs are added to the
following group for integrating multiscale features.

3) For learning the discriminative representation, the SE
block [12] is embedded to recalibrate the channelwise
feature.

Relation to MSRN: We summarize the main differences
between MSRN [26] and our MADNet. The first one is the
design of the basic module. In MSRN, the multiscale resid-
ual block (MSRB) mainly combines parallel convolutions with
multiscale feature fusion by residual learning [11], operating
on all feature channels. Such an approach leads to heavy com-
putations. However, our multiscale module is based on several
convolutional branches and introduces a split and concatena-
tion strategy to effectively process features and reduce the
number of parameters. The second one is the activation func-
tion. MSRN uses the ReLU function, whereas we utilize the
PReLU activation function. From the comparisons in Fig. 5,
in the negative part, PReLU introduces a learnable param-
eter that can counterweigh the positive mean of the ReLU,
making it slightly symmetric; moreover, previous experiments
have proven that PReLU converges faster than ReLU and
obtains better performance [55]. Thus, our proposed multiscale
module possesses more powerful representational ability.

Relation to MemNet: MemNet [38] uses a dense block and
various shortcuts. The differences in our method are listed as
follows. First, Lim et al. trained the network with the L2 loss,
while it was empirically found that training with the L1 loss
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Fig. 5. (a) ReLU versus (b) PReLU. PReLU introduces a learnable parameter
that can counterweigh the positive mean of the ReLU, making it slightly
symmetric.

Fig. 6. Effect of MADNet with different residual structures. The curves are
based on the PSNR (dB) on DIV2K (val) with an upsampling factor of 3 in
200 epochs.

provides better convergence and results than L2 [27]. In this
article, we further improve the L1 loss, and the experimental
results demonstrate that the modification is feasible. Second,
MemNet takes the bicubic-upsampled images as input. Such
input images dramatically increase the number of multiadds.
However, our MADNet directly extracts hierarchical features
from the original LR image and upsamples it at the end of
the network in order to achieve computational efficiency and
improve SR performance. Third, the components are totally
different. Inside of the memory blocks of MemNet, the output
features of each recursive unit are concatenated at the gate
unit for fusing multilevel representations with 1 × 1 convo-
lution. The analysis in [1] and [57] shows that this schema is
not efficient at detecting hierarchical features. In our model,
we extract multiscale feature maps via utilizing the parallel
convolutional branch with different kernel sizes. Furthermore,
we additionally introduce the channel attention mechanism
for effectively learning channelwise feature interdependencies.
Thus, our model is more powerful for feature representation.

IV. EXPERIMENTAL RESULTS

In this section, we first briefly depict the experimental
implementation as well as the training and testing datasets;
the ablation studies follow this step. Finally, we compare our

TABLE I
EFFECTS OF DIFFERENT RESIDUAL STRUCTURES MEASURED ON THE

SET14 × 3 DATASET IN 200 EPOCHS

TABLE II
RESULTS OF AN ABLATION STUDY ON THE EFFECT OF THE SE BLOCK.

THE EVALUATION IS ON THE SET5 AND B100 TEST SETS

Fig. 7. Comparisons of the loss function for ×3 SR. On the top row, the
“zebra” image from the Set14 dataset, the image processed with LF has clear
details in the area around the eye. On the bottom row, the “img006” image
from the Urban100 benchmark, the LF method super resolves the number
“55” sharply.

TABLE III
EFFECT OF THE LOSS FUNCTION WITH SCALE FACTORS OF ×2 AND ×4

ON THE SET14 AND URBAN100 BENCHMARK DATASETS, RESPECTIVELY

network with the state-of-the-art models on four benchmark
datasets and show the visual results on different scales.

A. Training Details

As shown in Fig. 2, the input and output data of our network
are RGB images. During training, in each mini-batch, we ran-
domly crop 16 color patches with a specific size (i.e., 96 × 96
for ×2, 144 × 144 for ×3, and 192 × 192 for ×4) from the LR
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TABLE IV
QUANTITATIVE COMPARISONS OF THE STATE-OF-THE-ART SUPER-RESOLUTION MODELS ON PUBLIC BENCHMARKS.

RED/BLUE TEXT MEANS THE BEST/SECOND−BEST PERFORMANCE

images as input. We augment the training images via rotating
by 90◦ and via horizontal flipping. Our model is trained by
the ADAM optimizer [20] with β1 = 0.9, β2 = 0.999, and
ε = 10−8. The learning rate is initialized as 1e−3, and then
reduced by half every 100 epochs for a total of 400 epochs. It
takes about 15 h to train the proposed model for each magni-
fication factor in this article. All experiments are implemented
in the PyTorch framework on NVIDIA Tesla P100 with a
single GPU.

