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Abstract—Cloud workflow scheduling is significantly challeng-
ing due to not only the large scale of workflow but also the
elasticity and heterogeneity of cloud resources. Moreover, the
pricing model of clouds makes the execution time and exe-
cution cost two critical issues in the scheduling. This paper
models the cloud workflow scheduling as a multiobjective
optimization problem that optimizes both execution time and
execution cost. A novel multiobjective ant colony system based
on a co-evolutionary multiple populations for multiple objec-
tives framework is proposed, which adopts two colonies to deal
with these two objectives, respectively. Moreover, the proposed
approach incorporates with the following three novel designs
to efficiently deal with the multiobjective challenges: 1) a new
pheromone update rule based on a set of nondominated solu-
tions from a global archive to guide each colony to search its
optimization objective sufficiently; 2) a complementary heuristic
strategy to avoid a colony only focusing on its corresponding
single optimization objective, cooperating with the pheromone
update rule to balance the search of both objectives; and
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3) an elite study strategy to improve the solution quality of
the global archive to help further approach the global Pareto
front. Experimental simulations are conducted on five types of
real-world scientific workflows and consider the properties of
Amazon EC2 cloud platform. The experimental results show
that the proposed algorithm performs better than both some
state-of-the-art multiobjective optimization approaches and the
constrained optimization approaches.

Index Terms—Cloud computing, evolutionary approach,
multiobjective optimization, workflow scheduling.

I. INTRODUCTION

LOUD computing has developed rapidly in recent years,

whose computing resources (e.g., servers and storage)
are accessed through network [1], [2]. The infrastructure as
a service (IaaS) is the most basic and common service model
that makes the cloud resources be utilized efficiently. In this
way, clouds can offer a resource pool for users to lease
resources and have shown promising performance on execut-
ing large-scale workflow applications [3]-[5]. Therefore, with
its powerful computing capability, cloud computing has been
widely applied to solve problems with massive amounts of
data and complex workflows in various fields, such as biology,
physics, and astronomy [6]-[10].

Workflow, containing a set of tasks with data dependence
between each other, is a typical type of application on clouds.
The workflow scheduling problem, which aims to find the
most suitable resource for each task of the workflow to
meet user defined quality of service (QoS), has been exten-
sively researched over past years on distributed environment
like grids [11]. Since the workflow scheduling is an NP-hard
problem, the traditional methods such as dynamic program-
ming or greedy algorithm are inapplicable on large scale
workflow scheduling. Driven by the good performance of evo-
lutionary computation algorithms on complex optimization
problems [12]-[17], particle swarm optimization (PSO) [18]
and differential evolution [19] have been proposed to deal with
the workflow scheduling on grids.

However, workflow scheduling on clouds becomes more
promising and popular in recent years [20], but is also more
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challenging. The existing workflow scheduling approaches on
traditional distributed systems like grids may be not sufficient
in cloud computing environment due to the distinct features of
cloud computing like elasticity, heterogeneity, and the pricing
model [21]. On the one hand, unlike the static and limited
resource pool of grid computing, the computing resource of
cloud computing is elastic and heterogeneous. In other words,
resources in cloud computing are almost unlimited for users
and can be leased in any amount at any time [22], while
the variety of resources is far more than grid computing. On
the other hand, it would lead to unexpectedly high charges
if the workflow scheduling does not take the cloud pricing
model into consideration. Thus, it is quite indispensable to
design an appropriative workflow scheduling approach for
cloud computing platform.

Recently, increasing number of researches focused on
the workflow scheduling on clouds. The workflow exe-
cution time (WET) is a common optimization objective.
Raghavan et al. [23] proposed a novel bat algorithm and
Liang et al. [24] applied artificial bee colony to optimize
the WET on cloud. However, as cloud computing is mainly
used for commercial applications, the execution cost is also an
important factor for users. Pandey er al. [25] proposed a novel
PSO-based approach to optimize the execution cost. However,
the cost and the time often conflict with each other, the
scheduling scheme that completes the task faster often requires
a larger investment and higher cost, while a low investment
often results in poor time efficiency. Therefore, it is essential
to take execution time and cost into account at the same time.

Based on the considerations mentioned above, one possible
solution is to model the workflow scheduling as a constrained
optimization problem that considering both execution time and
cost. The model that optimizes the workflow execution cost
(WEC) under the constraint of deadline is highly practical
since for commercial organizations, tasks need to be com-
pleted before a deadline rather than as quick as possible so that
minimizing cost under deadline constraint can maximize the
profit. Lin et al. [26] proposed a heuristic algorithm based on
the partial critical paths to solve this constraint based model.
Rodriguez and Buyya [27] applied PSO-based approach for
the model while Chen et al. [28] proposed a novel dynamic
objective GA (DOGA) approach. Nevertheless, it is difficult to
define a deadline for the constrained optimization model since
users do not know the range of the execution time in advance.

Another efficient way to consider both execution time and
cost is to model the problem as a multiobjective optimization
problem (MOP). Durillo and Prodan [29] extended the hetero-
geneous earliest-finish-time (HEFT) approach [30] to a novel
multiobjective HEFT (MOHEFT) to optimize both the exe-
cution time and cost. But as an enumeration-based approach,
MOHEFT suffers from very poor efficiency when dealing with
large-scale workflows. Therefore, evolutionary multiobjective
optimization (EMO) approaches are proposed. Zhu et al. [31]
proposed a novel EMS-C approach based on the well-
known NSGA-II framework to optimize the execution time
and cost. In fact, the workflow scheduling model aims
to establish a mapping from tasks to resources, which is
a discrete combinatorial optimization problem. In this case,
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the ant colony optimization (ACO) [32]-[36] and its vari-
ants that inspired by the foraging behavior of ants are
promising solvers. In our preliminary study [37], our ant
colony system (ACS)-based approach to solve the constraint
based cloud workflow scheduling problem showed that ACS
can provide good guidance for the search of scheduling
scheme owing to the pheromone and heuristic information.
Therefore, this paper further studies the ACS-based EMO
approach for solving the multiobjective scheduling problem.

Multiobjective  ACOs are widely studied [38]-[40].
However, it is difficult to apply the existing multiobjective
ACOs since the cloud workflow scheduling model has its
own unique features and very few multiobjective ACOs
are specifically designed for cloud workflow schedul-
ing. In order to extend the advantages of ACS to solve
the cloud workflow scheduling problem, in this paper,
we adopt the efficient multiple populations for multiple
objectives (MPMOs) framework [41], and propose a novel
multiobjective ACS (MOACS) to solve the multiobjective
cloud workflow scheduling problem.

The novelties of our MOACS approach are as follows. First,
MOACS, based on the MPMO, adopts two colonies with one
optimizing WET and the other optimizing WEC, being effi-
cient to search both objectives sufficiently. Note that, for each
colony, the objective it optimizes is named as optimization
objective, while the other is named as external objective.
Second, a new pheromone update rule based on the guidance
of a set of nondominated solutions from a global archive is
designed to help each colony search its optimization objective
sufficiently. Third, in order to avoid a colony only focusing
on its own optimization objective and performing unsatisfac-
torily on the external objective, a complementary heuristic
strategy (CHS) that provides the guidance information of the
external objective is proposed. The CHS cooperates with the
pheromone update rule to balance the search of both objec-
tives. Fourth, an elite study strategy (ESS) is performed to
help the archive update process for further approaching the
global Pareto front (PF). Fifth, a novel encoding scheme that
reflects the elasticity and heterogeneity of the cloud comput-
ing platform is proposed. Sixth, MOACS can generate a set of
scheduling schemes so that users can choose a suitable scheme
according to their preference. Compare with the constrained
optimization approaches, MOACS can give users more choices
and better meet the QoS of users.

