
3778 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 8, AUGUST 2020

Type-2 Fuzzy Hybrid Controller Network
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Abstract—Dynamic control, including robotic control, faces
both the theoretical challenge of obtaining accurate system mod-
els and the practical difficulty of defining uncertain system
bounds. To facilitate such challenges, this paper proposes a con-
trol system consisting of a novel type of fuzzy neural network
and a robust compensator controller. The new fuzzy neural
network is implemented by integrating a number of key compo-
nents embedded in a Type-2 fuzzy cerebellar model articulation
controller (CMAC) and a brain emotional learning controller
(BELC) network, thereby mimicking an ideal sliding mode con-
troller. The system inputs are fed into the neural network through
a Type-2 fuzzy inference system (T2FIS), with the results subse-
quently piped into sensory and emotional channels which jointly
produce the final outputs of the network. That is, the proposed
network estimates the nonlinear equations representing the ideal
sliding mode controllers using a powerful compensator controller
with the support of T2FIS and BELC, guaranteeing robust track-
ing of the dynamics of the controlled systems. The adaptive
dynamic tuning laws of the network are developed by exploit-
ing the popular brain emotional learning rule and the Lyapunov
function. The proposed system was applied to a robot manipula-
tor and a mobile robot, demonstrating its efficacy and potential;
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and a comparative study with alternatives indicates a signifi-
cant improvement by the proposed system in performing the
intelligent dynamic control.

Index Terms—Adaptive control, brain emotional learning con-
troller (BELC) network, robot dynamic control, Type-2 inference
system.

I. INTRODUCTION

DYNAMIC control of robots is required to handle complex
uncertain situations [1], [2]. In particular, robot actua-

tor dynamics, such as those of robot manipulators or driven
wheels, determine the entire robot’s dynamic features and
system stability. A model-based adaptive control is a popu-
lar strategy to solve robot dynamic problems [3]. All of the
model-based control systems, such as the dynamic sliding
mode control (SMC) method, were developed on the estab-
lishment of precise mathematical models of the controlled
systems [4]. However, the difficulties of achieving precise and
accurate models often result in unsatisfactory performance of
SMC controllers [5]. To address this important issue, attempts
have been made to take advantages of the learning ability
of artificial neural networks (ANNs) to compensate for the
inefficiencies of the SMC method regarding the uncertain-
ties in building reliable mathematical models, in an effort to
successfully mimic ideal SMC controllers [6].

The embrace of ANN in robot dynamic control invokes two
major challenges. First, the ANN in robot controllers should
ensure sufficient nonlinear learning abilities, so as to effec-
tively approximate ideal controllers using online learning laws.
A cerebellar model articulation controller (CMAC) is able
to address the nonlinear problems, which has been adopted
in a wide variety of applications due to its rapid learning
convergence and simple structure [7], [8]. The adaptive neural-
network controllers provide another solution, which have been
applied to a number of tracking control problems of mobile
robots [3]. However, these studies only took the errors from
the outputs of the neural-network-based controller as the learn-
ing assessments for network weights updating. Yet, the overall
performance of the robot should also be considered during
the process of control parameter adjustment for better system
performance.

Second, neural-network controllers must contain suffi-
cient adjustable parameters to deal with the unexpected
disturbances in the dynamics of robotic systems under an
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uncertain environment. To enable the handling of such
uncertainty, recent studies on intelligent control suggested
the direct incorporation of human expertise into neural
networks [7], [9]. Fuzzy inference systems have been
employed as the adaptive controllers for robots [10]–[14],
showing one of the most successful applications of fuzzy-
logic systems [15]–[20]. Naturally, the neural networks have
been fuzzified in various ways to address the presence of
uncertainty [7], [21], [22], with a number of successful appli-
cations in uncertain environments [23]. However, the limited
adjustable parameters in conventional fuzzy systems restrict
the degree-of-freedoms in system design and, hence, restrain
the controller performance [24], which leads to the require-
ment of a more desirable and effective solution to handle
complex control tasks.

This paper aims to address both challenges. The first is tack-
led by proposing a new type of neural network, which benefits
from the adaptation of the key components of a fuzzy CMAC
and a brain emotional learning controller (BELC) [25], [26].
A typical BELC network consists of a sensory subsystem and
a neural-network judgment subsystem [21]. The network judg-
ment subsystem indirectly impacts the outputs of the sensory
subsystem based on the input values [27], [28]. The inputs of
the two subsystems are mapped from the network inputs by a
receptive-field mechanism inspired from the CMAC network.
The weights in the two subsystems are adjusted based on a
performance parameter, which is calculated from input and
output pairs. After the emotional learning process, the network
integrates outputs from the two subsystems forming the final
network outputs. Thanks to the interaction of the two sub-
systems, such a network structure not only uses network
output errors to adjust its network weights but also bene-
fits from using the network’s emotional output as an overall
performance to tune its parameters.

The second challenge is dealt with by integrating a Type-
2 fuzzy inference system (T2FIS) into the proposed neu-
ral network. In contrast to conventional Type-1 fuzzy sets,
Type-2 fuzzy sets provide further flexibility in handling
uncertainties as they contain more adjustable parameters that
help to minimize the difficulty in uncertainty representa-
tion [24], [29]–[42]. As such, the employment of Type-2
fuzzy sets introduces more degrees-of-freedom into system
modeling [9], [43]–[50]. Note that the inclusion of type reduc-
tion of T2FIS also introduces extra computational burden, but
recently developed techniques are very efficient, even for gen-
eral Type-2 fuzzy sets [51], [52]; the implication of such extra
computational effort is thus neglectable. Indeed, many appli-
cations in robot control have benefitted from the inclusion
of Type-2 fuzzy systems [53]–[56]. Through addressing both
aforementioned challenges, the novel neural network proposed
herein integrates a T2FIS and components from CMAC and
BELC, resulting in a Type-2 fuzzy hybrid controller neural
network (T2FHC).

With the support of the proposed T2FHC, this paper
further develops an intelligent control system for dynamic
nonlinear control of robots. In particular, by combining a
purpose-built compensator robust controller and the T2FHC,
the resulting intelligent controller implements a system of

SMCs that mimics ideal SMC controllers. The intelligent
controller has been applied to a robot manipulator and a
mobile robot, while applications in other control fields can be
readily identified. The simulation experimental investigations
systematically evaluate the proposed techniques, with com-
petitive results demonstrating their promising performance in
dynamic robot control. The main contributions of this paper
are two-fold: 1) a new brain emotional neural network inte-
grating a T2FIS for great nonlinear learning abilities and 2) a
neural-network-based robotic controller built upon a powerful
compensator controller with the support of T2FIS and BELC,
guaranteeing the robust tracking of the dynamics of robot
systems.

II. BACKGROUND

A. Type-2 Fuzzy Cerebellar Model Articulation Controller
Network

A CMAC neural network contains a quantization layer and
an association weight memory layer, in addition to the rel-
atively trivial input and output layers. Each input activates
certain fields in the quantization layer, which subsequently
triggers certain association neurons in the association weight
memory layer. From this, the output of the CMAC is obtained
by computing the weighted summation of the quantized input
values. The CMAC has been fuzzified using Type-2 fuzzy sets
which effectively improves the quantization scheme allowing
for more accurate memory allocation [24].

