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Abstract—This paper considers the problem of maximizing the
number of task allocations in a distributed multirobot system
under strict time constraints, where other optimization objec-
tives need also be considered. It builds upon existing distributed
task allocation algorithms, extending them with a novel method
for maximizing the number of task assignments. The fundamen-
tal idea is that a task assignment to a robot has a high cost if its
reassignment to another robot creates a feasible time slot for unal-
located tasks. Multiple reassignments among networked robots
may be required to create a feasible time slot and an upper limit
to this number of reassignments can be adjusted according to
performance requirements. A simulated rescue scenario with task
deadlines and fuel limits is used to demonstrate the performance
of the proposed method compared with existing methods, the
consensus-based bundle algorithm and the performance impact
(PI) algorithm. Starting from existing (PI-generated) solutions,
results show up to a 20% increase in task allocations using the
proposed method.

Index Terms—Distributed task-allocation, multiagent systems,
vehicle routing.

I. INTRODUCTION

MULTIROBOT systems are increasingly employed to
complete jobs and missions in various fields includ-

ing search and rescue [1]–[4], space and underwater explo-
ration [5], support in healthcare facilities [6], surveillance
and target tracking [7], [8], product manufacturing [9], [10],
pick-up and delivery, and logistics. A team of homogeneous
or heterogeneous specialized robots can cover more ground
and be more resilient to failures than a single all-purpose
robot [11], [12].
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One challenge in using teams of robots is to co-ordinate
them to perform tasks while optimizing one [13], [14] or more
objectives [15]–[17]. Considering a search and rescue scenario,
in which survivors need to be assisted before specified dead-
lines, the two main objectives are: 1) to maximize the number
of rescued survivors and 2) to minimise the average waiting
time before their rescue [18]. Similarly, tasks in an assembly
line or manufacturing process require completion with dif-
ferent constraints and optimization objectives often including
completion of all tasks in the shortest possible time [9]. As
opposed to a factory environment, search and rescue missions
often deal with very dynamic conditions, unstructured envi-
ronments, and limited resources. Increasing the number of sur-
vivors and reducing waiting time are top priorities. The novel
algorithm presented in this paper applies particularly to search
and rescue scenarios, but applications extend to other scenarios
in which similar conditions and constraints are present.

The specific problem investigated in this paper is that of
maximizing task assignments in time constrained scenarios.
Robots, or autonomous vehicles, can only perform one task
at a time, each task requires only one vehicle to perform it
and each vehicle may be assigned multiple tasks that they
execute based on a schedule. Using the Gerkey and Matarić
taxonomy [13], [19], this is known as the single-task (ST),
single robot (SR), and time-extended assignment (TA) prob-
lem. Due to the complexity of the problem, existing heuristic
task allocation methods are likely to generate a local optima
solution and lack the flexibility to escape from it. Following
the principle that tasks are assigned to minimize costs, we
introduce a method of measuring the cost of a task assign-
ment, called performance impact (PI)-MaxAss, that effectively
shifts task assignments among vehicles to create feasible time
slots for unassigned tasks where none would exist otherwise.
The maximum number of reassignments can be adjusted to
match performance requirements. With this method, existing
task assignment solutions are iteratively improved without the
need to repeat the whole task allocation procedure. The proce-
dure follows a two-phase task assignment strategy that starts
from a solution generated by an existing distributed task allo-
cation algorithm, PI [20], that minimizes average waiting time.
The proposed method PI-MaxAss is used in the second stage
for maximizing task allocations.

This paper introduces PI-MaxAss, an extension of [21]
with further configuration settings and new findings using
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previously untested simulation scenarios. A new convergence
guarantee method is proposed, as well as a complexity analy-
sis. In line with the updating of terminology from [22] to [20]
that more precisely reflects the contribution of the PI algo-
rithm, the taxonomy used in [21] has also been updated for
this paper.

The remainder of this paper is organized as follows. The
task assignment problem and current approaches are presented
in Section II. In Section III the concept of PI-MaxAss is
introduced. Simulation results are presented in Section IV fol-
lowed by a discussion in Section V and concluding remarks
in Section VI.

II. PROBLEM AND CURRENT APPROACHES

A. Related Work

The search and rescue scenarios considered in this paper
have similarities with the traveling salesman problem (TSP),
a well-known NP-hard combinatorial optimization problem
in graph theory [23]. The objectives considered in this paper
are comparable to the constraints of two variants of the
TSP: 1) the team orienteering problem with time windows
(TOPTW) [24], also known as the multiple tour maximum
collection problem and 2) the K-traveling repairmen problem
(K-TRP) [25], also known as the minimum latency problem.
The TOPTW considers multiple time-limited paths with the
objective to maximize the total collected score over a set of
vertices. Each vertex is assigned a time window and is to
be visited once at most. The K-TRP tries to determine a set
of tours for multiple repairmen to visit a set of customers
with the objective to minimize the average time a customer
must wait before a repairman arrives. These objectives
and constraints are applicable to a variety of scenarios
such as those found in healthcare, target tracking, pick-up
and delivery, logistics, dynamic ride sharing [26], cleaning
chemical spills, patrolling, checking for structural integrity
of buildings [4], and any scenario that requires many urgent
jobs to be completed in a minimum time by multiple agents.

Various algorithms have explored strategies to solve mul-
tiobjective TSPs or vehicle routing problems, see [16] for a
survey. Paquete and Stützle [15] tackled a bi-objective TSP
with a two-phase local search procedure. The first phase gen-
erates a solution that optimizes only one objective. The second
phase begins the search from the solution generated in the
first phase to optimize the second objective. The advantages
to using this approach highlighted by [15] are to exploit the
strong performance of single objective local search algorithms
by chaining them together, and to maintain a flexible modular-
ity and ease of understanding to the procedure that allows for
modifications and enhancements. Heuristic methods to solve
combinational optimization problems are prone to finding a
local optimum [27]; however, a second search can perturb the
first phase solution out of local optima to reach an enhanced
solution closer to a nondominated global optimum. Algorithms
previously developed to solve variants of the TSP problem,
such as [15], [16], and [28]–[30], rely on computing a solution
with a centralized approach.

Centralized task allocation systems, where a central server
gathers information from each vehicle in the team and then
computes an allocation for each vehicle, can optimize a cho-
sen global objective based on a complete set of information
from all vehicles. The drawbacks are the resulting single point
of failure, and the requirement that each vehicle must have a
communication link with the central server. Thus, the possi-
ble mission range is limited, and a heavy communication and
computation burden is put on the central server. Distributed
methods for task allocation overcome these limitations. In such
cases, the task allocation algorithm runs on each vehicle simul-
taneously and the solution is reached through the interaction
and exchange of information among them [11], [12], [31]. One
of the drawbacks of distributed systems is that each vehicle
has a different situational awareness, and therefore, consen-
sus procedures are required for the team of vehicles to reach
agreement.

