
4148 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 12, DECEMBER 2017

Cascade Learning by Optimally Partitioning
Yanwei Pang, Senior Member, IEEE, Jiale Cao, and Xuelong Li, Fellow, IEEE

Abstract—Cascaded AdaBoost classifier is a well-known
efficient object detection algorithm. The cascade structure has
many parameters to be determined. Most of existing cascade
learning algorithms are designed by assigning detection rate and
false positive rate to each stage either dynamically or statically.
Their objective functions are not directly related to minimum
computation cost. These algorithms are not guaranteed to have
optimal solution in the sense of minimizing computation cost. On
the assumption that a strong classifier is given, in this paper, we
propose an optimal cascade learning algorithm (iCascade) which
iteratively partitions the strong classifiers into two parts until
predefined number of stages are generated. iCascade searches the
optimal partition point ri of each stage by directly minimizing the
computation cost of the cascade. Theorems are provided to guar-
antee the existence of the unique optimal solution. Theorems are
also given for the proposed efficient algorithm of searching opti-
mal parameters ri. Once a new stage is added, the parameter ri
for each stage decreases gradually as iteration proceeds, which
we call decreasing phenomenon. Moreover, with the goal of min-
imizing computation cost, we develop an effective algorithm for
setting the optimal threshold of each stage. In addition, we prove
in theory why more new weak classifiers in the current stage are
required compared to that of the previous stage. Experimental
results on face detection and pedestrian detection demonstrate
the effectiveness and efficiency of the proposed algorithm.

Index Terms—AdaBoost, cascade learning, classifier design,
object detection.

I. INTRODUCTION

THE EFFICIENCY of object detection is determined by
the types of features [1], the manner of the features to

be extracted, and the structure of the classifiers [2]–[8]. This
paper is concentrated on the classifier structure. AdaBoost
classifiers with cascade structure have greatly contributed
to real-time face detection [9]–[13] and pedestrian detec-
tion [14]–[18]. With cascade structure, a large fraction of
subwindows can be rejected at early stages with a small

Manuscript received August 21, 2015; revised April 10, 2016 and
June 6, 2016; accepted July 25, 2016. Date of publication September 12, 2016;
date of current version November 15, 2017. This work was supported in part
by the National Basic Research Program of China (973 Program) under Grant
2014CB340400, and in part by the National Natural Science Foundation of
China under Grant 61632081. This paper was recommended by Associate
Editor Q. Ji.

Y. Pang and J. Cao are with the School of Electronic Information
Engineering, Tianjin University, Tianjin 300072, China (e-mail:
pyw@tju.edu.cn; connor@tju.edu.cn).

X. Li is with the Center for Optical Imagery Analysis and Learning, State
Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics
and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
(e-mail: xuelong_li@opt.ac.cn).

This paper has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.org provided by the authors. This includes a PDF file
that contains the proof of several theorems of the paper. The total size of the
file is 70 KB.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2016.2601438

number of weak classifiers. Only the subwindows of true pos-
itives and those similar to true positives can arrive at later
stages. However, how to design an optimal cascade structure
is an open problem which is the focus of this paper.

Cascade learning is the process of determining the param-
eters of a cascade in order to improve the efficiency of
AdaBoost classifier. The cascade parameters mainly include
the number of stages, the number of weak classifiers in each
stage, and the thresholds for each stage. However, most of
existing cascade learning methods are not directly formu-
lated as a constrained optimization problem. Though more
efficient than the noncascade one, they are not guaranteed
to be the best in the sense of maximizing detection effi-
ciency under the acceptable constraints. Usually, there are
many hand-crafted parameters which are chosen according to
one’s intuition and experience. The performance of the cascade
AdaBoost relies on one’s insight into the cascade structure.
As Saberian and Vasconcelos [19] mentioned, the design of
a good cascade structure can even take up several weeks. In
addition, some useful intuitions are not justified in theory.