In the implementation of Type-2 fuzzy CMAC, the input
values are first fuzzified using predefined interval Type-2 fuzzy
sets, which effectively builds the quantization layer of the
Type-2 fuzzy CMAC network (FCMAC) architecture. In the
association memory layer, neurons are represented as the acti-
vation strengths based on the corresponding rules, each of
which is computed as the aggregation of the degrees of ful-
fillment of upper and lower membership functions using a
triangular norm (T-norm) operator [57]. The fuzzified quanti-
zation scheme in Type-2 CMAC can be represented as a fuzzy
inference rule as defined

IFx1 is ˜F1 and x2 is ˜F2 and · · · and xni is ˜Fni

THEN Y =
[

wl wr
]

where xj (1 ≤ j ≤ ni) denotes an input variable; ni denotes the
input dimensionality; ˜F denotes an interval Type-2 fuzzy set;
Y is the output of the rule; and wl and wr denote the lower
and upper membership degrees, respectively.

Compared to the conventional CMAC, a Type-2 FCMAC
has an extra layer to perform type reduction and defuzzi-
fication operations. The network’s output can be concisely
expressed by

uT2CMAC = 1

2

[

TRl
(

F, F, Wl
)

+ TRr(F, F, Wr)
]

(1)

where F and F denote the lower and upper activation strengths
of an input, Wl and Wr impose the lower and upper bounds
on the activated association memory, and TRl(·) and TRr(·)
denote the lower and upper type-reduction functions. As stated
above, a binary memory location in the internal memory of
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the conventional CMAC represents the full contribution or
noncontribution of network input to each memory. However,
real-valued memories are implemented in the Type-2 FCMACs
to enable partial contributions of network inputs toward the
memories, which significantly improves the system nonlinear
modeling ability.

B. Brain Emotional Learning Controller Network

A typical BELC network consists of an input space, a
memory space, and an output space. The architecture of
the memory is inspired by the functions of the amygdala
and orbitofrontal cortex of mammalian brains. The amygdala
memory represents a sensory network and the orbitofrontal
cortex memory is an emotional network in the memory space.
Computationally, the output of the amygdala-like memory a
is defined by a = ν · SI, where SI denotes the network input
and ν is the gain in the amygdala memory. The output of the
orbitofrontal memory o is presented by o = w · SI, where
w denotes the gain in the orbitofrontal memory. These two
memory systems influence each other to generate the overall
output by simply subtracting a from o

uBELC = a − o = (ν − w) · SI. (2)

The learning of the BELC is mainly performed by the
sensory network, which has self-learning and adjustment
parameters. The learning rule is defined by

�ν = α[SI · max(0, d − a)] (3)

where α denotes the learning rate in the sensory network and
d is an emotional cue. The emotional network undergoes stim-
ulation by external factors and has an indirect impact on the
sensory network. The learning rule in the emotional network
is defined by

�w = β[SI · (uBELC − d)] (4)

where β denotes the learning rate in the emotional network,
and d is expressed by

d = b · SI + c · uBELC (5)

where b and c are the gain parameters, which are empirically
determined in practical control systems.

Equations (2)–(5) jointly imply that the sensory network
directly uses perceptions from the environment to generate
control signals, and the emotional network uses the inputs and
outputs of the control system to assess the performance of the
controller, so as to fine-adjust the output of the BELC network.
The convergence of such a controller is guaranteed as proven
in [27].

III. TYPE-2 FUZZY HYBRID CONTROLLER

NEURAL NETWORK

A. Network Structure

The proposed T2FHC is constructed with six layers, as
illustrated in Fig. 1, including an input layer, a fuzzification
layer, a receptive-field layer, a weight memory layer, a sum-
marization layer, and an output layer. The substructures of

Fig. 1. Architecture of the proposed T2FHC, essentially integrating organ-
ically the key components of a Type-2 CMAC network and a BELC
network.

Fig. 2. Schematic of 2-D T2FHC network operations with nR = 5 and
nT = 4.

the input, fuzzification, and receptive-field layers are inspired
by the specification of a Type-2 CMAC neural network [24],
and the remaining ones are adopted from a BELC network. In
particular, the inputs are fuzzified as Type-2 fuzzy sets by the
fuzzification layer, supporting the application of fuzzy infer-
ence. The receptive-field layer calculates the activation level
of fuzzy rules. The weight memory layer consists of an amyg-
dala weight vector and an emotional weight vector which share
the same inputs from the receptive-field layer. The two weight
vectors are aggregated in the summarization layer, and then
delivered to the output layer for the generation of the final
output.

1) Input Layer X: The input of a T2FHC network is a con-
tinuous multidimensional signal. For any given ni-dimensional
input signal X = [x1, x2, . . . , xni ]

T , each input state variable
must be quantized into discrete regions according to its value
space. The number of regions nR is regarded as the resolu-
tion of the input layer. For example, Fig. 2 shows a T2FHC
network of two dimensions, with each dimension containing
five regions and having the same number of partitions; thus,
the resolution of the input space is nR = 5.

2) Fuzzification Layer F: This layer executes fuzzification
operations with respect to interval Type-2 fuzzy set represen-
tation. The choice of these types of fuzzy sets is based on the
balance between expressiveness and computational require-
ment. Interval Type-2 fuzzy sets represent the fuzziness of
Type-1 membership degrees as intervals, which essentially
extends the uncertainty representation ability of Type-1 fuzzy
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sets, thus enabling better handling of uncertainty, which may
be brought by unexpected disturbances in the dynamic of
robotic systems. In the meantime, interval Type-2 fuzzy sets
require less computational power compared to general Type-2
fuzzy sets and other higher-type fuzzy sets.

Each input dimension in F is evenly partitioned into a
number of regions, and a certain number of regions are accu-
mulated into a block. The number of such blocks (nB) is
usually larger than or equal to two; each block is represented
as an interval Type-2 fuzzy set with a Gaussian membership
function used to describe the underlying Type-1 fuzzy sets.
Each dimension contains nT types of blocks, where nT ≤ nB.
Different types of blocks are obtained by shifting a certain
block to merge with its immediate neighboring regions. Take
Fig. 2 as an example, where x1 and x2 are the input variables
and nB = 2. Each dimension consists of four types of blocks
(namely, nT = 4), which are labeled Tiers 1–4. For x1, Tier 1
is divided into blocks A and B; and for x2, Tier 1 is divided
into blocks a and b. From Tier 1 to Tier 4, a block shifts one
region each time from 1 to 4.

The underlying Type-1 Gaussian membership function
within each block can be represented as follows:

μF̃ijk(xi) = T
(

xi, mijk, σijk
)

= exp

(

−
(

xi − mijk
)2

2 · σ 2
ijk

)

(6)

where xi denotes the ith input; μF̃ijk(xi), mijk, and σijk indi-
cate the membership function, uncertain mean, and uncertain
variance for the jth tier and kth block of the ith input, respec-
tively; and mijk is within the upper bound mijk and lower bound
mijk (i.e., mijk ∈ [mijk, mijk]). In addition, the lower and upper
membership degrees (μ

F̃ijk
and μF̃ijk) for each input of μF̃ijk

are defined as

μ
F̃ijk

(xi) =
⎧

⎨

⎩

T
(

xi, mijk, σijk
)

, xi <
mijk+mijk

2

T
(

xi, mijk, σijk

)

, xi >
mijk+mijk

2

(7)

μF̃ijk(xi) =

⎧

⎪

⎨

⎪

⎩

T
(

xi, mijk, σijk
)

, xi < mijk
1, mijk < xi < mijk

T
(

xi, mijk, σijk

)

, xi > mijk.