ST-SR-TA is a combinatorial optimization problem known
to be strongly NP-hard [13], [19]. A subcategory of this prob-
lem, for which the cost of a task assignment depends on
the other tasks that agent is performing, is called in-schedule
dependencies (ID [ST-SR-TA]). Variants of the K-TSP can
be modeled under this class of problem [19]. Due to the
high complexity of the problem, as the number of tasks and
vehicles increases, it is usually too computationally expen-
sive to consider each combination of tasks for each vehicle in
order to find the optimal solution. The computational limita-
tions are particularly relevant in search and rescue scenarios
in which time and resources could be limited. Therefore,
heuristic methods are employed to speed up the process of
task allocation while maintaining an efficient and scalable
algorithm [11], [28]–[30], [32].

Market-based multirobot (MR) co-ordination approaches
[11] have been applied successfully to the ST-SR-TA problem
to find suboptimal solutions efficiently and in a distributed
fashion. With this approach, teams of self-interested agents
iteratively trade tasks to maximize their own profit or mini-
mize their costs. A cost is associated with an agent visiting a
task within its path and is often measured as the total estimated
use of individual resources to reach that task, such as fuel con-
sumption, distance traveled, or time to reach the target. The
local cost of an agent’s path is equal to the sum of costs of
each task the agent is assigned to [33], and the global cost of
an agent team is the sum of costs of all task assignments in the
team. An auction is a commonly used market-based approach
to assign tasks [34]. The process consists of several rounds
of bidding in which agents place bids on each task where the
value of a bid for a task is equal to the agent’s estimated cost
of visiting that task. The agent wins and is allocated those
tasks for which it has placed a bid lower than any other agent.
The effect of using this market-based approach is that local
costs and subsequently global costs are minimized [11].

Zheng and Koenig [35] developed a multirobot, distributed
reallocation mechanism called K-swaps that describes mul-
tiple task exchanges among multiple agents at a time, and
showed empirically that the method can optimize an existing
task allocation solution by reducing team costs. Extending the
idea of K-swaps, [36]–[38] introduced a decentralized task
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assignment algorithm considering instantaneous assignment,
such that each robot is assigned exactly one task, the SR-
ST-IA problem. The algorithm requires the differentiation of
two roles, organizer and member robots, and can be used to
optimize existing suboptimal task assignments.

B. Formal Problem Description

Consider a search and rescue scenario with n heterogeneous
autonomous vehicles and m survivors. In this scenario, attend-
ing to a survivor is synonymous with executing a task. The
goal is to provide targeted emergency support to the survivors
as quickly as possible, e.g., some survivors may require food
supplies, while others may require medical provisions. Thus
in some scenarios different types of vehicles are necessary to
complete different tasks. The distributed vehicles in a network
rely on local communication to co-ordinate a rescue plan over
multiple iterations.

In the particular scenario considered, each survivor must be
visited by one vehicle in order to be deemed rescued. Each
vehicle can be assigned multiple targets and will sequentially
visit those targets, while not required to return to its initial
location. The main challenge is to reach an optimal allocation
where allocation numbers are maximized and waiting time
minimized, while respecting time constraints.

To formulate the problem mathematically, a set of n hetero-
geneous autonomous vehicles is defined by V = [v1, . . . , vn],
and a set of m tasks waiting to be completed is defined by
T = [t1, . . . , tm]. A list of key symbols used hereafter is pro-
vided in Table I. The ordered task allocation of the ith vehicle
vi is stored in ai, which can contain a variable number of tasks
depending on how many tasks are assigned to vi. Each task
is to be assigned to one vehicle only, or left unassigned when
time constraints cannot be satisfied.

Different task types can be executed by heterogeneous vehi-
cles with the right capabilities. Thus, each task will be assigned
only to vehicles functionally capable of performing them.

A latest start time sk is defined for each task tk after which
it is too late for the task to be executed successfully; it is
therefore necessary to determine whether a vehicle can arrive
at the location of a task tk before the latest start time sk. The
objective of minimizing average waiting time measures the
cost of a task assignment as the time it takes to start servicing
the task from the start of the vehicle’s schedule, i.e., the total
time the survivor must wait before being attended to. The time
cost of a task tk in ai, defined as ci,k(ai) in [22], is the pre-
dicted time taken by the vehicle vi to arrive at the location of
the task tk. This time includes the duration of earlier tasks in
ai and travel time to and from those earlier tasks, but does not
include the duration of the execution of tk. For this particu-
lar scenario, the duration of a task is dependent on the task
type [22]. Vehicles are additionally assumed to have limited
fuel capacity that restricts the time that they can be active for.
All tasks must be started before the vehicle reaches its fuel
capacity. The latest time at which vi can arrive at a task before
reaching its fuel capacity is defined as fi. The start time of the
kth task must therefore also be no later than fi such that

ci,k(ai) ≤ min(sk, fi). (1)

TABLE I
SYMBOL DEFINITIONS

In [20] and [22], the global objective J is to minimize the
average start time of all tasks, such that

J = min

⎧
⎨

⎩

1

m

n∑

i=1

|ai|∑

k=1

ci,k(ai)

⎫
⎬

⎭
(2)

where |ai| is the number of tasks assigned to vi.
In [20] and [22], unassigned tasks are given the highest
cost and are therefore prioritized for inclusion following the
inclusion criteria described later in Section II-E.

The main contribution of this paper is a novel way to mea-
sure the PI of a task assignment such that an assignment’s
cost is correlated to the PI of tasks that it can be replaced
with were it to be reassigned to another vehicle. The objective
is to maximize the number of allocated tasks. Maximizing task
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allocations is defined as

J� = max

{
n∑

i=1

|ai|
}

. (3)

The new version of PI, which maximizes the number of
assignments, is referred to as PI-MaxAss, and is the main
contribution of this paper. The PI presented in [22] that min-
imizes average time is referred to as PI-MinAvg in order to
distinguish the two.

The motivation for PI-MaxAss is to prioritize assigning
the maximum number of tasks in scenarios in which time
constraints severely restrict the number of tasks that can be
assigned. For scenarios in which all tasks can be assigned, it
is recommended to use PI-MinAvg to optimize average waiting
time.

C. CBBA, Extensions, and Variations

The consensus-based bundle algorithm (CBBA) [39] is a
robust and fully distributed multiassignment task allocation
algorithm that employs a greedy auction strategy to enable
agents to build a bundle of tasks sequentially. This task build-
ing phase is followed by a consensus procedure phase that
resolves conflicting assignments. These two stages alternate
until consensus has been reached by the team on all task
assignments. For an analysis of CBBA’s scalability, see [39].
Of the various extensions and modifications, [40] and [41]
address MR task assignments and heterogeneous networks
for the ST-MR-TA problem in which multiple robots may be
required to service one task [13]. Choi et al. [40] addressed
the case in which a task requires only one single agent,
one or two agents, and exactly two agents of different type.
Hunt et al. [41] proposed the consensus-based grouping algo-
rithm that addresses the problem of multiagent multitask
assignment with group and equipment-based dependencies,
and which can accommodate any number of robots.

