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Abstract—There are two common challenges in particle swarm
optimization (PSO) research, that is, selecting proper exemplars
and designing an efficient learning model for a particle. In this
article, we propose a triple archives PSO (TAPSO), in which
particles in three archives are used to deal with the above two
challenges. First, particles who have better fitness (i.e., elites) are
recorded in one archive while other particles who offer faster
progress, called profiteers in this article, are saved in another
archive. Second, when breeding each dimension of a potential
exemplar for a particle, we choose a pair of elite and prof-
iteer from corresponding archives as two parents to generate
the dimension value by ordinary genetic operators. Third, each
particle carries out a specific learning model according to the
fitness of its potential exemplars. Furthermore, there is no accel-
eration coefficient in TAPSO aiming to simplify the learning
models. Finally, if an exemplar has excellent performance, it
will be regarded as an outstanding exemplar and saved in the
third archive, which can be reused by inferior particles aiming
to enhance the exploitation and to save computing resources. The
experimental results and comparisons between TAPSO and other
eight PSOs on 30 benchmark functions and four real applica-
tions suggest that TAPSO attains very promising performance
in different types of functions, contributing to both higher solu-
tion accuracy and faster convergence speed. Furthermore, the
effectiveness and efficiency of these new proposed strategies are
discussed based on extensive experiments.

Index Terms—Elite particles, global optimization, particle
swarm optimization (PSO), profiteer particles, triple archives.
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I. INTRODUCTION

THE PARTICLE swarm optimization (PSO) algorithm,
inspired by the swarm behaviors of birds flocking, was

proposed by Kennedy and Eberhart in 1995 [1], [2]. In canon-
ical PSO, each particle represented by a point in the Cartesian
coordinate system chooses the global best-so-far solution as
well as its personal best experience as learning exemplars.
Although a single particle has very low intelligence, the col-
lective behavior of different particles can display a powerful
ability in solving complicated problems [3]–[5].

The ability to deal with the complex problems that emerged
from the collective behaviors depends on the particles’ learn-
ing models, which decide information interactive models
between different particles. Generally, a high efficient learn-
ing model in PSO hinges on proper exemplars and learning
models of each particle. In canonical PSO [1], [2], a learner
particle selects the global or the local best particle, measured
by fitness, as its exemplar to perform the learning process.
Generally, when optimizing simple unimodal functions, the
fitness-based selection of exemplars is a very promising and
efficient option due to the outstanding exemplars, which can
be regarded as elites, and can help the learner particle find
out the global optima with high convergence speed. However,
the fitness-based selection method may cause the population to
be easily trapped in local optima when optimizing complicated
multimodal functions.

Thus, different characteristics are adopted as criteria [6]–[9]
to choose exemplars for a learner particle. For instance, in [7],
a particle uses the ratio of the relative fitness and the dis-
tance of other particles, rather than the fitness, to determine
its exemplar. The novel selection of exemplars offers less
susceptibility to premature convergence. To overcome the
“two steps forward, one step back” phenomenon caused by
the fitness-based selections of exemplars, Zhan et al. [10]
used an orthogonal learning strategy to generate exemplars.
Extensive experimental results verify that these PSO variants
based on the nonfitness selection of exemplars alleviate the
contradiction between exploration and exploitation to some
extent.

Generally, from the perspective of the fitness landscape,
areas with greater steep surface curves are common around
local optima [11]. In other words, when flying around local
optima, a particle’s fitness may be dramatically changed in two
consecutive generations. In this article, the particle is called
a profiteer. Considering that the global optimum must be a
local optimum, if there is thus a profiteer near the global opti-
mum, taking advantage of helpful information implied in the
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profiteer is beneficial for optimizing the complicated functions.
In addition, since the fitness-based selection of exemplars
has favorable performance on the unimodal functions, ratio-
nally utilizing both elites and profiteers is a promising way to
enhance the comprehensive performance of PSOs.

Moreover, considering that all particles using the same
learning model may cause a lack of intelligence in pop-
ulations to cope with different complex situations, some
researchers expand the mono-learning-model to the multi-
learning model [12], [13]. Many studies verify that assigning
multiple learning models for different particles based on the
characteristics of the current fitness landscape is beneficial for
difficult functions.

Based on the above considerations, this article proposes
a new PSO variant, called triple archives PSO (TAPSO). In
TAPSO, two archives are used to save elites and profiteers,
respectively. In each generation, two particles, respectively,
selected from the two archives are used to breed an exemplar
for a learner particle. Based on the performance of the exem-
plar, the learner particle adopts an appropriate learning model.
Furthermore, to save computing resources, those outstanding
exemplars are saved in the third archive, which can be reused
by inferior particles. The main characteristics of TAPSO can
be summarized as follows.

1) Instead of using fitness as a single criterion, the improve-
ment rate of fitness is considered as an additional crite-
rion when choosing learning exemplars for a particle.

2) Three external archives are, respectively, used to save
elites, profiteers, and outstanding exemplars generated
by the elites and profiteers through crossover and muta-
tion operators. Due to the crossover operator, the new
generated exemplar contains both promising information
of elites and profiteers while the mutation operator
injects diversity information into the exemplar.

3) In each generation, a particle adopts its suitable learning
model according to the performance of the generated
exemplar. In this case, the particle can conduct different
search behaviors in different generations aiming to deal
with various fitness landscapes.

4) The generated outstanding exemplars saved in the third
archive can be reused by those inferior particles aim-
ing to enhance the exploitation and save the computing
resources.

The remainder of this article is organized as follows.
Section II presents a framework of the canonical PSO and
reviews some PSO variants. The details of TAPSO are
described in Section III. The experimental results and cor-
responding discussions are detailed in Section IV. Finally, the
conclusions are presented in Section V.

II. RELATED WORKS

A. Canonical PSO

In PSO, each particle i at generation t is associated with
two vectors, that is, a position vector Xt

i = [xt
i,1, xt

i,2, . . . , xt
i,D]

and a velocity vector Vt
i = [vt

i,1, vt
i,2, . . . , vt

i,D], where D rep-
resents the dimension of a problem under study. The vector
Xt

i is regarded as a candidate solution while the vector Vt
i is

treated as a search direction and step size of particle i at gener-
ation t. During the evolutionary process, each particle adjusts
its flight trajectory based on two vectors, called personal his-
torical best position PBt

i = [pbt
i,1, pbt

i,2, . . . , pbt
i,D] and its

neighbors’ best-so-far position NBt
i = [nbt

i,1, nbt
i,2, . . . , nbt

i,D],
respectively. The update rules of Vt

i and Xt
i are defined as (1)

and (2), respectively

vt
i,j = w · vt−1

i,j + c1 · r1,j ·
(

pbt
i,j − xt−1

i,j

)

+ c2 · r2,j ·
(

nbt
i,j − xt−1

i,j

)
(1)

xt
i,j = xt−1

i,j + vt
i,j (2)

where w represents an inertia weight determining how much
the previous velocity is preserved; c1 and c2 are two accel-
eration coefficients deciding relative learning weights for PBt

i
and NBt

i, respectively; r1,j and r2,j are two random numbers
uniformly distributed in the interval [0, 1]; and xt

i,j and vt
i,j rep-

resent the jth dimension values of Xt
i and Vt

i, respectively. Note
that when a particle regards all other particles as its neighbors,
NBt

i is the current global best position GB.