(8)

To summarize, each block has three adjustable parameters:
1) the upper bound of the uncertain mean m; 2) the lower
bound of the uncertain mean m; and 3) the variance value σ

of the Type-1 Gaussian membership function.
3) Receptive-Field Layer T: This layer consists of a batch

of “receptive fields”, where each receptive field calculates the
total firing strength of its corresponding tiers from all dimen-
sions usually through a product calculation. For instance, in
Fig. 2, the firing strength of the first receptive field is the con-
tinuous sequence of the outputs of multiplication operations
of Tier 1 of x1 and Tier 1 of x2. The receptive-field layer of
T2FHC is formally defined as

Fλ =
[

Fλ Fλ

]

=
[ ni
∏

i=1

μ
F̃ijk

ni
∏

i=1

μF̃ijk

]T

(9)

where Fλ denotes the λth receptive field, λ ∈ {1, 2, . . . , nT}.
Recall that the outputs of the fuzzification layer are interval
Type-2 interval sets. Therefore, the outputs of the receptive-
field layer are also interval Type-2 fuzzy sets, which means
the output space is bounded by its lower bound Fλ and upper
bound Fλ.

4) Weight Memory Layer W: The structure of the weight
memory layer is developed from a fuzzy BELC network
(FBELC). This layer contains two memory spaces, includ-
ing an amygdala-like memory νλq and an orbitofrontal-like
memory wλq, which simulate their counterparts in a human
brain. Here, q in both νλq and wλq denotes the qth output of the
T2FHC network. For simplicity, as with common approaches,
in implementation, each memory is expressed as a centroid set
with a unity membership grade [58]. Within this layer, each
receptive field in the preceding receptive-field T is mapped
onto a corresponding weight in νλq and another in wλq. In
addition, each element in both νλq and wλq contains a left-
most and a rightmost point; that is, νλq and wλq are obtained
as follows:

νλq =
[

νl
λq νr

λq

]

(10)

wλq =
[

wl
λq wr

λq

]

(11)

where l and r indicate the leftmost and rightmost points of the
centroid set for νλq or wλq, respectively.

By adapting the updating rules of the BELC as specified
in (3) and (4), while ensuring that the control system imple-
ments the desirable backstepping control technology [59], the
updating rules of νλq and wλq are introduced in the derivative
form as

ν̇λq = α
[

Fλ · (max
[

0, dq − aq
])]

(12)

ẇλq = β
[

Fλ · (uT2FHCq − dq
)]

(13)

where α and β are the learning rates of the updating rules,
aq denotes the νλq’s output and uT2FHCq denotes the output of
wλq, and dp is an emotional parameter given by

dq = bi · xi + cq · uT2FHCq (14)

where bi and cq are the gain parameters. Note that the learning
objective of T2FHC is to obtain the minimum value of dq,
which is the sum of the input of the T2FHC and the qth output.

Presentation-wise, νλ and wλ share the same implementation
structure that can be expressed as

W =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

w11 · · · w1o · · · w1p
...

. . .
...

. . .
...

wk1 · · · wko · · · wkp
...

. . .
...

. . .
...

wnT 1 · · · wnT o · · · wnT p

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(15)

where p is the dimensionality of the network’s output.
5) Summarization Layer S: The summarization layer sum-

marizes the values of the two spaces and reduces the fuzzy
type. In the Type-1 FBELC, the output of the amygdala-
like memory is defined as aq = ∑nλ

λ=1 fλqνλq; and that of
the orbitofrontal-like memory as oq = ∑nλ

λ=1 fλqwλq [5].
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The T2FHC herein generalizes this, and the output of the
summarization layer therefore is

Snet = aq − oq =
nλ
∑

λ=1

Fλq
(

νλq − wλq
) =

nλ
∑

λ=1

FλqZλq (16)

where Zλq is the summarized weight, which is defined by

Zλq =
[

Zl
λq Zr

λq

]T =
[(

νl
λq − wl

λq

) (

νr
λq − wr

λq

)]T
. (17)

The type-reduction method as reported in [24] is applied
here to convert interval Type-2 fuzzy sets into Type-1 ones
(although any established reduction method available in the
literature may be adapted as an alternative for this)

yl
q =

∑L
λ=1 FλZl

λq + ∑nλ

λ=L+1 FλZl
λq

∑L
λ=1 Fλ + ∑nλ

λ=L+1 Fλ

(18)

yr
q =

∑R
λ=1 FλZr

λq + ∑nλ

λ=R+1 FλZr
λq

∑R
λ=1 Fλ + ∑nλ

λ=R+1 Fλ

(19)

where Zλq = [Zl
λq Zr

λq]T = [Zl
1q, Zl

2q, . . . , Zl
nλq Zr

1q,

Zr
2q, . . . , Zr

nλq]T ; and L and R indicate the leftmost and
rightmost points of the summarization layer. Details regard-
ing the computation of L and R are beyond the scope of this
paper but can be found in [24].

6) Output Layer Y: This is a trivial but necessary final
layer within the proposed network. It performs defuzzification
operation to produce crisp outputs. In implementation, the qth
output is simply computed by

Yq = yl
q + yr

q

2
(20)

which completes the entire computation process of a T2FHC.

B. Rule Updating

As described above, a T2FHC contains seven tunable
parameters, which are miλ, miλ, σiλ, νl

λq, νr
λq, wl

λq, and wr
λq.

Based on the gradient descent method, the updating rules of
these parameters can be devised as summarized

miλ(k + 1) = miλ(k) + ˙̂miλ (21)

miλ(k + 1) = miλ(k) + ˙̂miλ (22)

σiλ(k + 1) = σiλ(k) + ˙̂σ l
iλ + ˙̂σ r

iλ (23)

νl
λq(k + 1) = νl

λq(k) + ν̇l
λq (24)

νr
λq(k + 1) = νr

λq(k) + ν̇r
λq (25)

wl
λq(k + 1) = wl

λq(k) + ẇl
λq (26)

wr
λq(k + 1) = wr

λq(k) + ẇr
λq (27)

where ˙̂miλ and ˙̂miλ denote the adjustments of the lower and
upper bounds of miλ; ˙̂σ l

iλ and ˙̂σ r
iλ denote the adjustments of

σiλ from Zl
λ and Zr

λ; and (ν̇l
λq, ν̇r

λq) and (ẇl
λq, ẇr

λq) indicate
the left and right bound weight adjustments of νλq and wλq,
respectively.

For parameters ˙̂miλ, ˙̂miλ, ˙̂σ l
iλ, ˙̂σ r

iλ, and L and R determine the
leftmost and rightmost positions of the summarization layer,
and the rightmost position is generally not smaller than the

Algorithm 1 T2FHC Network
1: Normalize each dimension (xi) of X from 0 to nR;
2: Compute Fλ using Eqns. (7) to (9);
3: Calculate Zλq in Eqn. (17), and then yl

q and yr
q in Eqns.