The rest of this paper is organized as follows. Section II
presents the cloud workflow scheduling model. Section III
presents the framework of MOACS and its novelties in
detail. Section IV presents the experimental results and finally,
Section V presents the conclusion.

II. CLOoUD WORKFLOW SCHEDULING MODEL
A. Cloud Platform

Cloud platform provides computing resources usually
via virtual machines (VMs) in IaaS. In this way, users can
lease resources like VMs to execute the workflow tasks. There
are several basic principles of cloud computing as follows.
First of all, the resource on clouds is elastic, which means
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Fig. 1. Sample workflow with ten tasks.

the resource pool is nearly unlimited and users can lease
resources in any amount at any time. Heterogeneity is another
distinct feature that means there are various types of resource
on clouds. In addition, cloud providers adopt a basic pricing
model that any partial utilization of the resource is charged as
a full time period. Amazon EC2 platform sets 1 h as a min-
imum unit of lease time while Microsoft Azure sets 1 min.
The set R = {r1, r2,73,..., g} represents the resources that
are leased for the workflow execution. We define a lease pro-
cess LP = (LS, LF, LD) where LS represents the lease start
time, LF represents the lease finish time, and LD represents
the lease duration time. The calculation of the cost to lease
the resource 7; for the execution of the task #; is shown in (1),
where P represents the lease price of a resource for a unit of
lease time and u represents the unit of lease time

Cost] = Py, x [LD] /u]. (1)

B. Workflow Model

Workflow application on cloud platform with a set of
interdependent tasks can be modeled as a directed acyclic
graph, formulated as a tuple (T, E). T = {t1, 2, 13, ..., ||} is
a set of nodes representing the tasks while £ = {..., e;, ...}
is a set of edges where e;; represents that ¢; is the parent task
of #;, which means that #; and # has data dependency. That
is to say, the child task #; cannot be executed until the end
of execution of its parent task #. A sample workflow with
ten tasks is shown in Fig. 1.

The execution time (ET) of a task is calculated by (2), where
fpo(#;) represents the floating point operations of #;, which is
usually used to represent the computational size of a task;
pc(rj) represents the processing capacity of the resource 7;.
Equation (3) shows the calculation of the data transmission
time between #; and its child task #;, where datasize(t;, #;) is
the size of transmission data, bandwidth is the bandwidth of
the network connection, while r; and ry are the resources
that execute #; and t;, respectively. Note that, if the parent
task and the child task are executed on the same resource,
the data transmission time is ignorable and is set as 0. The
data transmission time (TT) of a task, calculated by (4), is
to sum the time needed for the data transmission to all its
child tasks

. fpo(s
ETZ _ po(t;) ?)
pe(r;)
datasize(1;,1;) .
transmit(z;, ;) = “andwidth 1 (7% ald ) (3)
otherwise
1T, = Z transmit(t,-, tj). )

tiechild(t;)
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TABLE I
EXAMPLE OF EXECUTION TIME BASED ON THE WORKFLOW IN FIG. 1
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EXAMPLE OF TRANSMISSION TIME BASED ON THE WORKFLOW IN FIG. 1
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Fig. 2. Sample workflow scheduling scheme on cloud platform.
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Fig. 3. Process diagram for the execution of the workflow in Fig. 1 according
to the scheduling scheme in Fig. 2.

Tables I and II show examples of execution time and
data transmission time, respectively, based on the workflow
in Fig. 1. In Table II, if there is no data dependency between
two tasks, the data transmission time is O.

C. Workflow Scheduling

Workflow scheduling on clouds is to schedule the tasks
of the workflow to the resources on the cloud platform. In
essence, workflow scheduling establishes a mapping between
tasks and resources. Fig. 2 shows a sample scheduling scheme
of the workflow in Fig. 1 that assigns the tasks to the cloud
resources.

With the data in Tables I and II, Fig. 3 shows a process
diagram for the execution of the workflow according to
the scheduling scheme in Fig. 2. In the figure, white grids
represent the execution time while those gray grids represents
the data transmission time. We can see that 7; and t, have
data dependency but they are executed on the same resource
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combination

Fig. 4. Example of pipeline pair tasks.

Encoded solution
dm |1 |2 |3|4|5|6|7|8]9]10
value | 2 |4 |3 |1 |4 |52 |1|3]|4

Fig. 5. Example of encoded solution.

so that no data transmission time is needed. Similarly, no
data transmission time is needed between fg and tg. In this
example, assume that the unit of lease time is 2. The tasks
t4 and t7 only need a part of a unit lease time for executing.
But according to the basic pricing model of cloud computing,
a full unit lease time should be charged. Therefore, the black
grids are used to represent the idle time caused by the basic
pricing model.

III. MOACS APPROACH

The MOACS approach is based on the ACS optimizer and
the MPMO framework that uses multiple colonies to optimize
different objectives. A global archive is built to store the non-
dominated solutions during the search process. Moreover, we
propose a new pheromone update rule based on the global
archive, and a novel CHS that provides guidance informa-
tion of the external objective for the colonies. Lastly, an ESS
is adopted during the archive update process to help further
approach the global PF. The complete MOACS approach is
described as follows.

A. Solution Encoding

Before the solution encoding, two preprocessing operations
are executed. The first operation is “pipeline pair” tasks com-
bination proposed in [42]. As shown in Fig. 4, pipeline pair
is a special pair of a parent task and its child task, where
the parent task only has one child task while the child task
only has one parent task. After this combination operation,
the pipeline pair tasks are treated as one task and will be
scheduled on the same resource. This operation can reduce the
search space without breaking the entire topology structure.
The second operation is to carry out a topological sort, which
is performed on the |7T'| tasks after the pipeline pair tasks com-
bination operation. This operation is to sort the tasks according
to their parental—child relationship topology and assign each
task with an index ranging from 1 to |7| according to the
sorting results.

A solution of MOACS, defined as sol, is a sequence that
encoded by the indexes of the tasks. Fig. 5 shows an example
of encoded solution. The dimension i represents the task ¢;
and its corresponding value sol[7] is the index of the resource,
meaning that ¢ is scheduled on the rgo(;;. According to this
principle, 4 and g are scheduled on ry; ¢; and #;7 are scheduled
on r; and so on. The length of a solution is equal to |T|
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while the range of each dimension depends on the scale of
the resource pool. In defining the search range, the elasticity
and heterogeneity of cloud resources should be considered.

On the one hand, the resource pool in cloud computing is
elastic and nearly unlimited for users, but it is quite impossible
to deal with such an infinite search space. A feasible solution
is to adopt a resource pool with fixed number of resource.
However, it is also difficult to define the scale of the resource
pool. If the resource pool is too small, the elasticity of cloud
computing could not be well reflected while a large resource
pool will result in the expansion of the search space, which
will slow down the convergence and increase the difficult to
find a suitable solution.

In MOACS, we use the MPT to represent the maximal par-
allel tasks of the workflow, which means that at most MPT
tasks are run in parallel during the workflow execution. Under
the most extreme condition, these MPT tasks are elastically
scheduled on MPT resources of the same type. Therefore, we
have to assume that one type of resource has MPT available
resources, which can reflect the elasticity of cloud computing
and meanwhile reduce the search space as much as possible.
A naive way to estimate the value of MPT is to set it as |7
that all the tasks are executed in parallel. However, due to the
constraint of the workflow’s topology structure, all tasks can-
not be executed in parallel. Therefore, we use the following
method to calculate MPT. First, a special scheduling scheme
is defined by leasing a new resource for each task to encour-
age parallelization as much as possible. In other words, |T|
resources are leased for the |T| tasks, respectively. Second,
we simulate the workflow execution process according to this
scheme and obtain the execution process (e.g., the start time
and finish time) of each task. Finally, according to the start
time and finish time of each task, we can obtain the maxi-
mal number of parallel tasks of this scheduling scheme. This
number is set as the MPT value of the workflow.

