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Through Semantic-Based Optimization
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Abstract—This paper presents a cloud-based building energy
management system, underpinned by semantic middleware, that
integrates an enhanced sensor network with advanced analytics,
accessible through an intuitive Web-based user interface. The
proposed solution is described in terms of its three key lay-
ers: 1) user interface; 2) intelligence; and 3) interoperability.
The system’s intelligence is derived from simulation-based opti-
mized rules, historical sensor data mining, and a fuzzy reasoner.
The solution enables interoperability through a semantic knowl-
edge base, which also contributes intelligence through reasoning
and inference abilities, and which are enhanced through intel-
ligent rules. Finally, building energy performance monitoring is
delivered alongside optimized rule suggestions and a negotiation
process in a 3-D Web-based interface using WebGL. The solu-
tion has been validated in a real pilot building to illustrate the
strength of the approach, where it has shown over 25% energy
savings. The relevance of this paper in the field is discussed,
and it is argued that the proposed solution is mature enough for
testing across further buildings.

Index Terms—ANN, data mining, energy management, fuzzy
logic, genetic algorithm, ontology, optimal control, semantic Web,
WebGL.

I. INTRODUCTION

PUBLIC buildings have substantial proliferations of
control/automation technologies and tend to experience

large discrepancies between “designed” and “operational”
energy use, as well as increased user comfort dissatisfac-
tion [1], [2]. Actual energy performance can be considered
as the result of a complex combination of, and interaction
between, three factors: 1) intrinsic quality of the building;
2) “in use” conditions and user behavior; and 3) energy
control and actuation strategy [3], [4]. Whilst altering factor
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1) requires complete and costly energy retrofitting interven-
tions, academic evidence suggests that factors 2) and 3) play
a determinant role in the energy equation of a building [5].
Managing energy performance implies the ability to moni-
tor and characterize usage patterns whilst understanding user
behavior and comfort aspirations in order to devise user cen-
tered real-time energy optimization plans. However, energy
control is usually handed to smart systems that 1) do not
offer flexibility in responding to unforeseen situations or needs
or 2) exhibit a level of complexity that hinders their effective
use by facility managers [6].

Moreover, building energy interventions have been designed
without taking into account the need to negotiate energy
use and desired environmental conditions [1], [6]. building
management systems (BMSs) can be seen as the interface
between energy systems and users, including facility man-
agers (FMs). On the one hand, occupants need to feel an
engagement with the process of regulating their energy usage
in a way that enhances their living and working experience
in buildings; conversely, energy control systems should have
a level of intelligence and interactivity that promote user-
centered and negotiable (multiobjective) energy optimization
strategies [2], [5].

Existing BMS in research and industry have shown: 1) var-
ious adoption and use problems which suggest a lack of
understanding of users’ expectations in terms of levels of
automation and functionality; 2) limitations in their capac-
ity to factor in (near) real-time dynamic changing conditions,
as well as addressing; and 3) often conflicting multiobjective
goals, e.g., reducing energy while enhancing occupants’ com-
fort and working experience [2]. State-of-the-art research in
BMSs involves the use of semantic-based real-time sensing
tools [7]–[9] that factor in space occupancy patterns as well as
user comfort feedback. However, these tools need to promote
more effective energy control strategies through enhanced
interoperability with existing energy modeling environments,
building control systems, and operational log feeds, and deliver
higher-order intelligence (through correlation and analysis
of energy modeling predictions and actual use), accessible
through more intuitive user-interfaces.

This paper proposes a methodology that exploits finer
integration of sensing, interoperability, intelligence, and user
interfaces to confer FMs the desired levels of interaction
(including automation and functionality) with the BMS to
address a wide range of energy scenarios. This builds on
prior work [7], [10], following further experimentation with
the approach, development of the underpinning software
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platform and algorithmic design, and pilot site validation,
which are the focus of this paper. Following the introduc-
tion, this paper critically discusses related research, identifying
gaps to be addressed by this paper. Section III illustrates
the overarching methodology and the various underpinning
components delivering a semantic negotiable strategy for
energy management. The subsequent sections then detail
each of these components, namely: semantic Web middle-
ware (Section IV), rule-based analytics (Section V), and
smart GUI (Section VI). This paper then presents the val-
idation of the approach in a public care home building in
The Netherlands. This paper discusses the proposed approach
and provides concluding remarks and directions for future
research.

II. BACKROUND

A. Toward Economic, Extensible, and Integrated Retrofit
BEMS Solutions

Building energy management systems (BEMSs) aim to
improve the energy performance of operational buildings.
They work on the principle of collecting data about the cur-
rent state of a building, analyzing this data, then providing
feedback to the appropriate decision maker, or reconfiguring
the building automatically.

Such a system can be conceptualized in different architec-
tural layers; a sensor layer, computational layer, and an appli-
cation layer [11]. The sensor layer includes all the energy and
environment monitoring devices, the computational layer anal-
yses this data to generate knowledge and desired actuations.
The application layer then either acts on this automatically,
or provides decision support through a user interface which
may also send notifications to stimulate behavioral change and
feedback. An alternative architecture is presented in [2], which
includes a middleware layer between the sensor and analytics
layers. This middleware connects the distributed infrastruc-
ture of sensors and actuators with the processing engine, and
is responsible for handling heterogeneity and interoperabil-
ity. Other architectural configurations for buildings and smart
homes were observed [12], [13], each sharing a similar layered
architecture.

The reduction of energy consumption through a BEMS
requires it to be economic and engaging for the decision
maker, and to deliver integrated, accurate, and attractive mea-
sures for energy saving. This requires the extension of the state
of the art at both the analytics and interface levels. However,
it must also be suitable for retrofit into buildings with existing
sensor networks of heterogeneous components and be extensi-
ble, as the state of the art continues to improve, so must also
innovate in the middleware BEMS layer. To this end, recent
advances in each of these three layers are now reviewed in
turn: 1) middleware; 2) analytics; and 3) interfaces.

