
2166 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 7, JULY 2018

Distributed Differential Evolution Based on
Adaptive Mergence and Split for

Large-Scale Optimization
Yong-Feng Ge, Student Member, IEEE, Wei-Jie Yu, Member, IEEE, Ying Lin, Member, IEEE,

Yue-Jiao Gong, Member, IEEE, Zhi-Hui Zhan, Member, IEEE, Wei-Neng Chen, Member, IEEE,
and Jun Zhang, Fellow, IEEE

Abstract—Nowadays, large-scale optimization problems are
ubiquitous in many research fields. To deal with such prob-
lems efficiently, this paper proposes a distributed differential
evolution with adaptive mergence and split (DDE-AMS) on
subpopulations. The novel mergence and split operators are
designed to make full use of limited population resource, which
is important for large-scale optimization. They are adaptively
performed based on the performance of the subpopulations.
During the evolution, once a subpopulation finds a promising
region, the current worst performing subpopulation will merge
into it. If the merged subpopulation could not continuously pro-
vide competitive solutions, it will be split in half. In this way,
the number of subpopulations is adaptively adjusted and better
performing subpopulations obtain more individuals. Thus, pop-
ulation resource can be adaptively arranged for subpopulations
during the evolution. Moreover, the proposed algorithm is imple-
mented with a parallel master–slave manner. Extensive experi-
ments are conducted on 20 widely used large-scale benchmark
functions. Experimental results demonstrate that the proposed
DDE-AMS could achieve competitive or even better performance
compared with several state-of-the-art algorithms. The effects
of DDE-AMS components, adaptive behavior, scalability, and
parameter sensitivity are also studied. Finally, we investigate
the speedup ratios of DDE-AMS with different computation
resources.

Index Terms—Adaptive population model, distributed differ-
ential evolution (DDE), large-scale optimization.

I. INTRODUCTION

IN THE last decades, various kinds of evolutionary algo-
rithms (EAs) such as differential evolution (DE) [1]–[4],

particle swarm optimization (PSO) [5], [6], ant colony
optimization [7], and artificial bee colony [8] have been

Manuscript received May 3, 2017; accepted July 9, 2017. Date of publi-
cation July 31, 2017; date of current version June 14, 2018. This work was
supported by the National Natural Science Foundation of China under Grant
61502544 and Grant 61332002. This paper was recommended by Associate
Editor P. N. Suganthan. (Yong-Feng Ge and Wei-Jie Yu contributed equally to
this work.) (Corresponding authors: Wei-Jie Yu; Jun Zhang.)

Y.-F. Ge, W.-J. Yu, and Y. Lin are with Sun Yat-sen University, Guangzhou
510275, China (e-mail: ywj21c@163.com).

Y.-J. Gong, Z.-H. Zhan, W.-N. Chen, and J. Zhang are with the
South China University of Technology, Guangzhou 510641, China (e-mail:
junzhang@ieee.org).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org provided by the authors. The file contains additional
figures and tables. The material is 3.14 MB in size.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2017.2728725

developed. These algorithms have achieved great success on
many numerical and combinatorial optimization problems in
recent years [9]–[14]. However, the performance of classi-
cal EAs often deteriorates rapidly as the dimensionality of
the problem increases [15]. Since the optimization problems
in science and engineering are increasingly complex nowa-
days, research into designing EAs that are capable of tackling
large-scale optimization problems has drawn increasing atten-
tion [16]–[18].

To enhance the performance of EAs for large-scale
optimization, both decomposition and nondecomposition
approaches have been studied [19]–[22]. In the decom-
position approaches, the divide-and-conquer strategy is
adopted. Cooperative co-evolution (CC) proposed by
Potter and De Jong [23] is a famous approach to decompose
large-scale optimization problems. Due to the simplicity and
efficiency of DE, various decomposition strategies based on
DE have been proposed, such as random dynamic group-
ing [24], multilevel dynamic grouping [25], and differential
grouping [26]. It is obvious that if the objective function of
the problem at hand is separable, the problem decomposition
can be trivial, while for nonseparable functions the problem
decomposition could be a difficult task. In addition, the
performance of CC approach is highly sensitive to the
decomposition strategies.

Several approaches to tackle large-scale optimization prob-
lems without decomposition have also been considered,
such as designing new operators [27]–[29], embedding
local search [30], [31], and introducing structured popula-
tion [32]–[34]. In the DEs with structured population, which
is referred as the distributed DE (DDE), the population is
partitioned into several subpopulations and each subpopu-
lation evolves independently. This paper aims at designing
an efficient DDE algorithm for the large-scale optimization
problems.

The population model of DDE should be sophisticatedly
designed since it has significant influence on the performance
of the algorithm. In most existing DDEs [35]–[37], the pop-
ulation models are static, which means that the number of
individuals in each subpopulation and the number of subpop-
ulations are fixed during the evolution. In this way, the popu-
lation resource could not be effectively reallocated according
to the various situations during optimization. For example,

2168-2267 c© 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:ywj21c@163.com
mailto:junzhang@ieee.org
http://ieeexplore.ieee.org
http://ieeexplore.ieee.org

GE et al.: DDE-AMS FOR LARGE-SCALE OPTIMIZATION 2167

the promising search regions should be assigned with more
population resource, while redundant population resource in
bad performing subpopulations should be avoided. Although
dynamic population models have been proposed [38]–[42],
existing methods are not effective enough to fully utilize
the population resource to improve the search efficiency. For
example, in [38], [39], and [42], the population size is mono-
tonically reduced, which may cause the insufficient of popula-
tion resource in the latter stage of evolution. In [40] and [41],
the individuals are dynamically arranged over the subpopula-
tions. However, the overall number of subpopulations and their
sizes are fixed, which could not adapt the population model
to fit for different optimization scenarios.

To address the above issues, in this paper, a novel DDE
with adaptive population model is proposed. Two novel oper-
ators named mergence and split are proposed for dynamically
rearranging the population resource among subpopulations.
Moreover, an adaptive strategy based on the contribution of
subpopulations to the evolution is proposed to control the
execution of mergence and split. The best performing subpop-
ulation is more likely to capture at a promising search region
and it should be rewarded by more population resource for a
deeper search. On the contrary, if the merged subpopulation
could not continuously provide competitive solutions, half of
its individuals will be reallocated by the split operator. In this
way, better performing subpopulations obtain more population
resource for enhancing the search efficiency. The population
resource is adaptively arranged and the effectiveness of pop-
ulation resource is maintained through the entire evolution
process. In addition, the proposed algorithm is implemented
in parallel to reduce the computation time.

The main contribution of this paper is listed as follows.
1) An adaptive population model is proposed, in which the

population resource is adaptively arranged to improve
the search efficiency.

2) Two novel operators named mergence and split are
proposed to help dynamically arrange the individuals
among the subpopulations.

3) An adaptive contribution-based strategy based on the
performance of the subpopulations is designed for mer-
gence and split.

Numerical experiments are conducted on 20 benchmark
functions from CEC’2010 competition and comparisons have
been made against several state-of-the-art approaches for
large-scale optimization. Experimental results show that the
proposed DDE with adaptive mergence and split (DDE-AMS)
algorithm outperforms the competitors in terms of quality of
solutions, convergence speed and statistical tests. Furthermore,
the effects of DDE-AMS components, search behavior of
DDE-AMS, parameter sensitivity of DDE-AMS, and speedup
ratio of DDE-AMS are investigated.

The remainder of this paper is organized as follows. In
Section II, a brief review of related work on large-scale
optimization is presented. Subsequently, Section III briefly
introduces the traditional DDE. Section IV describes the
proposed DDE-AMS algorithm in detail, including the novel
mergence and split operators and the adaptive contribution-
based strategy. Extensive experiments with discussion are

provided in Section V. Finally, Section VI draws the
conclusion.

II. RELATED WORK

Although the classical EAs have achieved great success in
solving many numerical and combinatorial optimization prob-
lems, they often lose their efficiency and advantages when
applied to large and complex problems. Based on this condi-
tion, various modified EAs for large-scale optimization have
been proposed. Recently, DE has shown effectiveness in the
existing approaches for large-scale optimization. This section
presents a brief review on the representative existing DE-based
approaches for tackling large-scale optimization. This review
includes CC algorithms with problem decomposition strategy
and nondecomposition approaches, in which the large-scale
problems are solved without decomposition.

A. Cooperative Co-Evolution Approaches

CC is an effective method for solving large-scale optimiza-
tion problems through a divide-and-conquer paradigm. Since
DE is simple and efficient, various DE-based CC approaches
have been proposed. The CC approaches can be divided
into two categories: static and dynamic CC models. In the
static CC model, n-dimensional problem is partitioned into k
s-dimensional subproblems [23], [43]. Once the subcompo-
nents are identified, they undergo the entire optimization. It
is clear that the static approaches do not scale well as the
dimensionality increases.

Therefore, a lot of studies have been interested in develop-
ing dynamic grouping approaches, such as random dynamic
grouping and learning-based dynamic grouping. In the ran-
dom dynamic grouping approaches, a problem is decomposed
into k s-dimensional subproblems and the variables are ran-
domly allocated to subcomponents in every co-evolutionary
cycle [24], [25], [44], [45]. However, this approach is inef-
fective when the number of interacting variables grows. In
practice, without prior knowledge about the problem, it is not
clear how the problem should be decomposed. For utilizing
the prior knowledge of interaction between variables, learning-
based dynamic grouping approaches are designed, such as
differential grouping [26], contribution-based grouping [46],
and adaptive partitioning [47].