On the other hand, we define rrype different types of
resources to reflect the heterogeneity of cloud computing. As
a result, the scale of the resource pool, defined as [Rpoo1l, is
MPT x rtype, where r; ~ rypr are the first type of resource,
FMPT+1 ~ MPTx2 are the second type of resource, and so on.

B. Fitness Evaluation

Two optimization objectives are considered that are the
WET and the WEC, which are formulated as

minmize f = (WET, WEC). (5)

The procedure of calculating WET and WEC based on an
encoded solution is shown in Fig. 6. First, we initialize the
set of leased resource R as @. Then we iterate every task to
simulate the workflow execution. For a task #; of the workflow,
we can obtain the resource it executed on, named as r;, from
the encoded solution. If r; has not been leased, add r;, to R
and initialize the resource free time (RFT) of r; as 0. The
execution of #; should wait until its target resource is free. In
addition, on the basis of the workflow’s topology structure, if #;
has parent tasks, it should also wait until its parent tasks finish
their executions. Therefore, the begin time (BT) of # is equal
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Procedure Calc WET WEC
R=0;
for i=1 to i=|T]
if , 2R
R RU{r }; RFT, =0;
end if
BT, =RFT,;
if 7; has parents tasks
for each 7, € parents(t,)
BT, =max{BT,  FT,_};
end for ,
end if
ET" = M; TT, = ) transmit(i,,1,);
' pc(rr‘ ) ) echild ;)
TPT, = ET)" +TT,; RFT, = FT, = BT, +TPT,;
add(TLF, ,LP(BT, ,FT, ,TPT,));
end for
WET =WEC =0;
for i=1 to i=|T]
WET = max(WET, FT);
end for ‘
for j=1 to j=|R|
MergeAdjacentLeaseProcess(T. LP );
for each LF, in TLF,
WEC+ = P_ ><|—LDLP Ju'l;
end for
end for
End procedure

Fig. 6. Procedure of calculating WET and WEC.

to the maximum of the RFT of r;; and the finish time of all its
parent tasks. The execution time and data transmission time
of t; are calculated according to (2) and (4), respectively. TPT
is defined as the total processing time of a task, which is the
summarization of execution time and data transmission time.
After that, the finish time (FT) of #; is obtained by summing
up the begin time and the total process time of #;. Then the
RFT of r;, is updated as the finish time of #; because ry, is
occupied until the execution of #; finishes. A vector, named
as total lease process (TLP), is defined to store all the lease
process on a resource. The execution of #; creates a new lease
process that the lease start time and the lease finish time are
equal to the begin time and the finish time of #;, respectively,
while the lease duration is the total process time of #;. We
add this new lease process to the total lease process of r;, for
calculating WEC later.

After applying the scheduling scheme to simulate the work-
flow execution, we initialize WET and WEC as 0. WET is the
finish time of the total workflow, which is equal to the finish
time of the last task. In detail, WET is the maximum of the
finish time of all tasks of the workflow. In Fig. 3, some tasks
are executed on the same resource successively. In such case
if directly using (1) to calculate the cost of every task’s lease
process, the cost may be inaccurate because some idle time
may actually be exploited. For example in Fig. 3, 1 idle time is
charged if using (1) to calculate the cost of #,’s lease process
because the cloud computing providers adopt a basic pricing
model that the lease of resource has a minimum unit of time.
But actually, 75 is executed successively after the execution

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 8, AUGUST 2019

of 1, and utilizes this part of time. Therefore, the duration
of t5’s execution also contain the part that is considered as
idle time in #;’s lease process so that this part of time is
charged again. In order to deal with this problem, we first
apply a MergeAdjacentLeaseProcess operation to merge the
adjacent lease processes on the resource r; before calculat-
ing the lease cost of ;. In more detail, if the start time of
a lease process is before another lease process on the same
resource finishing and running out a complete lease unit, we
merge these two lease processes. Finally, WEC is the sum of
the lease charge of all leased resources.

C. Multiple Colonies Framework

Since it is difficult to assign a suitable fitness value for
an individual under an MOP model, MOACS adopts the con-
cept of the MPMO technique proposed by Zhan et al. [41],
which treats different optimization objectives separately in
different populations. Therefore, two colonies with the same
number of ants are used. These two colonies are named “time
colony” Tcolony and ‘“cost colony” Ccolony, where Tcolony
sets WET as optimization objective while Ccolony sets WEC
as optimization objective. Under the MPMO framework, both
colonies work similar as the traditional ACS to construct solu-
tions by using pheromone and heuristic information, which
will be described in Section III-D. However, Tcolony and
Ccolony use their separate pheromone and heuristic informa-
tion respectively during solution construction.

D. Solution Construction

During the evolutionary process, ants construct their solu-
tions in parallel within their corresponding colonies. In each
step, each ant selects a resource for a task according to
the pheromone t and the heuristic information 7. The solu-
tion construction process is shown as (6) and is described
as follows. For the task #;, a random number g ranging in
[0, 1] is first generated. If ¢ < gp, ant exploits greedily to
select the resource with the highest pheromone and heuris-
tic information, denoted by the resource that has the largest
[t(i, /)1 % [n(, j)]? value where 7 (i, j) and 5(i, j) represent the
pheromone and heuristic information deposited between the
task #; and the resource rj, respectively, and B is a param-
eter. Otherwise, ant selects the resource for #; by roulette
wheel selection according to the probability defined in (7). The
designs of pheromone and heuristic information are described
in Sections III-E and III-F, respectively,

= argmax{[f(i,j)] x [ﬁ(i,j)]ﬁ} ifg=qo (g
' Roulette Wheel Selection otherwise
.. Y
.y = — L2l x )] )

Booatl (2 k)] % [nGi, 1P

E. Pheromone Update

1) Initialization: ITn MOACS, the initial pheromone value
79 of Tcolony and Ccolony are defined as (8) and (10), respec-
tively. In Tcolony, the time greedy solution (TGS) is generated
by (9) that selects the most efficient (fastest) resource for each
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task. In Ccolony, the cost greedy solution (CGS) is generated
by (11) that selects the most economical (cheapest) resource

Tcolony: 9 = 1/(|T| x WETtGs) (8)
TGS[ = argmin(ET7 ) j = {12, [Rpoa]} 9
Ccolony: 79 = 1/(|T| x WECcgs) (10)
CGS[i] = argmin(CostZ) i={1.2,....|Rpoat]}. (1D)

2) Local Update: The local update of pheromone occurs
during the solution construction process. The local update rule
is shown as

t@,)=>0=p)x10)+p X710 12)

where p is a parameter. When an ant selects r; to execute ;, the
pheromone t(i, j) is updated immediately. From (8) and (10),
we can see that 7g is equal or less than t(i,j) in most cases
so that the pheromone t(i,j) often decreases by using (12),
which reduces the probability that other ants still schedule
ti to rj. Thus other ants will be more likely to schedule t;
to the other resources different from r;. The local update of
pheromone can greatly improve the search diversity and avoid
premature convergence. Since the local update is only adopted
to evaporate the pheromone to enhance the search diversity and
is not related to colonies’ optimization objective, two colonies
follow the same local update rule as (12). However, it should
be noted that the tg in two colonies are different, which are
defined in (8) and (10), respectively.