B. Interoperating Legacy Systems With Advanced
Analytics—The Role of Semantic Middleware

A flexible and thorough middleware solution is essential
to interoperate between the existing sensor and manage-
ment systems in a building and the novel analytics and

visual components of a retrofitted BEMS. Whilst interoperable
data exchange protocols are critical [14], and other barriers,
such as data quality, integrity, and security exist [15], interop-
erability of data formats and meaning is a critical challenge
in ICT interventions in the built environment [14]–[16]. This
highlights the key challenges in energy management interop-
erability of both shared syntax and semantics between ICT
components. These incompatibilities currently require ad-hoc
mappings for effective communication and interoperation with
a retrofitted BEMS.

Instead, a common vocabulary and conceptual model miti-
gates the effort required for software artefacts to communicate
effectively in an energy management system [9], [14]–[17].
Such artefacts are referred to as semantic models, and are
being developed using the Web ontology language (OWL),
to facilitate the semantic Web [9], [18], [19], Internet of
Things [20], and linked data [21]. These ontological semantic
models standardize the description of concepts, relationships,
and properties in the domain.

In the built environment domain, the openBIM IFC
data model is already experiencing strong uptake [22]. This
model uses a less expressive format than OWL, and its feder-
ation into OWL is an active area of research [23]. Whilst this
does not sufficiently model energy management concepts, its
extension toward BEMS would improve the adoption of the
resulting model.

The ISES project used an OWL-DL ontology to address
interoperability in an integrated lifecycle BEMS [24]. Also,
the HESMOS project developed an ontology-equipped frame-
work to integrate distributed and heterogeneous data from
ICT building energy systems [25]. However, these projects
do not strongly consider their alignment with existing
standards, such as the IFC, and do not model occupant
behavior. This gap is therefore addressed by the onto-
logical middleware developed for the presented BEMS
solution.

C. State of the Art of BEMS Rule Generation and
Application

One of the biggest built environment challenges is the
need for adaptive, autonomous, and replicable management
solutions. Thus, several retrofit building energy management
and control systems exist [26], [27], which use intelligent
approaches to deal with complexity and uncertainty [28]–[30].
Whilst this can also be achieved through a semantic-based
approach [31], this typically requires domain expert knowl-
edge, although automated knowledge discovery processes are
emerging [32]–[39].

Several rule generation and knowledge discovery processes
exist, such as rule mining [32], combined mining [33], coop-
erative rules [34], neural network [35], fuzzy logic [36],
fuzzy rough set [37], genetic algorithm [38], ant colony
optimization [39], hybrid algorithms [7], [40], evolving
fuzzy systems [41], [42], decision trees [43], [44], fuzzy
classifiers [45], fuzzy pattern trees [46], and rule ripping
approaches [47]. These provide a flexible method of approxi-
mating rules in a data driven way and highlight the suitability
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of machine learning [40] and well-trained ANNs [27] for
approximating highly nonlinear problems.

Mitra and Hayashi [40] proposed a neuro-fuzzy rule gen-
eration framework, capturing the strengths of both neural
networks and fuzzy systems for use in the area of medi-
cal diagnosis. Neural networks perform well in data driven
processes, providing a continuous learning ability, and fuzzy
systems perform well in logic-based systems. Combining the
two approaches therefore presents merits in data driven, logi-
cal systems. However, they have not compared their algorithm
with other prominent rule generation algorithms.

Finally, Pal and Pal [38] proposed a self-organized rule
generation process for a fuzzy controller, through a genetic
algorithm. This selected the optimal number of rules with-
out supervision, eliminating the need for expert involvement.
They tested their solution on an inverted pendulum; reducing
the number of rules by circa 95%, and resulting in an integral
absolute time error of 0.1019. However, their approach did
not optimize the membership functions of the fuzzy inference
engine, which could increase the robustness of their approach.

The strengths and weaknesses of the rule generation
techniques presented above vary across different types of
problem, and they could be improved through multi combined
approaches, such as using neural network-based optimization
processes. Moreover, they could be extended with advanced
partitioning techniques, such as PCA, or other fast classi-
fiers, although PCA may not perform well with large numbers
of inputs. This weakness can be avoided by also using
multi regression analysis (MRA), where PCA determines the
required number of classes and MRA can then determine
these classes, using a regression coefficient. Therefore, hybrid
processes deliver the strengths of several approaches, espe-
cially regarding data driven processes [48], although this has
to be logically linked well with other methods.

D. Toward Engaging Interface for Building Energy
Monitoring and Decision Support

The final layer of the BEMS system is the application layer,
which allows the FM to interact with the system’s data mon-
itoring, analytics, and actuation capabilities. Several commer-
cial energy monitoring tools exist, which allow the monitoring
of energy consumption in a building. MonaVisa is a product
which is retrofitted alongside an existing BMS [49]. This col-
lects temperature and CO2 sensor readings and assesses these
against a comfort range, generating a notification when a KPI
leaves this range. These assessments are conducted at different
time scales for each monitored room and are delivered through
a GUI. PlugWise is an energy monitoring tool which transmits
energy readings over the ZigBee protocol. This allows addi-
tional sensors to be added to monitor temperature, motion,
gas, and electricity. Again, collected readings can be viewed
as charts and graphs for each metered appliance over varying
time scales, and overlaid onto a 2-D floorplan.

Increasingly, these sensing, analytics, and actuation ser-
vices are delivered through WebApps. These aim to provide
engaging interfaces with seamless cross-platform deployment.
HTML5 provides a flexible and extensible means to meet the

requirements of many tools, and Asynchronous JavaScript and
XML (AJAX) and SPARQL queries can be used to access
the underpinning knowledge. Further, WebGL facilitates 3-D
visuals in HTML5 Web pages without the need for browser
plugins, as HTML5 is supported natively by modern browsers.
This is highly beneficial because it allows deployment across
operating systems, other Web page elements can form part of
the GUI, and the visuals can make use of a number of high-
level communications tools, such as AJAX. The 3-D graphics
software interface to WebGL is written in JavaScript, which
allows the use of the document object model to manipulate the
Web page, and allows the visualization to be manipulated by
standard Web form controls. Finally, as this allows the seam-
less integration of 3-D visualizations with Web technologies,
it allows the computationally expensive simulation and ana-
lytics tasks to be performed on the server side, with only the
rendering of 3-D data performed by the user’s Web client.