(18) and (19);
4: Derive the output Yq of the network by Eqn. (20);
5: Update miλ, miλ, σiλ, νl

λq, νr
λq, wl

λq, and wr
λq using the

updating rules from Eqn. (21) to Eqn. (55).

leftmost one (i.e., R ≥ L). Therefore, the adjustments of these
include three different situations: 1) λ ≤ L; 2) L < λ ≤ R;
and 3) λ > R. Similarly, for the four weights νl

λq, νr
λq, wl

λq,
and wr

λq, while their adjustment is based on the update rule of
BELC as defined in (12)–(14), the adjusting method for the
λth left or right bound weights is determined by the output
of the λth receptive-field Fλ. As such, (12) and (13) must be
rewritten on the basis of Fλ and, therefore, the computation
must also be divided into the three situations.

For conciseness, the adjustments in the three situations are
summarized as follows.

Situation 1 (λ ≤ L): For Situation 1

˙̂miλ = ηm · Fm
iλ · Ẑr

λ · s(e(t)) (28)
˙̂miλ = ηm · Fm

iλ · Ẑl
λ · s(e(t)) (29)

˙̂σ l
iλ = ησ · Fσ

iλ · Ẑl
λ · s(e(t)) (30)

˙̂σ r
iλ = ησ · Fσ

iλ · Ẑr
λ · s(e(t)) (31)

F
l
λ = Fλ

∑L
λ=1 Fλ + ∑nL

λ=L+1 Fλ

(32)

F
r
λ = Fλ

∑R
λ=1 Fλ + ∑nR

λ=R+1 Fλ

(33)

ν̇l
λq = α

[

F
l
λ · (max

[

0, dq − aq
])

]

(34)

ẇl
λq = β

[

F
l
λ · (uT2FHCq − dq

)

]

(35)

ν̇r
λq = α

[

F
r
λ · (max

[

0, dq − aq
])]

(36)

ẇr
λq = β

[

F
r
λ · (uT2FHCq − dq

)]

. (37)

Situation 2 (L < λ ≤ R): For Situation 2

˙̂miλ = ηm · Fm
iλ · Ẑl

λ + Ẑr
λ

2
· s(e(t)) (38)

˙̂miλ = 0 (39)
˙̂σ l

iλ = ησ · Fσ
iλ · Ẑl

λ · s(e(t)) (40)
˙̂σ r

iλ = ησ · Fσ
iλ · Ẑr

λ · s(e(t)) (41)

F
l
λ = Fλ

∑L
λ=1 Fλ + ∑nL

λ=L+1 Fλ

(42)

F
r
λ = Fλ

∑R
λ=1 Fλ + ∑nR

λ=R+1 Fλ

(43)

ν̇l
λq = α

[

F
l
λ · (max

[

0, dq − aq
])

]

(44)

ẇl
λq = β

[

F
l
λ · (uT2FHCq − dq

)

]

(45)

ν̇r
λq = α

[

F
r
λ · (max

[

0, dq − aq
])]

(46)

ẇr
λq = β

[

F
r
λ · (uT2FHCq − dq

)]

. (47)
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Situation 3 (λ > R): For Situation 3

˙̂miλ = ηm · Fm
iλ · Ẑl

λ · s(e(t)) (48)
˙̂miλ = ηm · Fm

iλ · Ẑr
λ · s(e(t)) (49)

˙̂σ l
iλ = ησ · Fσ

iλ · Ẑl
λ · s(e(t)) (50)

˙̂σ r
iλ = ησ · Fσ

iλ · Ẑr
λ · s(e(t)) (51)

F
l
λ = Fλ

∑L
λ=1 Fλ + ∑nL

λ=L+1 Fλ

(52)

F
r
λ = Fλ

∑R
λ=1 Fλ + ∑nR

λ=R+1 Fλ

(53)

ν̇l
λq = α

[

F
l
λ · (max

[

0, dq − aq
])

]

(54)

ẇl
λq = β

[

F
l
λ · (uT2FHCq − dq

)

]

(55)

ν̇r
λq = α

[

F
r
λ · (max

[

0, dq − aq
])]

ẇr
λq

= β
[

F
r
λ · (uT2FHCq − dq

)]

. (56)

The working procedure of the proposed T2FHC network is
summarized in Algorithm 1. The computational complexity of
the algorithm depends on the number of inputs (ni), the number
of block types (nT ), and the number of outputs (no). The values
of ni and no are determined once the controlled system is
specified. In Algorithm 1, the computational complexity of
Fλ is O(ni ∗ nT); the computations of yl

q and yr
q depend on

the Karnik–Mendel algorithms [24], and the Karnik–Mendel
algorithms are proven to be of super-exponential convergence
based on the work of [60], which is therefore approximated as
O(KMT(nT)). The computational complexity of the proposed
T2FHC network can then be summarized as O(ni ∗ nT + 2 ∗
KMT(nT) ∗ no).

IV. FUZZY SLIDING-MODE CONTROL USING T2FHC

The novel signal-processing neural-network T2FHC
presented in Section III is utilized herein to form a new
controller for nonlinear control problems. The structure of
the proposed controller is illustrated in Fig. 3, which takes
the errors of a nonlinear system that need to be minimized
as inputs, and produces acceptable control values as system
outputs. The controller is composed of three interconnected
subsystems, including a sliding surface generator, a T2FHC,
and a baseline robust controller. The input error values are
first processed to form a sliding surface, which is then fed
into the other two subsystems for control signal generation.
The control signals generated from both controllers are then
aggregated to produce the final output of the overall control
system.

Without loss of generality, suppose that the state vector of
an nth-order uncertain nonlinear robotic system is expressed as

x(n)(t) = f
(

x(t)
) + G

(

x(t)
)

u(t) + d(t) (57)

where x(t) = [x1(t) x2(t) · · · xκ(t)]T ∈ Rκ denotes the
output of the system; x(t) = [xT(t) ẋT(t) · · · x(n−1)T(t)]
denotes the state vector of the system; κ denotes the dimen-
sionality of the input or output of the system which are the
same in this particular application; f (x(t)) ∈ Rκ denotes
an unknown, but bounded nonlinear function; G(x(t)) ∈

Fig. 3. T2FHC-based robust control for uncertain nonlinear robotic systems.

Rκ denotes an unknown, but bounded control input gain
matrix G(x(t)) ∈ Rκ×κ ; d(t) ∈ Rκ indicates the distur-
bance d(t) = [d1(t) d2(t) , . . . , dκ (t)]T ∈ Rκ ; and u(t) =
[u1(t) u2(t) · · · uκ(t)]T ∈ Rκ denotes the output of the
sliding-mode controller.