3) Global Update: In traditional single objective ACS, the
historically best solution is selected for the global update of
pheromone. However, when deal with MOPs, there are a set
of nondominated solutions in the global archive that contain
the elite experience (see Section III-G for the global archive),
which may all be able to provide useful guidance for the search
process. Some researchers proposed to randomly select a non-
dominated solution from the archive [41]. Random selection
can well maintain the diversity of the population but it may
also lead to poor efficiency of search guidance.

Since Tcolony and Ccolony minimize WET and WEC,
respectively, the solutions with low value of its optimization
objective can provide useful guidance. But if we directly
select the solution with the smallest value of the optimization
objective for the pheromone global update, which means
that Tcolony and Ccolony select the solution with the small-
est WET and WEC from the global archive, respectively, it
may easily be trapped into local optima and cause premature
convergence.

Therefore, random selection may lack of search guidance
while totally greedy selection may cause premature conver-
gence. In order to balance the search efficiency and the
diversity, we propose the procedure shown in Fig. 7 to select
a solution for pheromone global update and define this solu-
tion as global update solution (GUS). First, the solutions in the
global archive are sorted in ascending order according to the
WET value and the number of solutions in the global archive
is recorded as K. Then a selection rate sr in range of (0, 1) is
defined. A random solution from the first K x sr solutions
of the global archive, which has small WET, is selected as
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Procedure GUS selection
ascending_sort(globalArchive, WET);
K =sizeof (globalArchive);
ind1 = random(l, K x sr);
globalArchive[ind1] is selected as Tcolony’s GUS;
ind2 = random(K x (1—sr)+1,K);
globalArchive[ind?2] is selected as Ccolony’s GUS;
End procedure

Fig. 7. Procedure of GUS selection.

the GUS for Tcolony while a random solution from the last
K x sr solutions, which has small WEC, is selected as the
GUS for Ccolony. The sr is used to control the diversity of the
population and guarantee the convergence speed of MOACS.

After selecting the GUS, the pheromone global update
is conducted according to (13), where ¢ is the pheromone
enhancement parameter and the calculation of Aty(i,)) is
shown in (14) and (15) for Tcolony and Ccolony, respectively.
Note that the GUS of these two colonies are not the same. The
global update is only conducted on the colony’s selected GUS
solution. After the pheromone global update, the pheromone
on the selected GUS increases and in this way the knowledge
for the optimization objective accumulates

T(i,)) = (1 —e) x t(i,)) + & x Atp(i, ), V(i,j) € GUS

(13)
Tcolony : Atp(i,j) = 1/WETgus (14)
Ccolony : At,(i,j) = 1/WECgus. (15)

F. Complementary Heuristic Strategy

With the update of pheromone, the knowledge for Tcolony
and Ccolony to optimize their separate optimization objective
continually accumulates so that Tcolony and Ccolony perform
well in optimizing WET and WEC, respectively. However, if
a colony focuses totally on its optimization objective, it suffers
from the poor performance on the external objective. That is
to say, Tcolony may find those solutions with small WET but
very high WEC while Ccolony may find those with small WEC
but very high WET, which locate on only the margins of the
PF. To address this problem, we propose the CHS as in (16)
and (17) that provides guidance information of the external
objective, which will be used during the solution construction,
i.e., used in (6) and (7). Specially, the heuristic information
for assigning task #; on resource rj in Tcolony considers the
execution and data transmission cost, as

NTcolony ()]
1

Py x ET,r"i" —+ Ztkepaxent(l,-) (P,tk X transmit(z, ti))

(16)

while the heuristic information for assigning task #; on resource
rj in Ccolony considers the execution and data transmission
time, as

1
7 1 .
ET:’,{ + szeparent(tf) transmit(ty, ;)

nCcolony(iyj) = (17
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Herein, we use the reciprocal in (16) and (17) so that smaller
cost and time will result in larger heuristic information val-
ues, which are more preferable according to (6) and (7) in the
solution construction. One notice is that the heuristic informa-
tion for assigning task #; on resource r; may be different in
different ants because their scheduling scheme for #;’s parent
tasks may be different. Therefore, each ant calculates its own
heuristic information for assigning task #; on resource 7;.

With such a complementary heuristic information guid-
ance during solution construction, colonies can optimize their
own optimization objective while ensuring the quality of the
external objective.

G. Global Archive

During the evolutionary process of MOACS, we adopt
a global archive, defined as globalArchive, to store those
nondominated workflow scheduling solutions that have been
found by ants from both Tcolony and Ccolony. The global
archive collects the elite experiences, which can also help the
pheromone global update as described in Section III-E.

1) Archive Initialization: In order to help pheromone have
a good guidance in the beginning of the search, we initialize
the globalArchive with some predefined solutions. Two special
types of solutions are defined. For the first type, a solution is
to schedule all the tasks on only one resource of a specific
type. As there are rtype types of resource, rtype predefined
scheduling solutions are generated. For the second type, a solu-
tion is to schedule all the tasks on the resources of the same
type, which means for every type of resource, a solution is
constructed by randomly selecting a resource of this type for
each task. There are also rrype predefined scheduling solu-
tions generated for this case. In addition, the solution found
by HEFT are also added to globalArchive. Therefore, there are
totally 2 x rtype+ 1 predefined scheduling solutions generated
and added to globalArchive at the beginning of the MOACS
approach.

2) Archive Update: During an evolutionary generation,
once the solution construction processes in both Tcolony and
Ccolony have finished, the globalArchive is updated. First, we
calculate the WET and WEC of the solutions that obtained by
the ants in the two colonies. The next step is to add the solu-
tions from Tcolony and Ccolony to globalArchive and then
eliminating those dominated solutions from globalArchive.
Lastly, an ESS is applied on globalArchive. Herein, the ESS
applied on globalArchive is to improve the quality of solu-
tions in globalArchive so as to help further approach the global
PF. The motivation and process of the ESS are described as
follows.

3) Elite Study Strategy: The nondominated solutions that
carry the elite knowledge are collected in globalArchive dur-
ing the evolutionary process, which have great potentials to
generate good solutions. Therefore, we propose an ESS to deal
with the solutions in globalArchive to help further approach the
global PF. The procedure of ESS is shown in Fig. 8. Herein, we
define two kinds of ESS to generate new solution from an elite
solution in globalArchive. The first one is small-scope ESS,
which is to randomly select a task #j,q; and a new solution is
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Procedure EliteStudyStrategy
if (sizeof(globalArchive) < ess_num)
selectedArchive = globalArchive;
else{
descending_sort(globalArchive, crowd_distance);
selectedArchive = first ess_num solutions in globalArchive;
}
for each sol € selectedArchive{
newsol = sol,;
randnum = random(0,1);
if (randnum < ess_rate){
//the small-scope ESS
indl =random(1,|T);
newsol[ind1] = random(1,|R001);
}
else{
//the large-scope ESS
ind2 = sol[random(1,|T|)];
Fnewres = @ Tandom resource of different type from r;,4,;
for each ¢, € T and ¢#’s resource is 74>
newsol[i] = newres,
}
Calc WET WEC(newsol);,
add newsol into globalArchive;
}
eliminate_dominated(globalArchive);
End procedure

Fig. 8. Procedure of ESS.

generated by randomly selecting a new resource for f,q1. The
small-scope ESS searches around an elite solution to exploit
the local area of the PF. The second one is large-scope ESS,
which is to randomly select a task’s corresponding resource
rind2, and a new solution is generated by randomly selecting
a new resource that has a different type from riyg>, and all
tasks that are on rinq» are scheduled on the new resource. The
large-scope ESS enhances the global search ability, exploring
the other area of the PF. These two ESS methods cooperatively
help further approach the global PF.