III. OVERVIEW OF PROPOSED SOLUTION

The research and development of a novel BEMS was under-
taken through an EC FP7 project [50] and tested within
a mixed mode residential care home in The Netherlands. The
project aimed to produce a BEMS, which could be retrofitted
into public buildings with minimal investment, to exploit an
enhanced sensing infrastructure and the existing BEMS, aug-
mented with analytics and visualization components through
a semantic Web approach. This involves a semantic knowledge
base, which describes the physical properties of the building
as an extension of the openBIM IFC data model [18], [23],
through an RDF store and SPARQL endpoint. The semantic
model in the knowledge base also contextualizes the histori-
cal data stored in an MySQL database by formalizing a shared
meaning. The novel analytics include the automated produc-
tion of rules through simulation-based rule generation [7] and
their subsequent fuzzification alongside rules from mining on
historical metering data. The visualization component utilized
an HTML5-based smart GUI to deliver engaging 3-D WebGL
visuals alongside real-time and historical energy performance
monitoring and decision support, by presenting the optimized
rules as user-friendly actuation suggestions. The BEMS aimed
to promote trust with FMs through a negotiation-based user-
in-the-loop approach. This meant the FM was responsible
for actuating the suggested changes, as this was attractive
to industrial partners due to liability and legislation concerns
around automated actuation. Finally, the semantic Web-based
approach aimed to promote reusability and extensibility, by
allowing the deployment of the BEMS in further buildings
without redesign of its underlying technologies, as was tested
through four other European pilot sites within the project.
This paper focusses on presenting the enhanced BEMS and
delivering proof of concept at the selected pilot site. The
following sections therefore discuss the key components of
the proposed system’s service-oriented architecture; the RDF
store, SPARQL mapper, and knowledge base which constitute
the semantic middleware, the data mining engine, rule engine,
and fuzzy real time reasoner, which constitute the system’s
analytics components, and the system’s smart GUI, as shown
in Fig. 1, before a pilot site validation is presented.
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Fig. 1. Architecture of the proposed solution.

The numbers H1-H5 and R1-R6 in Fig. 1. describe the two
data flows involved in the proposed solution, i.e., historical
and real-time data flows. Each data collected from sensors is
transmitted through Web service interface into the MySQL
database periodically in a certain interval resulting in a col-
lection of historical data (H1). Through the BuildVis interface,
the user can query the historical data to perform performance
monitoring, for example to monitor the energy performance of
certain building zone in a specified time range (H2–H3). The
historical data stored in the MySQL database are then used as
training data by machine learning algorithms to generate rules
(H4). The resulting rules are transformed into SWRL rules and
integrated into the knowledge base (H5). The rule generation
is performed in a larger interval to update the knowledge, for
example once in a month.

Through the Web service interface, the fuzzy reasoner col-
lects data from the sensors in real time (R1). Then, it invokes
the appropriate rules, i.e., rules with certain weights in the
knowledge base that have been selected by the user (R2). The
fuzzy reasoner fires the rules by setting the variables in the
condition part with the values collected from the sensors (R3).
Through BuildVis GUI, the user can define an energy sav-
ing goal of a certain category in his building, for example
10% energy saving for heating (R4). The knowledge base
returns the suggestions containing set points values of different
actuators to achieve the desired goal (R5). Subsequently, the
user could set the set points corresponding to the suggested
values (R6).

To summarize the relationships between the core analyt-
ics components: a genetic algorithm generates energy-saving
rules, using an ANN as the cost function (as a surrogate for the
thermal simulation), these rules map the current building state
and actuator states to optimal actuator states for the imminent
future. The rules are fuzzified and then stored in the knowl-
edge base, and updated on a periodic basis (e.g., weekly).
The rules are used by the fuzzy reasoner at runtime alongside

actual sensor data, where the fuzzy reasoner recommends the
best actuator state given the current observed building state
and actuator states.

IV. SEMANTIC WEB MIDDLEWARE

A. Role of Semantic Middleware

As mentioned, a critical problem in retrofitting advanced
analytics into existing buildings is the range of heteroge-
neous data sources and existing BEMS solutions encoun-
tered: such as (in our pilot case study) Priva, Controlli,
and EUGENE. This was overcome through a key novelty
of this paper; the knowledge base and accompanying soft-
ware which served as the integration components of the
proposed energy management system. It integrates hetero-
geneous data sources required by the system, and also
provides some of the intelligence capabilities through reason-
ing on the rules and structures contained in the knowledge
base.

Each of existing BEMS solution uses different commu-
nication protocol, for example, EUGENE uses Modbus and
Priva uses BACNet. However, they provide Web service REST
interface. The data are transmitted from those BEMS solu-
tion to the middleware layer through REST Web service. We
developed a program to perform the mapping between the Web
service schema and our knowledge base model.

The approach of a semantic middleware solution was
adopted over traditional options to facilitate reuse and exten-
sibility in the BEMS domain and the wider domains of smart
cities and the Internet of Things, and to build the BEMS
solution in line with the wider trend toward Web-based soft-
ware. Through this approach, the proposed solution could be
deployed in further buildings regardless of the proprietary
data schemas and protocols used by their previously installed
sensing, actuation, and BEMS infrastructure, and could be
used to integrate building energy management with energy
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Fig. 2. Main concepts, relationships, and IFC mappings in the domain ontology.

management at the district scale, such as, where renewables or
microgrids require active and collaborative management [51].

B. IFC-BEMS Domain Ontology

The OWL was used to represent the knowledge base in
order to achieve a high degree of expressiveness of the knowl-
edge model. The knowledge domain model consists of classes
representing building physical elements that are observed
and analyzed in energy management activities, and build-
ing controls consisting of sensors, controllers, alarm, etc.,
which act as observer and controller of physical building
elements. Furthermore, the knowledge model represents the
human actors and their behaviors that can affect the states
of building physical elements. In the knowledge model, the
states are classified into simple states, for example window or
room states, and complex states, which are built by relating
several simple states. Energy efficiency and comfort degrees
are examples of complex states. This resulted in 145 asserted
classes, 43 object property slots, and 43 data property slots; the
key physical and sensory classes and relationships are shown
in Fig. 2.