The objective of the (overall) controller is to enable the
system trajectory x(t) to match a desired reference trajectory
xd(t) ∈ Rκ . To reflect this, the tracking error e(t) ∈ Rκ is
defined as: e(t) = xd(t)−x(t). By considering the state vector
of the system x(t), the tracking error vector e(t), of the system
can therefore be defined as

e(t) =
[

eT ėT · · · e(n−1)T
]T

. (58)

In the proposed approach, as shown in Fig. 3, a sliding
surface is defined by

s
(

e(t)
) = e(n−1)(t) + ζ1e(n−2)(t) + · · · + ζ n−1e(t)

+ ζ n

∫ t

0
e(t)dt (59)

where s = [s1 s2 · · · sκ ]T , ζ i = diag(ζi1, ζi2, . . . , ζiκ ), i =
1, 2, . . . , n, with each element in ζij being a positive constant.
In particular, ζ i is defined to ensure the satisfaction of the
Hurwitz characteristic polynomial. Differentiating s(e(t)) with
respect to time leads to

ṡ
(

e(t)
) = e(n)(t) + ζ 1e(n−1)(t) + · · · + ζ ne(t)

= CT ė(t) + KTe(t) (60)

where C = [0 0 · · · I]T , and K = [ζ n ζn−1 · · · ζ 1]T

denotes the feedback gain matrix. Note that the output of the
sliding-mode controller is obtained by aggregating the outputs
of both T2FHC (uT2FHC) and the baseline robust controller
(uRC) such that

u = uT2FHC + uRC. (61)

Using the nominal function and constant gain, (57) can be
re-expressed as

x(n)(t) = f n

(

x(t)
) + Gnu(t) + l

(

x(t), t
)

(62)

where f n(x(t)) denotes the nominal version of f (x(t)); Gn

indicates the nominal constant gain of G(x(t)) which must
be positive and invertible; and l(x(t)) represents the lumped
uncertainty in the model.

If there exists an ideal situation where f n(x(t)), Gn, and
l(x(t)) are known, an ideal controller can be obtained by

uISM = G−1
n

[

x(n)
d − f n

(

x
) − l

(

x, t
) + KTe + �sgn

[

s
(

e(t)
)]

]

(63)
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where �sgn[s(e(t))] denotes the constant reaching law of the
sliding-mode controller � > 0; and s denotes the system error
e processed by the sliding surface. It follows that:

ṡ
(

e(t)
) = Gn[uISM − u] − �sgn

[

s
(

e(t)
)]

. (64)

Suppose that an optimal T2FHC neural network u∗
T2FHC is

known to learn the ideal sliding-mode controller, uISM. In this
case uISM should then be

uISM = u∗
T2FHC

(

X, Z∗, m∗, σ ∗) + ε = Z∗T
F

∗ + ε (65)

where Z∗, m∗, σ ∗, and F
∗ are the optimal parameters of Z,

m, σ , and F, respectively; F is defined in (9); and ε denotes
a minimum reconstructed error vector.

Unfortunately, as indicated previously, such an ideal con-
trol network can hardly be obtained. The alternative approach
proposed herein is to approximate the optimal T2FHC. For
this purpose, (61) can be rewritten as

u = ûT2FHC

(

X, Ẑ, m̂, σ̂
)

+ uRC = Ẑ
T
F̂ + uRC. (66)

Then, by substituting (64) with (65) and (66), the following
equation can be derived:

ṡ
(

e(t)
) = Gn

[

u∗
T2FHC + ε − ûT2FHC − uRC

] − �sgn
[

s
(

e(t)
)]

= Gn

[

Z∗T
F

∗ − Ẑ
T
F̂ + ε − uRC

]

− �sgn
[

s
(

e(t)
)]

= Gn

[

Z̃
T
F

∗ + Ẑ
T
F̃ + ε − uRC

]

− �sgn
[

s
(

e(t)
)]

(67)

where Z̃ = Z∗ − Ẑ and F̃ = F
∗ − F̂. Hence, according to the

T2FHC’s structure, the following holds:

ũT2FHC = u∗
T2FHC − ûT2FHC = Z∗T

F
∗ − Ẑ

T
F

∗

=
(

Z∗T − Ẑ
T
)

F
∗. (68)

Recall that (14) expresses the emotional parameter in the learn-
ing rules. Thus, both Z∗ and Ẑ need to be computed in a way to
minimize the system error s(e(t)) and, hence, the correspond-
ing network output. This implies that a bounded extreme small
real number γ exists such that

lim
∣

∣ũT2FHCq

∣

∣ = lim
∣

∣

∣

(

Z∗T
q − ẐT

q

)

F
∗
∣

∣

∣ = ∣

∣γq
∣

∣. (69)

In this paper, the Taylor linearization method is used to
expand the receptive-field membership functions into partially
linear ones. Thus, F̃ can be obtained as follows:

F̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F̃1
...

F̃λ

...

F̃nλ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

∂F1
∂m

)T

...
(

∂Fλ

∂m

)T

...
(

∂Fnλ

∂m

)T

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m=m̂

(

m∗ − m̂
)

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

∂F1
∂σ

)T

...
(

∂Fλ

∂σ

)T

...
(

∂Fnλ

∂σ

)T

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ=σ̂

(

σ ∗ − σ̂
) + β

≡ f mm̃ + fσ σ̃ + β (70)

where β is a vector of higher-order terms; and [(∂Fλ)/(∂m)]
and [(∂Fλ)/(∂σ )] are defined as follows:

[

∂Fλ

∂m

]

=
⎡

⎢

⎣
0, . . . , 0
︸ ︷︷ ︸

(λ−1)ni

,
∂Fλ

∂m1λ

, . . . ,
∂Fλ

∂mniλ

, 0, . . . , 0
︸ ︷︷ ︸

(n−λ)ni

⎤

⎥

⎦
(71)

[

∂Fλ

∂σ

]

=
⎡

⎢

⎣
0, . . . , 0
︸ ︷︷ ︸

(λ−1)ni

,
∂Fλ

∂σ1λ

, . . . ,
∂Fλ

∂σniλ

, 0, . . . , 0
︸ ︷︷ ︸

(n−λ)ni

⎤

⎥

⎦
. (72)

Then, substituting (70) and (69) by (67), the following equa-
tion can be generated:

ṡ
(

e(t)
) = Gn

[

γ + Ẑ
T
(f mm̃ + fσ σ̃ + β) + ε − uRC

]

− �sgn
[

s
(

e(t)
)]

= Gn

[

Ẑ
T(

f mm̃ + fσ σ̃
) + Ẑ

T
β + ε + γ − uRC

]

− �sgn
[

s(e(t))
]

= Gn

[

Ẑ
T(

f mm̃ + fσ σ̃
) + ω − uRC

]

− �sgn
[

s(e(t))
]

(73)

where ω denotes the approximation error: ω = Ẑ
T
β+ε + γ .

Putting the above together leads to the following theorem
which guarantees the stability of the proposed control system.

Theorem 1: For a nonlinear robotic system represented by
(57), an intelligent control system T2FHC, as specified in
(61), is guaranteed to be stable if the following conditions
are satisfied.

1) The adaptive rules of T2FHC are designed as follows:

˙̂m = ηmf T
mẐs

(

e(t)
)

(74)
˙̂σ = ησ f T

σ Ẑs
(

e(t)
)

(75)

where ηm and ησ denote the diagonal positive con-
stant learning-rate matrices of ˙̂m and ˙̂σ , respectively,
and where ˙̂m and ˙̂σ must be used in accordance with
the three situations of the Type-2 inference system as
specified in Section III-B.

2) The robust controller is designed as follows:

uRC =
(

2R2
)−1(

R2 + I
)

s
(

e(t)
)

(76)

where R is a positive diagonal matrix, R =
diag(φ1, φ2, . . . , φi), and φi is a robust attenuation coef-
ficient that can be adjusted externally.

Theorem 1 can be proofed using the Lyapunov stability
theory, which is provided in the online supplementary material.
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(a) (b)

Fig. 4. (a) Simulated three-link robot manipulator. (b) Simulated two-wheeled
differentially driven mobile robot.