Since it is quite inefficient to apply the ESS for all solutions
in globalArchive, particularly when the globalArchive is large.
Therefore, if the size of globalArchive exceeds a parameter
ess_num, we first sort the globalArchive in descending order
according to the crowding distance [43] and select the first
ess_num solutions from globalArchive. Each selected solution
selects one of the two ESSs according to a predefined probabil-
ity ess_rate. The next step is to calculate the WET and WEC
of the new solution and add it into the globalArchive. Lastly,
the dominated solutions in globalArchive are eliminated and
a new globalArchive is formed for the next generation.

H. Flowchart of MOACS

Fig. 9 shows the flowchart of the MOACS approach. At
first, the global archive is initialized. Then two colonies named
Tcolony and Ccolony run in parallel. These two colonies have
independent pheromone and heuristic information. Moreover,
the solution construction processes of these two colonies are
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Fig. 9. Flowchart of MOACS.

independent. After the pheromone initialization for Tcolony
and Ccolony by (8) and (10), respectively, the evolution begins.
In every generation, ants construct their solutions in paral-
lel by (6) and (7). During the solution construction process,
the CHS is adopted and the pheromone local update is car-
ried out. After all ants have finished the solution construction,
the archive update process is conducted. Note that the ESS is
included in the archive update process. Then the pheromone
global update for Tcolony and Ccolony is carried out. Also
note that although Tcolony and Ccolony select their GUS
from the same global archive, their update processes are inde-
pendent within the two colonies. MOACS terminates until
reaching a maximum function evaluations, and output a set
of nondominated solutions in the global archive and their
corresponding WET and WEC.

1. Complexity Analysis

The time complexity of MOACS is related to the number
of evolutionary generations G, the colony size N, the global
archive size K, the number of tasks |T'|, and the scale of the
resource pool |[Rpool|. For each ant during the solution con-
struction in an evolutionary generation, calculating a task #;’s
heuristic information [i.e., (i, j)], according to (16) and (17),
need to scan #;’s parent tasks, so the time complexity is O(|T).
In addition, the [t (i, j)] x [n(I, j)]’3 value should be calculated
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TABLE III
FEATURES OF THE RESOURCE ON AMAZON EC2
T Processing capacity Bandwidth Lease cost
ype (MFLOPS) (bytes/second) ($/hour)
ml.small 4400 39,321,600 0.06
ml.medium 8800 85,196,800 0.12
ml.large 17600 85,196,800 0.24
ml.xlarge 35200 131,072,000 0.48
m3.xlarge 57200 131,072,000 0.50
m3.2xlarge 114400 131,072,000 1.00

for each resource with the time complexity of O(|Rpooll)
when scheduling #; according to (6) and (7). Therefore, an
ant’s solution construction for all the tasks needs the time
complexity of 0(|T|2|Rp00]|) and therefore the overall time
complexity of a colony’s solution construction in each gen-
eration is O(N |T|2|Rp001|). Note that the time complexities
of the solution construction in two colonies are the same.
Moreover, in each generation, the crowding distance based
sorting and the process of eliminating dominated solutions in
archive update have the same time complexity as O(K log K).
Also, the pheromone global update requires a sorting of the
global archive so the time complexity is also O(KlogK).
Therefore, the overall time complexity of MOACS in all the
G generations is 0(GN|T|2|Rp001| + GKlogK).

The space complexity of MOACS is measured by the
storage of pheromone, heuristic information, and the global
archive. The pheromone is deposited between each task and
each resource, which is shared by all the ants in the same
colony, so the space complexity of the pheromone in two
colonies is OQ2|T||Rpool|). The heuristic information is also
deposited between each task and each resource. However,
each ant stores its own heuristic information, so the space
complexity of the heuristic information in two colonies is
O@N|T||Rpoo1). The global archive has K solutions and each
solution is a |T|-length sequence, so the space complexity of
the global archive is O(K|T|). Therefore, the overall space
complexity of MOACS is O2|T||Rpool | +2N|T'||Rpoot | +K|T),
which can be reduced to O(NI|T||Rpoo1| + KI|T1).

IV. EXPERIMENTS AND COMPARISONS
A. Experimental Environment

The experiments are conducted on six different types of
resource on the current Amazon EC2 cloud platform. The pro-
cessing capacity of a resource is represented in million floating
point operations per second (MFLOPS) according to the num-
ber of EC2 computing units that estimated by the previous
research of Ostermann et al. [44]. The lease unit of time is
set as 1 h, the same as the Amazon EC2 cloud platform.
The detailed features of the six types of resource are listed
in Table III.

Five different types of real-world workflows, Montage,
Epigenomics, CyberShake, LIGO Inspiral Analysis, and
SIPHT, are applied in the experiments. These workflows
have different characteristics and are widely used to evalu-
ate the performance of the workflow scheduling approaches.
Fig. 10 shows the structures of these five workflow types. More
details of these workflows can be referred to [45] and [46].
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(d ()

Fig. 10. Structures of the real-world workflows used for the experiments.
(a) Montage. (b) Epigenomics. (c) CyberShake. (d) LIGO inspiral analysis.
(e) SIPHT.

B. Experimental Settings

The following experiments are divided into three parts.
We first compare MOACS with HEFT [30] about the
capacity to optimize WET. Second, we compare MOACS
with five multiobjective optimization approaches, including
ECMSMOO [47], MOHEFT [29], NSGA-II [43], EMS-
C [31], and MODE [19]. Among them, NSGA-II is a classic
EMO framework. MODE is originally designed for the
grid computing platform while the other three are recently
proposed approaches well-designed for cloud computing
platform. Third, constrained optimization model is another
common method to solve the cloud workflow scheduling
problem, with some well performed approaches based on
PSO [27] and DOGA [28] that set WET as the constraint and
WEC as optimization objective in the literature. Therefore,
we compare MOACS with these two approaches.

The parameter configurations of the compared algorithms
are all based on the suggestions in the corresponding ref-
erences. The details of the parameter setting are shown as
follows. HEFT and MOHEFT are heuristic approaches and do
not need a population while the population size of the other
compared approaches are all 50.

In ECMSMOO, inertia weight w linearly decreases from
0.9 to 0.4 with the generation increases, acceleration
coefficients is set as ¢; = ¢ = ¢3 = ¢4 = 1. In
MOHEFT, the number of tradeoff solutions is set as 50. In
NSGA-II, the simulated binary crossover operator and poly-
nomial mutation operator in continuous space search are not
suitable to solve the multiobjective cloud workflow schedul-
ing model. Therefore, the one-point crossover and random
mutation are adopted instead. The crossover rate is set as
1 and the mutation rate is set as 1/|T|, where |T| repre-
sents the number of tasks in the workflow due to their good
performance in the parameter test. In EMS-C, the crossover
rate and mutation rate are set as 1 and 1/|T|, respectively. In
PSO, the inertia weight @ = 0.5 and acceleration constants
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TABLE IV
COMPARISONS OF MOACS WITH HEFT ON WET

(WET (HEFT) / WET (HEFT) /
Workflow WET (MOACS) Workflow WET (MOACS)
— 1) x100% — 1) x100%
CyberShake 30 62.49% CyberShake 100 71.33%
CyberShake 50 42.77% CyberShake 1000 124.26%
Epigenomics 24 0.40% Epigenomics 100 0.25%
Epigenomics 46 0.22% Epigenomics 997 15.51%
Inspiral 30 0.15% Inspiral 100 49.53%
Inspiral 50 0.22% Inspiral 1000 144.46%
Montage 25 29.71% Montage 100 0.15%
Montage 50 18.64% Montage 1000 301.89%
SIPHT 30 14.74% SIPHT 100 18.73%
SIPHT 60 16.47% SIPHT 1000 36.23%

c1 = ¢y = 2.0. In DOGA, the crossover rate P. = 0.8 and the
mutation rate P, = 0.002 during the process to meet dead-
line constraint, while P, = 0.15 and P,, = 0.008 during the
process to minimize WEC.