In order to provide the possibility to reuse existing indus-
trial standards, the knowledge domain model is aligned to IFC
model, as also shown in Fig. 2. The alignment is done by
defining the explicit IFC-OWL mappings that are stored in the
class annotations. For example, the IFC entity IfcWindow
is mapped to OWL class Window using the annotation
correspondToIfcEntity. The other main IFC concepts
which were reused were the physical building elements and
geometries, such as doors, walls and openings, and the key
extensions included descriptions of the zones, sensors, states,
people, and behaviors in the domain. In total the domain ontol-
ogy asserted 44 mappings to IFC concepts. This allowed an
automatic IFC to OWL document conversion using SPARQL
queries [23].

C. Population of Pilot Site Knowledge Base

The domain ontology model only contained classes, rela-
tions among them, and definition of their properties. In order

to apply the knowledge base in a specific building, the ontol-
ogy had to be populated with instances corresponding to the
objects in the building that are considered essential for the
energy management activities. Most current building layouts
are only drawn as 2-D sketch using CAD applications, such
as AutoCAD [52]. They contain only geometrical primitives,
such as lines, curves, points, etc. Therefore, in order to popu-
late the ontology, the semantic information of the sketch had to
be extracted. OntoCAD is an open source tool that was devel-
oped to solve the problem. The tool clusters the geometric
primitives in layers. Using the tool, we defined templates rep-
resenting semantic objects, such as doors, rooms, and chairs,
and select the areas in the drawing which corresponded to
the to-be-generated ontology instances. The tool updated the
property values of the generated instance automatically, such
as the position and the perimeter. OntoCAD also allowed the
validation and correction of the knowledge population, where
necessary [53].

The knowledge base also embeds SWRL rules, which are
generated automatically using both historical metering (gen-
erated through data mining) and simulation data. Each rule
is equipped with a weight indicating the confidence of the
rule. The weight has values between 0 and 1. These are
used by the fuzzy reasoner to evaluate the importance of
the rules. This is necessary to account for the large number
of rules generated by the data mining and simulation mod-
ules. As well as these custom rules, the ontology deployment
performs inference through the Jena inference module. This
allows new knowledge to be produced automatically by the
software from the stated axioms, resulting in inferred knowl-
edge being used alongside explicit knowledge. For example,
if a sensor is stated to be connected to a specific element, as
a property of the sensor, then the software infers as a prop-
erty of the building element, that the element has that sensor
connected.

D. RDF Store and SPARQL Endpoint

This module is the main communication module between
the knowledge base and the smart GUI. The knowledge base
stores all the data about the building and its systems relevant to
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Fig. 3. Example of an SPARQL query.

the BEMS. To enable visualization of the building floor plan,
an existing 2-D DWG file is parsed and converted directly
into RDF and stored on the Fuseki server. The data extraction
tool OntoCAD is used to identify zones in the building and
add additional information as sensor types and locations. This
information is also stored as an OWL file and uploaded into
a Fuseki server which is running on a linux operational system-
based virtual platform, and maintained by the Knowledge and
Data Engineering Group in Trinity College Dublin [54]. Each
pilot building has its own instance of Fuseki server to store
the building specific knowledge base. The smart GUI queries
the ontology using a combination of AJAX and SPARQL
(SPARQL Protocol and RDF Query Language). When the
FM selects the pilot building through the smart GUI, sev-
eral SPARQL queries are made to the Fuseki server, one of
which returns JSON objects which are then used to store
a 2-D array of JavaScript zone objects, which describe each
zone in the building. A query example is shown in Fig. 3.
This would be enough to display the zones graphically (using
WebGL), although as each property is returned as strings,
perimeters must be parsed client side to get each point given
in Fig. 3.

V. OPTIMIZED RULE-BASED ANALYTICS

In order to enhance the reasoning capabilities of the knowl-
edge base, we integrated rules from data mining over sensor
data, and rules from thermal simulation-based optimization.
The rules are represented with SWRL in order to allow the
integration into the knowledge base. The data mining rules
are mainly used to identify inconsistent performance and to
predict energy consumption in the building. Conversely, the
simulation-generated rules aim to impose optimal set point
configurations toward the negotiated target energy saving.
Both rule types are critical to the BEMS’s capability to assist
FMs in improving energy efficiency in the building. The main
reason for utilizing the simulation-based rules in the proposed
methodology was the complex behavior of the building
environments, which could not be fully captured by rules
without a simulation model and a robust intelligent solution.
The following sections present the generation approaches of
both rule types. Nevertheless, this paper focuses on simulation
rules and only introduces data mining rules briefly, as they
are described in [23].

A. Extraction of Rules Through Data Mining on Historical
Metering Data

The objective of the data mining was to identify correlations
between indoor and outdoor sensor data, user behaviors, and
energy consumption data, and to express these as rules. The
rules were then federated into SWRL rules in the knowledge
base to enrich each building’s model. Reasoning on the rules
generated new knowledge that can be utilized for the following
goals.

1) Prediction of the energy consumption of certain user
activities, building zones, and appliances.

2) Detection of energy consumption anomalies in user
activities, zones, and appliances.

3) Inference of user activities in building or zones based
on contextual sensor data.

4) Fault detection in appliances, based on their energy
consumption.

5) Prediction of actuator states or configurations toward
meeting specific comfort levels.

These intelligent capabilities were achieved through the
collection and algorithmic analysis of the following relevant
sensor data.

1) Indoor Sensor Data: Zone temperatures, CO2 concen-
trations, and door and window states.

2) Outdoor Sensor Data: Dry-bulb temperature, precipi-
tation rate, wind speed, brightness/luminance, and air
humidity.

To allow different analyses at different aggregation levels,
energy consumptions were collected using energy meters at
various levels. At the appliance level, energy meters were
installed at active power sockets. At the zone level, energy
meters were installed at the distribution board for the target
zone. At the building level, energy meters were installed in
the central distribution board.