To overcome the above problems, we formulate cascade
learning as a process of learning the parameters of a cascade
by directly minimizing the computation cost with some certain
constraints. Instead of jointly seeking the optimal number of
weak classifiers of each stage and the optimal threshold for
each stage, our method consists of two successive steps.

1) By directly minimizing the computation cost, we find
the optimal partition point of each stage by using the
conservative thresholds which guarantee 100% detection
rate of training positives (see Sections III–V-A and V-B).
Based on the optimal partition point of each stage, the
number of weak classifiers in each stage can be obtained.

2) Based on the learned optimal partition point of each
stage and the single predefined target detection rate
(e.g., 0.98), we find the optimal stage thresholds by
computing the derivative of the computational cost with
respect to detection rate (see Section V-C).

In summary, the contributions and characteristics of this
paper are as follows.

1) We transform the strong classifier of regular AdaBoost
into an optimal cascade structure. That is, the result of
regular AdaBoost is the input of our cascade learning
algorithm. In the sense of detection rate and rejection
rate, we use cascade AdaBoost to approach its non-
cascade one (i.e., regular AdaBoost) with minimized
computation cost.

2) The objective function of our method is just the compu-
tation cost of a cascade. In contrast, most of the existing
algorithms are designed by empirically assigning detec-
tion rate and false positive rate to each stage either

2168-2267 c© 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:pyw@tju.edu.cn
mailto:connor@tju.edu.cn
mailto:xuelong_li@opt.ac.cn
http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

PANG et al.: CASCADE LEARNING BY OPTIMALLY PARTITIONING 4149

Algorithm 1 Two-Stage Cascade
1: if HL(x, r)+max HR(x, r) ≤ t,
2: then l(x) = −1,
3: else (i.e., HL(x, r)+max HR(x, r) > t)
4: if HL(x, r)+ HR(x, r) ≤ t
5: l(x) = −1,
6: else (i.e., HL(x, r)+ HR(x, r) > t)
7: l(x) = 1.

Fig. 1. Proposed method: two-stage cascade AdaBoost with a given r.

dynamically or statically. Existence and uniqueness of
the optimal solution are analytically proved.

3) To design a two-stage cascade structure, we pro-
pose to partition the strong classifier H(x), a com-
bination of weak classifiers h1, . . . , hT , into left part
HL(x, r1) and right part HR(x, r1) at partition point r1
(see Algorithm 1 and Fig. 1). The optimal partition point
r1 is found by minimizing the objective function f1(r)
which stands for the computation cost of the cascade
classifier. We theoretically (i.e., Theorem 1) prove that
f1(r) has a unique solution. We further give a rough
estimation (i.e., Theorem 2) of the optimal solution.

4) To design a three-stage cascade structure, we pro-
pose to further the partition right classifier HR(x, r1)

into two parts at another partition point r2. The par-
tition iteratively continues (see Fig. 4). This algorithm
is not globally optimal if r1 is fixed while r2 is
considered as a variable. To obtain global optimiza-
tion, we further jointly model the computation cost
f (r1, r2) with variables r1 and r2. We prove that f (r1, r2)

has a unique minimum solution (see Theorem 7). An
iterative optimization algorithm (i.e., Algorithm 2) is
proposed to find the optimal solution. Theoretical anal-
ysis (i.e., Theorems 9–12) is given to support that
r1 decreases in each iteration where r2 is fixed and
r2 decreases in each iteration where r1 is fixed. We
call it decreasing phenomenon. Such globally optimal
three-stage cascade learning algorithm can be easily
generalized to multistage one (i.e., Algorithm 3).

5) Moreover, we contribute to learn the optimal thresh-
old ti of each stage classifier for minimizing computation
cost fS of the cascaded classifier. We prove that the
computation cost decreases with the increase of stage
threshold ti (i.e., Theorem 13). Based on this theorem,
we develop an effective threshold learning algorithm

(i.e., Algorithm 4) whose core is optimally increasing ti.
We call the proposed algorithm (i.e., Algorithms 3, 4,
and the procedure in Fig. 9) iCascade.