ACOs do not need a large population that the population size
set as 10 is commonly used [33]. Therefore, the Tcolony and
Ccolony each has 5 ants in our MOACS approach. In addition,
B is 5 while go is 0.9. The parameter p in pheromone local
update and the parameter ¢ in pheromone global update are
set to 0.1. The selection rate sr during the pheromone global
update is set to 0.1. The ess_num and ess_rate during the
archive update are set to 30 and 0.2, respectively.

For fair comparison, the maximum function evaluations
(the procedure to calculate WET and WEC of a schedul-
ing scheme) is set to 60000. In order to avoid the
stochastic influence, ten independent runs are conducted
except HEFT and MOHEFT since they are not evolutionary
approaches.

C. Experimental Results

1) Comparison With Non-Metaheuristic HEFT: HEFT is
an effective single-objective non-metaheuristic approach to
optimize WET. As MOACS is a multiobjective approach, it
obtains a set of solutions with both WET and WEC in each
run. Herein, we use the solution with minimal WET in each
run and calculate their average value for comparison. Table IV
shows the comparison of MOACS with HEFT. The results are
represented by (WET(HEFT)/WET(MOACS) — 1) x 100%,
meaning the improvement percentage of MOACS than HEFT
in optimizing WET. The results show that the improvement
is slight in some small-scale workflows, such as Epigenomics
46 and Inspiral 30. However, as the workflow scale becomes
large, the improvement of MOACS becomes much significant,
particularly in the Inspiral 1000 and Montage 1000 cases. This
may be due to that HEFT is a greedy heuristic so it may easily
fall into local optima in large scale problems, while MOACS
maintains diversity well to explore the search space.

2) Comparison With ~ Multiobjective Optimization
Approaches: Since the cloud workflow scheduling problem
is a real-world application, we do not know the true PF in
advance. As a result, the popular performance metric like
inverted generational distance indicator is not applicable in
the experiments. Therefore, we adopt two other performance
metrics, hypervolume (HV) and C(A, B) [48], to evaluate the
performance of these six approaches.
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TABLE V
COMPARISONS OF MOACS WITH THE OTHER MULTIOBJECTIVE
OPTIMIZATION APPROACHES ON HYPERVOLUME [(HV (MOACS)/HV
(OTHER APPROACHES) — 1)x100%]

Workflow
CyberShake 30
CyberShake 50
CyberShake 100

CyberShake 1000
Epigenomics 24
Epigenomics 46
Epigenomics 100
Epigenomics 997

Inspiral 30

Inspiral 50

Inspiral 100
Inspiral 1000
Montage 25
Montage 50
Montage 100
Montage 1000

SIPHT 30

SIPHT 60

SIPHT 100

SIPHT 1000

ECMSMOO
28.71% 0.64%
38.38% 0.43%
42.43% 1.07%
54.33% N/A
23.38% 1.41%
46.07% 18.64%
60.30% 31.26%
87.52% N/A
26.85% 1.55%
41.74% 3.90%
26.70% 1.03%
59.68% N/A
27.26% 0.39%
32.88% 0.27%
38.65% 0.12%
85.18% N/A
47.78% 0.092%
56.86% 0.78%
64.36% —0.026%
23.49% N/A

MOHEFT NSGA-II
20.98%
26.41%
34.54%
192.58%
14.46%
11.79%
29.06%
78.33%
22.87%
31.53%
22.29%
78.97%
24.68%
26.13%
36.12%
91.83%

7.47%
14.93%
20.50%
22.67%

EMS-C
0.10%
1.05%
1.11%
1.41%

—0.023%

0.08%
0.38%
1.44%
0.20%
0.86%
0.25%
2.61%
0.23%
0.41%
0.29%
2.82%

—0.004%

0.65%
0.75%
0.69%

MODE
67.79%
67.46%
92.80%
1132.76%
53.08%
44.52%
115.96%
988.68%
62.67%
86.76%
43.05%
307.08%
57.00%
46.96%
56.68%
312.18%
49.81%
57.93%
72.78%
62.37%

HV represents the diversity and convergence by calculating
the volume among a set of solutions and a reference point.
A larger HV is preferable as it represents better quality and
distribution of the obtained solutions. We first combine the
solutions that all the approaches found in 10 runs into a set.
Then the combination of the worst objective values of WET
and WEC (the highest WET and WEC) among all these solu-
tions, is selected as the reference point. The HV of the solution
set obtained in 10 runs is calculated independently and the
average HV value among 10 runs is reported.

C(A, B) compares the dominance relationship between two
solution sets. C(A, B), calculated by (18), represents the ratio
of solutions in B that are dominated by solutions in A. The
range of C(A, B) is within [0, 1]. When C(A, B) is 0, it means
that all solutions found by B is not dominated by any solution
found by A. When C(A, B) is 1, it represents that for each
solution found by B, there are at least one solution found by A
that dominate or equal to it. All nondominated solutions found
in 10 runs are collected to calculate the C(A, B) value as

|{b € B,3a € A, a dominates or equal to b}|

CA,B) = Bl

(18)

Table V shows the comparisons of MOACS with
ECMSMOO, MOHEFT, NSGA-II, EMS-C, and MODE on
HV. The results are represented by (HV (MOACS)/HV (other
approaches) — 1) x 100%, which means the improvement
percentage of MOACS than the other five approaches. A pos-
itive number represents MOACS is better. From Table V, we
can see that the performance of MOACS is far better than
ECMSMOO, NSGA-II, and MODE. Since MOHEFT has very
high time complexity so that it cannot finish execution in an
acceptable time for large-scale workflows, we mark them as
“N/A” MOACS performs better than MOHEFT in most of
the workflows except SIPHT100 where MOHEFT is slightly
better, while in some workflows such as Epigenomics 100
and Inspiral 50, the advantage of MOACS is very obvious.
Moreover, in the large-scale workflows, MOACS performs bet-
ter distinctly, particularly in Inspiral 1000 and Montage 1000.
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Table VI shows the comparison results of C(A, B). We
bold those C(MOACS, -) higher than 90%, which means the
obtained set of MOACS dominates or equal to most of the
solutions obtained by the other approaches, and those C(-,
MOACS) less than 10%, which means that the obtained set of
the other approaches can only dominate or equal to very few
solutions obtained by MOACS. Compare with ECMSMOO,
NSGA-II, and MODE, the values of C(MOACS, -) and
C(-, MOACS) in most cases are bolded and many of them are
100% and 0, respectively, which means that the obtained set
of MOACS totally dominates those of ECMSMOO, NSGA-
II, and MODE. It is interesting that in some cases such as
CyberShake 50, the C(MOACS, EMS-C) value is smaller than
C(EMS-C, MOACS) but the HV value of MOACS is better.
That is because C(A, B) metric only shows the dominance rela-
tionship, but does not show the “intensity” of the dominance.
In detail, those solutions of EMS-C that dominate MOACS’s
just have slight improvement but in turn, those solutions of
MOACS that dominates EMS-C’s have great advantage.

In order to observe the performance intuitively, we illus-
trate the solutions found by ECMSMOO, MOHEFT, NSGA-II,
EMS-C, MODE, and MOACS. Except MOHEFT, we curve all
the solutions found in 10 runs. Fig. 11 shows some experimen-
tal results on the tested five types of real-world workflow with
different scale.