Ponda et al. [42] increased the overall efficiency of a
task assignment by incorporating time windows of validity
and fuel costs as part of the scoring scheme. The scoring
scheme rewards agents for arriving at the optimal time for each
task and for minimizing fuel consumption. Ponda et al. [42]
also addressed real-time replanning for broken communication
links, solving the problem of conflicting assignments when
unconnected sub networks each have an agent assigned to the
same task.

The consensus phase of CBBA requires synchronized
communication between all agents. In a real-time dynamic
environment, co-ordinating a large number of agents to com-
municate in sync may overburden the network and require
artificially delaying the broadcast of new messages until all
earlier messages have been received by the network of agents.
Johnson et al. [43] extended CBBA with an asynchronous
communication protocol to permit the agents to run the con-
sensus phase of the algorithm on their own schedule. The
asynchronous communication protocol also uses less band-
width than CBBA. Ponda et al. [44] introduced CBBA with
Relays algorithm that improves the team of agents’ range and

ensures network connectivity in a dynamic environment by
utilizing agents as communication relays.

Di Paola et al. [45], [46] proposed the heterogeneous
robots consensus-based allocation (HRCA) algorithm that
deals with multiassignments in heterogeneous networked-
teams. The algorithm consists of two outer stages. Stage 1
iterates two inner phases that closely resemble the two phases
of CBBA. As opposed to CBBA, in Stage 1 of HRCA the
maximum task bundle size is ignored. Stage 2 is performed
only if there exist bundles exceeding the maximum limit. In
this case, iterative task elimination based on least penalty
is performed to resize the bundle. Binetti et al. [7], [47]
developed the decentralized assignment algorithm based on
CBBA and HRCA to solve the task allocation problem for
assigning critical tasks for heterogeneous agents with limited
capacity.

Cui et al. [48] introduced a game theory approach for
task allocation. As with CBBA, the process of task alloca-
tion is split into two phases. A contract net protocol is used
for the initial task allocation and a game theory approach is
then used to reallocate the tasks to satisfy Pareto optimality.
Smith et al. [49] extended CBBA to develop the cluster-formed
CBBA to reduce the communication necessary for reaching
consensus on task allocation. The communication reduction
has a tradeoff of a drop in optimality of task allocation as
complexity increases.

D. Performance Impact Algorithm

Whitbrook et al. [20] and Zhao et al. [22] proposed a concept
called PI as an extension of CBBA. This method introduces
PI, a value used by vehicles to prioritize task assignments.
With PI, unlike CBBA, tasks included into a vehicle’s task list
can push back the execution times of later tasks in that same
list, provided that all time constraints are satisfied. Likewise
after a task is removed from a task list, the execution times
of later tasks in the list may be shifted forward. With the PI
algorithm, a vehicle does not release a task until it is reassigned
elsewhere at a lower cost, i.e., once a task is assigned it does
not become unassigned. PI considers not only the cost of a task
assignment but also the impact of that task assignment on the
cost of other assignments in the vehicle’s task list. The authors
demonstrate the effectiveness of PI through a simulated search
and rescue scenario with a global objective to minimize the
average start times of tasks with deadlines. The PI algorithm
was shown empirically to solve time-critical task allocation
problems that CBBA could not, and was shown to find a
lower average start time compared with CBBA. Despite the
improved performance, the PI algorithm still fails to solve
some problems that are solvable due to converging to locally
optimal but globally suboptimal solutions [20].

The PI algorithm is a distributed task allocation algorithm
that runs simultaneously on each vehicle. Using the same two-
phase architecture as CBBA, the PI algorithm iterates over a
task inclusion phase and a consensus and conflict resolution
phase. During the first phase vehicles locally and iteratively
build themselves a task bundle; during the second phase vehi-
cles share their assignment lists with neighboring vehicles
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Algorithm 1 Task Allocation Outer-Loop Iterative Procedure
for CBBA and PI Running on Each Vehicle

1: Initialise Timer T ← 1
2: converged← false
3: while converged is false do
4: Task Inclusion Phase
5: Communication and Conflict Resolution Phase
6: converged← Check Convergence.
7: T ← T + 1
8: end while

and resolve conflicting assignments. Both phases repeatedly
alternate until a global conflict-free task allocation is agreed
upon by all vehicles. These main steps in an iteration of the
algorithm are expressed with pseudocode in Algorithm 1.

The PI algorithm measures the local impact of a task
assignment to the total cost of a vehicle’s task list with the
removal performance impact (RPI) and the inclusion per-
formance impact (IPI) of a task assignment. The IPIs are
computed during the task inclusion phase and determine which
task to include next into a task list. The RPIs are computed
at the end of the task inclusion phase and are communicated
to networked vehicles during the communication and conflict
resolution phase. RPIs determine which vehicle keeps a task
in case of conflict.

E. PI Task Inclusion Phase

The IPI of a task tq in ai, as defined for PI-MinAvg, is
measured as the time cost of tq in ai plus the sum of increase
in time costs of other tasks in ai that have been assigned
previously. The increase in time costs occurs if later tasks
need to be shifted to create enough time to service tq. If no
tasks have been assigned previously, the IPI of tq in ai is equal
to its time cost, i.e., the time for vi to reach tq. This is because
the sum of increase in time costs of other tasks in ai is nec-
essarily equal to 0. Let ai ⊕l tq be the insertion of task tq at
position l in ai. The IPI of tq in ai is computed as

w⊕q
(
ai, tq

) =
|ai|+1
min
l=1

{
w�q,l

(
ai, tq

)}
(4)

where

w�q,l

(
ai, tq

) =
|ai|+1∑

z=l

ci,z
(
ai ⊕l tq

)−
|ai|∑

z=l

ci,z(ai). (5)

Equation (5) computes the IPI of tq at each position l in ai,
where ci,z(ai) denotes the time cost of the task at position z in
vi’s task list. Equation (4) finds the smallest IPI and records
it as tq’s IPI in ai. A list to store the IPIs of each task is kept
on each vehicle and is defined as γ⊕i = [w⊕1 , . . . , w⊕m ] for
vehicle vi.

During this task inclusion phase, vehicles select tasks to
include into their task lists until no more tasks can be
added. This repeating process is depicted on lines 1–21 in
Algorithm 2. Before including a task, the algorithm computes
the IPIs of all candidate tasks tq according to (4) and (5),

Algorithm 2 PI Task Inclusion Phase
1: while task list not full do
2: w⊕q ← highest permissible cost, w⊕q ∈ γ⊕i
3: for each task q do
4: if task q is a candidate then
5: for each insertion position l in task list do
6: if ai ⊕l tq is feasible then
7: Compute w�q,l according to (5)
8: end if
9: end for

10: Compute w⊕q and position l according to (4)
11: end if
12: end for
13: Compute g from (6)
14: if g > 0 then
15: Insert task q yielding g in position l of task list
16: Update vehicle list βq = i
17: Update time costs of task list
18: else
19: break
20: end if
21: end while
22: Compute γ i (only RPIs in task list will be affected)

where candidate tasks are those compatible with vi’s capabili-
ties and not already in ai. The computation of IPIs is depicted
on lines 3–12 in Algorithm 2. When there are already tasks in
ai that have been assigned previously it is necessary to deter-
mine which position in the task list yields the most optimal
IPI, i.e., whether it is most optimal to include tq at the start of
ai, at the end, or in a position between tasks. Thus the IPI of
tq is computed in each position l (lines 5–9) and the position
l in which the IPI is lowest is the optimal position (line 10).