B. Nondecomposition Approaches

Yet another possibility of solving the large-scale optimiza-
tion problems is to enhance the algorithm’s performance and
solve the problems without decomposition, which is referred
as the nondecomposition approach. These nondecomposition
approaches usually focus on the alteration such as modify-
ing new operators, embedding local search, and introducing
structured population to enhance the performance [48], [49].
The JADE mutation strategy “DE/current-to-pbest” [50] was
utilized to enhance a self-adaptive DE [31] for large-scale
optimization. A DE based on generalized opposition-based
learning [28] was proposed and a memetic DE combined with
the multiple offspring sampling was proposed in [51].

2168 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 7, JULY 2018

Fig. 1. DDE.

In the DE algorithm with structured population, i.e., DDE,
the population is divided into several subpopulations and each
subpopulation evolves independently. With a given probabil-
ity, the individuals in the subpopulations are exchanged to
maintain the population diversity, which is referred to migra-
tion. Structured population in the DE-based algorithms could
help balance the exploration and exploitation search ability.
Regarding the performance of DDE, migration and population
model are two main research directions.

Migration is an important factor to prevent the search
process from premature convergence or stagnation
through injecting new individuals into subpopulations.
Kozlov and Samsonov [52] introduced a new migration
scheme in which the oldest member of the subpopulation is
replaced by the received individual, instead of the worst one.
A novel migration mechanism was proposed [53] that the
substitution occurs only when the incoming solution is better
than the one chosen to be replaced. De Falco et al. [54]
introduced a migration model, which is inspired by the
phenomenon known as biological invasion. In the novel
model, the solutions with better fitness than the average value
of subpopulation are sent to all neighbor subpopulations
and stochastic universal sampling is applied for selection.
Izzo et al. [55] studied an asynchronous migration strategy, in
which subpopulations evolve independently according to the
termination condition. Whenever the evolving process of one
subpopulation stops, the best solution in this subpopulation
is sent to the neighbor subpopulation. Weber et al. [39]
employed a fitness diversity measure to activate the migration
between subpopulations. Motivated by the principle “not too
similar, not too different,” Cheng et al. [56] proposed an
enhanced DDE algorithm with multicultural migration.

The population model is a key factor in the success of
DDE. To maintain the effectiveness of population resource,
the population model in DDE, such as the population
topology and the sizes of subpopulations, have been stud-
ied in various ways for improving the search efficiency.
Zaharie and Petcu [35] presented a parallel distributed self-
adaptive DE algorithm, which uses a random topology as
the communication structure. To improve both speed and
performance, a DDE with unidirectional ring topology was
presented by Tasoulis et al. [32]. De Falco et al. [36], [37] uti-
lized toroidal mesh topology as the population model to form

DDE, in which a chosen solution is sent to all the neighbor
subpopulations. In [57], the population is divided into sub-
populations according to the von Neumann topology and local
search is embedded for enhancing the balance between explo-
ration and exploitation. Jeyakumar and Velayutham [58] and
Thangavelu and Velayutham [59] studied the performance of
cooperative DDEs, in which mixing classical DEs indepen-
dently evolve in subpopulations. In [60] and [61], the influence
of size and number of subpopulations in DDE was studied
and analyzed in detail with help of standard benchmarks.
Penas et al. [62] designed an asynchronous parallel implemen-
tation of DDE. However, all these population models are static,
i.e., the sizes of subpopulations and the population topologies
are unchanged during the evolution.

Other than the static population models, dynamic popula-
tion models for DE have been designed to dynamically arrange
the population resource. Unlike the static population models,
the sizes or the number of subpopulations in these popula-
tion models are dynamically changed during the optimization,
which is helpful in maintaining the effectiveness of popula-
tion resource during the evolution. Weber et al. [40] proposed
a novel operator named shuffling, which helps randomly rear-
range the individuals over the subpopulations. Experimental
results exhibit that the novel operator is effective in promoting
the balances between exploitation and exploration search pro-
cess. In [41], a novel DDE simultaneously consisting of three
mutation strategies was proposed. The big reward subpopu-
lation is allocated to the best performing mutation strategy.
Although individuals are dynamically rearranged over subpop-
ulations [40], [41], the overall number of subpopulations and
their sizes are fixed. Unlike these two, some approaches with
dynamic subpopulation sizes have been proposed. In [39], the
subpopulations are grouped into two families. Subpopulations
in the first family arranged according to a ring topology
have constant population size, and employ a best-random
like migration strategy. The second family is composed of a
subpopulation with dynamic population size, which is progres-
sively reduced. Hendershot [38] proposed an extension of DE
named MultiDE. In MultiDE, the number of subpopulations
is kept variable, i.e., subpopulations can dynamically emerge
and disappear. When an element from a subpopulation is sim-
ilar to an element from population 0, the former is no longer
considered for further evolution. Zamuda et al. [42] combined

GE et al.: DDE-AMS FOR LARGE-SCALE OPTIMIZATION 2169

the population reduction-based jDE [63] with two mutation
schemes by using a structured population. However, the mono-
tonically reduced population size may cause the insufficiency
of population resource in the latter stage of evolution.

III. DDE

In this section, the classical DDE is introduced. In DDE, the
population is uniformly partitioned into a number of islands
at the beginning. During the evolution, DE performs inde-
pendently in each island. We also refer to the populations
in the islands as subpopulations of DDE, as it is commonly
done in the literature. The subpopulations are arranged in a
topology. This means that every subpopulation can send infor-
mation to only one other subpopulation, and in the same way
it can only receive information from one single subpopulation.
With a given probability φ, some individuals are migrated to
the neighbor subpopulations. When a subpopulation receives
the migrated individual, it is inserted into its subpopulation
replacing one individual. Through migration, the information
is exchanged. Typically, the best individual in each subpopu-
lation is sent to the neighbor and a random individual, which
is different from the best individual will be replaced by the
migrated individual. This process will allow the algorithm
to better benefit from the diversity of solutions in different
subpopulations.

Since each subpopulation evolves independently, it is natural
to implement DDE in parallel. “Master–slave” is a pop-
ular mode for the implementation of DDE. As shown in
Algorithm 1, master node charges for the global communi-
cation such as updating the best individual and migration
between subpopulations. Each subpopulation is assigned to
a slave node for independent evolution including mutation,
crossover, and selection.

A. Mutation

The evolution of individuals begins with the mutation opera-
tion. At each generation g, the mutation operation is applied to
each individual xg

i in the current population to create its corre-
sponding mutant individual vg

i . The frequently used mutation
strategies are listed as follows.

DE/rand/1

vg
i = xg

r1 + F · (
xg

r2 − xg
r3

)
. (1)

DE/current-to-best/1

vg
i = xg

i + F · (
xg

best − xg
i

) + F · (
xg

r1 − xg
r2

)
. (2)

DE/best/1

vg
i = xg

best + F · (
xg

r1 − xg
r2

)
. (3)

DE/best/2

vg
i = xg

best + F · (
xg

r1 − xg
r2

) + F · (xg
r3 − xg

r4

)
. (4)

DE/rand/2

vg
i = xg

r1 + F · (
xg

r2 − xg
r3

) + F · (
xg

r4 − xg
r5

)
(5)

where xg
best indicates the best individual in the current pop-

ulation; r1, r2, r3, r4, and r5 are distinct integers randomly

Algorithm 1 Pseudo-Code of DDE Algorithm
1: procedure GLOBAL CONTROLLER (AT MASTER NODE)
2: set the generation counter g = 0
3: spawn N subpopulations, each one on a different

processor
4: while not termination condition do
5: if rand(0, 1) < φ then
6: receive an individual from each subpopulation
7: for each received individual do
8: send the individual to its neighbor subpop-

ulation in the ring
9: end for

10: end if
11: g = g + 1
12: end while
13: end procedure
14:

15: procedure SUBPOPULATION (AT SLAVE NODE)
16: for each generation do
17: perform a DE step
18: send a copy of the best individual to the master

node
19: if a migrated individual has been received then
20: replace a random individual, different from the

best, by the migrated individual
21: end if
22: if a termination signal has been received then
23: terminate the execution
24: end if
25: end for
26: end procedure

selected from the indexes of individuals, and they are all dif-
ferent from the index i; the factor F is a positive control
parameter called differential factor for weighting the differ-
ence vectors. It can be seen that the mutant individual vg

i is
generated by combing a base vector with one or two scaled
difference vectors.

B. Crossover

In order to enhance the population diversity, the mutation
individual vg

i is recombined with the target individual xg
i to

generate a trial individual ug
i . The process can be formulated as

ug
i,j =

{
vg

i,j, if rand (0, 1) ≤ Cr or j = jrand

xg
i,j, otherwise

(6)

where rand(0, 1) is a uniformly distributed random number;
jrand is a random integer generated once for each individual to
make sure that at least one component of ug

i is different from
the target individual; and Cr indicates the crossover rate, which
determines the fraction of ug

i from the mutation individual.