From these figures, we can see that the overall performance
of MOACS is better than the other five approaches and is sig-
nificantly superior to ECMSMOO, NSGA-II, and MODE. In
small-scale workflows such as Montage 25, MOHEFT, and
EMS-C’s performance are still close to MOACS. But with
the growth of the workflows’ scale, MOACS’s superiority
becomes more and more obvious. Particularly, in those large-
scale workflow such as CyberShake 1000, Epigenomics 997,
and Inspiral 1000, MOHEFT cannot be completed within an
acceptable time while MOACS can generate the well-diversity
solutions with lower WEC under the similar WET compare
with EMS-C. On the one hand, the new pheromone update
rule and the CHS provide good guidance during the search
process and help MOACS approach the PF gradually. On the
other hand, with the ESS that utilizes the elite knowledge in
the global archive to improve the solution quality, MOACS
can further approach the global PF. These advantages help
MOACS to generate a solution set that has better quality than
the other approaches.

Since MOACS is a stochastic approach, further statistical
tests are needed to validate its performance. Herein, the HV
values in 10 runs are adopted for statistical tests. MOHEFT
is not included in statistical tests since it is not a stochas-
tic approach. Both ANOVA and Wilcoxon rank-sum test (also
known as Mann—Whitney U test) are used in the statistical
tests. The results are shown in Table VII, where the “A” col-
umn represents the results of ANOVA and the “W” column
represents the results of Wilcoxon rank-sum test. In the A
column, if MOACS and the compared approaches are signifi-
cantly different, the result is “S,” otherwise the results is “NS.”
In the W column, if MOACS is significantly better than the
compared approaches, the result is “>"; if MOACS is sig-
nificantly worse, the result is “<.” The results show that in
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TABLE VI
COMPARISONS OF MOACS WITH THE OTHER MULTIOBJECTIVE OPTIMIZATION APPROACHES ON C(A, B) VALUE
Workflow ECMSMOO MOHEFT NSGA-IT EMS-C MODE
C(MOACS,--) C(--,MOACS) C(MOACS,--) C(--,MOACS) C(MOACS,--) C(--MOACS) C(MOACS,--) C(--MOACS) C(MOACS,--) C(--MOACS)
CyberShake 30 100.00% 0.00% 100.00% 29.43% 100.00% 1.42% 81.19% 67.73% 100.00% 0.00%
CyberShake 50 100.00% 0.00% 100.00% 36.89% 100.00% 0.00% 59.84% 83.56% 100.00% 0.00%
CyberShake 100 100.00% 0.00% 56.00% 66.26% 100.00% 0.00% 82.19% 79.75% 100.00% 0.00%
CyberShake 1000 100.00% 0.00% N/A N/A 100.00% 0.00% 84.66% 46.36% 100.00% 0.00%
Epigenomics 24 100.00% 0.00% 80.00% 20.00% 88.97% 22.11% 22.66% 100.00% 100.00% 0.00%
Epigenomics 46 100.00% 0.00% 100.00% 0.00% 91.88% 21.34% 67.49% 91.30% 100.00% 0.00%
Epigenomics 100 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 80.98% 68.12% 100.00% 0.00%
Epigenomics 997 100.00% 0.00% N/A N/A 100.00% 0.00% 95.51% 20.59% 100.00% 0.00%
Inspiral 30 100.00% 0.00% 91.30% 21.85% 100.00% 5.54% 90.33% 64.31% 100.00% 0.00%
Inspiral 50 100.00% 0.00% 96.30% 15.57% 100.00% 0.35% 98.53% 28.89% 100.00% 0.00%
Inspiral 100 100.00% 0.00% 66.67% 17.47% 100.00% 0.84% 99.34% 10.04% 100.00% 0.00%
Inspiral 1000 100.00% 0.00% N/A N/A 100.00% 0.00% 99.18% 9.40% 100.00% 0.00%
Montage 25 100.00% 0.00% 100.00% 30.39% 100.00% 4.95% 91.15% 60.42% 100.00% 0.00%
Montage 50 100.00% 0.00% 89.29% 22.14% 100.00% 0.00% 100.00% 19.47% 100.00% 0.00%
Montage 100 100.00% 0.00% 69.70% 42.76% 100.00% 3.80% 99.56% 16.28% 100.00% 0.00%
Montage 1000 100.00% 0.00% N/A N/A 100.00% 0.00% 84.82% 72.89% 100.00% 0.00%
SIPHT 30 100.00% 0.00% 75.00% 88.55% 98.25% 20.26% 67.28% 100.00% 97.83% 0.00%
SIPHT 60 100.00% 0.00% 35.29% 89.10% 100.00% 0.00% 70.11% 69.23% 100.00% 0.00%
SIPHT 100 100.00% 0.00% 54.17% 73.95% 100.00% 0.00% 87.68% 73.49% 100.00% 0.00%
SIPHT 1000 100.00% 0.00% N/A N/A 92.31% 1.63% 68.15% 74.81% 100.00% 0.00%
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Fig. 11.

Performance of ECMSMOO, MOHEFT, NSGA-II, EMS-C, MODE, and MOACS on some tested workflows. (a) Montage 25. (b) Montage 50.

(c) SIPHT 60. (d) CyberShake 100. (e) Inspiral 100. (f) CyberShake 1000. (g) Epigenomics 997. (h) Inspiral 1000.

most of the cases, MOACS is significantly different from the
compared approaches according to ANOVA, and is signifi-
cantly better than them according to Wilcoxon rank-sum test.
One notice is that in Epigenomics 24, EMS-C is significantly
better than MOACS according to Wilcoxon rank-sum test but
ANOVA shows that the performance of EMS-C and MOACS
are not significantly different.

Efficiency is also an important criterion. Table VIII shows
the comparison of MOACS with the other five approaches
on the run time. The results are represented by RunTime
(other approaches)/RunTime (MOACS). A number greater
than 1 shows that MOACS is more efficient. The larger the
number is, the more obvious of the advantage. In most of
the small-scale workflows, MOACS outperforms the other five
approaches. With its high time complexity, the efficiency of
MOHEFT drops rapidly with the increase of the workflow

scale. The SIPHT workflow has more parallelable tasks, as
we can see intuitively in Fig. 10, which results in the large
resource pool according to the solution encoding of MOACS
(detail in Section III-A). Since MOACS should maintain
pheromone and heuristic information for every resource, more
time should be spent when dealing with SIPHT workflow.
Therefore, the advantage of MOACS’s efficiency is weak-
ened in SIPHT workflow and even EMS-C has slightly better
efficiency in this case. However, MOACS’s efficiency still out-
performs EMS-C distinctly in those large-scale workflows. The
operators of ECMSMOO and NSGA-II are simple so that with
the scale of workflow grows, these two approaches can still
complete execution quickly, but the execution results of them
are quite unsatisfying according to the previous analysis.