II. RELATED WORK

Most of existing cascade learning algorithms can be called
DF-guided (where “DF” stands for detection rate and false
positive rate) method pioneered by Viola and Jones [20]. In
the learning step, DF-guided method selects weak classifiers
step by step until predefined minimum acceptable detection
rate and maximum acceptable false positive rate are satisfied.
We call this method VJCascade [20].

Variants of VJCascade have been proposed to select
and organize weak classifiers. BoostChain [21] improves
VJCascade by reusing the ensemble score from previous
stages to enhance the performance of the current stage.
Brubaker et al. [9] called such a technique BoostChain recy-
cling. Similar to BoostChain, Soft-Cascade also allows for
monotonic accumulation of information as the classifier is
evaluated [22]. In multiexit AdaBoost [23], node classifier also
shares overlapping sets of weak classifiers. FloatBoost [24]
as well as BoostChain uses DF-guided strategy to design
the cascade. But different from VJCascade, FloatBoost uses
backtrack mechanism to eliminate the less useful or even
detrimental weak classifiers. Wu et al. [25] employed for-
ward feature selection algorithm to greedily select features.
Wang et al. [26] developed an asymmetric learning algorithm
for both feature selection and ensemble classifier learning.
FisherBoost [27] uses column generation technique to imple-
ment totally-corrective boosting algorithm. To decrease the
training burden caused by the large number of negative sam-
ples and over-complete features (e.g., Haar-like features),
some algorithms use only a random subset of the feature
pool [9], [22].

Endeavor has also been devoted to adjust the thresholds
of stages in the cascade which is also called the thresholds
of node classifiers (also known as stage classifiers). On the
assumption that a full cascade has been trained by VJCascade
algorithm, Luo [28] proposed to jointly optimize the setting of
the thresholding parameters of all the node classifiers within
the cascade. WaldBoost algorithm utilizes an adaptation of
Wald’s sequential probability ratio test to set stage thresh-
olds [29]. Brubaker et al. [9], [30] proposed a linear program
algorithm to select weak classifiers and threshold of a node
classifier.

Though most of existing methods are DF-guided,
computation-cost guided (i.e., CC-guided) methods were also
developed. Chen and Yuille [31] gave a criterion for design-
ing a time-efficient cascade that explicitly takes into account
the time complexity of tests including the time for prepro-
cessing. They designed a greedy algorithm to minimize the
criterion. But each stage in this method is constrained to
detect all positive examples, which leads it to miss opportu-
nity to improve detection efficiency [32]. The loss function of
Cronus cascade learning algorithm is a tradeoff between accu-
racy (training error) and computation cost [32]. Cost-sensitive
tree of classifiers (CSTCs) combines regularized training error

4150 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 12, DECEMBER 2017

and computation cost into a loss function [33]. Compared to
VJCascade-like method, CSTC is suitable for balancing time
cost and accuracy [33].

In contrast to the above methods, the objective function
(i.e., loss function) of our method is just the computation cost
and only a single target detection rate is assigned. In addition,
global solution instead of local one can be obtained in our
method by learning the optimal partition point of each stage
and the optimal threshold for each stage.

III. PROPOSED METHOD: TWO-STAGE CASCADE

In this section, we describe the proposed two-stage cascade
which is the foundation of our multistage cascade. Please note
in Sections III–V-A and V-B, the thresholds for each stage are
set to guarantee 100% detection rate of training positives.

A. Testing Stage

In our method, cascade AdaBoost is considered as an esti-
mation of regular AdaBoost. A good cascade structure can
achieve the same detection accuracy as regular AdaBoost with
small computation cost. Therefore, we begin with describing
the form of the strong classifier of regular AdaBoost.