C. Selection

After mutation and crossover, selection operation is carried
out to compare the fitness of target and trial individuals. For

2170 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 7, JULY 2018

Fig. 2. Illustration of mergence operator. Subpopulation SP-2 is merged to SP-3.

a minimization problem, the selection can be expressed as
follows:

xg+1
i =

{
ug

i , if f
(
ug

i

) ≤ f
(
xg

i

)

xg
i , otherwise

(7)

where f (x) is the objective function of the optimization
problem.

IV. DDE-AMS

In this section, a novel DDE algorithm named DDE-AMS
with adaptive population model is proposed. Two opera-
tors named mergence and split are designed for dynami-
cally arranging the population resource among subpopulations.
Moreover, a contribution-based adaptive strategy for control-
ling mergence and split is proposed. Finally, the proposed
DDE-AMS is algorithmically illustrated.

In the traditional DDE algorithm, the number of individuals
in the subpopulations is fixed during the evolution. However,
the static population model could not dynamically arrange the
population resource to the subpopulations accordingly, which
may cause the population resource lose effectiveness.

In the proposed DDE-AMS, to achieve a dynamic popu-
lation arrangement, two operators named mergence and split
are designed. On the one hand, to enhance the search effi-
ciency at promising regions, individuals in the bad performing
subpopulation will be merged into the good performing sub-
population. On the other hand, if a merged subpopulation
could not continuously provide competitive solutions, these
merged big subpopulations are split and half of the individuals
will be reinitialized to maintain the diversity.

Furthermore, to indicate the performance of each subpop-
ulation, an adaptive contribution value is defined. A higher
contribution value means the subpopulation contributes more
to the entire evolution. On the contrary, a lower contribution
value indicates the subpopulation has less positive effect on the
optimization process. Based on the contribution value, mer-
gence and split are adaptively executed. If contribution value
of a subpopulation keeps high, more individuals are allocated
by mergence for enhancing the search efficiency. If contribu-
tion value of a merged subpopulation continuously decreases,

Fig. 3. Numerical example of merging two subpopulations in a 2-D
search space. Individuals in the blue subpopulation are merged into the red
subpopulation.

half of its individuals are released by split. Thus, the popu-
lation resource is adaptively arranged to the subpopulations
during the evolution.

A. Mergence Operator

Mergence operator assigns the population resource in bad
performing subpopulations to promising ones. Suppose the
condition for mergence is satisfied, all the individuals in
one bad performing subpopulation are moved to one good
performing subpopulation. Fig. 2 shows an example of mer-
gence process, in which four individuals of subpopulation SP-2
are rearranged into subpopulation SP-3. As a result, the bad

GE et al.: DDE-AMS FOR LARGE-SCALE OPTIMIZATION 2171

Fig. 4. Illustration of split operator. Subpopulation SP-3 is split into SP-2 and SP-3.

performing subpopulation SP-2 is removed and two subpop-
ulations are combined to form one big subpopulation SP-3.
There are three subpopulations remained in total.

Mutation operator “DE/best/1” is adopted for moving the
individuals in bad performing subpopulation to the search
region of good performing subpopulation. DE/best/1 is utilized
due to the purpose of locating these new individuals around the
best individual of good performing subpopulation. The new
position of each individual i from the bad performing sub-
population is generated by the position of the best individual
and two selected random individuals in the good performing
subpopulation

xg+1
i = xg

best + F · (xg
r1 − xg

r2

)
. (8)

Fig. 3 shows a numerical example of merging two subpop-
ulations in a 2-D search space. Suppose individuals in the
red subpopulation have provided competitive performance, it
is chosen as the good performing subpopulation. For merging
the individuals in the bad performing blue subpopulation to
the good performing red subpopulation, the mutation operator
mentioned above is utilized. The best individual and selected
random individuals in red subpopulation are used for calculat-
ing each new position of the blue individuals. As a result, the
individuals from blue subpopulation are moved to the search
region of red subpopulation.

B. Split Operator

Split operator helps release the redundant population
resource in bad performing subpopulations. Suppose the con-
dition for split is met by one subpopulation, half of its
individuals are randomly selected and reinitialized to form a
new subpopulation. Fig. 4 shows an example of the split pro-
cess. Subpopulation SP-3 is split into two subpopulations with
equal size, i.e., SP-2 and SP-3. Subsequently, the new subpop-
ulation SP-2 is inserted into the unidirectional ring topology
and involved in the communication among other subpopula-
tions. Thus, one subpopulation is split into two subpopulation
and the number of subpopulations increases to four. The posi-
tion of each individual i in new subpopulation is randomly
generated within the predefined boundaries of search space

xg+1
i = xmin + rand (0, 1) · (xmax − xmin). (9)

Fig. 5. Numerical example of splitting one subpopulation in a 2-D search
space. The blue individuals are randomly selected and reinitialized to form a
new subpopulation.

Fig. 5 shows an example of splitting a subpopulation con-
taining eight individuals in a 2-D search space. As mentioned
above, four blue individuals in the subpopulation are ran-
domly selected to form a new subpopulation. Through the
split process, four blue individuals in the new subpopulation
are reinitialized in the entire search space.

C. Contribution-Based Strategy for Mergence and Split

First, an adaptive value is designed for indicating the con-
tribution of each subpopulation to the entire evolution. Based
on the contribution value, the adaptive execution of mer-
gence and split is achieved. For subpopulation si, the value of

2172 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 7, JULY 2018

contribution is indicated by Consi. For every Up generations,
the value of Consi is updated. The initial value of Consi is 0
and updated as follows:

Cong
si =

⎧
⎪⎪⎨

⎪⎪⎩

Cong−1
si + Up ∗ (1 − Dr)

if subpopulation i contains the best individual

Cong−1
si − Up ∗ Dr

otherwise
(10)

where Dr indicates the value Consi decreases in every genera-
tion. The value of Dr is set between 0 and 1. According to (10),
at a certain generation, Consi of subpopulation i increases only
when subpopulation i contains the best individual. For the
other subpopulations, the value of Consi decreases. If the value
of Consi is lower than 0, its value is reinitialized as 0. The defi-
nition of Consi is based on the following considerations. On the
one hand, if subpopulation i continuously generates competi-
tive solutions, its value of Consi will increase. A higher value
of Consi indicates that subpopulation i contributes more to the
entire evolution. On the other hand, if the promising subpopu-
lation i could not continuously provide competitive solutions,
its value of Consi decreases. A lower value of Consi indicates
subpopulation i has less positive effect on the optimization
process.

In short, with the help of the decay rate Dr, the value of
Consi could be adaptively changed. Based on the analysis
above, the value of Consi effectively indicates the contribution
as well as the evolutionary status of subpopulation i. Next,
the adaptive strategy for execution of mergence and split is
introduced.

1) When to Merge: Once the contribution value Consi of
subpopulation i exceeds the predefined threshold T , mergence
is applied. Through comparing the best individuals in each
subpopulation, the subpopulation w containing the worst one
among these best individuals is chosen. Then, individuals in
subpopulation w are sent to subpopulation i. According to
the definition of Consi, if the value of Consi exceeds the
threshold, it means subpopulation i has continuously provided
competitive solutions. It is very likely that the search region
of subpopulation i is promising. For enhancing the search at
the promising region as well as maintaining the effectiveness
of population resource, individuals from the bad performing
subpopulation are merged. Since multiple subpopulations are
helpful in maintaining population diversity, we predefine a
minimal number of subpopulations Nm. Mergence operator
is valid only when the number of subpopulations is greater
than Nm.

2) When to Split: Split operator is also contribution driven.
If the size of subpopulation i is bigger than the initial
value, which means it has been merged at least once, it is
defined as a big subpopulation. If Consi of big subpopula-
tion i decreases to the initial value 0, it will be selected as
the split subpopulation and split up. According to the defini-
tion of Consi, if the value of Consi continuously decreases, it
means subpopulation i could not provide competitive solu-
tions lately. The main reason is that the search region of
subpopulation i is not promising. For example, the search

region of current big subpopulation contains a local opti-
mum. Since the big subpopulation occupies more population
resource, it is split up and half of the population resource
is reinitialized to prevent the population resource from being
wasted.

D. Overall Process

As shown in Algorithm 2, we use the master–slave paral-
lel mode to implement the proposed DDE-AMS. For public
use, the implementation is provided online. Compared with
the traditional DDE, the additional part is the proposed adap-
tive mergence and split (AMS). Up indicates the period to
update the value of Consi. At the beginning of each loop,
the master node receives and updates the value of Consi.
According to “when to merge” and “when to split” men-
tioned in the last section, master node sends the mergence or
split signal to the corresponding subpopulations in slave nodes
for rearranging the population resource. Thus, the proposed
DDE-AMS with adaptive population resource assignment is
realized.

V. EXPERIMENTAL RESULTS

A. Experimental Setup and Benchmark Functions

In this section, experiments are carried out to evaluate the
performance of the proposed DDE-AMS. We use 20 bench-
mark functions chosen from IEEE CEC’2010 [64] special
session on large-scale global optimization and the associated
competition. These benchmark functions are classified into the
following five groups.