Behavioral data were then collected; mainly based on the
usage of appliances and zone occupancies. That meant that if
a user undertook multiple activities in a zone without chang-
ing the appliance usage, those activities were not considered as
different behaviors. Key daily periods were identified, where
similar behaviors were observed across days: lunch time,
office hours, coffee break time, maintenance/cleaning time,
and nonoffice hours.

The rules reflecting interrelationships between behavior, sur-
roundings parameters (temperature, humidity, etc.) and energy
consumption were generated through decision tree-based clas-
sification algorithms, such as C4.5 [43]. Each path in the
decision tree from the root to the leaf constitutes a rule.

B. Simulation-Based Optimized Rule Generation

This system module used a 6-staged process to produce
energy saving rules based on thermal simulations of the build-
ing, as shown in Fig. 4. This approach uses preprocessing
to produce optimization scenarios and simulation data, and
to identify sensitive variables, then trains an ANN based on
this data. This ANN is then used as the cost function in
a GA optimization to output actionable rules, which are then
evaluated for efficacy.
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Fig. 4. Simulation-based rule generation method environmental variables.

TABLE I
PROPOSED SCENARIO FOR FORUM BUILDING

Fig. 5. Thermal model for forum building’s atrium zone (pilot zone).

1) Building Thermal Simulation and Sensitivity Analysis:
The preprocessing stage consists of scenario definition,
simulated data generation, sensitivity analysis, and vari-
able mapping. The scenario defines the objectives of the
optimization and the available control variables, actors, and
sensors. Thermal simulation and data generation involves ther-
mal model development and utilization for each building.
Sensitivity analysis and variable mapping then determines the
most sensitive variables, and maps them with the building’s
artefacts, as expressed in the knowledge base.

In this paper, a public residential care home in
The Netherlands, named “the Forum,” was used as a case
study, based on the scenario shown in Table I. A thermal sim-
ulation model of the building was created in DesignBuilder, as
shown in Fig. 5, which includes detailed material, occupancy,
and construction data.

TABLE II
MAPPED SENSORS AND COEFFICIENTS FOR EACH OBJECTIVE

EnergyPlus was used to produce simulated data across the
permutations of the scenario’s independent variables. In the
Forum building, the four actuators resulted in 32 permutations,
so the annual simulation was repeated to produce 32 datasets.
PCA and MRA were then used to reduce the simulation
model’s 954 reported variables. The ideal reduction was deter-
mined by PCA, and then MRA was used to rank the variables’
sensitivity according to the scenario’s objectives. This process
was modeled as: 1) where Fj denotes either thermal energy
consumption or predicted mean vote (PMV) in this case [7]

Fj

(−→
Var

)
=

numvar∑
i=1

coefjiVari. (1)

In (1),
−→
Var denotes the variables generated from the simula-

tion, coefji denotes the coefficient of variable Vari for Fj, and
numvar is the available number of variables.

The identified variables are then mapped with the existing
sensors installed in the target building. Variables which cannot
be mapped to sensors can inform the acquisition of additional
sensors or can be excluded from subsequent stages of the pro-
cess. The list of mapped sensors for the Forum building are
given in Table II, and were used in the following ANN-GA rule
generation.

2) ANN-Based Learning Process: ANNs predict the behav-
ior of highly nonlinear systems, such as building energy
systems [29], by conducting machine learning over training
data. ANNs have been researched in energy management
systems for the last two decades [55], yet they continue
to perform competitively [56], and as such are still the
most widely used type of data-driven model for building
energy prediction [57] in research. Hence, this paper also uti-
lizes an ANN-based learning method, where the novelty of
the proposed system is the use of this traditional method
in a unique way alongside GA, behavioral data mining,
fuzzy rules, and ontology technologies, within an end-to-end
BEMS. Following experimentation, a traditional multilayer
perceptron-based ANN approach was found to perform ade-
quately, although there is room for further investigation into
deep architectures and other types of data-driven models,
which could be interchanged with the 3-layer MLP used if
found to perform better. The proposed ANN design used
the ten variables identified previously as inputs, as well as
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Fig. 6. Proposed ANN topology for the pilot zone.

the four actuator states at the current timestep, and time
information. The outputs were then the zone’s PMV and
energy consumption at the subsequent timestep, as shown
in Fig. 6.

For an ANN to be effective, it must be well-trained and use
an appropriate topology. To ensure this, the learning algorithm,
number of hidden layers (and their number of process ele-
ments) and transfer function have to be determined robustly. In
this paper, several experiments were designed and conducted
to determine the optimum ANN parameters. In the experimen-
tal design, an iterative parameter tuning approach is utilized.
The initial configuration set is selected as; single hidden layer
with five neurons, gradient descent-based learning algorithm,
tangent-sigmoid transfer functions in hidden and output lay-
ers, 0.0001 error rate, 4000 epochs for number of hidden layer,
number of process elements in hidden layer, learning function,
error rate and number of epochs, respectively. The next stage
is changing one of the parameters while keeping others con-
stant, if the error rate with the selected parameter is better
than its constant value will be updated for further parameter
selection. The best parameters were found to be: a single hid-
den layer of 30 neurons, using a Levenberg–Marquardt-based
learning function, logarithmic sigmoid and tangent sigmoid-
based transfer function in hidden and output layers. Using
these parameters, the desired error rate (0.0001) was achieved
at 70th epoch.

The ANN was trained with 80% of the dataset and tested on
the remaining 20%, within MATLAB. The ANN architecture
and training decisions are described further in [7]. This model
was then used as the cost function of the GA rule produc-
tion. The univariate hyperparameter search approach yielded
an ANN with sufficient performance within the time and com-
pute limitations of the work, however, further work includes
optimizing the ANN design further through grid search or
a similar technique.

3) GA-ANN-Based Optimized Rule Generation: The rule
generation is based on finding optimized solutions for the
set of control variable with related environmental variables,
desired optimization level (i.e., 5%, 10%, 15%, 20%, 25%,
and 30%), and time information. Once an optimum solution
is found, this optimum solution and related environmen-
tal parameters, date-time info and environmental parameters,

Fig. 7. General formation of the proposed chromosome string.

date-time info, the achieved improvement level, zone ID, and
a weight based on the achieved and desired improvement in
the target variable.