B. Studies of PSO

In the PSO community, designing a more efficient velocity
update rule has captured many researchers’ attention, and var-
ious PSO variants have been proposed during the last decades.
Depending on the objectives to be dealt with, most studies can
generally be classified into three categories, that is, parame-
ter adjustment, learning strategy adjustment, and hybridization
strategy, which are briefly reviewed hereinafter.

1) Parameters Adjustment: It is widely accepted that a
smaller w facilitates the exploitation while a larger one is ben-
eficial for the exploration. The most ubiquitous update rule of
w linearly decreases from 0.9 to 0.4 over the optimization
process which is still applied in many PSOs now [14].
Motivated by the iteration-based w, Ratnaweera et al. [15]
further advocated a hierarchical PSO with time-varying accel-
eration coefficients (HPSO-TVAC). However, considering that
the search process of PSO is nonlinear and complicated, var-
ious nonlinear-varying strategies are proposed to adjust the
parameters [16]–[19] aiming to give particles diverse search
behaviors.

Although the aforementioned strategies improve PSO’s
performance in various degrees, they may run into the risk of
inappropriate tuning parameters because information of dif-
ferent evolutionary states is not appropriately utilized in the
iteration-based strategies.

To lay out a more satisfactory adjustment for the parame-
ters, many scholars proposed different adjustments by taking
advantage of historical information of the entire population [9],
[20], [21]. For instance, in adaptive PSO (APSO) [9], tuning
w, c1, and c2 no longer relies on iteration numbers. Instead,
an evolutionary state estimation, the evaluation of which is
based on the distribution and the fitness of particles, is selected
as a criterion to adjust the parameters. In [21], a new adap-
tive adjustment of w based on the Bayesian techniques is
proposed to enhance the exploitation capability. A common
feature in these improvements is that particles regulate their
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own parameters according to their fitness [22]–[24], veloc-
ity [25], or population diversity [26], [27]. Extensive exper-
iments demonstrate that the adaptive strategies can achieve
a proper tradeoff between the exploration and exploitation
abilities.

2) Learning Strategies Adjustment: In the PSO community,
extracting information based on the global version topologi-
cal structure PSO (GPSO) and the local version topological
structure PSO (LPSO) are two basic learning strategies for
particles [28]. Many studies [28]–[30] suggest that learning
strategies based on sparse and dense neighbor topologies are
beneficial for complicated multimodal problems and simple
unimodal problems, respectively.

To overcome shortcomings caused by a single learning
exemplar, many researchers adopt comprehensive information
of the entire population as an exemplar for a particle by dif-
ferent weighting methods [6], [8], [10], [31]–[33]. In this
sense, the comprehensive learning strategy [8], the orthogonal
learning strategy [10], the interactive learning strategy [34],
and the dimensional learning strategy [31] are remarkable
works.

However, it is unrealistic to adopt an optimal static learn-
ing strategy with a fixed neighbor topology for a specific
problem beforehand since many real applications are “black-
box” problems and the optimization process is a dynamic
course. Thus, quite a few dynamic learning strategies have
been proposed in recent years. For instance, Peram et al. [7]
proposed a fitness-distance-ration-based PSO (FDR-PSO) in
which the Euclidian distance and fitness are deemed as crite-
ria for a specific particle to adjust its learning exemplars. Other
distance-based [35] and fitness-based [36] selections of exem-
plars also manifest very favorable performance. Furthermore,
the multiswarm mechanism [37], [38] is also an efficient way
to enhance the performance of PSO. The heterogeneous learn-
ing strategies based on the multiswarm mechanism enable
the population to efficiently cope with different fitness land-
scapes and offer a better balance between exploration and
exploitation [37]–[39].

To endow a population with more intelligence to solve
different complex situations, Li et al. [13] proposed a self-
learning PSO (SLPSO) in which particles are assigned four
different roles according to distinct local fitness landscapes
they belong to. Accordingly, the different roles represent-
ing four distinct learning strategies enable the particles to
independently deal with various situations. The experiments
demonstrate that the adaptive learning framework improves the
local searching ability and overcomes the premature phenom-
ena to some extent. Furthermore, learning strategies based on
the pairwise competition mechanism [40] and exemplar pool
strategy [41] also achieve a good balance between exploration
and exploitation.

3) Hybridization of Auxiliary: Considering that different
operators or optimization algorithms have their own charac-
teristics, many researchers pour much attention on hybridizing
them with reasonable integration strategies. For instance,
genetic operators [42], [43] and various local searching strate-
gies [41], [44], [45] are very popular auxiliaries for balancing
the exploration and exploitation. Furthermore, Lévy flight, as

a common random walk strategy, is another type of auxiliary
for PSO [46], [47].

To take full advantage of some existing PSO variants,
Lynn and Suganthan [48] proposed an ensemble PSO (EPSO),
in which five PSO variants are hybridized together by an
ensemble approach. Experiments verify that the adaptive
mechanism employed to assign proper PSO variants to the
population during the evolutionary process can organically
integrate various virtues of the involved PSO variants. Apart
from this, some studies manifest that hybridizing PSO with
other evolutionary algorithms (EAs) also shows very promis-
ing performance [49]–[51]. No matter which cooperation
mechanism is adopted in these type PSO variants, the main
idea is using distinct search behaviors of involved algorithms
to improve the exploration capability as well as sharing help-
ful information of the algorithms to enhance the exploitation
capability.

Note that no matter which category a PSO variant belongs
to, two issues must be considered, that is, selecting proper
exemplars and designing an efficient learning model. Hence,
TAPSO is detailed from the two perspectives in the next
section.

III. TAPSO

A. Motivation of TAPSO

When using a heuristic algorithm to solve real appli-
cations, how to keep population diversity is a crucial
problem [52], [53] since it determines the global searchabil-
ity of the algorithms. In the canonical PSO, a particle only
chooses one exemplar in its “social-learning” part. In this
case, the particle cannot absorb much more helpful knowl-
edge from various exemplars, which is harmful for population
diversity. In fact, it is a common phenomenon in human soci-
ety that people always have multiple exemplars during their
social-learning process. Moreover, many studies indicate that
children with multiple exemplars can offer better words learn-
ing ability compared to those children who only learn from
one exemplar [54]–[56]. The simplest explanation is that an
individual can extract more useful knowledge from multiple
information providers than a single exemplar. Motivated by
the studies, many scholars pour attention on generating a new
promising exemplar for a particle based on multiple individu-
als’ experience [6], [8], [42]. The experimental results testify
the promising performance of these new generated exemplars
which extract different knowledge from multiple individuals.

When selecting multiple exemplars for a particle, the major-
ity of the above-mentioned studies chooses the fitness as
a main criterion. Although this type of strategy can take
advantage of much useful information implied in outstand-
ing exemplars, overemphasizing the importance of the fitness
value may increase the risk of premature convergence. Thus,
it is urged for us to select helpful exemplars based on some
new criteria.