3) Comparison With Constrained Optimization
Approaches: Table IX shows the comparison of the WEC
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TABLE IX
COMPARISONS OF WEC OF THE SOLUTIONS FOUND BY PSO, DOGA,
AND MOACS UNDER THE SAME DEADLINE CONSTRAINT [WEC (OTHER

APPROACHES APPROACHES)/WEC (MOACS)]
Workfl ECMSMOO _ NSGA-II EMS-C MODE Workflow DEADLINE PSO/MOACS DOGA/MOACS
orkflow
A W A W A W A W CyberShake 30 100 2.928 8.616
CyberShake 30 S > S > S > S > CyberShake 50 200 5.208 16.012
CyberShake 50 S > S > S > S > CyberShake 100 300 13.676 36.560
CyberShake 100 S > N > S > S > CyberShake 1000 1000 116.292 183.502
CyberShake 1000 S > S > S > S > Epigenomics 24 1000 1.745 4.069
Epigenomics 24 S > S > NS < S > Epigenomics 46 4000 1.839 4.408
Epigenomics 46 S > S > S > S > Epigenomics 100 7000 4.459 15.066
Epigenomics 100 S > S > S > S > Epigenomics 997 50000 4.388 5.646
Epigenomics 997 N > S > S > S > Inspiral 30 300 2.320 6.732
Inspiral 30 S > S > S > S > Inspiral 50 400 3.184 9.901
Inspiral 50 S > S > S > S > Inspiral 100 800 6.596 16.174
Inspiral 100 S > S > S > S > Inspiral 1000 2000 12.289 16.737
Inspiral 1000 S > S > S > S > Montage 25 40 2.543 7.233
Montage 25 S > S > S > S > Montage 50 80 5.688 18.288
Montage 50 S > S > S > S > Montage 100 100 17.204 41.744
Montage 100 S > S > S > S > Montage 1000 700 212.972 276.944
Montage 1000 S > S > S > S > SIPHT 30 400 2.930 8.098
SIPHT 30 S > S > S < S > SIPHT 60 600 7.412 17.472
SIPHT 60 S > S > S > S > SIPHT 100 1000 14.684 37.503
SIPHT 100 S > S > S > S > SIPHT 1000 3000 5.169 6.591
SIPHT 1000 S > S > S > S >
TABLE VIII

COMPARISONS OF MOACS WITH THE OTHER MULTIOBJECTIVE
OPTIMIZATION APPROACHES ON RUN TIME [RUNTIME (OTHER
APPROACHES)/RUNTIME (MOACS)]

Workflow ECMSMOO MOHEFT NSGA-II EMS-C MODE
CyberShake 30 19.142 6.658 4.325 1352 4.766
CyberShake 50 4.038 7.518 1.917 1.246 2.798
CyberShake 100 2.026 10.922 0.819 2.073 3.108

CyberShake 1000 0.526 N/A 0.556 21.713 53.740
Epigenomics 24 32.708 18.892 18.963 4.311 19.374
Epigenomics 46 31.091 31.822 9.197 6.980 12.098

Epigenomics 100 10.157 57.164 3.192 8.432 11.863

Epigenomics 997 1.798 N/A 1.446 61.688 113.953

Inspiral 30 19.218 14.714 9.599 2.953 10.045

Inspiral 50 9.986 18.738 4.317 2913 6.047

Inspiral 100 4.573 31.332 1.760 4.846 6.369
Inspiral 1000 0.976 N/A 0.906 33.674 62.195
Montage 25 15.594 7.345 6.551 1.706 6.716
Montage 50 3.365 11.885 1.517 1.058 2.174
Montage 100 1.427 16.261 0.582 1.296 2.092
Montage 1000 0.241 N/A 0.215 9.356 17.782

SIPHT 30 6.901 15.170 2.282 0.884 2.434

SIPHT 60 2.029 28.696 0.893 0.847 1.530

SIPHT 100 0.932 43.779 0.408 0.933 1.501

SIPHT 1000 0.163 N/A 0.149 6.458 12.328

of the solutions found by PSO, DOGA, and MOACS under
the same deadline constraint. For PSO and DOGA, we use
the average WEC in 10 runs for comparison. For MOACS,
we use the average WEC of those solutions that have the
minimal WEC under the deadline constraint in each run for
comparison. The value of WEC (other approaches)/WEC
(MOACS) can represent the comparison of PSO, DOGA, and
MOACS directly. A number greater than 1 represents that
MOACS’s performance is better. The larger the number is,
more obvious of the advantage. The table shows that MOACS
can find a solution with smaller WEC. With the workflow
scale grows, the superiority of MOACS is more distinct.

For constrained optimization approaches, we set a series of
deadlines, beginning with a large enough deadline, in descend-
ing order until the approaches cannot find a feasible solution.
In this way, PSO and DOGA can also generate a series of
feasible solutions. We curve the solutions found by PSO,
DOGA, and MOACS in 10 independent runs and some of
the experimental results are shown in Fig. 12.

In these figures, we can see that the performance of MOACS
is better than both PSO and DOGA. First of all, comparing
the solutions with the similar WET, MOACS can generate
solutions with lower WEC. Second, with the growing scale of
the workflow, MOACS’s advantage becomes more and more
obvious. Particularly, in the large-scale workflows such as
CyberShake 1000 and Inspiral 1000, PSO and DOGA do not
have well global search ability to deal with the large search
space, resulting in very poor performance. While the new
pheromone update rule and the CHS in MOACS maintain good
global search ability, and the ESS helps further approach the
global PE. More interesting, the solutions found by DOGA
and PSO in different runs often have different distributions,
while the solutions found by MOACS distribute more stable
along the PF. Therefore, MOACS may be more preferred due
to its stable search ability.

D. Parameter Study

In MOACS, the settings of 8, qo, p, and ¢ are the typical
scheme in ACS so we focus on the other three parameters,
ess_num, ess_rate, and sr. Note that when testing a param-
eter, the other parameters of MOACS are set according to
Section IV-B.

Fig. 13 shows the parameter study on ess_num, ess_rate,
and sr. For each figure, the x-axis are several parameter set-
tings and the y-axis are the average HV value in 10 runs
corresponding to these settings. The dashed lines mark the
selected settings. From Fig. 13(a), we can see that our selected
setting “30” for ess_num is the best among the other set-
tings. In Fig. 13(b), the setting “0” for ess_rate represents
that MOACS only employs the large-scope ESS while the set-
ting “1” represents that only the small-scope ESS is employed.
Our selected settings “0.2” has the best performance in most
of the workflows, particularly in SIPHT 100 and Inspiral
1000. In Fig. 13(c), the setting O for sr represents that the
colony greedily selects the solution with the smallest value
of its optimization objective for the pheromone global update.
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Performance of PSO, DOGA, and MOACS on some tested workflows. (a) Montage 25. (b) Montage 50. (c) SIPHT 60. (d) CyberShake 100.
(e) Inspiral 100. (f) CyberShake 1000. (g) Epigenomics 997. (h) Inspiral 1000.

WET and WEC. Two ant colonies are adopted to optimize
execution time and execution cost, respectively. MOACS well
considers the features of cloud computing since it adopts
a heterogeneous resource pool and adopts “maximal parallel
tasks” to simulate the elasticity of cloud computing, which
has high capacity to be extended to the actual cloud plat-

Hv / [ / .\_, / \'\- / form. A new pheromone update rule is designed based on

- Inspiral 501 [ = nspiral 50] | mpiraisq & set of nondominated solutions from a global archive to main-

e T e 4] .—"1 tain the diversity and guarantee the search efficiency, which
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. siPHT 100 [7 SIPHT 100 ® SIPHT1007 and the CHS help the algorithm approach the PF gradually.
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] .. ] —=—a .1 workflows from different scientific areas. The experimen-
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Fig. 13.  Parameter study on (a) ess_num, (b) ess_rate, and (c) sr.

We can see that in SIPHT 60 and SIPHT 100, our selected
setting “0.1” for sr is worse than the other settings like “0.3”
and “0.4.”” However, our selected setting still performs better
in the other workflows, particularly in Epigenomics 997.

V. CONCLUSION

In this paper, we propose a novel MOACS approach for
cloud workflow scheduling, with optimization objectives of

constrained optimization approaches (PSO and DOGA). First
of all, MOACS can generate a solution with similar WET
but lower WEC than the other approaches. Second, with
the growing scale of the workflows, MOACS’s advantage
is more distinct. Third, MOACS has better global search
ability, particularly when dealing with the large-scale work-
flows, as it can generate more nondominated solutions that
are also widely distributed in the solution space. In the
future work, other cloud environments or even multiclouds
environments should be adopted to test the performance
of MOACS.
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