1) Separable functions (F1–F3).
2) Single-group m-nonseparable functions (F4–F8).
3) (n/2m) group m-nonseparable functions (F9–F13).
4) (n/m) group m-nonseparable functions (F14–F18).
5) Nonseparable functions (F19 and F20).

n is the dimensionality of the problem and m is the num-
ber of variables in each nonseparable subcomponent. n and
m are set to 1000 and 50, respectively. The characteris-
tics of these functions and MaxNFEs are briefly summarized
in Table SI of the supplementary file, available online at
http://ieeexplore.ieee.org and more properties can be found
in [64].

The parameters setting of DDE-AMS are summarized in
Table I. To be specific, the overall population size NP is set to
300; the initial number of subpopulations is set as 10 and the
minimal number of subpopulations is set as 4; Up, T , and Dr

are set as 25, 80, and 0.3, respectively; F and Cr in DE are set
as 0.5 and 0.9 according to [2] and [65]; and φ is set as 0.05.
In addition, each experiment runs 25 times independently.

Moreover, the code is written in C++. All the DDE-based
algorithms are implemented based on Open MPI (open source
high performance computing). Each subpopulation is assigned
to one core and evolves in parallel. The proposed and all the
compared algorithms are performed on a PC cluster system
(Intel 4-core i5 CPU).

In the following experiments, the proposed DDE-AMS
is compared with several state-of-the-art algorithms in
terms of various performance metrics. Furthermore, the

http://ieeexplore.ieee.org

GE et al.: DDE-AMS FOR LARGE-SCALE OPTIMIZATION 2173

Algorithm 2 Pseudo-Code of DDE-AMS Algorithm
1: procedure GLOBAL CONTROLLER (AT MASTER NODE)
2: set the generation counter g = 0 and spawn N subpopulations, each one on a different processor
3: while not termination condition do
4: if rand(0, 1) < φ then
5: receive an individual from each subpopulation
6: for each received individual do
7: send the individual to its neighbor subpopulation in the ring
8: end for
9: end if

10: if g % Up = 0 then
11: receive Consi from each subpopulation
12: update Consi for each subpopulation
13: if condition of mergence operator is met then
14: send mergence signal signal to the two corresponding subpopulations
15: end if
16: if condition of split operator is met then
17: send split signal to the corresponding subpopulation
18: end if
19: end if
20: g = g + 1
21: end while
22: end procedure
23:

24: procedure SUBPOPULATION (AT SLAVE NODE)
25: for each generation do
26: perform a DE step
27: send a copy of the best individual to the master node
28: if a migrated individual has been received then
29: replace a random individual, different from the best, by the migrated individual
30: end if
31: if g % Up = 0 then
32: send Consi to the master node
33: if a mergence signal is received by bad performing subpopulation then
34: send all the individuals to the mergence subpopulation
35: end if
36: if a mergence signal is received by good performing subpopulation then
37: receive individuals from the cleared subpopulation
38: end if
39: if a split signal is received then
40: send half of the randomly selected individuals to form a new subpopulation
41: end if
42: end if
43: end for
44: end procedure

effects of DDE-AMS components, adaptive behavior, scal-
ability, parameter sensitivity, and speedup ratios of DDE-
AMS are investigated. Each experiment is run 25 times
independently.

B. Performance Metrics

To evaluate the performance of DDE-AMS, several
performance metrics are considered and they can be classified
into the following groups.

1) Solution Quality: We use mean and standard deviation
of errors to evaluate the solution quality. The error of
a solution is defined as the difference between the final
solution and the optimal value. The optimum for each
function can be referred to [64].

2) Statistic Test: To compare the solution quality from
an statistic angle, Wilcoxon rank-sum test [66] at
a significance level 0.05 is employed to compare
the performance of two algorithms from a statistical
perspective. It is utilized to check whether there is a

2174 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 7, JULY 2018

TABLE I
PARAMETER SETTING

significant difference between two algorithms on one
function using the errors over the total runs.

3) Convergence Speed: Convergence curve is employed to
investigate the convergence speed of the algorithms. The
convergence curve of the average errors over the num-
ber of generations is used to illustrate the convergence
performance of an algorithm.

4) Running Time and Speedup Ratio: Since the proposed
DDE-AMS is implemented in parallel, running time and
speedup ratio are two important factors which should be
investigated. Speedup ratio is defined as the ratio of the
serial running time to the parallel running time.

Due to the space limit, all numerical values of the simula-
tions are presented in the supplementary file, available online
at http://ieeexplore.ieee.org.

C. Effect of Adaptive Mergence and Split

The main component of DDE-AMS is the AMS. To inves-
tigate its effectiveness, two experiments are performed in
this section. In the first part, to show the effectiveness of
AMS, six DDE-AMS algorithms with different DE mutation
strategies are implemented and compared with their corre-
sponding DDE algorithms without AMS. The DDE-AMS with
DE/best/1 mutation strategy, for example, is denoted as DDE-
AMS-best-1. These six DDE-AMS algorithms are listed as
follows.

1) DDE-AMS-best-1.
2) DDE-AMS-rand-1.
3) DDE-AMS-current-to-best.
4) DDE-AMS-best-2.
5) DDE-AMS-rand-2.
6) DDE-AMS-current-to-rand.
Tables SII and SIII of the supplementary file show the com-

parisons of experimental results where the better results are
highlighted in boldface. The performance of all the six tradi-
tional DDEs is enhanced by the proposed AMS operators. To
show the advantage of the proposed DDE-AMS algorithm in
a statistical sense, Wilcoxon rank-sum test at a significance
level 0.05 is performed. The errors for each function over 25
independent runs are used to conduct the test. As shown in
the tables, data in each cell is represented in a “−/ ≈ /+”
manner, where “−,” “≈,” and “+” denote that the algorithm
is significantly worse than, equivalent to, and better than its
corresponding traditional DDE algorithm, respectively. It is

clear that the DDE with AMS are able to obtain significantly
better results than the original versions on the majority of
functions.

Furthermore, to select the best DDE-AMS, we com-
pare DDE-AMS-best-1 with other DDE-AMS algorithms. In
Table SIV of the supplementary file, the DDE-AMS-Best-1’s
numbers of wins, ties, and loses against the other DDE-AMS
variants are measured. We could conclude that the DDE-
AMS approach using DE/best/1 could offer significantly better
performance than the others in terms of solution accuracy.
Hence, DDE-AMS-best-1 is adopted as the representative for
the rest experiments.

In the second part, considering our proposed DDE-AMS
could adaptively change the number of subpopulations dur-
ing the evolution, the effectiveness of the adaptive population
model can be investigated by comparing DDE-AMS with
traditional DDEs with different fixed number of subpopula-
tions. The DDE algorithm with ten fixed subpopulations, for
example, is denoted as DDE-10.

The experimental results obtained by these algorithms are
listed in Table SV of the supplementary file. In general, the
evolution in DDEs with smaller number of subpopulations
is relatively greedy. As a result, these DDEs outperform on
unimodal functions such as F1, F7, and F12. On the con-
trary, with a bigger number of subpopulations, DDEs evolve
with a higher population diversity and could achieve better
performance on multimodal functions such as F2, F8, and
F20. Since the population resource is adaptively arranged in
the proposed DDE-AMS algorithm, it is effective in various
search space. To show the advantage of the dynamic popu-
lation model in a statistical sense, the same significant test
is performed. It is clear that the proposed DDE-AMS could
achieve significantly better results than all the compared DDEs
on most of test functions.

D. Comparisons With State-of-the-Art DDE Variants

In this section, we compare the proposed DDE-AMS algo-
rithm with three well-known DDE variants to further reveal its
advantage. The population models of the first two DDE algo-
rithms are static while the last one is dynamic. These three
DDE variants are listed as follows and their parameters are
set according to their original papers.

1) PDE [32]: This variant adopts a modified best-random
migration strategy. With a given probability, migration is
executed. The best individual in the emigrated subpopu-
lation takes the place of a randomly selected individual
except for the best one in the immigrated subpopulation.

2) DDEM [56]: This variant makes use of two migration
selection approaches to maintain a high diversity in the
subpopulations, i.e., target individual-based migration
selection and representative individual-based migration
selection, respectively. In addition, the diversity amongst
the individuals is controlled by means of an affinity-
based replacement strategy.

3) SOUPDE [40]: In this variant, a novel operator named
shuffling is proposed, which helps randomly rearrange
the individuals over the subpopulations.

http://ieeexplore.ieee.org

GE et al.: DDE-AMS FOR LARGE-SCALE OPTIMIZATION 2175

The mean and standard deviations of the errors over 25 inde-
pendent runs for all test functions are presented in Table SVI of
the supplementary file, where the best results are highlighted
in boldface. Our proposed DDE-AMS algorithm comprehen-
sively outperforms these three in terms of solution accuracy.
DDE-AMS achieves the best results on 16 functions, which is
much higher than the figures 0, 4, and 0 of PDE, DDEM, and
SOUPDE, respectively.

To show the advantage of proposed DDE-AMS algorithm in
a statistical sense, Wilcoxon rank-sum test is performed. DDE-
AMS is significantly better than PDE, DDEM, and SOUPDE
on 16, 16, and 20 functions, while significantly worse than
PDE, DDEM, and SOUPDE on only 4, 4, and 0 functions,
respectively.