There is a common phenomenon that we sometimes choose
people who achieve the fastest progress as our exemplars
since we believe that we can extract much useful experience
from them though they do not display the most favorable
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Fig. 1. Illustration of the learning process based on exemplars who have a
favorable fitness and improvement rate.

performance. In fact, we can also discover the same charac-
teristics of an optimization problem through the perspective of
the fitness landscape. For instance, the fitness landscape of an
area will not change significantly if no local optimum lies in
the area. On the contrary, areas with very steep surface curves
are common around local optima [11], [57]. Thus, when the
fitness of a particle experiences a dramatic change in two con-
secutive generations, the particle, which is called a profiteer,
may be located around a local optimum. Considering that the
global optimum must be a local optimum, if there is a profiteer
near the global optimum, reasonable utilization of the profiteer
has potentially beneficial consequences.

In Fig. 1, although particles A′, B′, C′, and D′ are located
around four different local optima, only A′ is in the neigh-
borhood of the global optimal solution (see the point �).
Furthermore, we can see that B′ and D

′
have the best fit-

ness in the current generation, while the particles A′ and C′
have the greatest and the lowest improvement rates after they
update from A and C, respectively. If E only learns from the
favorable particles with the highest fitness, that is, B′ and D′,
E may fly away from the global optimal solution. On the con-
trary, if E selects A′, who has the highest improvement rate, as
an additional exemplar, it can fly toward the optimal solution.
Specifically, when E chooses B′ and A′ (or D′ and A′) as its
two learning exemplars, the particle will fly toward E′ (or E′′).

From Fig. 1, we can see that only particle A′ that is near
the global optimal solution can that particle E can find out
the optimal solution. Thus, if we use an archive to save many
particles that have great improvement rates, the probability that
there is a particle located around the global optimal solution
is very high. As a result, a learner particle can find out the
optimal solution with high probability.

Inspired by the above discussions, TAPSO is proposed in
this article. In TAPSO, the fitness and the improvement rate
are two metrics to quantify a particle’s characteristic. During
the evolutionary process, particles who have a higher fitness or
greater improvement rate are recorded in two archives, respec-
tively. In each generation, two parents, respectively, selected
from the two archives, are used to generate a versatile exem-
plar for a learner particle. Then, the learner particle conducts
its own learning model to extract useful knowledge from the

exemplar. Furthermore, to save computing resources, some
outstanding generated exemplars are saved in the third archive,
which can be reused by inferior particles.

To implement the aforementioned motivations, three main
steps involved in TAPSO, that is; 1) breeding exemplars;
2) selecting learning model; and 3) reusing exemplars, are
detailed as follows.

B. Breeding From Elite and Profiteer Archives

Without loss of generality, the considered objective f in this
article is for minimization. In other words, the lower the value
f (X) is, the better performance X has. Thus, the improvement
rate (Ir) of a particle i in TAPSO is defined as

Ir
(
Xt

i

) =
f
(

Xt−1
i

)
− f

(
Xt

i

)

e

∣∣∣Xt−1
i −Xt

i

∣∣∣
(3)

where f (Xt
i) is the fitness of Xt

i, and |Xt−1
i − Xt

i| denotes the
Euclidean distance between Xt−1

i and Xt
i.

From (3), we see that a particle i with a higher Ir value,
that is, a profiteer, represents that the particle yields a greater
improvement with relatively small fly distance. Generally
speaking, there may be a local optimum in an area if the fitness
of a particle is changed significantly around the area.

Considering that elites and profiteers have their own advan-
tages, two external archives are used to record them in each
generation t, respectively. Specifically, archives At

e and At
p are

used to save the better M elites and the better M profiteers,
respectively. At each generation, At

e and At
p need to be updated

according to f and Ir of the current particles, respectively.
Specifically, when updating At

e at generation t, we first merge
Xt

i with At−1
e as one set, and then use a greedy strategy to

select those individuals with a better fitness value, that is, the
f value, to save in the archive. Note that each element in At

e is
unique. The update rule of At

p is similar to that of At
e except

that the value of Ir is used as a metric when updating At
p.

To take advantage of both elites and profiteers when updat-
ing each dimension of a particle, two parents, respectively,
selected from At

p and At
e, are used to breed a potential exem-

plar for the particle based on common genetic operators. Note
that particles within At

e and At
p are sorted, in terms of f and

Ir, respectively. Specifically, At
e and At

p are represented as (4)
and (5), respectively, for minimization optimization problems

At
e =

{
Xt

i1
, Xt

i2
, . . . , Xt

iM |f
(

Xt
i1

)
≤ f

(
Xt

i2

)
≤ · · · ≤ f

(
Xt

iM

)}
(4)

At
p =

{
Xt

j1
, Xt

j2
, . . . , Xt

jM |Ir
(

Xt
j1

)
≥ Ir

(
Xt

j2

)
≥ · · · ≥ Ir

(
Xt

jM

)}
.

(5)

In this case, a particle with a smaller f or a greater Ir has a
higher probability to be a parent. For the sorted At

e and At
p, the

probability of the kth individual to be selected is calculated as
follows:

pk = M − k + 1∑M
i=1 i

(6)

where M is the size of the archives.
While a particle has good fitness and good improvement rate

simultaneously, two copies of the particle need to be saved in
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At
e and At

p at the same time. The reason why we save two
copies of the promising particle is that we want to take full
advantages of its two merits, that is, the better fitness and
the greater improvement rate, when generating an exemplar.
However, the shortcoming of the two copies saved in the two
archives is that we may select the two copies simultaneously
to generate an exemplar. In this case, the crossover operator
[see (7)] has no effect, and the exemplar will be a mutation of
the copy, that is, mutated by (8). However, even the particle
appears in At

p and At
e at the same time, and the probability that

the two copies to be simultaneously selected is low. From (6),
we see that the probability that the two copies being simultane-
ously selected is the highest if the particle has the best fitness
and the greatest improvement rate. In this case, if the archive
size is 10, the probability is only 3.31%. While the particle
does not have the best fitness and the greatest improvement
rate at the same time, the probability will become very low.
Thus, we regard saving two copies of a favorable particle to be
beneficial for taking full advantage of its two characteristics
implied in its better fitness and greater improvement rate.

In the following text, the process of breeding a potential
exemplar is presented.

1) Crossover: In every generation, a potential exemplar
Ei = [ei,1, ei,1, . . . ei,D] needs to be bred for a particle i. When
generating the dth dimension of Ei, called ei,d, we use the
roulette wheel selection based on (6) to select two parents Xip1

and Xip2 from Ae and Ap, respectively, and then conduct the
crossover operator on the parents to breed ei,d. The crossover
operator is detailed as

ei,d =
{

xip2,d, if rc < pc

xip1,d, otherwise
(7)

where rc is a random number uniformly distributed in [0, 1];
pc denotes a crossover rate; and xip1,d and xip2,d are the dth
values of Xip1 and Xip2 , respectively.

The value of pc determines how many genes of a generated
exemplar are selected from elites or profiteers and then bears
on the exemplar’s characteristics. We have investigated 11 dif-
ferent values of pc and presented the results in Tables S-II and
S-III in the supplementary material. The results indicate that
setting pc as 0.5 can achieve a balance between exploration
and exploitation.