TABLE I
PARAMETERS OF THE ROBOT MANIPULATOR

V. APPLICATIONS IN INTELLIGENT ROBOT CONTROL

The proposed controller with the new T2FHC was applied
to two typical robotic systems, a simulated three-link robot
manipulator and a mobile robot, to verify its efficacy. A com-
parative study is also included in this section to demonstrate
the performance of the controller over a number of alterna-
tive approaches, including a PID controller, an SMC with
FBELC [5], and an SMC with FCMAC [22].

A. Robot Manipulator Control

1) Simulation Experimental Setup: The configuration of the
simulated three-link robot manipulator employed in this exper-
iment is shown in Fig. 4(a). All three joints, whose angle
values are labeled as θ1, θ2, and θ3, are rotation mechanisms.
The upper and lower limbs are labeled as a2 and a3, and a1
is the link from the robot frame to the second joint. The non-
linear dynamic equation of the manipulator is described using
the following second-order differential equation:

M(q)q̈ + C(q, q̇)q̇ + g(q) + τ d = τ (77)

where q is a position vector indicating joint angles; q̇ is a
velocity vector of the joints, q̈ is an acceleration vector of
the joints, M(q) is a moment of inertia, C(q, q̇) denotes the
Coriolis and centripetal force, g(q) denotes the gravitational
force, τ d denotes an external disturbance, and τ denotes an
input torque vector. The gravity acceleration g is set to 9.8 m/s.

The system parameters of the manipulator are summarized
in Table I, where ai indicates the link length, li indicates the
distance between the center of mass and the joint of a link,
ml

i indicates the link mass, mm
i denotes the motor mass of the

joint, Im
i denotes the moment of inertia of the link, Il

i denotes
the moment of inertia link’s center of mass, and kr

i represents
the gearbox reduction ratio of the motor.

The dynamic equation of the robot manipulator is defined by

ẍ(t) = f
(

x(t)
) + G

(

x(t)
)

u(t) + d(t) (78)

where x(t) is defined by

x(t) �
[

q1(t) q2(t) q3(t)
]T = [x1(t) x2(t) x3(t)]

T .

(79)

From which, it follows that:

f
(

x(t)
) = −M−1(q)

[

C(q, q̇)q̇ + g(q)
]

(80)

G
(

x(t)
) = M−1(q) (81)

d(t) = −M−1(q)τ d. (82)

The external disturbance is given as

τ d = χ ·
⎡

⎣

0.2 sin(2t)
0.1 cos(2t)
0.1 sin(t)

⎤

⎦ (83)

and the initial conditions of the robot manipulator are defined
as x(t) = [−0.3 0.1 − 0.4]T and ẋ(t) = [0 0 0]T ; χ

denotes the disturbance level, which was set to 5, 10, and
20 in the experiments.

In the simulation, two reference modes of the manipulator
were set. The manipulator needed to track the first reference
mode when the robot started to move; after 15 s, the robot
needed to track the second reference mode. The two reference
modes are defined as follows:

ref 1 =
⎡

⎣

0.5 sin(t + 2.5) + 0.35 cos(2t + 1.5)

0.2(sin(t) + sin(2t))
0.13 − 0.1(sin(t) + sin(2t))

⎤

⎦ (84)

ref 2 =
⎡

⎣

0.5(sin(2t) + cos(t + 1))

0.15 sin(2t) cos(t + 1)

0.1(cos(2t) − sin(t))

⎤

⎦ (85)

where the time unit is set to 0.001 s. The sliding hyperplane is
designed as s(e(t)) = 10e+0.55ė(t); and the robust controller
is designed as R = 0.075I3×3. In particular, for fair compar-
ison, both FBELC and FCMAC methods were designed to
share the same robust controller with T2FHC.

The parameters of the T2FHC network were initialized as
listed in Table II, where ni denotes the dimensionality of the
network inputs; nR indicates the number of regions in the input
layer; nT denotes the number of block types; nB is the number
of blocks; nλ denotes the number of receptive fields; miλ, miλ,
and σiλ denote the Gaussian function parameters; ηm and ησ

are the brain emotional learning rates; and b and c are the gain
parameters of the brain emotional learning.

2) Results: Simulation results of the position responses and
tracking errors using different controllers are shown in Fig. 5.
Fig. 5(a)–(c) illustrates the simulated position responses and
tracking errors of Joints 1–3. Each subfigure contains the ref-
erence trajectory (the red solid line), the PID output trajectory
(the dotted line), the FBELC output trajectory (the dotted-
dashed line), the FCMAC output trajectory (the dashed line),
and the proposed T2FHC output trajectory (the blue solid line).

In each subfigure, the upper row shows the correspond-
ing controller’s joint trajectory and the bottom row shows
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TABLE II
INITIALIZED PARAMETER VALUES OF THE PROPOSED NEURAL NETWORK

Fig. 5. Simulation results of position responses and tracking errors with
different PID, FBELC, FCMAC, and T2FHC controllers. (a) Results in Joint 1.
(b) Results in Joint 2. (c) Results in Joint 3.

the errors between the controller’s trajectory and the refer-
ence trajectory. Note that the tracking trajectories of the robot
were changed after 15 s, which led to sudden changes at the
15th s for all of the simulated trajectories. For Joint 1, all
four controllers successfully followed the reference trajectory

after a settling down period. However, the PID controller’s
performance in Joint 2 was much worse than that of other
neural network controllers. Such poor performances indicate
that each joint motor requires a separate PID parameter setup,
rather than being fixed to a single one. Yet, optimizing a range
of different PID parameters would require significant human
intervention. In contrast to this, all three neural-network-based
controllers can reduce tracking errors automatically, through
their online tuning ability.

Examining the results more closely, as reflected by Fig. 5(a),
since Joint 1 handled forces that were exerted from Joints 2
and 3, all controllers performed less stably for Joint 1 than
Joints 2 and 3. At the 15th s, the errors of all controllers
reached around −0.8 rad. In particular, the FBELC could not
converge rapidly, it always had a tracking delay at the 0th s
and the 15 s. Joint 2 also needed to tackle the force exerted
from Joint 3; however, the force was much smaller than that of
Joint 1. Thus, all neural-network-based controllers generated
relatively better performance, with the largest error in the 15 s
being about 0.2 rad. Since Joint 3 was the terminal joint in the
robot manipulator, no exerted force needed to be considered;
the trajectories of all controllers were close to the reference.

The performances of the FCMAC and T2FHC in Joints
2 and 3 were close to each other, and both controllers
could rapidly converge in reducing the tracking errors. The
FCMAC only showed a slight lead in Joint 2. However, in
Joint 1, the T2FHC controller performed much better than
the FCMAC controller. Indeed, the trajectories of the T2FHC
always achieved the fastest convergence amongst all four
controllers.

To demonstrate the disturbance resistance of the proposed
network controller, the quantitative comparisons of the PID,
FBELC, FCMAC, HC, FHC, and the proposed T2FHC under
the three levels of disturbances are summarized in Table III.
Amongst them, the HC is essentially the proposed T2FHC
without the use of Type-2 fuzzy sets, and the FHC is the
proposed hybrid controller neural network with Type-1 fuzzy
sets. The accumulated RMSE values for Joints 1–3 were
used to measure the overall performance over the period of
[0 s, 30 s]. As can be seen from the table, the RMSE values
of the three neural-network-based controllers are all less than
those of the PID controller. Importantly, the T2FHC achieved
the best performance in all joints amongst all of the con-
trollers. Besides, Joint 1 played a more important role in the
entire robot manipulator’s tracking precision. Thus, overall,
the T2FHC controller achieved the best control performance
in this experiment. Note that the fuzzy sets in the T2HFC
and FHC are represented by a set of Gaussian functions
with the parameters of uncertain means and variances. These
parameters are randomly initialized and can be adjusted by
using the updating rules designed in this paper. Therefore, the
parameters are totally different from their initial values.