Let H(x) be the strong classifier obtained by an AdaBoost
algorithm. The strong classifier H(x) is composed of T weak
classifiers hi(x) with their weights αi

H(x) =
∑T

i=1
αihi(x). (1)

Generally, the weights of the weak classifiers satisfy

α1 > 0, α2 > 0, . . . , αT > 0 (2)

and
∑T

i=1
αi = 1. (3)

Equation (3) holds when the weights are normalized.
Let l̂(x) ∈ {1,−1} be the predicted class label of the

detection window x. The decision rule of the strong classifier
H(x) is

l̂(x) =
{

1, if H(x) =∑T
i=1 αihi(x) > t

−1, if H(x) =∑T
i=1 αihi(x) ≤ t

(4)

where the threshold t = 0 if hi(x) ∈ {1,−1} and t = 0.5 if
hi(x) ∈ {0, 1}. In practice, other values of t can be used for
balancing the detection rate and false positive rate.

In two-stage cascade, there is only one stage in which a
small number r (e.g., 10) of weak classifiers are combined for
classification. The core of the proposed two-stage cascade is
to determine an optimal r which divides the strong classifier
H(x) into left part HL(x, r) and right part HR(x, r)

H(x, r) = HL(x, r)+ HR(x, r) (5)

HL(x, r) =
∑r

i=1
αihi(x) (6)

HR(x, r) =
∑T

i=r+1
αihi(x). (7)

To reject true negative subwindows with less computation cost,
we propose to use the maximum of HR(x, r) to approximate

the value of HR(x, r)

max HR(x, r) = max
x

⎛

⎝
T∑

i=r+1

αihi(x)

⎞

⎠ =
T∑

i=r+1

αi. (8)

We denote the maximum by max HR(x, r). With max HR(x, r),
it is guaranteed that all the negative subwindows can be
correctly rejected if the following inequality holds:

HL(x, r)+max HR(x, r) ≤ t. (9)

That is, some subwindows can be rejected by using merely
HL(x, r) and max HR(x) instead of both HL(x, r) and HR(x, r).
Thus, computation cost is significantly reduced.

The rest subwindows not satisfying (9) have to be classified
using both HL(x, r) and HR(x, r) (i.e., the strong classifier). If
the sum of HL(x, r) and HR(x, r) is not larger than t, that is

HL(x, r)+ HR(x, r) = H(x) ≤ t (10)

then the subwindow x can be finally classified as negative
subwindow. Otherwise (i.e., the sum is larger than t), it is
classified as positive subwindow. The algorithm of two-stage
cascade is given in Algorithm 1. Equivalently, the flow-chart
is shown in Fig. 1. In Fig. 1 and Algorithm 1, maxHR(x, r)
can be moved to the right side and then t-maxHR(x, r) rep-
resents the new threshold. In this section, the threshold are
set to guarantee 100% detection rate. The issue of how to set
the threshold for a given target detection rate is addressed in
Section V-C.

B. Training Stage: How to Select Optimal r

In Fig. 1, it is assumed that r and max HR(x, r) are given.
In this section, we describe how to choose an optimal r.
max HR(x, r) can be easily computed from training samples
once r is given. In the training stage of cascade learning, it
is assumed that the strong classifier H(x) = ∑T

i=1 αihi(x) is
obtained by a regular AdaBoost algorithm with technology of
bootstrap.

Given r, a p fraction of true negative subwindows can be
rejected by using left classifier HL(x) [i.e., (9)]. The fraction
p is called rejection rate and defined by

p(r, t) =
∑

x I
(∑r

i=1 αihi(x)+max HR(x, r) ≤ t
)

∑
x I(l(x) = −1)

(11)

where I(condition) is 1 if the condition is satisfied and 0
otherwise, and l(x) stands for the ground truth label of x.∑

x I(l(x) = −1) is the number of all true negative sub-
windows. The rejection rate p(r, t) in (11) is a function of
r and t. However, because Sections III–V-B are not involved
in computing the optimal value of the threshold t for the tar-
get detection rate, t is set to guarantee 100% detection rate
of training positives and can be omitted in expressing p(r, t).
That is, p(r) instead of p(r, t) is used in Sections III–V-B.