In addition, the convergence curves of four DDE algo-
rithms on six typical functions are plotted in Fig. S1 of the
supplementary file by taking the average of 25 independent
runs. F7, F12, and F19 are unimodal functions while F8,
F13, and F18 are multimodal functions. Convergence curves
of these six typical functions clearly show that DDE-AMS
converges fastest to achieve the highest solution accuracy
among the four compared algorithms. On the one side,
for unimodal functions, the proposed algorithm shows the
best convergence performance. On the other side, when
optimizing the multimodal functions, DDE-AMS exhibits
much stronger global search ability than the other three
algorithms.

E. Comparisons With State-of-the-Art DE-Based
CC Algorithms

Since CC is a famous approach to tackle large-scale opti-
mization problems, experiments are carried out to compare
DDE-AMS with three state-of-the-art DE-based CC algo-
rithms, namely, CC with random grouping (DECC-G) [24],
multilevel CC (MLCC) [25], and CC with differential group-
ing (DECC-DG) [26]. These three state-of-the-art DE-based
CC algorithms are listed as follows and their parameters are
set according to their original papers.

1) DECC-G: Random grouping decomposes a problem into
k s-dimensional subproblems, but instead of using a
static grouping, it randomly allocates the decision vari-
ables to subcomponents in every co-evolutionary cycle.
It was shown mathematically that with random group-
ing the probability of placing two interacting variables in
the same subcomponent for several cycles is reasonably
high.

2) MLCC: This algorithm designed a multilevel CC
framework for large-scale optimization problems. The
self-adapted mechanism was proposed to select a decom-
poser according to its historical performance at the start
of each cycle.

3) DECC-DG: In this algorithm, an automatic decompo-
sition strategy is proposed, called differential grouping
that can uncover the underlying interaction structure of
the decision variables and form subcomponents such
that the interdependence between them is kept to a
minimum.

In Table SVII of the supplementary file, the mean and stan-
dard deviations of the errors over 25 independent runs are
presented and the best results are highlighted in boldface.
Overall, DDE-AMS achieves the best results on 12 functions.
To show the advantage of the proposed DDE-AMS algorithm
in a statistical sense, Wilcoxon rank-sum test is performed and
result are listed in Table SVII of the supplementary file.

On closer inspection, one can find that DECC-G and
MLCC outperform DDE-AMS on all the separable functions.
However, on nearly all the nonseparable functions, DDE-AMS
could achieve better performance with the help of adaptive
population resource arrangement. For DECC-DG, with the
help of differential grouping, it outperforms on part of the non-
separable functions, namely, F5, F6, F15, and F16. On all the
separable functions and other nonseparable functions, the dif-
ferential grouping could not provide equivalent help. Overall,
DDE-AMS achieves significantly better performance than the
compared DECC-G, MLCC, and DECC-DG on most of the
functions.

In addition, Fig. S2 of the supplementary file shows the
convergence curves of four approaches on the same six typi-
cal functions. Each point on the plot is calculated by taking the
average of 25 independent runs. Take the convergence curves
DECC-DG as an example, with the help of differential group-
ing, it performs better in F7, F12, and F19 than the other two
DE-based CC algorithms. However, in F8, F13, and F18, the
search converges in early stage of evolution, which is also
because of the grouping strategy. The performance of these
DE-based CC algorithms depends a lot on the separability of
the test functions. Through the adaptive population resource
arrangement, DDE-AMS exhibits the best search performance
on all these six typical functions. To summarize, by using the
adaptive population model, the proposed DDE-AMS is a very
promising algorithm for large-scale optimization in terms of
solution accuracy and search efficiency.

F. Comparisons With Other State-of-the-Art Algorithms

In this section, experiments are carried out to compare the
proposed DDE-AMS algorithm with another five state-of-the-
art algorithms including the winner of CEC’2010, i.e., MA-
SW-Chains. These five state-of-the-art algorithms are listed as
follows.

1) MA-SW-Chains [67]: This memetic algorithm is the
top ranked algorithm in the CEC’2010 special session
and competition on large-scale global optimization. It
assigns each individual a local search intensity that
depends on its features, by chaining different local
search applications.

2) CSO [16]: This PSO variant introduces a new compet-
itive learning strategy for PSO and shows its promising
performance in handling large-scale optimization.

3) SL-PSO [68]: SL-PSO is another PSO variant for large-
scale optimization, which is embedded by a social
learning strategy.

4) DMS-L-PSO [69]: DMS-L-PSO algorithm is a
multiswarm PSO variant, where multiple swarms are
dynamically formed during each generation.

2176 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 7, JULY 2018

5) CCPSO2 [70]: CCPSO2 is a PSO-based CC algorithm,
in which the grouping method is random grouping and
the group size is randomly selected from a pool.

In Table SVIII of the supplementary file, the experimen-
tal results over 25 independent runs are presented and the
best results are highlighted in boldface. It can be seen that
our proposed DDE-AMS comprehensively outperforms these
five state-of-the-art algorithms. DDE-AMS achieves the best
results on eight functions, which is much higher than the fig-
ures 5, 4, 1, 1, and 1 of MA-SW-Chains, CSO, SL-PSO,
DMS-L-PSO, and CCPSO2, respectively.

In addition, we make use of the Wilcoxon rank-sum test
to evaluate the statistical significance of the results. Overall,
DDE-AMS achieves significantly better results on more func-
tions. It is significantly better than MA-SW-Chains, CSO,
SL-PSO, DMS-L-PSO, and CCPSO2 on 10, 13, 13, 15, and 17
functions, Conversely, MA-SW-Chains, CSO, SL-PSO, DMS-
L-PSO, and CCPSO2 surpass DDE-AMS on 8, 7, 6, 5, and 3
functions, respectively.

To sum up, our proposed DDE-AMS remains very compet-
itive with these five state-of-the-art algorithms for large-scale
optimization.

G. Scalability to Higher Dimensionality

To further evaluate the scalability of DDE-AMS to higher
dimensionality, experiments are conducted on DDE-AMS for
optimizing 3000-D and 5000-D by extending the dimensions
of test functions in the CEC’2010 to 3000 and 5000.

The proposed DDE-AMS algorithm is compared with three
state-of-the-art DE-based CC algorithms. Here, state-of-the-art
DE-based CC algorithms are chosen because these algorithms
are based on the divide-and-conquer strategy, which has been
proven to have good scalability.

Tables SIX and SX of the supplementary file exhibit the
comparison results on 3000-D and 5000-D functions, respec-
tively. The mean and standard deviations of the errors over
25 independent runs are presented with highlighted best mean
values. For most test functions, the performance of DDE-AMS
remains superior to that of the compared CC algorithms. Our
proposed DDE-AMS achieves the best results on 13 functions
with 3000-D and 14 functions with 5000-D, respectively.

Wilcoxon rank-sum test is also performed to show the
advantage of DDE-AMS algorithm in a statistical sense. On
the 3000-D functions, DDE-AMS is significantly better than
DECC-G, MLCC, and DECC-DG on 16, 17, and 16 functions,
respectively. On the 5000-D functions, DDE-AMS signifi-
cantly outperforms the compared CC algorithms on 16, 17,
and 17 functions.

On closer inspection, we can find that DECC-G and MLCC
outperform our proposed algorithm on all three separable func-
tions due to their divide-and-conquer strategy. However, on all
the nonseparable functions expect F10, DDE-AMS achieves
the best performance. For DECC-DG, it cannot obtain any
solution (denoted by N/A in Tables SIX and SX of the sup-
plementary file) on all the three separable functions and two
nonseparable functions (5000-D F5 and 5000-D F6). This is
because the differential grouping strategy of DECC-DG costs

more evaluations than the predefined maximum number of
evaluations.

In summary, this series of experiments demonstrate the good
scalability of our proposed DDE-AMS algorithm to higher
dimensionality.

H. Effect of Adaptive Population Model on Existing
Well-Known DDE Variants

In this section, experiments are carried out to verify the
effectiveness of the proposed adaptive population model on
DDE variants with static population models, namely, PDE [32]
and DDEM [56]. The algorithm named SOUPDE [40] men-
tioned above is not included here, because it has its own
dynamic population model. Two algorithms, namely, PDE-
AMS and DDEM-AMS, are implemented by embedding the
proposed AMS into the corresponding DDE variants. The
AMS parameters are set according to DDE-AMS and the other
parameters of two algorithms are set according to their original
papers.

For each approach, 25 independent runs are carried out.
Table SXI of the supplementary file shows the results and the
better results are marked in bold. It can be observed that, with
the help of AMS, the performance of both PDE and DDEM
algorithms is enhanced. PDE-AMS is significantly better than
PDE on all the 20 test functions. DDEM-AMS could achieve
significantly better results in 19 functions, while significantly
worse than DDEM on only one function. To sum up, our
proposed adaptive population model is effective for these two
DDE variants with static population model.

I. Adaptive Arrangement of Population Resource

Through observing the variation of subpopulation number
during the evolution, the adaptive population resource arrange-
ment of DDE-AMS is investigated. The variation on three
typical unimodal functions (F1, F12, and F19) and three typical
multimodal functions (F5, F11, and F16) is plotted in Fig. S3 of
the supplementary file. In the figure, the x-axis represents the
number of generations and the y-axis represents the number
of subpopulations.