Fig. 6 shows the control efforts of the FBELC, FCMAC,
and T2FHC network controllers for the joints; the left col-
umn shows the efforts during [0 s, 0.5 s] and the right shows
those during [14.9 s, 15.5 s]. When the reference trajectory
changes, the FBELC controller immediately reacted to the
errors; however, both the FCMAC and the T2FHC controller
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TABLE III
COMPARISON OF PID, FBELC, FCMAC, AND T2FHC CONTROLLERS

FOR ROBOT MANIPULATOR (RMSE × 0.01)

Fig. 6. Simulation results on control efforts of FBELC, FCMAC, and T2FHC
network controllers in three joints. (a) Results in Joint 1. (b) Results in Joint 2.
(c) Results in Joint 3.

could not generate any response until their robust controllers
have reduced the errors to a certain level (until after about
0.03 s). This is because the sliding surface would sharply
increase the input values s(e(t)) when the tracking trajec-
tory changed, and the increased values were out of the input
range of the FCMAC and T2FHC networks. Since these two
networks contain a multiplicative mechanism as defined in (9),
F tends to being 0. However, the FBELC does not contain
such a mechanism, and its reaction speed is thus faster than
the other two. Unfortunately, such a fast speed caused the
poor tracking performance as shown in Fig. 5. This situation
implies that overly sensitive to reaction can lead to unexpected
vibrations.

Different from the FCMAC, however, the proposed T2FHC
utilizes a Type-2 fuzzy inference mechanism, which contains a
larger input range than that of the FCMAC. Thus, the reacting
speed of the T2FHC is faster than that of the FCMAC. Also,
in Fig. 6, the T2FHC used less time to stabilize its output; in
contrast, the FCMAC generated considerable vibrations that
reduced the overall accuracy of the manipulator. Therefore,
once again, the T2FHC offered the best control performance
for the robot manipulator in the experiment.

B. Mobile Robot Control

1) Simulation Experimental Setup: Fig. 4(b) illustrates a
typical mobile robot with two differentially driven coaxial

wheels and a front passive wheel. The coaxial wheels are
driven by two independent motors, and the passive wheel
simply assists to keep the balance. In this figure, r denotes
the radius of the wheel, 2R denotes the distance between the
two wheels, C denotes the center of gravity of the robot,
(xc, yc) denotes the geometry center position of the robot, P
denotes the midpoint of the two wheels’ axis, and θ denotes
the robot’s orientation against the reference coordinate system.
The position of the mobile robot in the reference coordinate
system is expressed as q = [xc yc θ ]T . It follows that
q̇ = [ẋc ẏc θ̇ ], where v(t) = [υ � ]T , and υ and � are
the translational and angular velocities of the robot.

In general, the dynamics of a mobile robot with n general-
ized coordinates can be expressed as

M(q)q̈ + C(q, q̇)q̇ + g(q) + F(q̇) + τ d = B(q)τ − A(q)ψ

(86)

where q is the position and orientation vector of the robot;
q̇ is the velocity vector of the position and orientation; q̈ is
the acceleration vector of the position and orientation; M(q)

is the moment of inertia; C(q, q̇) denotes the Coriolis and
centripetal force; g(q) denotes the gravitational force and for
the mobile robot moving on horizontal ground, g(q) = 0; τ
denotes an input torque vector; B(q) denotes an input trans-
formation matrix; F(q̇) denotes a friction vector; τ d indicates
an external disturbance; A(q) denotes a constraint matrix; and
ψ denotes a Lagrange multiplier vector.

The mobile robot is required to track the reference trajec-
tory, which is defined by qr = [xr yr θr]T . This means that
the tracking error ep can be obtained by

ep =
⎡

⎣

e1
e2
e3

⎤

⎦ =
⎡

⎣

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤

⎦

⎡

⎣

xr − x
yr − y
θr − θ

⎤

⎦ (87)

and ėp is defined by

ėp =
⎡

⎣

�e2 − υ + υr cos e3
−�e1 + υr sin θe3

�r − �

⎤

⎦. (88)

In order to track the given velocity reference model, the
approach reported in [61] is adapted to calculate the desired
translational and angular velocities, which is defined by

vd =
[

υd

�d

]

=
[

υr cos e3 + k1e1

υr + k2υre2 sin e3
e3

+ k3e3

]

(89)

where k1, k2, and k3 are implementation parameters. Thus, the
velocity error ev is calculated by

ev = vd − v = [eυ(t) e� (t)]T . (90)

Equation (90) implies that the following relationships hold
between the torques of the left and right wheels, and υ and � :

{

υ ∝ τr + τl

� ∝ τr − τl
. (91)

Without loss of generality, denote the output of the con-
troller as u = [u1 u2]T . It follows that τr = [(u1 + u2)/2]
and τl = [(u1−u2)/2]. In this simulation experimental investi-
gation, the parameters of the mobile robot were set as follows:
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Fig. 7. Simulation results of PID, FBELC, FCMAC, and T2FHC controllers
for moving-target tracking.

m = 10 kg, I = 5 kg·m2, R = 0.2 m, r = 0.05 m, d = 0.05 m,
and F(q̇) = 0. In addition, the disturbance, τ d, is defined as

τ d = χ ·
[

2.5 sin(4t)
2.5 cos(4t)

]

(92)

where χ denotes the disturbance level, which was set to 5,
10, and 20 in the experiments. The reference trajectory is
defined as

⎧

⎨

⎩

θ̇r = �rT
ẋr = υr cos 2θr

ẏr = υr sin θr

(93)

where the initial values of the reference trajectory were υr =
0.2 m/s, � = 0.1 rad/s, and θr = 0; and the time unit T was
set to 0.01 s.

The starting positions of the reference trajectory and the
robots were qr = [2 0 (π/2)]T and q = [1 1 (π/2)]2,
respectively; the parameters of the velocity reference model
were set to k1 = 4, k2 = 80, and k3 = 1; the sliding
hyperplane for the mobile robot was designed as s(e(t)) =
10e + 0.01ė(t); and the robust controller was designed as
R = 0.5I2×2. The initialization parameters of the T2FHC
network are summarized in Table II.

2) Results: Fig. 7 demonstrates the simulated position
response of the mobile robot over 65 s. In this figure, the
color codes of the trajectory lines were identical to those used
previously. The left figure presents the entire tracking process
and the right one is a magnified version of the tracking tra-
jectory over the period of [0 s, 10 s]. The performances of
the T2FHC and FCMAC controllers were very close to each
other, with almost coinciding trajectories both reaching the
reference trajectory earlier than the FBELC. The PID con-
troller was underperformed compared with the rest; it had a
longer vibration time. Thus, the T2FHC and FCMAC offered
relatively better results.