GA optimization was used with an ANN cost function.
GA is a very popular optimization technique for complex
problems [7], [30]. The proposed approach uses the actua-
tor states alongside sensor data in the chromosome string, and
uses mutation, crossover and fitness evaluation to iteratively
improve the rule in a stochastic manner. The general formation
of a chromosome string is shown in Fig. 7.

The proposed chromosome string includes two groups:
1) variable and 2) constant features. The variable group
includes the control variables (temperature setpoint, window
setpoint, blind setpoint, and shading setpoint). The constant
group of the string consists of the values of the sensitive vari-
ables and time information which are denoted from X5 to X17
for month, day, hour, outdoor temperature, wind speed, wind
direction, solar irradiation, solar azimuth angle, solar latitude
angle, zone air temperature, zone heating rate, zone ideal total
cooling rate, and occupancy, respectively.

Only the control variables (X1, . . . , X4) are involved in
the mutation and crossover operations of the GA process,
and the other string elements are kept constant to determine
the optimized value for the control variables. The relation-
ship between cost function variables (inputs and output) is
presented in

Minimize: Fenergy consumption(X1, X2, X3 . . . X17)

(2)

Subject to constraints: |FPMV(X1, X2, X3 . . . X17)| < 1 (3)

16 ≤ X1 ≤ 24 (4)

0 ≤ X2 ≤ 1 (5)

0 ≤ X3 ≤ 1 (6)

0 ≤ X4 ≤ 1. (7)

FEnergy_Consumption is the energy consumption amount based on
the variation of the control variables X1, X2, X3, and X4 while
keeping other variables (X5, . . . , X17) constant, and FPMV is
constraint named as the PMV function value to keep the
thermal comfort under between −1 and 1.

The genetic algorithm’s crossover operation used
a multipoint gene exchange within the variation groups
of two parents’ chromosome strings as shown in Fig. 8. The
mutation operation also acted only on the parents’ variation
groups, where it selected one or more elements according to
a probability value as shown in Fig. 8. Both the chromosome
and the mutation operations are implemented on the p and r
worst regions (solution sets) based on their fitness values, as
shown in Fig. 9.

The algorithm used an elite selection approach, where the
best n − p solution were kept as original, the crossover
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Fig. 8. Crossover operations in the proposed GA.

Fig. 9. Mutation operations in the proposed GA.

Fig. 10. General formation of the elitism process in the proposed GA.

Fig. 11. Example of the generated optimized rules.

operation acted on the remaining p chromosome strings, and
the mutation probability was α, using the roulette technique.
The mutation operation was also implemented on r worst indi-
viduals with a β probability rate. Hence, the best solutions are
kept in the solution pool as shown in Fig. 10.

The primary stopping condition of the optimization was the
target improvement decided by the FM. The FM negotiates
an acceptable set of actuations by choosing a target, such as
30% energy reduction, then observing the optimized actuations
required, and either accepting these or adjusting the target. An
example of the generated rule is shown in Fig. 11, and the
overall GA-ANN-based process is shown in Fig. 12.

Fig. 12. GA-ANN optimized rule generation process.

Fig. 13. Fuzzy reasoning module architecture.

C. Fuzzy Reasoner

The rules produced by the GA-ANN process are stored
as SWRL rules, but are used by a fuzzy reasoner. Fuzzy
logic is inspired by the human, approximation-based, rea-
soning process [58]. This process rationalizes an appropri-
ate output from inaccurate and incomplete information. The
proposed fuzzy reasoner communicates with the GUI through
the mapper module, and the knowledge base through the
Java expert system shell [59], as shown in Fig. 13. In this
paper, a Mamdani fuzzy inference system was utilized: despite
this approach’s simplicity, it was found to provide adequate
performance.

Although the rules are generated automatically through
machine learning, the user ultimately decides which rules
should be applied. The weights are initially set automatically
corresponding to the confidence of the rules, but the user is
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TABLE III
RULE VARIABLES FOR THE FORUM BUILDING

able to change the weights in accordance with their needs
or context, such that the most appropriate rules have higher
weights.

The fuzzy reasoner consists of five modules: 1) fuzzification
module; 2) SWRL bridge; 3) rule engine; 4) defuzzifica-
tion module; and 5) rule matching module. This reasoner is
used when the FM requests decision support. The first step
involves comparing the dynamic sensor data to the antecedent
parts of the semantic rules; shown for the Forum build-
ing in Table III. The consequent part of the fuzzy rules
then defines the optimized actuator states, similar to the
approach of Wang and Mendel [64]. However, in this paper,
the antecedents consist of a wide variety of range-based
formations, instead of predefined membership functions.

As well as accuracy, interpretability is an important and
often conflicting performance metric in fuzzy rule-based
systems. Casillas et al. [60] defined interpretability in this
context as the capacity to express the qualities of the real
system as subjective properties based on experts’ assessments.
Another comprehensive survey on the topic is presented by
Lughofer [61], who suggests that one of the perquisites for
interpretability is complexity reduction, which is part of the
distinguishability and simplicity of the fuzzy rule partition-
ing process. This is supported by the similar sentiment of
Gacto et al. [62], who presented a detailed review about inter-
pretability and complexity. Hence, to promote interpretability,
the fuzzy reasoner of the proposed system uses a small num-
ber of relatively simple triangular membership functions with
predefined ranges, as illustrated in Fig. 14. Also, prior work
suggests that this approach promotes greater performance and
is computationally inexpensive [63]. This was valuable given
the large number of SWRL rules used in the proposed system.

These rules are then converted into fuzzy rules with a con-
stant number of membership functions. The inference engine
then implements the membership conversion given in (2).