After the crossover operator, the exemplar Ei may have
favorable characteristics since it integrates the outstanding
merits of Xip1 and Xip2 .

2) Mutation: After the crossover operator, a mutation oper-
ator is conducted on the bred offspring Ei with a mutation
probability pm. A greater pm can inject more diversity into Ei.
On the contrary, a smaller pm enables Ei to contain more use-
ful information obtained from parents. The mutation operator
applied in this article is the same as the classical mutation
operator of GA. For each dimension d, for instance, if a
random number rm ∈ [0, 1] is smaller than pm, then ei,d is
randomly reinitialized in the search space

ei,d = rand(lbd, ubd), if rm < pm (8)

Algorithm 1 Breed_Exemplar (At
e, At

p, pm, pc, pk (1≤k≤M))

01: For j = 1 to D Do
02: Select Xip1 from At

e based on probabilities pk;
03: Select Xip2 from At

p based on probabilities pk;
04: Generate ei,j according to Eq. (7);
05: Carry out mutation for ei,j according to Eq. (8);
06: End For
07: Output result: Ei = [ei,1, ei,2, . . . , ei,D].

where rm is a random number uniformly distributed in [0, 1];
and lbd and ubd denote the lower and upper bounds of the dth
dimension, respectively.

In many popular EAs, pm in the interval [0.01, 0.05] is
widely accepted. In this article, we have explored the char-
acteristics of five different values of pm in Tables S-IV and
S-V in the supplementary material. The results indicate that
setting pm as 0.02 can achieve a balance between exploration
and exploitation. Thus, pm = 0.02 is adopted in all comparison
experiments in this article.

By incorporating the aforementioned operators, the pseu-
docode of breeding an exemplar for a particle can be described
as Algorithm 1.

C. Selecting Learning Model

After applying the crossover and mutation operators to
generate a potential exemplar, particle i has three potential
exemplars, that is, PBi, GB, and Ei. Thus, there are three
ordering results of the three potential exemplars, in terms of
the fitness. Accordingly, each particle i has three candidate
learning models at each generation.

The first case is f (Ei) ≤ f (GB) ≤ f (PBi). Considering that
Ei contains favorable characteristics both of elites and profi-
teers, we regard that there should be a local (even a global)
optimum solution around the excellent exemplar. Thus, it may
be a profitable choice for the particle i to directly fly toward Ei.
This learning model can be called the diffident model since the
particle i disregards its own historical experience, and com-
pletely depends on the best exemplar Ei. With the diffident
model, particle i flies toward Ei without other bias, which
is beneficial for the exploitation. Moreover, after particle i
updates its velocity and position, GB will be replaced by Ei

which aims to save the outstanding solution.
The second case is f (GB) ≤ f (Ei) ≤ f (PBi). Under this

condition, Ei is better than PBi though it is worse than GB.
In this case, assigning Ei as an exemplar for the particle i is
a promising strategy not only for the favorable fitness of Ei

extracted from elites but also for diversity information injected
by the mutation operator [see (8)]. Moreover, to provide more
direct guidance information for the particle i, GB is selected
as another exemplar. Thus, this learning model based on Ei

and GB, called the mild model in this article, is a favor for
offsetting contradictions between exploration and exploitation.

The last case is f (GB) ≤ f (PBi) ≤ f (Ei). The result
manifests that Ei does not contain enough helpful knowl-
edge from elites and profiteers. Hence, particle i will only
select PBi as its exemplar to search for a promising region
around itself. To simplify, this learning model is called the
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confident model because particle i neglects the information of
other particles, regardless of whether they are better than itself
or not. Unlike the diffident model mentioned above, the confi-
dent learning model causes the particle i to ramble near PBi,
which is beneficial for the exploration capability of the entire
population.

According to the aforementioned analysis, the diffident,
mild, and confident learning models detailed as follows are
favorable for the exploitation, balanced search, and explo-
ration abilities, respectively. Note that acceleration coefficients
applied in the canonical PSO are removed from TAPSO,
aiming to simplify the learning models.

1) Diffident Model: Learning from Ei

vt
i,j = w · vt−1

i,j + r1,j ·
(

ei,j − xt−1
i,j

)
. (9)

2) Mild Model: Learning from GB and Ei

vt
i,j = w · vt−1

i,j + r1,j ·
(

ei,j − xt−1
i,j

)
+ r2,j ·

(
gbi,j − xt−1

i,j

)
.

(10)

3) Confident Model: Learning from PBi

vt
i,j = w · vt−1

i,j + r1,j ·
(

pbi,j − xt−1
i,j

)
. (11)

From the aforementioned discussion, we can see that a par-
ticle i selects its learning model by relying on the relative
performance of Ei, PBi, and GB. When Ei is better than GB,
particle i will conduct the diffident model. In this case, par-
ticle i directly flies toward Ei, which has the best fitness,
regardless of other bias. The main primary objective of the
particle is to speed up the convergence, and then enhance
exploitation ability. In the mild model, GB and Ei offer more
favorable performance than PBi. In this case, the particle i
selects GB and Ei as two exemplars, which are beneficial
for exploitation and exploration, respectively. Thus, particle
i can achieve a balance between exploration and exploita-
tion through the mild model. While the newly generated Ei

is worse than PBi, particle i only chooses PBi as its learning
exemplar (i.e., the confident model) due to the PBi hav-
ing very favorable performance. This learning model causes
the particle to ramble near its historical best position PBi,
which is beneficial for the exploration capability of the entire
population.

Based on the multiple learning models, particles in the pop-
ulation can display different search behaviors, and then satisfy
distinct requirements. To verify the performance of the learn-
ing models, a set of experiments is conducted in this article,
the results of which are presented in Table S-VI and Fig. S-2
in the supplementary material. From the results, we can see
that the multiple learning models give particles various and
promising characteristics on different evolutionary stages.

According to the aforementioned discussions, the pseu-
docode of selecting the learning model is detailed as
Algorithm 2.

D. Reusing Exemplars From the Outstanding Archive

While Ei is better than GB or PBt
i, it will be selected as

a real exemplar and then provides much helpful knowledge

Algorithm 2 Select_learning_model (Xt
i, Vt

i, Ei, PBi, GB )
01: Evaluate Ei;
02: If f (Ei) < f (GB)

03: Update Vt+1
i according to Eq. (9); GB = Ei;

04: Else If f (Ei) < f (PBi)

05: Update Vt+1
i according to Eq. (10);

06: Else
07: Update Vt+1

i according to Eq. (11);
08: End If
09: Update Xt+1

i according to Eq. (2);
10: Output results: Xt+1

i , Vt+1
i and f (Ei).

for a particle i. However, there are two issues that need to be
considered. One issue is that Ei may not supply enough pos-
itive information for the particle i in only one generation due
to the stochastic factors in the learning model. Another issue
is that Ei may be able to offer helpful knowledge for other
particles even though it cannot help the particle i achieve a
positive improvement. Thus, it is a conservative and economi-
cal choice that saving Ei in an archive can be reused by other
particles.