According to the Fig. S3 of the supplementary file, for the
three unimodal functions, the number of subpopulations mono-
tonically decreases. This is because the subpopulation near
the global optimum could continuously provide competitive
solutions and obtain more individuals from the bad perform-
ing subpopulations. In this way, the population resource is
attracted by the best optimum individual, which is beneficial
for the unimodal functions. The variation is quite different
on the three multimodal functions. Mergence is also applied
on the best performing subpopulations. However, these best
performing subpopulations might be trapped in local optima
and could not continuously provide competitive solutions. In
this case, some of the merged subpopulations are split. With
the help of adaptive contribution-based strategy, mergence and
split perform alternative to enhance the search efficiency at the
promising search region. Such kind of population arrangement
is effective for the optimization of multimodal functions.

GE et al.: DDE-AMS FOR LARGE-SCALE OPTIMIZATION 2177

J. Sensitivity Analysis

In DDE-AMS, the population resource is adaptively
arranged with the help of contribution-based strategy. In this
case, the performance of DDE-AMS may be sensitive to the
selection of parameters in contribution-based strategy, namely,
update period Up, threshold T , decay rate Dr, and migration
probability φ. If the update period is too low, due to the cost of
communication between subpopulations, the running time of
DDE-AMS is long. On the contrary, if the evolutionary status
of subpopulations could not be updated in time, the execu-
tion of mergence or split might be delayed. In this case, the
effectiveness of population arrangement could not be main-
tained. In addition, if the threshold or decay rate is too low,
merge is frequently applied and population resource cannot be
assigned in time to the most promising search region. If the
threshold or decay rate is too high, the condition of mergence
operator is hard to satisfy and thus the population resource
could not be allocated to the promising search region. If the
migration probability is too low, there would be little infor-
mation exchanged between subpopulations. On the contrary, if
the migration probability is too high, migration is frequently
applied and the population diversity would be low.

To test the sensitivity of these four parameters, we varied
one parameter at a time while keeping the other two parame-
ters fixed as the values summarized in Table I. Table SXII of
the supplementary file shows the results of the sensitivity tests.
We performed 25 independent runs for every set of parame-
ters. Note that Wilcoxon rank-sum test with a 0.05 significance
level is additionally performed. The labels “wins,” “ties,” and
“loses” indicates whether the corresponding parameters is,
respectively, better than, equal to, or worse than the results
obtained by the compared versions. The results presented in
Table SXII suggest that although tuning all of these parameters
affects the quality of the obtained results, these differences are
not significant. In addition, the chosen combination of these
four parameters in our DDE-AMS, namely, Up = 25, T = 80,
Dr = 0.3, and φ = 0.05 could achieve the best performance.

Also, performance of DDE-AMS may be sensitive to the
selected overall population size NP and initial number of sub-
populations Ni. If the overall population size is large and the
initial number of subpopulations is small, which means the
best individual is selected from a large group of individuals,
the evolution would be relatively greedy. On the contrary, if
the best individual is selected from a small group of indi-
viduals and the initial number of subpopulations is large, the
evolution would be relatively diverse. In order to investigate
the sensitivity of DDE-AMS to the combination of the over-
all population size and the initial number of subpopulations,
we compare DDE-AMS with different values of these two
parameters.

Each combination of NP and Ni runs on all the 20 test func-
tions and the ranks are averaged. The average ranks achieved
by 12 combinations are plotted in Fig. S4 of the supplemen-
tary file. Through comparing these average ranks, we could
find that the average ranks of approaches based on five initial
subpopulations are high. This is mainly because of the insuffi-
cient of population diversity in the early stage of optimization.
However, the ranks obtained by other combinations do not

make big differences. To sum up, the performance of DDE-
AMS is not so sensitive to the overall population size and the
initial number of subpopulations. Overall, a population size of
300 and initially dividing the population into 10 subpopula-
tions is a suitable combination to achieve the lowest average
rank.

K. Speedup Ratio

One of the advantages of DDE is the easy parallel imple-
mentation. Since each subpopulation in DDE can evolve
independently, our proposed DDE-AMS is implemented in
parallel and each subpopulation is assigned to a computing
node. Thus, the initial number of subpopulations affects the
parallel granularity of DDE-AMS during the evolution.

The serial running time of DDE-AMS with one subpop-
ulation and parallel running time of DDE-AMS algorithms
with different numbers of initial subpopulations (2, 5, 10,
15, 20, and 30) are first recorded. Note that the overall pop-
ulation sizes of these algorithms are uniformly set to 300.
Then, speedup ratios achieved by DDE-AMS with different
initial numbers of subpopulations are calculated and reported
in Table SXIII of the supplementary file. It can be seen that
the speedup ratios vary with the initial number of subpopula-
tions and the test function. As we expect, the DDE-AMS with
larger initial number of subpopulations could achieve higher
speedup ratios on most of the test functions.

Speedup ratio is a metric to measure run time performance
of a parallel algorithm, and it is sensitive to the computation
cost of test function. Fig. S5 of the supplementary file is plot-
ted to further visualize the variation tendency of the speedup
ratios on six typical functions F3, F6, F10, F11, F15, and F16
with increasing computation costs. It can be observed that the
speedup ratios consistently grows with the increase of the ini-
tial number of subpopulations on all six typical functions. On
closer inspection, we can find that the increase of speedup
ratio slows down when the initial number of subpopulations
increases from 20 to 30, this can be due to the following
reason. With the increase of number of nodes, the parallel com-
putation cost reduces while the communication cost between
different nodes increases. When the number of nodes increases
to a certain value, the increase amount of communication cost
may exceed the reduction of computation cost. In this case,
the parallel running time may increase in reverse and cause
the decrease of speedup ratio. For this experiment, when the
number of nodes increases from 20 to 30, the increase rate of
communication cost is higher than the decrease rate of com-
putation cost. Thus, the increase of speedup ratio slows down.
However, the speedup ratio still keeps growing in the interval
between 20 and 30.

To sum up, our proposed DDE-AMS could achieve a high
speedup ratio due to the good balance between computation
and communication overhead.

VI. CONCLUSION

In this paper, a novel DDE algorithm with adaptive
population model named DDE-AMS has been proposed
for large-scale optimization. Two novel operators, namely,

2178 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 7, JULY 2018

mergence and split are designed and performed according
to the performance of the subpopulations. With the help
of mergence, the recently best performing subpopulation is
rewarded by more population resource. If the merged subpop-
ulation could not continuously provide competitive solutions,
split is applied to release the redundant population resource.
Driven by the contribution-based adaptive strategy, adaptive
population resource arrangement is achieved.

Numerical experiments have been conducted on 20 bench-
mark large-scale optimization functions. The experimental
results show that the performance of DDE is enhanced by the
adaptive arrangement of population resource. Moreover, com-
parisons have been made against several state-of-the-art DDE
algorithms and DE-based CC algorithms. It can be concluded
that the proposed DDE-AMS generally outperforms the com-
petitors in terms of solution quality, convergence speed, and
statistical tests. Furthermore, mergence, split, and contribution-
based adaptive strategy have been investigated and shown to
be effective. The parameters of DDE-AMS are not sensitive
and speedup ratio achieved by DDE-AMS is relatively high.

For future work, we will apply the DDE-AMS algorithm to
real-world large-scale optimization applications. In addition,
we can incorporate the proposed adaptive population model
into other DEAs to further verify its effectiveness.

REFERENCES

[1] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution:
A Practical Approach to Global Optimization. Berlin, Germany:
Springer-Verlag, 2005.

[2] R. Storn and K. Price, “Differential evolution—A simple and effi-
cient heuristic for global optimization over continuous spaces,” J. Glob.
Optim., vol. 11, no. 4, pp. 341–359, 1997.

[3] J.-H. Zhong et al., “A differential evolution algorithm with dual popula-
tions for solving periodic railway timetable scheduling problem,” IEEE
Trans. Evol. Comput., vol. 17, no. 4, pp. 512–527, Aug. 2013.

[4] W.-J. Yu et al., “Differential evolution with two-level parameter
adaptation,” IEEE Trans. Cybern., vol. 44, no. 7, pp. 1080–1099,
Jul. 2014.

[5] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. Int. Symp. Micro Mach. Human Sci., vol. 1. Nagoya,
Japan, 1995, pp. 39–43.

[6] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proc. IEEE Int. Conf. Neural Netw., Perth, WA, Australia, 1995,
pp. 1942–1948.

[7] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by
a colony of cooperating agents,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 26, no. 1, pp. 29–41, Feb. 1996.

[8] W.-J. Yu, Z.-H. Zhan, and J. Zhang, “Artificial bee colony algorithm
with an adaptive greedy position update strategy,” Soft Comput., to be
published, doi: 10.1007/s00500-016-2334-4.

[9] C.-F. Juang, T.-L. Jeng, and Y.-C. Chang, “An interpretable fuzzy system
learned through online rule generation and multiobjective ACO with a
mobile robot control application,” IEEE Trans. Cybern., vol. 46, no. 12,
pp. 2706–2718, Dec. 2016.

[10] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimization
for feature selection in classification: A multi-objective approach,” IEEE
Trans. Cybern., vol. 43, no. 6, pp. 1656–1671, Dec. 2013.