After the IPIs of all candidate tasks have been computed, vi

selects for inclusion the task whose IPI can improve upon that
task’s current RPI the most. At this stage candidate tasks’ RPIs
will either have their initial value if unassigned, or an updated
value received during the communication and conflict resolu-
tion phase. RPIs for all tasks are initialized to their highest
permissible cost such that RPIs of tasks must be lower than
this value once they are assigned. An IPI of tq in ai lower
than tq’s RPI in another vehicle’s task list aj indicates that
the global cost can be reduced if tq is reallocated to vi. The
RPI of a task tq is referred to formally as w�q and each vehi-
cle stores the vector γ i = [w�1 , . . . , w�m ]. A task tq assigned
to vj with an RPI greater than the IPI of tq in ai is writ-
ten formally as w�q (aj, tq) > w⊕q (ai, tq). Multiple IPIs may
improve on the current RPIs, as such, vi selects for inclusion
the task that reduces the global cost most. The maximum dif-
ference between the RPIs of all tasks and the IPIs of all tasks
is computed as

g = m
max
q=1

{
γ i,q − γ⊕i,q

}
. (6)

Line 13 in Algorithm 2 computes g according to (6). If g >

0 (line 14), the task corresponding to g is included into the
vehicle’s ordered task list, leading to the maximum reduction
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to the global cost. If g � 0, IPIs of all tasks are greater or
equal to the current RPIs, meaning that the current assignments
cannot be improved upon, or that time constraints of candidate
tasks cannot be met. In this case the task inclusion process
ends (line 19).

RPIs are updated at the end of the task inclusion phase
(line 22). While RPIs are constant for unassigned tasks, once
assigned, the RPI is measured as tk’s time cost in ai plus the
sum of the changes in time cost of remaining tasks in ai before
and after the removal of tk. By removing tk from ai, vi may
be able to execute its remaining task assignments earlier. The
time costs of tasks earlier in the task list than tk are not affected
by the removal of tk. The RPI of a task tk in ai is formally
written as:

w�k (ai, tk) =
|ai|∑

z=b

ci,z(ai)−
|ai|∑

z=b+1

ci,z(ai � tk) (7)

where b is the position of task tk in vi’s task list, ci,z(ai)

denotes the time cost of the task at position z in vi’s task
list, and ai � tk denotes ai with tk removed. When a global
consensus is reached, all vehicles have an identical copy of γ .

F. PI Communication and Conflict Resolution Phase

Once the task inclusion phase is complete, the RPI list and
an m-sized vehicle ID list that keeps track of which vehicle is
assigned to which task, are broadcast to neighboring vehicles.
The vehicle ID list is necessary for consensus and is defined
as β i = [β1, . . . , βm]. Neighboring vehicles are those where a
communication link exists between them based on a network
topology. This topology may be dynamic and depend on, e.g.,
communication range and physical distance between two local
vehicles. The vehicles communicate once per algorithmic iter-
ation and this paper does not consider a communication cost.
As two or more vehicles may be assigned the same task, the
consensus procedure introduced in [39] is used to resolve these
conflicting assignments. A lower RPI indicates a more opti-
mal assignment, therefore vehicles with a higher RPI for a
conflicting assignment release the task. RPIs and associated
vehicle IDs are updated during consensus.

The task inclusion and conflict resolution phases repeat until
no inclusions or removals can be made. At this point, the
system is deemed to have converged and the task allocation
procedure ends.

III. PERFORMANCE IMPACT FOR MAXIMIZING

TASK ASSIGNMENTS

Simulated experiments have shown that the PI algorithm
both allocates more tasks and optimizes average waiting time
better than CBBA in time critical scenarios with a low task-
to-vehicle ratio [20], [22]. However, preliminary experiments
showed that when there is a higher ratio of tasks to vehicles,
PI can fail to allocate all tasks even though it is possible to do
so. Due in part to their scoring strategies, the baseline CBBA
and PI do not reassign tasks when this is necessary in order
to assign additional tasks. In the search and rescue scenario
the safety and rescue of survivors is a high priority; a poorer

(a)

(b)

Fig. 1. In this scenario PI-MinAvg is unable to assign all tasks. PI-MaxAss
assigns all tasks. Dotted lines connecting vehicles to tasks indicate examples
of IPIs computed during the task inclusion phase. Solid lines indicate tasks
assigned after reaching consensus. (a) Each task assignment is labeled with its
PI-MinAvg IPI or RPI. With PI-MinAvg t1 is assigned to v1, t2 is assigned to
v2, and t3 is left unassigned. v2 may also include t1 if v2 has not yet received
v1’s RPI list. In this case v2 releases t1 during the conflict resolution phase
due to a higher RPI than v1. (b) PI-MaxAss reassigns tasks starting from the
PI-MinAvg solution and creates a time slot for t3. Each task assignment is
labeled with its IPI and RPI for maximizing the number of task assignments.

quality of solution results in fewer survivors being rescued
than is possible with the available resources.

The new version of PI, that maximizes the number of assign-
ments is referred to as PI-MaxAss, and is the main contribution
of this paper. An early version of PI-MaxAss was presented
in [21] and is extended here to include better cost scoring,
convergence guarantee, and extended simulations including
scenarios with battery limits only, and scenarios with task
deadlines and battery limits.

Starting from a suboptimal assignment in which additional
tasks cannot be directly included without violating time con-
straints, the extension PI-MaxAss presented in this paper is
able to reassign tasks to increase the total number of allocated
tasks simply through a change in the computation of IPIs and
RPIs. The idea introduced in this paper is to attribute a high
cost (RPI) to an assigned task when the release of this task
can permit an additional task to be inserted within the free
time created. An assignment is considered optimal and with-
out cost if the release of any task does not permit another task
to be assigned within the free time created. Likewise, a task’s
IPI is set to be without cost if it can be included into a task
list and satisfy time constraints. During the conflict resolution
phase, conflicts resolve in favor of vehicles offering the lowest
RPI. Vehicles that can create a time slot for candidate tasks
through the release of an assigned task therefore release that
task during a conflict. The result is that tasks are reassigned
and feasible time slots are created for unassigned tasks.