Denoting Ao as a set of archived exemplars, the initializa-
tion and update of Ao are made very simple to avoid significant
computational overhead. The maximum size of Ao is the same
as the population size (N), and it is initiated to be empty.
In each generation t, only if a new generated Ei is better
than PBt

i, will it be added to Ao. While the archive size of
Ao exceeds N, some solutions need to be removed from Ao,
aiming to keep the size of Ao at N. Generally, there are two
common methods for the update operator. The one method
is using Ei to replace the worst individual in Ao. The main
shortcoming of the method is that population diversity in Ao

may be rapidly lost. The other one is replacing a randomly
selected solution from Ao by Ei. In this condition, the best
solution in Ao may be replaced by Ei, which is harmful to
efficiently use those outstanding exemplars. Thus, in this arti-
cle, a tournament strategy is adopted to update Ao. Specifically,
an inferior solution of two randomly selected solutions from
Ao is replaced by Ei. In other words, the lost particle of the
tournament is removed from Ao while a favorable Ei is added
into Ao.

How to reuse Ao also needs to be carefully considered.
In this article, some inferior particles in the current popu-
lation take advantage of the outstanding solutions in Ao to
improve their search capabilities. Like the update operation,
the tournament strategy is also applied in the reuse pro-
cess. Specifically, all solutions in Ao are randomly divided
into |Ao|/2 groups, where |Ao| is the size of Ao. Then each
winner, who consists of better fitness of each group, is
selected to replace an inferior particle in the current pop-
ulation. The process of reuse exemplars can be detailed as
Algorithm 3.

To analyze the performance of Ao, Ae, and Ap, a set of
experiments is conducted in this article, and the results are
presented in Table S-VII in the supplementary material. The
experimental results verify that Ao and Ae are beneficial for
enhancing exploitation ability, while Ap plays a positive role
on the balance of exploitation and exploration.
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Algorithm 3 Reuse_exemplars (Ao, PBt
i (1 ≤ i ≤ N))

01: Sort all PBt
i from worse to better, in terms of fitness;

02: Divide the solutions in Ao into |Ao|/2 groups; /*|Ao| is the size of Ao*/
03: For i = 1 to |Ao|/2 Do
04: E = the better solution in the group i;
05: If f (E)<f (PBt

ji
)

06: PBt
ji

= E; /* ji is the index of PB after sorting */
07: End If
08: End For
09: Output result: PBt

i (1 ≤ i ≤ N).

Algorithm 4 TAPSO
/* Initialization */

01: Initialize population size N, t = 04, At
e = At

p = Ao = ∅, pc, and pm;
02: For i = 1 to N Do
03: Randomly initialize Vt

i , and Xt
i; Evaluate Xt

i; PBt
i = Xt

i;
04: End For
05: Update GB;

/* Main Loop */
06: While not meeting terminal conditions
07: t = t + 1;
08: Update At

e and At
p based on Eq. (4) and Eq. (5);

09: Calculate pk for each candidate k in At
e and At

p according to Eq. (6);
10: For i = 1 to N Do
11: Generate Ei according to Algorithm 1;
12: Carry out the learning process according to Algorithm 2;
13: If |At

o| < N and f (Ei) < f (PBt
i) /* Update archive At

o */
14: At

o = At
o
⋃

Ei;
15: Else If |At

o| ≥ N and f (Ei) < f (PBt
i)

16: Randomly select Ej1 and Ej2 from Ao;
17: Use Ei to replace the poorer one between Ej1 and Ej2 ;
18: End If
19: Evaluate Xt

i and update PBt
i;

20: End For
21: Reuse the archive At

o according to Algorithm 3;
22: Update GB;
23: End While
24: Output results.

E. Framework of TAPSO

By incorporating the aforementioned components, the pseu-
docode of TAPSO is shown in Algorithm 4, and the flowchart
of it is sketched in Fig. S-1 of the supplementary material.

IV. EXPERIMENTAL STUDIES

A. Benchmark Functions and Peer Algorithms

In this article, 30 benchmark functions, that is, 4 basic
unimodal problems (f1–f4), 4 modified unimodal problems
(f5–f8), 12 basic multimodal problems (f9–f20), and 10 mod-
ified multimodal problems (f21–f30), are selected to testify
the performance of TAPSO on different environments. The
experiments are conducted on dimensions of D = 10, 30,
and 50. The maximum number of function evaluations is set
to MaxFEs=10 000×D. Due to space limitations, the basic
information of the benchmark functions is given in Table S-I
of the supplementary material, and the details of the functions
can refer to [9], [13], [37], [45], and [58].

For comparative analysis, other eight state-of-the-art
PSO variants, including F_PSO [59], OLPSO [10],
SLPSO [13], PSODDS [60], HCLPSO [33], CCPSO-
ISM [61], SRPSO [22], and EPSO [48], are selected as peer
algorithms in this article. Parameters settings of all peer
algorithms are summarized in Table I. Note that population

TABLE I
BASIC INFORMATION OF NINE PEER ALGORITHMS

sizes for each algorithm in Table I, including three integers,
denote the three population sizes for D = 10, 30, and 50,
respectively. To obtain statistical results, each algorithm
is carried out by 30 independent runs on each benchmark
function. All of the algorithms are coded in MATLAB and
run on a PC with an Intel Core i5-4200U CPU@1.6 GHz/4
GB RAM. (Note that only a single processor is used.)

Moreover, extensive experiments are also conducted in this
article that aim to analyze the performance of new introduced
strategies and parameters. The results of the experiments are
presented in the supplementary material.

B. Solutions Accuracy

In this article, mean value (Mean), standard deviation
(Std.Dev.), rank of mean value (Rank), and two-tailed t-test
results are four basic performance metrics. Note that freedom
at a 0.05 level of significance is adopted in the t-test.

The comparison results on solutions accuracy are provided
in this section. Due to space limitations, only the results of
10-D are presented in Tables II–IV while the results of 30-D
and 50-D are listed in Tables S-V–S-X of the supplementary
material, where the best result of Mean on each function is
shown in bold. Moreover, the Rank and the t-test results are
also included in these tables. Note that the results of the t-test
presented in the tables are “+,” “−,” and “=,” which denote
that TAPSO is significantly better than, significantly worse
than, and almost the same as the corresponding competitor
algorithms, respectively.

1) Unimodal Functions (f1–f8): From Table II and Tables
S-III and S-XI in the supplementary material, we can see that
TAPSO achieves the most favorable performance on the uni-
modal functions both in 10-D, 30-D, and 50-D, in terms of
Mean and Rank. Specifically, TAPSO attains the best mean
values on 7, 5, and 5 out of the eight unimodal functions in
10-D, 30-D, and 50-D, respectively. The t-test results manifest
that TAPSO overwhelmingly dominates other peer algorithms
on f1, f2, f6, and f8 with the 3-D cases while it offers the
most promising performance on f3 in both 10-D and 50-D
cases. Furthermore, TAPSO attains noninferior performance to
other peer algorithms on f6 and f8 in the 3-D cases. Although
TAPSO offers very favorable results on f6 in the three cases,
it does not yield promising solutions on f7, which is a variant
of f6 by adding some noise into fitness. In contrast, F_PSO,
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TABLE II
OPTIMIZATION RESULTS ON THE EIGHT UNIMODAL FUNCTIONS (D = 10)

TABLE III
OPTIMIZATION RESULTS ON THE 12 BASIC MULTIMODAL FUNCTIONS (D = 10)

SRPSO, and EPSO demonstrate very promising performance
on f7 in the 3-D cases. The comparison results indicate that
the performance of TAPSO on noise functions needs further
improvement.