The convergence performances in terms of the robot posi-
tion errors of the compared four controllers are illustrated in
Fig. 8. The three plots in the upper row indicate the errors in
x, y, and θ ; and the other three in the bottom row indicate the
magnified versions of those upper ones after a few seconds of
tracking. The T2FHC and FCMAC controllers generated very
similar results regarding the position tracking errors. Although
the FBELC controller also generated a similar result with those
of the T2FHC and FCMAC controllers in x, it took longer

Fig. 8. Position errors of PID, FBELC, FCMAC, and T2FHC controllers:
the upper-row plots indicate errors in x, y, and θ and the bottom-row plots
show magnifications of those upper ones.

Fig. 9. Velocity errors of PID, FBELC, FCMAC, and T2FHC controllers:
upper row shows translational and angular velocities, and middle and bottom
rows show two magnifications of those upper ones over [0 s, 3 s].

to converge in y and θ , with a particularly significant longer
convergence in y.

The velocity tracking errors of the robot are presented in
Fig. 9. The two plots in the upper row show the transla-
tional and angular velocities (υ,� ), while the middle and
bottom rows show the corresponding magnifications of the
upper ones over the period of [0 s, 3 s]. This figure clearly
reveals the performance differences between the T2FHC and
FCMAC controllers. The convergence speed of the T2FHC
controller was much faster than that of the FCMAC, with
the former converging at 0.75 s in both υ and � and
the latter at 1.2 s in υ and 0.9 s in � . In addition,
this figure also shows that the performance of the FBELC
controller is better than that of the FCMAC in υ, but it per-
formed least satisfactorily in � amongst all neural-network-
based controllers. Nevertheless, it still outperformed the PID
controller, which required long convergence time in both
υ and � .

Also to demonstrate the disturbance resistance of the
proposed network controller, quantitative performance com-
parisons of using the PID, FBELC, FCMAC, and T2FHC for
mobile robot control under the three levels of disturbance are
summarized in Table IV. The accumulated RMSE values over
the entire tracking process of the robot’s position Pe, orienta-
tion θ , translational velocity υ, and angular velocity � were
used to measure the performance. This table reflects a very
similar phenomenon with that in the simulated robotic manip-
ulator: the proposed T2FHC network controller performed the
best regarding the position, orientation, and angular velocity
tracking. As with all other simulation experimental results, the
PID controller was unable to perform as good as any of the
neural-network-based controllers.
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TABLE IV
COMPARISON OF PID, FBELC, FCMAC, AND T2FHC CONTROLLERS

FOR MOBILE ROBOT (RMSE × 0.01)

C. Discussion and Analysis

1) Discussion: In both simulation experiments as reported
in Sections V-A and V-B, the FCMAC, FBELC, and T2FHC
used the same number of Gaussian function units, with each
network employing eight receptive fields. Given this com-
mon ground, overall, the T2FHC managed to perform the
best in terms of control effectiveness. It also achieved the best
performance in terms of error convergence rate. These bene-
fits resulted from the T2FIS in the proposed T2FHC network;
since the Type-2 system involves more adjustable parameters
than the Type-1 fuzzy system used in the other two networks,
in order to handle more complex uncertainties.

The final interval Type-2 fuzzy sets for the two experiments
are illustrated in Fig. 10. Recall that each input dimension was
evenly partitioned into four regions, which accumulated into
two blocks in both experiments each was represented by an
interval Type-2 fuzzy set. The final blocks of the T2FHC for
the manipulator control regarding the three system inputs are
demonstrated in Fig. 10(a)–(c), while those for the mobile
robot control are illustrated in Fig. 10(d) and (e). It can be
realized from this figure that the shape of each final Type-
2 fuzzy set is different from that of other fuzzy sets due
to the application of the adaptive updating rules designed in
Section III-B. This figure therefore confirms the effectiveness
of the automatic rule-updating mechanism in the proposed
T2FHC.

The performance of T2FHC in mobile robot position track-
ing offers significant improvements against the use of FCMAC
and FBELC. In contrast to the robot manipulator, the nonlin-
ear property exhibited by the mobile robot dynamics is not
complicated. Therefore, the application of the T2FHC in the
robot manipulator simulation experiment can better reveal its
powerful ability in handling uncertainties, nonlinearity, and
dynamics. In particular, Joint 1 of the manipulator needed
to deal with the exerted efforts from the upper and lower
limbs; also, Joint 1 itself had the heaviest motor mass. Under
such harsh conditions, the T2FHC network controller achieved
excellent performance, representing the best amongst all exam-
ined controllers. To summarize, the simulation experimental
investigations confirm that the proposed T2FHC is more capa-
ble of dealing with an external disturbance, including that led
by the influence of modeling uncertainties.

2) Statistical Analysis: Ten additional repeated experiments
for each robotic system with χ = 5, 10, and 20 were
also conducted to confirm the statistical significance of the

Fig. 10. Evolved Type 2 fuzzy sets of T2FHC controllers with χ = 5.
(a) Input x1 of the manipulator control. (b) Input x2 of the manipulator control.
(c) Input x3 of the manipulator control. (d) Input x1 of the mobile robot
control. (e) Input x2 of the mobile robot control.

TABLE V
STATISTICAL ANALYSIS OF FBELC, FCMAC, HC, FHC, AND T2FHC

TABLE VI
p-VALUES OF FBELC, FCMAC, HC, AND FHC AGAINST T2FHC

improvement led by the proposed method. The averages of
the accumulated RMSEs over the ten repeated experiments
are summarized in Table V. From this table, it is clear that
the proposed T2FHC consistently outperformed all other ref-
erenced controllers, given that the average accumulated RMSE
values led by the T2FHC are all smaller than their counterparts
resulting from other referenced approaches. This demonstrates
the stability of the proposed system in producing improved
control results, which revalidates the proposed system and
reassures its efficacy in dynamic robotic control.
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The t-test was additionally conducted for the above exper-
iment as reported in Table V to investigate the statistical
significance of the performance of the proposed T2FHC. The
null hypothesis was carried out for the t-test; thus, the p-values
of FBELC, FCMAC, HC, and FHC against T2FHC are sum-
marized in Table VI, which exhibits that all p-values are much
less than 0.05. Therefore, the performance of the T2FHC-
based controller is largely different than those from other
referenced approaches, despite its confirmed superiority as
demonstrated in Table V.

VI. CONCLUSION

This paper has proposed a novel fuzzy neural network that
integrates the key components of Type-2 fuzzy CMAC and
BELC. The resulting network has also been combined with
a sliding-mode controller for performing dynamic nonlinear
control. It has been theoretically proven that the system imple-
menting the proposed approach is asymptotically stable with
guaranteed convergence. The simulation experimental stud-
ies have demonstrated that the implemented system using the
T2FHC led to more precise position tracking and more favor-
able stability in comparison with the results generated using
alternative, recently developed network-based controllers, such
as fuzzy CMAC and fuzzy BELC (all of these beat the
classical PID controllers significantly). This shows the poten-
tial of the proposed approach for the real-world applications,
especially when concerning multiple degrees-of-freedom robot
manipulators.

This paper can be further improved in several directions.
The parameters used in the T2FHC provide great flexibility
in modeling nonlinearity and uncertainty, but they need to be
initialized using empirical knowledge. It is therefore of great
practical significance to investigate the automation of such an
initialization process in an effort to prompt the applicability
of the proposed approach. In addition, it is worth studying the
interpretability of Type-2 fuzzy sets and the generalizability
of the proposed method.
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