To illustrate the limitation of previous methods and the pro-
posed solution, consider a simple scenario shown in Fig. 1(a)
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(a)

(b)

Fig. 2. Task schedules for v1 and v2. A travel time is assumed between the
vehicles’ initial locations and between different task locations, based on the
distance and speed that they can travel. A fixed task duration is also assumed.
A task must be started before the deadline in order to rescue that survivor,
but may end after the deadline. v1 is the only vehicle close enough to reach
t3 in time. (a) t1 and t2 are optimized to minimize waiting time but t3 is
unallocated. v1 cannot feasibly include t3 into its schedule given t1. (b) If t1
is reassigned from v1 to v2, this creates the time slot for v1 to include the
unallocated task t3.

and the associated schedule on a timeline in Fig. 2(a). With the
PI algorithm, the vehicles include tasks into their lists start-
ing with the lowest IPI. With PI-MinAvg, v1 first includes t1
and v2 first includes t2 into their task lists. Once included,
t1 cannot be released from v1 unless v2 includes t1 with a
lower RPI. Likewise, t2 cannot be released from v2 unless v1
includes t2 with a lower RPI. For t3 to be serviced before
its deadline, v1 must go to t3 directly. However, v1 is inca-
pable of servicing both t1 and t3 and meet both of their time
constraints. Task t1 does not get reassigned to v2 because
the RPI of t1 is lower in v1’s task list than in v2’s task list.
Therefore t3 does not get assigned. The suboptimal task allo-
cation is due to the minimization of waiting time performed
by PI-MinAvg. The novelty in PI-MaxAss is that the cost
of t1 in v1’s task list is higher than in v2’s task list, caus-
ing t1 to be reassigned to v2. This creates a time slot in
v1’s schedule for t3. Therefore, PI-MaxAss achieves the opti-
mal allocation illustrated in Figs. 1(b) and 2(b). Although
the waiting time for t1 and t2 has increased in Fig. 2(b),
this reassignment has enabled an additional task to be
assigned.

Algorithm 3 Computing RPI-MaxAsses for Tasks in vi’s
Task List

1: Set RPI of tasks in ai to 0: γi,k ← 0, tk ∈ ai

2: Identify Candidate Tasks: ψ̄ i
3: for each task k in ai do
4: a�k

i = ai � tk
5: Update times ci,z(a

�k
i ) for tasks after tk

6: for each task q in ψ̄ i do
7: if γi,q − r > γi,k then
8: for each position l in a�k

i do
9: if a�k

i ⊕l tq is feasible then
10: γi,k = γi,q − r
11: break
12: end if
13: end for
14: end if
15: end for
16: end for

A. Formal Description

With PI-MaxAss, unallocated tasks are set initially to have
a fixed highest RPI-MaxAss, a constant defined as U, such
that if tq is unassigned then w�q = U. The RPIs of assigned
tasks tk are initially set to 0, such that w�k = 0.

The steps of PI-MaxAss follow the two phases depicted
in Algorithm 1. During the task inclusion phase shown in
Algorithm 2, as with PI-MinAvg, the PI-MaxAss candidate
tasks for inclusion into ai are those compatible with vi’s capa-
bilities and not already in ai, and with an RPI-MaxAss greater
than 0. The candidate tasks for inclusion into ai are formally
defined as

ψ i =
[
t1, . . . , tζ

]
, tq /∈ ai, 0 < w�q . (8)

The IPI-MaxAss of tq in ai is formally defined as

w⊕�
q

(
ai, tq

) = 0, ∃l ∀tz ∈
{
ai ⊕l tq

}

: ci,z
(
ai ⊕l tq

) ≤ min(sz, fi), tq ∈ ψ i. (9)

In other words, the IPI-MaxAss of the candidate task tq is
set to 0 if there exists a position l in ai where the task tq
is inserted and all time constraints are met. On line 10 in
Algorithm 2, IPI-MaxAss is recorded in place of IPI-MinAvg
such that w⊕�

q = 0 if the condition on line 6 returns true for
at least one position l. The optimal position l is computed as
it is for IPI-MinAvg, according to (4) and (5).

Lines 13–21 in Algorithm 2 remain the same for PI-
MaxAss. As the RPI-MaxAss of assigned tasks were initialized
to 0, only unassigned tasks are candidates for inclusion in the
first round of the task inclusion phase. RPI-MaxAss is com-
puted on line 22 in the place of RPI-MinAvg. The steps for
computing RPI-MaxAss are shown in Algorithm 3.

Candidate tasks in the computation of RPI-MaxAss fol-
low the same constraints as the candidates in (8) with the
added constraint that the candidate task’s RPI-MaxAss is
greater than δ. This constraint is used to limit the number of
reassignments permissible to allocate an additional task (see
Section III-B). Candidate tasks used in the computation of
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RPI-MaxAss for a task tk are formally defined as

ψ̄ i =
[
t1, . . . , tζ

]
, tq /∈ ai, 0 < δ < γ i,q. (10)

The identification of candidate tasks occurs on line 2 in
Algorithm 3. To compute the RPI-MaxAss of a task tk in ai,
first, a temporary task list a�k

i is created that is equivalent to
ai with tk removed and is formally defined as

a�k
i = ai � tk, tk ∈ ai. (11)

The creation of a�k
i occurs on line 4 in Algorithm 3. Next,

a candidate task tq is inserted into each position l in a�k
i to

determine if there exists a position l in a�k
i in which tq is

inserted and all time constraints are met. If such a position l
exists then tk can feasibly be replaced by tq in ai and the RPI-
MaxAss of tk is computed as the RPI-MaxAss of tq reduced
by r. This computation is repeated for each task tq in ψ̄ i. The
list of tasks �i,k that can replace tk in ai while respecting time
constraints is formally defined as

�i,k =
{

tq ∈ ψ̄ i | ∃l ∀tz ∈
{

a�k
i ⊕l tq

}

:
(

ci,z

(
a�k

i ⊕l tq
)
≤ min(sz, fi)

)}
. (12)

If a task tk in ai can be replaced by two or more candidate
tasks tq with different RPI-MaxAsses, the highest RPI-MaxAss
is recorded. The RPI-MaxAss of a task is formally defined as

w��
k (ai, tk) = |

�i,k|
max
q=1

{
w��

q − r
}
, tq ∈ �i,k, r ∈ R+. (13)

The condition on line 7 in Algorithm 3 ensures that the
feasibility of inserting tq into a�k

i is not computed if the result-
ing RPI-MaxAss of tk is not higher than its current value.
This condition reduces unnecessary computation and satisfies
finding the maximum RPI-MaxAss according to (13). The con-
dition on line 9 checks the feasibility of inserting tq in position
l in a�k

i so that the computation of RPI-MaxAss on line 10 is
performed only with candidate tasks that satisfy (12).

Fig. 3 illustrates how the computation of a decreasing RPI-
MaxAss allows for multiple reassignments to create a time
slot for an unassigned task, and signposts the path with the
fewest reassignments. Fewer reassignments minimizes the time
to reach consensus and better maintains the original solution’s
optimization for minimizing average waiting time.