Along with the dimension increasing, TAPSO not only
displays favorable performance on those simple unimodal
problems, such as f1, f2, and f3, but also demonstrates very
reliable performance on the other nonseparable problems,
including f6 and f8, measured by Mean and Rank. Thus, we
can say that TAPSO has better scalability as well as higher
solutions accuracy.

2) Basic Multimodal Functions (f9–f20): The results in
Table III and Tables S-IX and S-XII in the supplementary
material indicate that TAPSO outperforms other peer algo-
rithms on the basic multimodal functions in the 3-D cases,
in terms of the number of attained best results on Mean and
Rank. Moreover, the t-test results demonstrate that TAPSO
attains significantly better than or almost the same as all of
the other eight peer algorithms on at least 7 out of the 12
multimodal functions in 10-D and 30-D cases. In the 50-
D case, this number decreases to 6. In addition, TAPSO is
the only one who obtains the global best optimum of f12 on
all 30 runs in all of the dimension cases. On the contrary,
although HCLPSO and CCPSO-ISM yield the same results
as TAPSO on f12 in 10-D cases, the performance of the two
peer algorithms has rapidly deteriorated along with increas-
ing dimensions. Moreover, TAPSO also attains very promising
results on f11 while HCLPSO attains favorable performance on

f18 in the three different dimension cases. Thus, we can obtain
a conservative conclusion that multiple learning models (i.e.,
diffident, mild, and confident models) in TAPSO can provide
richer information to deal with different search objectives than
a single learning model.

3) Shifted/Rotated Multimodal Functions (f21–f30): The
comparison results on the ten shifted/rotated multimodal func-
tions in the 3-D cases are summarized in Table IV and
Tables S-X and S-XIII in the supplementary material, respec-
tively. The experimental results indicate that HCLPSO offers
the most favorable performance on the modified multimodal
functions in the 10-D case, in terms of Mean and Rank.
Its performance, however, dramatically deteriorates with the
increase of dimension. On the contrary, the improvements of
TAPSO become more salient with the increase of dimension.
For instance, TAPSO is dominated by HCLPSO in 6 out of
the 10 functions in 10-D case. However, TAPSO yields better
results than HCLPSO as well as other peer algorithms in 30-D
and 50-D cases. Thus, we can say that TAPSO has very reliable
scalability on these modified multimodal functions. Together,
with the results on the 12 basic multimodal functions, we can
find out that the different learning models applied in TAPSO
are favorable for multimodal functions.

C. Statistical Results of Solutions

1) t-Test Results: The results of the t-test between TAPSO
and other peer algorithms are among the 30 functions in
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TABLE IV
OPTIMIZATION RESULTS ON THE TEN MODIFIED MULTIMODAL FUNCTIONS (D = 10)

TABLE V
t-TEST RESULTS BETWEEN TAPSO AND OTHER PSO VARIANTS

ON ALL TEST FUNCTIONS

the 3-D cases. In this section, statistical results of the t-test
are displayed in Table V, in which symbols “#+,” “#−,”
and “#=” denote the number that TAPSO is significantly
better than, significantly worse than, and almost the same
as the corresponding competitor algorithm, respectively. The
comprehensive performance (CP) is equal to “#+” minus
“#−.”

It can be seen from Table V that TAPSO significantly
outperforms the other eight PSO variants on the majority
of test functions. Concretely, TAPSO offers more favorable
performance than the other eight peer algorithms both on the
10-D, 30-D, and 50-D cases. Moreover, according to the val-
ues of CP, we can see TAPSO displays the most promising
performance, followed by HCLPSO and EPSO.

2) Friedman-Test Results: In this part, a Friedman-test of
Mean values is used to compare the overall performance
among all nine competitors. Furthermore, we also separately
carry out the test on the 10-D, 30-D, and 50-D cases. The
results are listed in Table VI, in which each algorithm and its
rankings are listed in ascending order (the lower the better).

From the results, we can see that TAPSO attains the best
overall performance, followed by HCLPSO and EPSO, which
is consistent with the t-test results listed in Table V. In addi-
tion, TAPSO also achieves the most favorable results on both
the three different dimension cases while HCLPSO and EPSO
yield the second- and the third-best performance, respectively.
Although OLPSO does not offer promising performance in
10-D and 30-D cases, it shows many favorable characteristics
in the 50-D case than in the two lower cases, which means
that the orthogonal learning strategy in OLPSO may be very
suitable for higher dimension problems.

TABLE VI
FRIEDMAN-TEST OF MEAN VALUES ON THE 30 TEST FUNCTIONS

TABLE VII
SCORES AND FINAL RANK OF ALL PEER ALGORITHMS

D. Final Rank of All Peer Algorithms

To evaluate the overall performance of all peer algorithms
and give a final rank (FR) of them, an evaluation method based
on a score of 100 is applied in this article. There are two
criteria involved in the evaluation method, in which higher
weights are given for higher dimensions. Due to space limita-
tions, two criteria and the entire evaluation are detailed in the
supplementary material.

From the results of FR as well as Score displayed in
Table VII, we can see that TAPSO offers the best overall
performance measured by FR, while EPSO is the second best,
followed by HCLPSO and SLPSO. Moreover, TAPSO not only
attains the highest value of FR but also performs best results
on Score1 and Score2. From the superior performance of these
PSO variants, we can obtain a conservative conclusion that
assigning different roles for different particles (or subpopula-
tions) is beneficial to improve the comprehensive performance
of PSOs on different problems.

E. Convergence Speed

The speed in obtaining a global optimum is also a salient
yardstick for measuring an algorithm. Due to space limitations,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Comparison results of convergence characteristics on the eight unimodal functions: (a) f1, (b) f2, (c) f3, (d) f4, (e) f5, (f) f6, (g) f7, and (h) f8.

(a) (b) (c) (d)

(i) (j) (k) (l)

(e) (f) (g) (h)

Fig. 3. Comparison results of convergence characteristics on the 12 basic multimodal functions: (a) f9, (b) f10, (c) f11, (d) f12, (e) f13, (f) f14, (g) f15, (h) f16,
(i) f17, (j) f18, (k) f19, and (l) f20.

in this section, experiments are only conducted on the 30-
D case to compare the convergence process. The conver-
gence graphs of the three-class functions, that is, unimodal,
basic multimodal, and modified multimodal functions, are
shown in Figs. 2–4, respectively. Moreover, the experiments
of time usages on the 30-D functions are also conducted
in this article. The results of the experiments are listed in
Table VIII.