Obviously, the fraction of negative subwindows classified
by using both left and right classifiers is 1− p. The criterion
for choosing r is to minimize the overall computation cost f
consisting of the cost f L of computing HL(x, r) in (9) and the
cost f R of computing both HL(x, r) and HR(x, r) in (10).

PANG et al.: CASCADE LEARNING BY OPTIMALLY PARTITIONING 4151

Fig. 2. Representative form of function p(r) which can be simplified as
combination of two linear functions: p1(r) = ar with r < r∗ and p2(r) = 1
with r ≥ r∗.

Suppose that all the weak classifiers have the same compu-
tation complexity. Then the computation cost is determined by
the number of weak classifiers. A fact is that f L

1 grows with
p and r

f L
1 (r, p) = p(r)(r + c) (12)

and f R
1 grows with 1− p and T

f R
1 (r, p) = (1− p(r))(T + 2c). (13)

In (12) and (13), c is the computation cost of checking that
either inequality (9) or inequality (10) holds. Usually, the com-
putation cost C of a weak classifier is bigger than c. Let C = 1,
then c < 1. Note that c is not involved in computing HL(x, r)
and HR(x, r). Though c is relatively small compared with C, it
is not negligible for the case, where the weak classifier (e.g.,
aggregated channel features (ACF) [34]) is relatively simple.

The goal is to minimize the following object function:

f1(r, p) = f L
1 (r, p)+ f R

1 (r, p) = p(r)(r + c)

+ (1− p(r))(T + 2c). (14)

To solve this optimization problem, it is necessary to reveal
the relationship between r and p. The parameters r and p are
correlated and the correlation can be expressed as a function
p(r, max HR(x, r)).

As max(HR(x, r)) (its upper bound is
∑T

i=r+1 αi) decreases
with r, a larger number of negative subwindows will be
rejected by (9). It is straightforward that the fraction p of neg-
ative subwindows satisfying (9) grows with r. Experimental
results also show that p monotonically increases with r. The
relationship between p and r is nonlinear. Fig. 2 illustrates a
typical trend of how p varies with r. It can be seen that p
grows quickly from 0 to the value (e.g., 0.99) close to 1 when
r changes from 1 to a small value r∗ (e.g., 10). But p becomes
stable when r is larger than r∗. The reason is that the first r∗
weak classifiers hi play much more important role than the
rest weak classifiers.

Mathematically, r∗ is defined as the minimum r which sat-
isfies p(r) ≈ 1 or equivalently 1 − p(r) ≤ ε with ε being a
small number (e.g., 0.01)

r∗ = arg min
r
{r|1− p(r) ≤ ε}. (15)

We call r∗ the saturation point of p(r).
Though p(r) is in fact a high-order curve, it can be well

modeled by combining two linear functions: p1(r) = ar with
r < r∗ and p2(r) = 1 with r ≥ r∗ (see Fig. 2). Because T is
a large number, r∗ � T holds.

It is reasonably assumed that the function p(r) satisfies the
following conditions:

p(r1) < p(r2), if r1 < r2 (16)

p′(r1) > p′(r2) ≥ 0, if r1 < r2 (17)

p(T) = 1 (18)

p(0) = 0 (19)

p′(T) = 0 (20)

p′(0)
 0 (21)

p′(1)
 0. (22)

Inequality (16) states the monotonicity of p(r). Inequality (17)
tells that the slope of p(r) decreases with r. Equation (20)
shows that the slope is zero at r = T while it is extremely
large at r = 1. It is noted that (16)–(22) will be used as
assumption of the theorems of the proposed methods.

According to Fig. 2, p(r) has the following properties:

r∗ � T, as T is a large number (23)

p(r) ≈ p1(r) = ar, if r < r∗ (24)

p(r) ≈ p2(r) = 1, if r ≥ r∗ (25)

which will be used as assumption of Theorem 2.
After each pairs of (r, p) are known, the value of f1

can be obtained. Theorem 1 tells that there exists a unique
minimization solution.