B. Swap Distance

In a time critical scenario such as search and rescue, it
may be necessary to limit the time it takes for the dis-
tributed system to converge to a task allocation. The time to
converge partly depends on the number of iterations until con-
sensus. Depending on the network topology, propagating new
assignments across the network may require multiple itera-
tions affecting the total time to consensus. Therefore, with
PI-MaxAss, limiting the number of reassignments permissible
to assign an unassigned task is required. A maximum number
of reassignments, expressed as “Swap Distance” SD is defined.
SD is a new parameter, not present in CBBA or PI-MinAvg,
introduced in PI-MaxAss to limit the maximum number of
reassignments. As defined by (10), a candidate task in ψ̄ i must

Fig. 3. RPI-MaxAss minimizes the number of changes to existing task
assignments to create a time slot for an unallocated task. In this scenario
it is assumed that v3 is the only vehicle near enough to t4 to service it in
time. t4 is unallocated and takes RPI-MaxAss = U = 100. r is set as 10.
t3 can be replaced by t4 according to (12) therefore t3’s RPI-MaxAss is
100− 10 = 90 according to (13). t2 can be replaced by t3 therefore t2’s RPI-
MaxAss is 90− 10 = 80. During the task inclusion phase, v1 can include t3
or t2 (without removing t1) therefore t3 and t2’s IPI-MaxAss are 0 according
to (9). Given (6), v1 selects t3 for inclusion as t3 yields the greatest difference
between RPI and IPI. During the communication and conflict resolution phase,
v3 releases t3 due to having a higher RPI-MaxAss for t3 than v1. During the
task inclusion phase, v3 includes t4. The decreasing RPI-MaxAss ensures that
the minimal number of reassignments is selected when different options are
available for the inclusion of an unassigned task.

have an RPI-MaxAss greater than δ which limits the number
of reassignments to SD; δ is defined as

δ = U − (r ∗ SD), r <
U

SD
, SD ∈ R+, U ∈ R+. (14)

In Fig. 3, U = 100 and r = 10. If SD = 0 then δ = 100
resulting in no candidates for the computation of RPI, accord-
ing to (10). As a consequence only unassigned tasks have an
RPI greater than 0 and can therefore be included in the task
inclusion phase according to (8). If SD = 1 then δ = 90 and
one reassignment is permissible for the inclusion of an unas-
signed task. In Fig. 3, the path that requires two reassignments
in which the RPI-MaxAss of t2 is 80 is not permissible when
SD = 1. When SD = 1, t3 does not satisfy the constraints
to be in ψ̄2 because its RPI-MaxAss is not greater than δ,
therefore the RPI-MaxAss of t2 remains as 0. The path with
two reassignments is only possible with SD = 2 (or higher).
SD therefore restricts the tasks eligible to be candidates so
that the number of reassignments is less than or equal to SD.
Guidance on setting SD is discussed in Section V.

C. Convergence

Preliminary experiments running PI showed that two or
more vehicles occasionally get caught in an infinite cycle
exchanging the same tasks. In order to avoid infinite cycles and
to guarantee convergence, the proposed solution is to limit the
number of times that a vehicle can remove the same task from
its list before it no longer attempts to include it. A maximum
limit on removals ϒ where ϒ ∈ Z+ can be set. This precaution
may prevent those tasks that are being repeatedly exchanged
from being allocated optimally, however, it ensures that the
system can converge. A vector � i is used to store the number
of times each task has been removed from a vehicle vi’s task
list. During the conflict resolution phase when a task tk has
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been removed from vi’s task list: � i,k = � i,k+ 1. During the
task inclusion phase, a task tk is considered a candidate in ψ i
for inclusion if � i,k < ϒ is satisfied.

D. Complexity

To assess the computational complexity of running PI-
MaxAss on one vehicle, the method used in [22] is followed.
In [22], the computational complexity of PI-MinAvg is deter-
mined to be polynomial. The complexity is dominated by the
computation of IPI-MinAvg during the task inclusion phase
and it is defined in [22] as

O
(
(mi − |ai|)|ai|2

)
ϑyσ (15)

where |ai| represents the cardinality of the task list ai. mi is
the capacity of vehicle vi. A maximum number mi−|ai| tasks
can be added into a vehicle’s task list during each iteration
of the algorithm. σ denotes the complexity of computing the
time cost of a task. ϑy denotes the number of tasks that are
not yet in the task list and meet the compatibility constraints.
ϑy is equivalent to the cardinality of candidate tasks |ψ i| as
defined in this paper. In the experiments conducted in this
paper, no hard limit was imposed on the number of candidate
tasks. However, such a parameter could be introduced to limit
the computational cost of the task inclusion phase.

The complexity of PI-MaxAss is dominated by the com-
putation of each task’s RPI-MaxAss in vehicle vi’s task list,
as shown in Algorithm 3. The first step in the outer loop
(for each task in vehicle vi’s task list) is to remove a task
and adjust the times of the remaining tasks in the tempo-
rary task list a�k

i ; the complexity is |a�k
i |(|a�k

i | + 1)σ/2.
Within the inner loop, the task times of each task start-
ing from the position of the included task are computed:
|ai||ψ̄ i|(|a�k

i |+1)((|a�k
i |+1)+1)σ/2. Altogether this equates

to |a�k
i |(|a�k

i |+1)σ/2+|ai||ψ̄ i||ai|(|ai|+1)σ/2. This simpli-
fies to

O
(
|ai|3

∣
∣ψ̄ i

∣
∣σ/2

)
. (16)

The RPI-MaxAss computation has a higher complexity than
the RPI-MinAvg computation, but is equivalent to the com-
plexity of computing IPI-MinAvg.

IV. NUMERICAL RESULTS

This section presents the results of numerical simulations
conducted to test the performance of the proposed PI-MaxAss
compared with the performance of PI-MinAvg and CBBA
when maximizing allocated tasks in scenarios with time con-
straints. CBBA is an established benchmark for comparison in
distributed task allocation problems and therefore provides a
useful metric for general comparisons with similar algorithms.
Thus, the evaluation of the proposed method is performed by
comparison with CBBA using a range of parameter settings.

A. Scenario and Simulation Setup

To test the robustness of the proposed approach, the same
types of scenarios as in [20] and [22] were used. These include
scenarios with a variety of different parameters including task

TABLE II
SCENARIO SPECIFICATION

and vehicle numbers, and network topologies. Moreover, the
parameter settings are extended in this paper to include a
more challenging high task-to-vehicle ratio, and to include
fuel constraints on vehicles. Preliminary experiments revealed
that changing other parameter settings such as the starting
positions of the vehicles, e.g., all vehicles starting from the
same position, did not significantly affect the number of task
allocations. The setup uses a rescue team equally split into
two vehicle types with different functions. One vehicle type
provides medicine, the other provides food. All tasks are con-
sidered to have equal priority to facilitate a clearer analysis
of the task allocation maximization process. However, a range
of priorities could be introduced in future extensions of the
algorithm through an ordering of candidate tasks. The sce-
nario specification, summarized in Table II, is as follows: the
vehicles’ speeds are assumed to be constant and are set to 30
and 50 m/s, respectively. The survivors are likewise equally
split into those requiring food and those requiring medicine.
The medicine tasks last for a duration of 300 s and the food
tasks last 350 s. The deadlines for starting each rescue are
uniformly distributed on a timeline between 0 and 2000 s.
The mission takes place in a 3-D space spanning 10 000 m
× 10 000 m × 1000 m. The tasks are randomly placed in a
3-D space, and vehicles on the 2-D ground space, with coor-
dinates drawn from uniform distributions. The battery limit
of each vehicle is set randomly between 1000 and 2000 s.
Given the random initialization of task and vehicle locations
and deadlines, it is sometimes impossible for some tasks to be
started by any vehicle before their deadline. In these simula-
tions, all task information is available to all vehicles up front.
The task allocation procedure is performed before any tasks
are executed, although previous studies have demonstrated a
version of the PI algorithm that is effective at allocating new
tasks online [50].