From Fig. 2, we can see that TAPSO displays the highest
convergence speed during the entire evolutionary process on
5 out of the 8 unimodal functions, and offers the most accu-
rate solutions on the five functions. On f1, f2, f5, and f6, the
convergence speed of TAPSO is significantly better than other
algorithms while SRPSO yields the highest convergence speed
at the later evolutionary stage on f7. Furthermore, TAPSO per-
forms slightly better than EPSO on f8. Although there are four
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(a) (b)

(i) (j)

(c) (d)

(e) (f) (g) (h)

Fig. 4. Comparison results of convergence characteristics on the ten modified functions: (a) f21, (b) f22, (c) f23, (d) f24, (e) f25, (f) f26, (g) f27, (h) f28,
(i) f29, and (j) f30.

TABLE VIII
COMPARISON OF TIME USAGES ON 30-D FUNCTIONS (IN SECOND)

algorithms, including TAPSO, find out the global best solution
on f5, and TAPSO manifests the highest convergence speed
than the other three competitors.

The results presented in Fig. 3 demonstrate that TAPSO
attains the most outstanding performance on 6 out of the 12
basic multimodal functions, including f9, f10, f11, f12, f17, and
f20. Although more than one algorithm attains the theoretical
global optimal solutions on f11, f12, and f13, TAPSO achieves
the highest convergence speed on f11 and f12 while CCPSO-
ISM offers the best performance on f13. Moreover, TAPSO also
displays the competitive results on f14, f16, and f19, on which
it performs slightly weaker than SLPSO. Note that all peer
algorithms except TAPSO are trapped into local optimal on f17
since there is a very narrow valley from local optimum to global
optimum within the fitness landscape. Thus, we can obtain
a conservative conclusion that TAPSO has a very favorable
exploration capability due to its high population diversity.

Although more than one algorithm obtains the global optimal
solutions on f21 and f22, TAPSO has the highest convergence
speed, while HCLPSO also yields a very promising convergence
process on the functions. In addition, TAPSO offers the most
notable convergence performance besides the highest accurate
solution on f23 while other peer algorithms fall into local
optimum in the early evolution stage. Although TAPSO shows
the fastest convergence on f24–f29 at the initial stage, it cannot
find out more accurate solutions on these functions at the later
stage. Hence, we regard that the capability of jumping out of
the local optimum of TAPSO needs to be further improved.

F. Time Usage

In this section, an experiment is conducted to compare the
time usages of the nine competitors. The results listed in
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TABLE IX
COMPARISON RESULTS ON FOUR REAL APPLICATIONS

TABLE X
FRIEDMAN-TEST RESULTS ON FOUR REAL APPLICATIONS

Table VIII indicate that SLPSO yields the best performance,
followed by CCPSO-ISM and OLPSO. Although TAPSO
offers the best performance measured by mean results (see
Tables V and VI) and final rank (see Table VII), it mani-
fests the sixth better performance in terms of the average time
usage. Comparing TAPSO and canonical PSO, we can find out
that it is the sorting operations in updating archives Ae and Ap

that cause extra time consumption. However, together with the
convergency curves demonstrated in Figs. 2–4, we can see that
TAPSO also has relatively fast convergence speed.

G. Comparison on Real Applications

To testify the performance of TAPSO on real applications,
four common engineering problems are adopted in this sec-
tion, that is, F1: parameter estimation for frequency-modulated
(FM) sound waves, F2: design of a gear train, F3: spread
spectrum radar polyphase code design, and F4: Lennard–Jones
potential problems. Due to space limitations, details of the four
problems can be observed from [13] and [62].

The experimental results listed in Table IX include three
performance metrics, that is, Mean, Best, and Median val-
ues of 30 independent runs. Furthermore, the results of three
Friedman-tests, which are presented in Table X, are also,
respectively, conducted on the three metrics.

From Table IX, we can see that TAPSO, PSODDS, and
SRPSO yield the most favorable performance on F1, in terms
of Best value. On the contrary, EPSO and HCLPSO offer more
promising Median results than the other seven peer algorithms.
Although F2 has been solved easily by all of the algorithms,
TAPSO, PSODDS, and CCPSO-ISM achieve the most reliable
performance than other algorithms since all three outstanding
algorithms find out the global best solutions on all indepen-
dent runs. On F3, SRPSO displays the best performance on
all performance metrics, followed by EPSO, HCLPSO, and
TAPSO. Furthermore, TAPSO, HCLPSO, and EPSO yield

more pleasurable characteristics than the other six peer algo-
rithms, in terms of Mean, Best, and Median values. On F4,
TAPSO yields the most favorable performance measured by
Mean and Median results, followed by HCLPSO.

The Friedman-test results listed in Table X show that
TAPSO yields the best comprehensive performance among
all nine peer algorithms. Moreover, HCLPSO and EPSO also
offer very superior performance. Note that PSODDS displays
the second-best performance, in terms of Best value, though
it demonstrates unfavorable performance on the metrics Mean
and Median.

V. CONCLUSION

In this article, inspired by a common phenomenon that
areas with very steep surface curves are common around local
optima, we proposed a TAPSO, in which the change of fit-
ness in two consecutive generations (i.e., improvement rate)
is regarded as an additional criterion when choosing exem-
plars for learner particles. In TAPSO, two archives are used
to save profiteers particles and elite particles that offer greater
improvement rates and better fitness, respectively. Based on
ordinary genetic operators, two parents, respectively, selected
from the two archives, are used to generate a potential exem-
plar for a particle. In this way, the bred exemplar is well
diversified and highly qualified since it has characteristics with
higher fitness as well as faster progress. In addition, those out-
standing exemplars are saved in the third archive, which can
be reused by particles to improve the exploitation and save
computing resources. According to the performance of the
potential exemplar, the particle adopts a proper learning model
aiming to balance the exploration and exploitation capabilities.
Moreover, to simplify the algorithm, acceleration coefficients
applied in the canonical PSO are removed from TAPSO.

To verify the effectiveness of TAPSO, sets of extensive
experiments were conducted. Furthermore, the performance
of the three archives and the learning models was also ana-
lyzed by extensive experiments. From the comparison results,
we can obtain some preliminary conclusions. First, elites
and profiteers can provide different merits for other learner
particles. Second, the new generated exemplar can help a par-
ticle find out a more promising position. Finally, different
learning models have distinct characteristics, which is ben-
eficial for satisfying different requirements of different fitness
landscapes.

In TAPSO, an exemplar generated by an elite and a profi-
teer is used to provide various knowledge for a learner particle.
Although elites and profiteers have their own characteristics,
which are suitable for different problems, it is still an open
question on how to design an appropriate strategy to breed
exemplars according to a specific problem. Considering that
many real applications are black-box problems, it is worth
further studying that how to design an adaptive method to
combine helpful information implied in different particles.
Moreover, the advantages and disadvantages of the three
learning models are also a promising research direction, in
order to design a reliable and robust algorithm based on the
heterogeneous multiple models [63] for different problems.
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[46] H. Haklı and H. Uğuz, “A novel particle swarm optimization algo-
rithm with Levy flight,” Appl. Soft Comput., vol. 23, no. 5, pp. 333–345,
Oct. 2014.