[11] N. García-Pedrajas, C. Hervás-Martínez, and J. Muñoz-Pérez,
“COVNET: A cooperative coevolutionary model for evolving artificial
neural networks,” IEEE Trans. Neural Netw., vol. 14, no. 3, pp. 575–596,
May 2003.

[12] S. Jiang and S. Yang, “An improved multiobjective optimization evolu-
tionary algorithm based on decomposition for complex Pareto fronts,”
IEEE Trans. Cybern., vol. 46, no. 2, pp. 421–437, Feb. 2016.

[13] Y.-J. Gong, Y.-F. Ge, J.-J. Li, J. Zhang, and W. H. Ip, “A splicing-
driven memetic algorithm for reconstructing cross-cut shredded text
documents,” Appl. Soft Comput., vol. 45, pp. 163–172, Aug. 2016.

[14] W.-J. Yu, J.-Z. Li, W.-N. Chen, and J. Zhang, “A parallel double-level
multiobjective evolutionary algorithm for robust optimization,” Appl.
Soft Comput., vol. 59, pp. 258–275, Oct. 2017.

[15] T. Weise, R. Chiong, and K. Tang, “Evolutionary optimization: Pitfalls
and booby traps,” J. Comput. Sci. Technol., vol. 27, no. 5, pp. 907–936,
2012.

[16] R. Cheng and Y. Jin, “A competitive swarm optimizer for large
scale optimization,” IEEE Trans. Cybern., vol. 45, no. 2, pp. 191–204,
Feb. 2015.

[17] Q. Yang et al., “Segment-based predominant learning swarm optimizer
for large-scale optimization,” IEEE Trans. Cybern., to be published,
doi: 10.1109/TCYB.2016.2616170.

[18] W. Chu, X. Gao, and S. Sorooshian, “A new evolutionary search strat-
egy for global optimization of high-dimensional problems,” Inf. Sci.,
vol. 181, no. 22, pp. 4909–4927, 2011.

[19] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “Test problems for large-
scale multiobjective and many-objective optimization,” IEEE Trans.
Cybern., to be published, doi: 10.1109/TCYB.2016.2600577.

[20] Y.-F. Zhang and H.-D. Chiang, “A novel consensus-based parti-
cle swarm optimization-assisted trust-tech methodology for large-
scale global optimization,” IEEE Trans. Cybern., to be published,
doi: 10.1109/TCYB.2016.2577587.

[21] D. Molina, M. Lozano, A. M. Sánchez, and F. Herrera, “Memetic
algorithms based on local search chains for large scale continuous opti-
misation problems: MA-SSW-Chains,” Soft Comput., vol. 15, no. 11,
pp. 2201–2220, 2011.

[22] L.-Y. Tseng and C. Chen, “Multiple trajectory search for large scale
global optimization,” in Proc. IEEE Congr. Evol. Comput., 2008,
pp. 3052–3059.

[23] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach
to function optimization,” in Parallel Problem Solving From Nature—
PPSN III. Berlin, Germany: Springer-Verlag, 1994, pp. 249–257.

[24] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary opti-
mization using cooperative coevolution,” Inf. Sci., vol. 178, no. 15,
pp. 2985–2999, 2008.

[25] Z. Yang, K. Tang, and X. Yao, “Multilevel cooperative coevolution for
large scale optimization,” in Proc. IEEE Congr. Evol. Comput., 2008,
pp. 1663–1670.

[26] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution
with differential grouping for large scale optimization,” IEEE Trans.
Evol. Comput., vol. 18, no. 3, pp. 378–393, Jun. 2014.

[27] B. Kazimipour, X. Li, and A. K. Qin, “Effects of population initialization
on differential evolution for large scale optimization,” in Proc. IEEE
Congr. Evol. Comput., Beijing, China, 2014, pp. 2404–2411.

[28] H. Wang, Z. Wu, and S. Rahnamayan, “Enhanced opposition-based dif-
ferential evolution for solving high-dimensional continuous optimization
problems,” Soft Comput., vol. 15, no. 11, pp. 2127–2140, 2011.

[29] Z. Yang, K. Tang, and X. Yao, “Scalability of generalized adaptive differ-
ential evolution for large-scale continuous optimization,” Soft Comput.,
vol. 15, no. 11, pp. 2141–2155, 2011.

[30] A. Caponio, A. V. Kononova, and F. Neri, “Differential evolution with
scale factor local search for large scale problems,” in Computational
Intelligence in Expensive Optimization Problems. Berlin, Germany:
Springer-Verlag, 2010, pp. 297–323.

[31] S.-Z. Zhao, P. N. Suganthan, and S. Das, “Self-adaptive differential
evolution with multi-trajectory search for large-scale optimization,” Soft
Comput., vol. 15, no. 11, pp. 2175–2185, 2011.

[32] D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M. N. Vrahatis,
“Parallel differential evolution,” in Proc. IEEE Congr. Evol. Comput.,
vol. 2. Portland, OR, USA, 2004, pp. 2023–2029.

[33] M. Weber, F. Neri, and V. Tirronen, “A study on scale factor in dis-
tributed differential evolution,” Inf. Sci., vol. 181, no. 12, pp. 2488–2511,
2011.

[34] M. Weber, V. Tirronen, and F. Neri, “Scale factor inheritance mecha-
nism in distributed differential evolution,” Soft Comput., vol. 14, no. 11,
pp. 1187–1207, 2010.

[35] D. Zaharie and D. Petcu, “Parallel implementation of multi-population
differential evolution,” in Proc. 2nd Workshop Concurrent Inf. Process.
Comput., Timişoara, Romania, 2003, pp. 223–232.

[36] I. De Falco, A. D. Cioppa, D. Maisto, U. Scafuri, and E. Tarantino,
“Satellite image registration by distributed differential evolution,”
in Applications of Evolutionary Computing. Berlin, Germany:
Springer-Verlag, 2007, pp. 251–260.

[37] I. De Falco, U. Scafuri, E. Tarantino, and A. D. Cioppa, “A distributed
differential evolution approach for mapping in a grid environment,” in
Proc. IEEE Int. Conf. Parallel Distrib. Netw. Based Process., Naples,
Italy, 2007, pp. 442–449.

GE et al.: DDE-AMS FOR LARGE-SCALE OPTIMIZATION 2179

[38] Z. V. Hendershot, “A differential evolution algorithm for automatically
discovering multiple global optima in multidimensional, discontinuous
spaces.” in Proc. MAICS, Chicago, IL, USA, 2004, pp. 92–97.

[39] M. Weber, F. Neri, and V. Tirronen, “Distributed differential evolu-
tion with explorative–exploitative population families,” Genet. Program.
Evol. Mach., vol. 10, no. 4, pp. 343–371, 2009.

[40] M. Weber, F. Neri, and V. Tirronen, “Shuffle or update parallel differen-
tial evolution for large-scale optimization,” Soft Comput., vol. 15, no. 11,
pp. 2089–2107, 2011.

[41] G. Wu, R. Mallipeddi, P. N. Suganthan, R. Wang, and H. Chen,
“Differential evolution with multi-population based ensemble of muta-
tion strategies,” Inf. Sci., vol. 329, pp. 329–345, Feb. 2016.

[42] A. Zamuda, J. Brest, and E. Mezura-Montes, “Structured population
size reduction differential evolution with multiple mutation strategies
on CEC 2013 real parameter optimization,” in Proc. IEEE Congr. Evol.
Comput., Cancún, Mexico, 2013, pp. 1925–1931.

[43] F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, Jun. 2004.

[44] M. N. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative co-evolution
for large scale optimization through more frequent random grouping,”
in Proc. IEEE Congr. Evol. Comput., Barcelona, Spain, 2010, pp. 1–8.

[45] Z. Yang, J. Zhang, K. Tang, X. Yao, and A. C. Sanderson, “An adaptive
coevolutionary differential evolution algorithm for large-scale optimiza-
tion,” in Proc. IEEE Congr. Evol. Comput., Trondheim, Norway, 2009,
pp. 102–109.

[46] M. N. Omidvar, X. Li, and X. Yao, “Smart use of computational
resources based on contribution for cooperative co-evolutionary algo-
rithms,” in Proc. Conf. Genet. Evol. Comput., Dublin, Ireland, 2011,
pp. 1115–1122.

[47] H. K. Singh and T. Ray, “Divide and conquer in coevolution: A difficult
balancing act,” in Agent-Based Evolutionary Search. Berlin, Germany:
Springer-Verlag, 2010, pp. 117–138.

[48] A. LaTorre, S. Muelas, and J.-M. Peña, “A comprehensive compari-
son of large scale global optimizers,” Inf. Sci., vol. 316, pp. 517–549,
Sep. 2015.

[49] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, “Metaheuristics in large-
scale global continues optimization: A survey,” Inf. Sci., vol. 295,
pp. 407–428, Feb. 2015.

[50] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945–958, Oct. 2009.

[51] A. LaTorre, S. Muelas, and J.-M. Peña, “A MOS-based dynamic
memetic differential evolution algorithm for continuous optimization:
A scalability test,” Soft Comput., vol. 15, no. 11, pp. 2187–2199, 2011.