B. Simulation Results

1) PI-MinAvg Versus PI-MaxAss: Fig. 4 compares the PI-
MinAvg solutions with the PI-MaxAss solutions that are
initialized with the PI-MinAvg solution. A row formation was
used for these experiments and a swap distance of 2 (SD = 2)
was set. Fig. 4(a) shows the percentage of runs where PI-
MaxAss increased the number of allocated tasks from the
PI-MinAvg solution. Fig. 4(b) shows the corresponding aver-
age percentage change and standard deviation of number
of allocated tasks when PI-MaxAss changed the number of
allocated tasks.
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(a)

(b)

Fig. 4. For each scenario, the simulations were tested for an increasing
number of vehicles and tasks. Vehicle numbers were 6, 8, 10, 12, and 14. For
ratio p = 2 the number of tasks were 12, 16, 20, 24, and 28, and with ratio
p = 4.6 task numbers were 28, 36, 46, 56, and 64. Ratio p = 2 was tested
with task deadlines, ratio p = 4.6 was tested with task deadlines, with battery
limits only, and with battery limits and task deadlines, respectively. In (a) each
bar shows the percentage of solutions over 50 runs that PI-MaxAss assigned
additional tasks starting from PI-MinAvg solution. (b) Corresponding average
percentage change and standard deviation in number of allocated tasks when
PI-MaxAss changed the number of allocated tasks.

Fig. 4 shows both the results using the same experimental
setup as in [20] and [22] with a task-to-vehicle ratio of 2 to
1 (ratio p = 2), deadlines for each task and without battery
limit time constraints, and results using a task-to-vehicle ratio
p = 4.6 with task deadlines only, vehicle battery limits only,
and combined task deadlines and battery limits, respectively.
Ratio p = 4.6 was selected to test the system approach-
ing maximum capacity. In [20] and [22] experimental results
showed that PI-MinAvg was capable of finding a solution that

(a)

(b)

Fig. 5. Comparison of CBBA, PI-MinAvg, PI-MaxAss with swap distance
1, 2, 3, and 4 on number of allocated tasks and iterations for the 14-vehicle
64-tasks scenario with battery limits and task deadlines. The plus symbols
represent outliers. (a) Box plot of the total number of allocated tasks for each
of the 50 runs for each algorithm. (b) Box plot of the number of total iterations
for each of the 50 runs for each algorithm.

maximized the number of allocated tasks in most cases. The
ratio p = 2 results in Fig. 4(a) reflect these findings. For each
of the five setups with ratio p = 2, PI-MaxAss increased the
number of allocated tasks from the PI-MinAvg solution; in the
best case 14% of the runs were improved upon. In each run
that PI-MaxAss increased the number of allocations (starting
from PI-MinAvg with p = 2), one extra task was allocated.
The results for ratio p = 4.6 show that when the system is
approaching maximum capacity, i.e., when the order and allo-
cation of tasks is critical to optimize number of allocated tasks,
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PI-MaxAss increased the number of task allocations in approx-
imately half the runs with battery only time constraints and
in up to 100% of runs with task deadlines. Up to three extra
tasks were assigned in runs with battery only time constraints.
Up to eight extra tasks were assigned in runs with task dead-
lines with ratio p = 4.6. In one such instance, PI-MaxAss
increased the number of allocated tasks from 44 to 52 out of
56 tasks, where four tasks were impossible to allocate from
the outset due to their relative positions and deadlines. In other
words, PI-MaxAss facilitated an 18% increase in allocated
tasks achieving the maximum allocation. In another instance,
a 20% increase was achieved by increasing the number of
allocations from 35 to 42 out of 46 tasks.

Over the 2000 runs, in six cases PI-MaxAss modified the
solution by reassigning tasks without increasing the total num-
ber of assigned tasks. In all other instances that the solution
was modified, the number of allocations was increased.

2) Swap Distance Parameter Comparison: Fig. 5 shows the
results of a comparison between the performance of CBBA,
PI-MinAvg, and PI-MaxAss with swap distance set between 1
and 4. The performance with regards to number of allocated
tasks and number of iterations until convergence is presented.
The total iterations for one simulation is determined by the
last time an allocation change was made, either through inclu-
sion or removal. As the PI-MaxAss solutions are initialized
with the solutions from PI-MinAvg, the number of iterations
for a run of PI-MaxAss is the sum of iterations taken for PI-
MinAvg and PI-MaxAss, so PI-MaxAss will necessarily be
at least as high as PI-MinAvg in all instances. Fig. 5(a) is a
box plot [51] that shows the total number of allocated tasks
for each algorithm. Fig. 5(b) is a box plot that shows the
corresponding total number of iterations for each algorithm.
The notches in the plots show that increases in allocated tasks
between CBBA, PI-MinAvg, PI-MaxAss with SD = 1 and
SD = 2 are statistically significant, and are correlated with
an increase in iterations. For SD = 3 and SD = 4 there is an
increase in iterations without a significant increase in task allo-
cations compared with SD = 2. Table III shows that when the
swap distance is limited to 1, an average of 3 extra tasks are
allocated from the PI-MinAvg solution (shown in the table
in the supplementary material) and the number of iterations
has 95% confidence of being between the intervals 7.86 and
9.42 (not counting the iterations for PI-MinAvg). The trade-
off is just over 1 fewer allocated tasks on average compared
with SD = 2. As the swap distance increases, the confidence
intervals for the number of iterations also widen.

3) Average Time Comparison: Fig. 6(a) plots a comparison
of the average waiting time and allocations for each run using
SD = 2. Fig. 6(b) plots the same results using the starting
solution of PI-MaxAss and shows the effect of switching back
to optimizing waiting time after increasing allocated tasks with
PI-MaxAss. Here, PI-MinAvg was initialized with the solution
of PI-MaxAss. Average waiting time logically increases as
more tasks are performed. This increase is reflected in the
graphs that show a proportional increase in average waiting
time between CBBA, PI-MinAvg, and PI-MaxAss. Fig. 6(b)
shows that average waiting time can be optimized with PI-
MinAvg after allocations have increased with PI-MaxAss. In

TABLE III
AVERAGE TASK ALLOCATIONS AND ITERATIONS PERFORMANCE OF

PI-MAXASS OVER 50 SIMULATIONS, WITH STANDARD DEVIATION

AND CONFIDENCE INTERVALS FOR ITERATIONS

(a)

(b)

Fig. 6. Scatter graphs comparing the performance of CBBA, PI-MinAvg, and
PI-MaxAss with swap distance = 2, with respect to average waiting time for
50 runs. Each plot represents the final average waiting time of all assigned
tasks for one run. In (b) PI-MinAvg was run starting from the solution of
PI-MaxAss to show that average waiting time can be further optimized once
additional tasks have been assigned. An improved average waiting time is
indicated by points shifted to the left for SD = 2 & MinAvg compared with
SD = 2.