[47] E. Grasso, G. Di Bella, and C. Borean, “Ranked particle swarm
optimization,” Int. J. Adv. Syst. Meas., vol. 8, nos. 1–2, pp. 18–29,
Jun. 2015.

http://dx.doi.org/10.1109/TCYB.2019.2937565
http://dx.doi.org/10.1109/TCYB.2019.2933499


XIA et al.: TAPSO 4875

[48] N. Lynn and P. N. Suganthan, “Ensemble particle swarm optimizer,”
Appl. Soft Comput., vol. 55, pp. 533–548, Jun. 2017.

[49] E. Bengoetxea and P. Larrañaga, “EDA-PSO: A hybrid paradigm
combining estimation of distribution algorithms and particle swarm
optimization,” in Proc. Int. Conf. Swarm Intell., Brussels, Belgium, 2010,
pp. 416–423.

[50] B. Xin, J. Chen, J. Zhang, H. Fang, and Z.-H. Peng, “Hybridizing dif-
ferential evolution and particle swarm optimization to design powerful
optimizers: A review and taxonomy,” IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 42, no. 5, pp. 744–767, Sep. 2012.

[51] M. S. Kiran and M. Gündüz, “A recombination-based hybridization
of particle swarm optimization and artificial bee colony algorithm for
continuous optimization problems,” Appl. Soft Comput., vol. 13, no. 4,
pp. 2188–2203, Apr. 2013.

[52] X. Xu, Z. W. Shi, and B. Pan, “�0-based sparse hyperspectral unmixing
using spectral information and a multi-objectives formulation,” ISPRS
J. Photogrammetry Remote Sens., vol. 141, pp. 46–58, Jul. 2018.

[53] B. Pan, Z. W. Shi, and X. Xu, “Multi-objective based sparse represen-
tation classifier for hyperspectral imagery using limited samples,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 239–249, Jan. 2019.

[54] R. Rosales, R. A. Rehfeldt, and S. Lovett, “Effects of multiple exemplar
training on the emergence of derived relations in preschool chil-
dren learning a second language,” Anal. Verbal Behav., vol. 27, no. 1,
pp. 61–74, 2011.

[55] K. E. Twomey, S. L. Ranson, and J. S. Horst, “That’s more like it:
Multiple exemplars facilitate word learning,” Infant Child Dev., vol. 23,
no. 2, pp. 105–122, 2014.

[56] A. Baeck, K. Maes, C. Van Meel, and H. P. O. de Beeck, “The transfer of
object learning after training with multiple exemplars,” Front. Psychol.,
vol. 7, p. 1386, Sep. 2016.

[57] P. Yang, K. Tang, and X. F. Lu, “Improving estimation of distribution
algorithm on multimodal problems by detecting promising areas,” IEEE
Trans. Cybern., vol. 45, no. 8, pp. 1438–1449, Aug. 2015.

[58] P. N. Suganthan et al., “Problem definitions and evaluation criteria for
the CEC 2005 special session on real-parameter optimization,” School
EEE, Nanyang Technol. Univ., Singapore, KanGAL Rep. 2005005,
2005.

[59] M. A. M. de Oca, T. Stutzle, M. Birattari, and M. Dorigo,
“Frankenstein’s PSO: A composite particle swarm optimization algo-
rithm,” IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 1120–1132,
Sep. 2009.

[60] X. Jin, Y. Q. Liang, D. P. Tian, and F. Z. Zhuang, “Particle swarm
optimization using dimension selection methods,” Appl. Math. Comput.,
vol. 219, no. 10, pp. 5185–5197, Jan. 2013.

[61] Y. H. Li, Z.-H. Zhan, S. J. Lin, J. Zhang, and X. N. Luo, “Competitive
and cooperative particle swarm optimization with information sharing
mechanism for global optimization problems,” Inf. Sci., vol. 293, no. 3,
pp. 370–382, Feb. 2015.

[62] D. Swagatam and P. N. Suganthan, “Problem definitions and evaluation
criteria for CEC2011 competition on testing evolutionary algorithm on
real world optimization problem,” Dept. Electron. Telecommun. Eng.,
Jadavpur University, Kolkata, India, Rep., Dec. 2010.

[63] Z.-H. Zhan et al., “Cloudde: A heterogeneous differential evolution algo-
rithm and its distributed cloud version,” IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 3, pp. 704–716, Mar. 2017.

Xuewen Xia (M’19) received the Ph.D. degree
in computer software and theory from Wuhan
University, Wuhan, China, in 2009.

In 2009, he was a Lecturer with Hubei
Engineering University, Xiaogan, China. In
2012, he was a Postdoctoral Researcher with
Wuhan University. In 2014, he was an Associate
Professor with the School of Software, East
China Jiaotong University, Nanchang, China.
He is currently a Professor with the College of
Physics and Information Engineering, Minnan

Normal University, Zhangzhou, China. His current research interest includes
computational intelligence techniques and their applications.

Ling Gui, photograph and biography not available at the time of publication.

Fei Yu received the Ph.D. degree in computer soft-
ware and theory from Wuhan University, Wuhan,
China, in 2015.

He is currently an Associate Professor with
Minnan Normal University, Zhangzhou, China. His
current research interests include intelligent comput-
ing and machine learning.

Hongrun Wu received the Ph.D. degree from
Wuhan University, Wuhan, China, in 2018.

She is currently a Lecturer with the School
of Physics and Information Engineering, Minnan
Normal University, Zhangzhou, China. Her current
research interests include computational intelligence
and its applications in the field of complex networks,
graph neural networks, and computer vision.

Bo Wei received the Ph.D. degree in computer soft-
ware and theory from Wuhan University, Wuhan,
China, in 2013.

He is currently a Lecturer with East China
Jiaotong University, Nanchang, China. His current
research interests include intelligent computation
and machine learning.

Ying-Long Zhang received the Ph.D. degree from
the Renmin University of China, Beijing, China, in
2014.

He is an Assistant Professor with Minnan Normal
University, Zhangzhou, China. His current research
interests include data mining and information
network analysis.

Zhi-Hui Zhan (M’13–SM’18) received the bach-
elor’s and Ph.D. degrees from the Department
of Computer Science, Sun Yat-sen University,
Guangzhou, China, in 2007 and 2013, respectively.

From 2013 to 2015, he was a Lecturer and
an Associate Professor with the Department of
Computer Science, Sun Yat-sen University. Since
2016, he has been a Professor with the School of
Computer Science and Engineering, South China
University of Technology, Guangzhou, where he is
also the Changjiang Scholar Young Professor and the

Pearl River Scholar Young Professor. His current research interests include
evolutionary computation algorithms, swarm intelligence algorithms, and their
applications in real-world problems, and in environments of cloud computing
and big data.

Prof. Zhan was a recipient of the Outstanding Youth Science Foundation
from National Natural Science Foundations of China in 2018 and the Wu
Wen Jun Artificial Intelligence Excellent Youth from the Chinese Association
for Artificial Intelligence in 2017. His doctoral dissertation was awarded the
China Computer Federation Outstanding Ph.D. dissertation and the IEEE
Computational Intelligence Society Outstanding Ph.D. dissertation. He is
listed as one of the Most Cited Chinese Researchers in Computer Science.
He is currently an Associate Editor of Neurocomputing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