[52] K. N. Kozlov and A. M. Samsonov, “New migration scheme for parallel
differential evolution,” in Proc. Int. Conf. Bioinformat. Genome Regul.
Struct., 2006, pp. 141–144.

[53] J. Apolloni, G. Leguizamón, J. García-Nieto, and E. Alba, “Island
based distributed differential evolution: An experimental study on hybrid
testbeds,” in Proc. IEEE Int. Conf. Hybrid Intell. Syst., Barcelona, Spain,
2008, pp. 696–701.

[54] I. De Falco, A. D. Cioppa, D. Maisto, U. Scafuri, and E. Tarantino,
“Biological invasion–inspired migration in distributed evolutionary algo-
rithms,” Inf. Sci., vol. 207, pp. 50–65, Nov. 2012.

[55] D. Izzo, M. Ruciński, and C. Ampatzis, “Parallel global optimisation
meta-heuristics using an asynchronous island-model,” in Proc. IEEE
Congr. Evol. Comput., Trondheim, Norway, 2009, pp. 2301–2308.

[56] J. Cheng, G. Zhang, and F. Neri, “Enhancing distributed differential evo-
lution with multicultural migration for global numerical optimization,”
Inf. Sci., vol. 247, pp. 72–93, Oct. 2013.

[57] C. Zhang, J. Chen, and B. Xin, “Distributed memetic differential evo-
lution with the synergy of Lamarckian and Baldwinian learning,” Appl.
Soft Comput., vol. 13, no. 5, pp. 2947–2959, 2013.

[58] G. Jeyakumar and C. S. Velayutham, “Distributed heterogeneous mix-
ing of differential and dynamic differential evolution variants for
unconstrained global optimization,” Soft Comput., vol. 18, no. 10,
pp. 1949–1965, 2014.

[59] S. Thangavelu and C. S. Velayutham, “An investigation on mixing het-
erogeneous differential evolution variants in a distributed framework,”
Int. J. Bio Inspired Comput., vol. 7, no. 5, pp. 307–320, 2015.

[60] L. Singh and S. Kumar, “Parallel evolutionary asymmetric subsethood
product fuzzy-neural inference system: An island model approach,”
in Proc. Int. Conf. Comput. Theory Appl., Kolkata, India, 2007,
pp. 282–286.

[61] J. Apolloni, J. García-Nieto, E. Alba, and G. Leguizamón, “Empirical
evaluation of distributed differential evolution on standard benchmarks,”
Appl. Math. Comput., vol. 236, pp. 351–366, Jun. 2014.

[62] D. R. Penas, J. R. Banga, P. González, and R. Doallo, “Enhanced parallel
differential evolution algorithm for problems in computational systems
biology,” Appl. Soft Comput., vol. 33, pp. 86–99, Aug. 2015.

[63] A. Zamuda and J. Brest, “Population reduction differential evolu-
tion with multiple mutation strategies in real world industry chal-
lenges,” in Swarm and Evolutionary Computation. Berlin, Germany:
Springer-Verlag, 2012, pp. 154–161.

[64] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Benchmark
functions for the CEC’2010 special session and competition on large
scale global optimization,” Nat. Inspired Comput. Appl. Lab., Univ. Sci.
Technol. China, Hefei, China, Tech. Rep., 2009. [Online]. Available:
http://titan.csit.rmit.edu.au/∼e46507/publications/lsgo-cec10.pdf

[65] J. Ronkkonen, S. Kukkonen, and K. V. Price, “Real-parameter optimiza-
tion with differential evolution,” in Proc. IEEE Congr. Evol. Comput.,
Edinburgh, U.K., 2005, pp. 506–513.

[66] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,” Swarm Evol. Comput.,
vol. 1, no. 1, pp. 3–18, 2011.

[67] D. Molina, M. Lozano, and F. Herrera, “MA-SW-Chains: Memetic algo-
rithm based on local search chains for large scale continuous global
optimization,” in Proc. IEEE Congr. Evol. Comput., Barcelona, Spain,
2010, pp. 1–8.

[68] R. Cheng and Y. Jin, “A social learning particle swarm optimization
algorithm for scalable optimization,” Inf. Sci., vol. 291, pp. 43–60,
Jan. 2015.

[69] S.-Z. Zhao, J. J. Liang, P. N. Suganthan, and M. F. Tasgetiren, “Dynamic
multi-swarm particle swarm optimizer with local search for large scale
global optimization,” in Proc. IEEE Congr. Evol. Comput., Hong Kong,
2008, pp. 3845–3852.

[70] X. Li and X. Yao, “Cooperatively coevolving particle swarms for
large scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2,
pp. 210–224, Apr. 2012.

Yong-Feng Ge (S’16) received the bachelor’s degree
in software engineering from Sun Yat-sen University,
Guangzhou, China, in 2015, where he is currently
pursuing the M.S. degree.

His current research interests include evolution-
ary computation algorithms and their applications on
real-world problems, large-scale optimization algo-
rithms, and distributed evolutionary algorithms and
their applications on real-world problems.

Wei-Jie Yu (S’10–M’14) received the bachelor’s
and Ph.D. degrees from Sun Yat-sen University,
Guangzhou, China, in 2009 and 2014, respectively.

He is currently a Lecturer with the School of
Information Management, Sun Yat-sen University.
His current research interests include computational
intelligence and its applications on intelligent infor-
mation processing, big data, and cloud computing.

Ying Lin (M’12) received the Ph.D. degree in
computer applied technology from Sun Yat-sen
University, Guangzhou, China, in 2012.

She is currently an Assistant Professor with the
Department of Psychology, Sun Yat-sen University.
Her current research interests include computational
intelligence and its applications in network analysis
and cognitive diagnosis.

http://titan.csit.rmit.edu.au/~e46507/publications/lsgo-cec10.pdf

2180 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 7, JULY 2018

Yue-Jiao Gong (M’15) received the B.S. and Ph.D.
degrees in computer science from Sun Yat-sen
University, Guangzhou, China, in 2010 and 2014,
respectively.

From 2015 to 2016, she was a Post-Doctoral
Research Fellow with the Department of Computer
and Information Science, University of Macau,
Macau, China. She is currently an Associate
Professor with the School of Computer Science and
Engineering, South China University of Technology,
Guangzhou. Her current research interests include

evolutionary computation and machine learning methods, as well as their
applications to big data and intelligent transportation scheduling. She has
published over 50 papers in the above areas.

Dr. Gong currently serves as a Reviewer for the IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION, the IEEE TRANSACTIONS ON NEURAL

NETWORK AND LEARNING SYSTEMS, and the IEEE TRANSACTIONS ON

CYBERNETICS.

Zhi-Hui Zhan (S’09–M’13) received the bachelor’s
and Ph.D. degrees from the Department of Computer
Science, Sun Yat-sen University, Guangzhou, China,
in 2007 and 2013, respectively.

He is currently a Professor with the School of
Computer Science and Engineering, South China
University of Technology, Guangzhou. His current
research interests include evolutionary computation
algorithms, swarm intelligence algorithms, and their
applications in real-world problems, and in environ-
ments of cloud computing and big data.

Dr. Zhan was a recipient of the IEEE Computational Intelligence Society
Outstanding Ph.D. Dissertation, the China Computer Federation Outstanding
Ph.D. Dissertation, the Natural Science Foundation for Distinguished Young
Scientists of Guangdong Province, China, in 2014, the Pearl River New Star
in Science and Technology in 2015, and the Youth Talent in Science and
Technology Innovation of Guangdong Province, China, in 2016. He is also
appointed as the Pearl River Scholar Young Professor in 2016. He is listed
as one of the Most Cited Chinese Researchers in Computer Science.

Wei-Neng Chen (S’07–M’12) received the bache-
lor’s and Ph.D. degrees from Sun Yat-sen University,
Guangzhou, China, in 2006 and 2012, respectively.

He is currently a Professor with the School of
Computer Science and Engineering, South China
University of Technology, Guangzhou. He has pub-
lished over 70 papers in international journals and
conferences. His current research interests include
swarm intelligence algorithms and their applications
on cloud computing, operations research, and soft-
ware engineering.

Dr. Chen was a recipient of the IEEE Computational Intelligence Society
Outstanding Dissertation Award for his doctoral thesis in 2016, and the
National Science Fund for Excellent Young Scholars in 2016.

Jun Zhang (M’02–SM’08–F’16) received the Ph.D.
degree in electrical engineering from the City
University of Hong Kong, Hong Kong, in 2002.

He is currently a Professor with the South
China University of Technology, Guangzhou, China.
His current research interests include computa-
tional intelligence, cloud computing, wireless sensor
networks, operations research, and power electronic
circuits. He has authored seven research books and
book chapters, and over 50 IEEE TRANSACTIONS

papers in the above areas.
Prof. Zhang was a recipient of the National Science Fund for Distinguished

Young Scholars in 2011, and the First-Grade Award in Natural Science
Research from the Ministry of Education, China, in 2009. He was also
appointed as the Changjiang Chair Professor in 2013. He is currently
an Associate Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,
and the IEEE TRANSACTIONS ON CYBERNETICS. He is the Founding
and Current Chair of the IEEE Guangzhou Subsection, the IEEE Beijing
(Guangzhou) Section Computational Intelligence Society Chapters, and ACM
Guangzhou Chapter.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