32 out of the 50 runs, the average waiting time is reduced, in
the best case by 63 s. In this instance four extra tasks had been
allocated with PI-MaxAss. The improvement in waiting time
was achieved with nine iterations of PI-MinAvg. The average
iterations for the second round of PI-MinAvg was 6.1 over the
50 runs.



2594 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 9, SEPTEMBER 2018

(a) (b)

(c) (d)

Fig. 7. Network topologies that the system was tested with. (a) Row topology.
(b) Circular topology. (c) Mesh topology. (d) Star topology.

4) Topology Comparison: Changing topologies are inherent
to dynamic environments with moving vehicles. It is there-
fore informative to assess how the proposed method performs
across different topologies [12]. Fig. 7 illustrates with nondi-
rected graphs the different network topologies under which the
system was tested.

Fig. 8 shows the results of comparing different vehicle for-
mation topologies in terms of the number of allocated tasks
and iterations. The row topology, circular topology, the fully
connected topology and the star topology illustrated in Fig. 7
are compared. The number of allocated tasks is consistent
across topologies for CBBA and similar across topologies
for PI-MinAvg and PI-MaxAss with SD = 2. Notable differ-
ences are the reduced number of iterations for each algorithm
with the fully connected topology and the relative increase in
iterations for the star topology for each algorithm.

V. DISCUSSION

The results show that PI-MaxAss can significantly improve
the total number of allocated tasks starting from a subopti-
mal solution. There is a tradeoff between computation time
and solution quality that should be considered depending on
the application [15]. Note that computation time here is rep-
resented by the number of iterations, while in practice the
processing speed and the communication speed of the agents
will determine how long an iteration lasts. If extra computation
time is available, the results show that switching optimization
objectives from minimizing average waiting time to maximiz-
ing task allocations can break the solution out of local optima
and further optimize the task allocation without reducing the
quality of the solution. After more tasks have been included,
the quality of the solution can then be optimized further with
few iterations by switching back to the time minimization
method. This switching strategy as described in [15] exploits
the high optimization performance of single-objective search
algorithms for a bi-objective problem, while remaining flexible
and modular.

(a)

(b)

(c)

(d)

Fig. 8. Comparison of the performance over 50 runs of CBBA, PI-MinAvg,
PI-MaxAss with swap distance 2 for 14-vehicle 64-task battery and deadlines
scenario, with respect to number of allocated tasks and iterations over different
network topologies, (a) row, (b) circular, (c) mesh, and (d) star topologies.

In the cases where PI-MinAvg was able to reach an opti-
mal or near optimal solution with regards to the number of
allocated tasks, such as the two tasks-per-vehicle scenario, PI-
MaxAss made few or no improvements on the PI-MinAvg
solution and accordingly the computation time was not unnec-
essarily increased. These results further support the switching
strategy [15] which increased computation time only when
the solution could be improved by the proposed method
PI-MaxAss.

The results show that a swap distance limited to 1 is prefer-
able when a reliably low number of iterations is required while



TURNER et al.: DISTRIBUTED TASK RESCHEDULING WITH TIME CONSTRAINTS FOR OPTIMIZATION OF TOTAL TASK ALLOCATIONS 2595

still providing a significantly higher number of allocated tasks.
A higher swap distance can be used if the extra computation
time is available to increase the likeliness of finding a better
solution. On the other hand, although PI-MaxAss is guaranteed
not to decrease allocations starting from an initial task allo-
cation, it cannot be guaranteed that PI-MaxAss with a higher
swap distance finds an equal or higher task allocation than a
lower swap distance.

For the scenarios tested, a swap distance of 3 or 4 did
not significantly increase the allocations despite the correlated
increase in iterations. For each additional task reassignment,
the new task allocations are propagated through the network
of vehicles, and this can take several iterations depending on
the network topology meaning that, as the number of reassign-
ments increases, so do the number of iterations. It is also likely
that the number of instances where 3 or 4 reassignments are
required are fewer than those requiring 1 or 2 reassignments.
This may result in an insignificant increase in task allocations
along with a relatively high increase in number of iterations.

PI-MaxAss was shown to be effective at increasing allocated
tasks when the time constraint was on vehicle battery limits
only. In these cases, the extra flexibility in the possible order-
ing of task allocations meant that PI-MinAvg was more likely
to find an optimal solution, however, PI-MaxAss increased the
allocations in about half of the runs, a noteworthy proportion.

In 0.3% of 2000 runs, PI-MaxAss modified the solution
by reassigning tasks without increasing the total number of
assigned tasks. This may happen because an additional task
allocation attempt may be inhibited if a time slot created to
assign a new task is instead filled by a task later in that
reassignment sequence.

Tests with different topologies provided strong evidence that
the number of allocated tasks is independent of the specific
topology. The number of iterations required to reach consen-
sus, on the contrary, appears to vary according to the type
of topology. The increase in iterations is due to information
requiring multiple iterations or “hops” to reach all vehicles
when the network is not fully connected. In general, the longer
the network diameter, i.e., the shortest path between the two
most distant vehicles, the longer the system takes to reach
consensus.

The task shifting effect of PI-MaxAss is similar to the
theoretical task swap loop methods described and analyzed
in [35]–[38] and [52]. Compared with these methods, PI-
MaxAss has the advantage that it does not require distinguish-
ing roles. Furthermore, PI-MaxAss does not require finding a
complete swap loop to reassign tasks. As opposed to the task
swap loop methods, with PI-MaxAss the last task reassign-
ment in the sequence need not be assigned to the vehicle that
started the sequence. By following the task swap loop strat-
egy, the created time slot is more likely to be filled by the task
being reassigned from another vehicle, inhibiting the assign-
ment of an additional unassigned task. A final distinction is
that the objective of PI-MaxAss is to increase the number of
task assignments within vehicles’ schedules, whereas the costs
being minimized in [36]–[38] are nonspecific, and the prob-
lem being addressed considers vehicles that can be assigned
one task each, at most.

VI. CONCLUSION

In a search and rescue mission, optimal task allocation for
available vehicles is crucial. In this paper, an effective algo-
rithm that allows for simple and efficient reassignment of
allocated tasks is proposed and analyzed to improve the task
allocation solution of a previous method for task allocation.
The novel idea is to allow vehicles to reallocate tasks to cre-
ate a feasible space for unallocated tasks by taking advantage
of existing schedule space. Simulations showed a noteworthy
increase in performance, measured as the total number of allo-
cated tasks, making the method appealing when this objective
is a priority. An increment in the number of iterations appeared
proportionate to the gain in performance. Experimental results
confirmed that the proposed algorithm can be applied bene-
ficially to an existing scheduling method, thus opening the
possibility of integration to other implementations.

Future work will look at restricting the number of iterations
used to reach consensus while maintaining the solution quality,
as well as implementation in more realistic testing scenarios
that could include having the vehicles returning to a base to
refuel.
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