B. Datasets

We train our model based on the DIV2K dataset [39],
which includes 800 high-quality (2K resolution) images for
the training set, and another 200 pictures for the validation
and test set. During testing, we use four standard bench-
mark datasets: 1) Set5 [3]; 2) Set14 [53]; 3) B100 [2]; and
4) Urban100 [14], each of which has various characteris-
tics. In detail, the Set5, Set14, and B100 datasets mainly
contain images of person and natural landscapes in many
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TABLE V
AVERAGE INFERENCE TIME (SECOND) AND RECONSTRUCTE PERFORMANCE. THE RESULTS ARE EVALUATED ON THE SET14, B100, AND DIV2K

DATASETS FOR ×4 SR

different scenes; the Urban100 set includes 100 urban build-
ing images in the real world. Both peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) [46] results
are calculated on the final SR images on the Y channel
of the transformed YCbCr color space. The LR image is
downscaled from the corresponding HR one using bicubic
downsampling.

C. Ablation Study

To provide a better understanding of the proposed method,
an ablation study is first conducted here from the following
perspectives, that is, residual-path block, SE block, and loss
function.

1) Study of the Residual-Path Block: Fig. 3 illustrates three
different residual structures. We first conduct the ablation
experiment on these structures and the corresponding results
are presented in Fig. 6 and Table I. In Table I, the base-
line is a plain structure without any shortcuts, the RPB1
utilizes the residual learning between the first and last mod-
ule, the RPB2 connects the first two modules via adding
shortcuts, and the DRPB is as illustrated in the previous
section.

It can be seen that the block with residual learning shows
better performance than the baseline because the residual path
allows the earlier feature to pass into later layers. It also can
be observed that the DRPB form depicts a better and stable
performance as the training epochs increase. This result mainly
occurs because the dual residual path effectively promotes the
information propagation.

2) Study of the SE Block: To evaluate the performance of
the SE block components in RMAM, we remove the SE block,
such that the entire network does not take account of the atten-
tion mechanism. Observing the results shown in Table II, the
attention schema can bring absolute improvements, and the
PSNR value improves by approximately 0.9 and 0.8 dB on
Set5 and B100, respectively.

3) Study of the Loss Function: To examine the effect of
the mentioned loss functions, we trained two versions of our
network. Expressed formally, let the first model be “L1” (i.e.,
using L1 loss for training) and other be “LF” (i.e., using the
enhanced LF loss for training). We tried different linear com-
binations of L1 and LF with different weights. Moreover, it
was found that λ = 1e−5 achieves a tradeoff between PSNR
and visual quality. Fig. 7 shows this perception that LF loss
leads to sharper images with more details. In addition, we test
the performance on benchmarks. The corresponding results

are illustrated in Table III. The LF achieves better results with
regard to both PSNR and SSIM. For example, LF gains a
PSNR improvement of 0.05 dB on the Set14 dataset with a
scaling factor 4.

D. Comparison With State-of-the-Art Methods

We compare the proposed method with benchmark SR
models on two commonly used image quality metrics, namely,
PSNR and SSIM. Note that we use the number of parameters
and multiadds to measure the model size. The multiadds
is defined as follows [1], that is, the number of multiply
accumulate operations and we assume the SR outputs size
to 1280 × 720 to calculate multiadds. The geometric self-
ensembling strategy [27], [41] is used for further evaluation
and marked with “+” in this article. Note that we reimple-
ment IDN [15] with PyTorch, and the official TensorFlow
implementation is at https://github.com/Zheng222/IDN
-tensorflow.

As shown in Fig. 1, we compare our model against
the various state-of-the-art algorithms in terms of the mul-
tiadds on the Urban100 dataset with an upscaling factor
of 3. Here, our MADNet method outperforms all state-of-
the-art lightweight models that have less than 2M param-
eters. Specifically, MADNet has similar model size to
those of DRCN [19], MemNet [38], and SRMDNF [54],
while we achieve a better performance than all of
them.

The quantitative comparisons with several state-of-the-art
methods are listed in Table IV. Our model outperforms the
existing models by a large margin on different scaling fac-
tors except for CARN [1]. It can be seen that although our
method has quite a few parameters and multiadds, it gains
completely similar performance or even better. Considering
the GPU runtime, we mainly compare the proposed method
with the latest CARN model and use the official codes
to test their running time. As shown in Table V, our
proposed model averagely spends 0.0455, 0.0162, and 0.1117
s to reconstruct an image on the Set14, B100, and DIV2K
(100 validation pictures in total) datasets for scale fac-
tor 4, respectively, and totally running as fast as the CARN
series.

Fig. 8 presents the visual comparisons on the B100 and
Urban100 datasets for the ×4 scale. The figure shows that
our method works better than other comparative ones, and the
reconstructed SR images are closer to the HR ones in detail.
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Fig. 8. Visual qualitative comparisons with the bicubic degradation model for ×4 SR on benchmarks.

V. CONCLUSION

We proposed a dense network of moderate size for fast and
accurate image SR in this article. Specifically, the RMAM
allows our model to capture the informative multiscale fea-
ture maps by embedding the channel attention operation.
Furthermore, the DRPB utilizes the hierarchical features from
the original LR images and allows the abundant low-frequency
information to be bypassed through dense skip connections.

Comprehensive benchmark evaluations show the effective-
ness of our MADNet model in terms of the model size and
reconstructed results.
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