The fuzzy reasoner incorporates fuzzy rules which are made
by mapping between the crisp variables of the theoretical
rules and fuzzified variables. This fuzzification process uses
fuzzy membership function labels and the related membership

Fig. 14. Fuzzy membership function example.

degrees for each corresponding crisp variable. The optimized
rule antecedent part consists of the rule weight, desired
optimization level, optimization objective level, outdoor tem-
perature, wind speed, wind direction, solar radiation, solar
azimuth and altitude angles, indoor temperature, zone sen-
sible heating and total cooling rates, and occupancy levels,
respectively. The consequent part consists of the control vari-
able values. The fuzzification process converts the variables
in both the antecedent and consequent parts of the crisp rules.
The rule conversion is based on Wang Mendel approach [62]
which consists of: 1) identifying the membership degrees in
every fuzzy partition of inputs and output variables and 2)
associating the existing crisp rules with a fuzzy rule which
has a linguistic label with maximum degree. Hence, the rules
are presented in the form of “IF in1 is labelin1 and in2 is
labelin2 and · · · and inn is labelinn THEN out1 is labelout1 ,”
where labelini is the best covered linguistic label in each input
subspace and labelout1 is the best covered output label. The
membership degree of the rule in each subspace is μlabelini
and μlabelout1

, respectively. To avoid conflicting rules, we have
utilized importance degree, where if there are multiple rules
which have the same antecedent and consequent labels then
the one with the greatest importance degree will remain in the
rule base. The importance degree for each rule is computed
based on following (8) to evaluate the interpretability:

ID(Rule) = μlabelin1
μlabelin2

· · · μlabelinn
μlabelout1

. (8)

Nine hundrenden fifty eight rules were generated for each
objective, resulting in 3882 rules in total. The inference
engine then implements the membership-based conversion
given in (9), where μVk is the membership value of the output
variable. An example of converted fuzzy rule is presented in
Fig. 15. The inference engines design is based on the experts’
experiences

μVk = min
(
max

(
μA11 · · · μAm1

)
, . . . , max

(
μA12 · · · μAm2

))
.

(9)
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Fig. 15. Example fuzzy rules presented in inference engine.

The defuzzification process then determines the selected
output values for any given input set. This operation uses a rule
weighting method, which increases the accuracy of the fuzzy
system [65]. The weight given to each rule before the fuzzifi-
cation is also included as a coefficient in the reasoning process,
as shown in

Vcrisp =
∑

wiμV(Y)Y∑
wiμV(Y)

. (10)

The rule weight is determined by the closeness of the expected
target value to its desired value, evaluated by simulation during
the rule generation process. The weights are calculated accord-
ing to (11), where wi, yi, and ŷi are the ith rule’s percentage
weight, best solution found, and expected target optimization
level, respectively

wi = 100

∣∣∣∣
yi − yi

wi

∣∣∣∣. (11)

To summarize, SWRL rules are generated through an opti-
mized ANN-based approach (ANN-genetic algorithm), for
different reduction levels, which is the basis of the theoretical
rule generation process, the generated rules are then converted
into fuzzy rules to create the rule base of the fuzzy inference
system by inclusion of the linguistic transformations. Once
a user desired level of reduction for a desired objective is
received then the fuzzy inference engine is to utilize these
inputs for its inference engine and to determine the most con-
venient outcomes in the existing post-processed SWRL rules.
After determining the consequent, the rule engine searches for
rules with the same actuator states and sorts them according
to their weights stored in the knowledge base. The highest
weighted one is selected as a response for the users.

VI. SMART GUI

This section describes the implementation and features of
the front-end tool and how it accesses the different data sources
to enable monitoring and visualization of the relevant static
and dynamic data, and the display of suggestions to the
FM. The interface has been evaluated to determine its level
of usability, the resulting findings determined that over five
demo objects, one of which forms the core of the evaluation
presented here, the FMs were supported in the task of identi-
fying and applying suggestions [66]. The BEMS interface was
implemented using modern Web languages and the bootstrap
framework [6]. The interface contains three main windows;
Fig. 16 shows the WebGL view of the building’s zones and
Fig. 17 shows the energy monitoring and actuation suggestion
window. The interface also has a menu “choose building,” so
that the FM can select different buildings, if they are respon-
sible for more than one. First, the ability to view the static
properties and the historic and current energy KPIs of each
building and zone under an FM’s remit is discussed. Second,

Fig. 16. WebGL view of the building’s zones.

Fig. 17. Zone energy monitoring interface.

the role of the GUI in presenting the knowledge from the solu-
tions’ various analytics components, in the form of suggested
actions, is presented.

A. Building Zone View and Performance Monitoring

A 3-D visualization of the building’s thermal zones was
seen as a key requirement of an engaging tool, so this was
enabled by converting 2-D CAD plans into semantic models
in the knowledge base. As well as showing an extruded floor
plan of the building, each zone is described in the knowledge
base by its geometric properties, function (kitchen, atrium,
etc.), ID, and its connected sensors, and these are all dis-
played after clicking the zone, which triggers a query of the
knowledge base.

After choosing a zone and a sensor type (or multiple types),
the energy monitoring interface shown in Fig. 16 allows the
FM to view the current and historic performance of the zone.
This is achieved through a histogram of sensed data values
and a traffic light graphic which indicates the acceptability
of the current performance, relative to its mean value. The
historical sensor data is retrieved from the SQL database using
a combination of AJAX and PHP server-side scripting. SQL
was chosen due to the speed at which it can handle queries
for large amounts of historical data.
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Fig. 18. Actuation suggestions query window.

The suggestions are tailored to a particular zone, which is
generally a room. The tool also shows 3-D coordinates for
sensors, based on industry foundation class data, or manual
data entry. Incorporating IFC Cartesian locations represents
ongoing work. Also, the color of each sensor’s icon represents
its current state.

B. Optimized Suggestion and Negotiation Interface

To deliver the knowledge produced by the solution’s ana-
lytics, and hence support the FM in reducing the energy
consumption of the building, the interface displays suggested
actions as part of a negotiation interface based on the data min-
ing, theoretical rules, and their fuzzification. Fig. 18 shows
how the FM configures these criteria using drop down menus
and slider bars, generated by jQuery selectors. Once the FM
has selected a zone, chosen a goal type (e.g., reduce electric-
ity consumption) and moved the slider to the target energy
saving (e.g., 20%) they press the “query suggestions” button.
This uses AJAX and PHP to query and return suggestions
based on the rules produced by the back-end analytics and
displays a number of recommended actions, such as adjusting
the blinds or heating temperature set point.

Critically, the FM’s expert knowledge is then utilized to
determine if the suggested actions are appropriate, as the sim-
ulated implications on the building are then displayed in the
energy monitoring histograms, and the FM chooses whether
or not to act on the suggestions. If they deem the savings
to have negative implications on comfort, or otherwise, they
can adjust the query criteria and view more suitable suggested
actions. This means of control was a requirement of the solu-
tion, as FMs during the aforementioned usability evaluations
indicated that they wished to have final say on whether to enact
changes.

VII. RESULTS

To evaluate the performance of the developed solution, the
system’s intelligence was tested in the EnergyPlus simulation
environment and the full system was deployed in a real pilot
building, so as to validate the entire system, including the
semantic middleware and GUI components. The pilot build-
ing was a public residential care home in The Netherlands
(the Forum), and the decision support capabilities of the
system were tested for the building’s 3-storey atrium zone;

Fig. 19. One-day simulation temperature setpoint profiles.

Fig. 20. One-day simulation energy consumption profiles.

the main energy consuming space of the building. As the
Forum building is primarily an elderly care home, maintaining
thermal comport was critical whilst attempting to reduce the
building’s energy consumption by using the suggested actions
of the system.

Initially, the proposed solution was tested by simulating the
zone’s energy consumption over a day and then repeating the
simulation with the optimized energy saving rules, applied at
the start of each timestep. This reduced the energy consump-
tion from 258 to 201 kWh, whilst maintaining an absolute
PMV of less than 1, which was deemed an acceptable level
of occupant comfort. In contrast, the well-known rule-based
systems RULE5, RULE3, and C4.5 only achieved energy con-
sumptions of 258 kWh, 259 kWh, and 259 kWh, respectively,
with the absolute PMV values increasing to 1.7, which repre-
sents greater discomfort. The generated set points and resulting
energy consumption profiles from these experiments are shown
in Figs. 19 and 20.

Following preliminary success, the simulation was extended
to a two-month period. Using the proposed method the energy
consumption was reduced from 14 600 to 11 400 kWh dur-
ing the months of October and November, whereas RULE5,
RULE3, and C4.5 achieved 13 500 kWh, 13 900 kWh, and
15 400 kWh, respectively, as shown in Fig. 21. Again, the
proposed approach maintained an absolute PMV of less than 1.

The full retrofit BEMS solution was then deployed in the
pilot building, initially for a single day and subsequently for
an extended period from October 1, 2014 to January 20, 2015.
In each of these tests the FM utilized the system’s decision
support to receive suggested actions for energy saving, and
after negotiating the severity of these, actioned them through
local control systems. Based on the single day experiment, the
daily energy consumption was reduced from 77 to 58 kWh as
illustrated in Fig. 22. Over the two month period, the total
energy consumption reduced from 7500 to 5600 kWh, when
adjusted for degree day temperature correction, as shown in
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Fig. 21. Two-month simulation average energy consumption per day.

Fig. 22. One-day real pilot site energy consumption.

Fig. 23. Two-month real pilot site energy consumption.

Fig. 23. Finally, the FM was satisfied with the thermal com-
fort achieved and no negative feedback was received from the
occupants.

VIII. DISCUSSION AND CONCLUSION

This paper has presented a retrofit BEMS capable of
delivering energy savings through analytics across existing
data sources and actuators in a building, by using semantic
middleware to integrate heterogeneous devices within a cloud-
based, service-oriented architecture. As well as the novelty of
the semantic approach, the solution represents a step change by
encouraging the use of AI by FMs, by respecting the FM’s role
in the decision process and using an engaging GUI, and the
solution has been successfully deployed in a public building
in The Netherlands.

In this paper, the state of the art and previous research was
discussed within each of the conceptual layers of a retrofit
BEMS. A novel BEMS was then introduced and the compo-
nents and methodology of each of its layers were discussed
in turn. First, the semantic middleware layer was introduced
as a key novelty, and its benefits of interoperating a build-
ing’s devices and systems in an extensible, replicable and
affordable manner was explained. The methodology of instan-
tiating a domain ontology aligned with international standards
was presented through the use of OntoCAD to populate an
extended version of the IFC data model. Second, the solution’s
intelligence was explained as a combination of intelligent rule
generation techniques and a fuzzy reasoner. The combined use
of rules generated through data mining and simulation-based
optimization through SWRL ontology integration was shown.
Finally, the GUI of the solution was explored; its interactions
with the back-end to present zone-based performance monitor-
ing and optimized rule suggestions were explained. Also, the
client-side software decisions of WebGL and HTML5 were
discussed as a means to enable cross platform deployment
without requiring additional user downloads, whilst still pro-
viding a 3-D interface and many developer benefits toward
further maturing the solution. Through a simple traffic light
graphic, FMs can determine the zones requiring attention, and
the pop ups alert the FM when a new energy saving sugges-
tion is made. This type of feature would be ideal for mobile
integration, so that FMs can be alerted in the field.

The solution was tested within both simulated and real
buildings, with encouraging results in both cases. Both cases
showed significant energy savings over both a single day and
a period of several winter months, with the real building dis-
playing circa 25% energy savings on average. Whilst these
results are highly positive and serve as a proof of concept,
further work is now required to demonstrate the solution’s
replicability across other buildings. Other features which are
of interest for development include the use of a wizard to help
the FM with tasks, and providing multilingual support to allow
deployment across countries; as driving FM engagement with
the tool through an attractive and intuitive interface is a key
contribution of the work.

Whilst the individual components used in the proposed
system delivered sufficient performance, key ongoing work
includes further opitimization of each. For example, the
ANN model implemented could be interchanged with a more
advanced deep learning model, and its hyperparameters
could be further optimized via a dense grid search or
similar.

Given the successful deployment of the solution and the
key novelties identified, this paper demonstrates the poten-
tial of a cloud-based approach to a retrofit BEMS solu-
tion by using semantic middleware as a system integration
component alongside a human–computer negotiation process,
advanced AI and an engaging user interface. The BEMS
presented can therefore act as a reference point for simi-
lar solutions in terms of the energy saving potential, upfront
investment reduction through system integration, and logistics
and liability issue mitigation regarding AI control of building
systems.
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