Theorem 1: f1(r) = p(r)(r + c)+ (1− p(r))(T + 2c) has a
unique minimum solution r1. Moreover, f1(r) monotonically
decreases with r until r = r1 and then increases with r.

Proof: We first prove the existence of the minimum solution
and then give the evidence of the uniqueness of the minimum
solution.

Existence: For the sake of notation simplicity, we omit p
and write f1(r, p) as f1(r):

f1(r) = p(r)(r + c)+ (1− p(r))(T + 2c)

The derivative of f1(r) is

f ′1(r) = p′(r)(r − T − c)+ p(r).

Consider the value of the derivative f ′1(r) when r
approaches 0

lim
r→0

f ′1(r) = f ′1(0) = p′(0)(0− c− T)+ p(0). (26)

Because p(0) = 0 [i.e., (19)] and p′(0)
 0 [i.e., (21)].
Therefore, it holds

lim
r→0

f ′1(r) = f ′1(0) = −p′(0)(T + c) < 0. (27)

Now, consider the value of the derivative f ′1(r) when r
approaches T

lim
r→T

f ′1(r) = f ′1(T) = p(T)− p′(T)c ≈ 1− 0 > 0. (28)

Because limr→0 f ′1(r) < 0, limr→T f ′1(r) > 0, and f ′1(r) is con-
tinuous function, there exists a r1 ∈ [1, T] such that f ′1(r1) = 0.
The r1 is at least a local minimum, which shall be the global
minimum if the local minimum is unique.

4152 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 12, DECEMBER 2017

Fig. 3. Representative form of f1(r).

Uniqueness (Proof by Contradiction): Suppose that there
are two local minimums r1 and r2 with r1 < r2. Then it holds
that f ′1(r1)− f ′1(r2) = 0.

Now, investigate the value of f ′1(r1) − f ′1(r2) = [p(r1) −
p(r2)] − [p′(r1)(T + c − r1) − p′(r2)(T + c − r2)] if r1 < r2
is true

∵ r1 < r2

∴ p′(r1) > p′(r2) > 0, T + c− r1 > T + c− r2 > 0

p(r1) < p(r2)

∴ f ′(r1)− f ′(r2) < 0.

This contradicts with f ′(r1) − f ′(r2) = 0, Therefore, r1 < r2
is wrong.

Similarly, we can prove that r1 > r2 is wrong. Consequently,
r1 = r2 is true, meaning a unique solution.

Fig. 3 shows a representative form of f1(r) where a unique
minimum solution exists.

Theorem 2: Let r∗ be a saturation point of p(r) [see (15)]
and assume that p(r) can be modeled by combining p1(r) = ar
where r < r∗ with p2(r) = 1 where r ≥ r∗ (see Fig. 2 for illus-
tration). Then the saturation point r∗ is the optimal minimum
solution r1 = arg minr f1(r).

Proof: See the supplementary materials.
Theorem 2 can be intuitively explained as follows.

According to the assumption expressed as (25), no samples
are rejected after the saturation point, so it is straightforward
that the saturation point corresponds to the optimal minimum
solution.

IV. PROPOSED METHOD: LOCAL-MINIMUM-BASED

MULTISTAGE CASCADE

In this section, we extend two-stage cascade learning to
three-stage and multistage cascade learning.

A. Testing Stage

From (5), one can see that two-stage cascade is obtained
by splitting H(x, r) into HL(x, r1) and HR(x, r1) where r1 is
the optimal r [i.e., r1 = arg minr f1(r)]. We add a superscript
“1” to HL and HR so that one explicitly knows that H1

L(x, r1)

and H1
R(x, r1) correspond to stage 1. Multistage cascade is

obtained by iteratively splitting the right classifier Hi
R.

As shown in Fig. 4, the subwindows not rejected by stage 1
are fed to stage 2. The second stage is obtained by further
dividing the right classifier H1

R(x, r1) into two parts at the
partition point r2 (r2 > r1)

H1
R(x, r1) = H2

L(x, r2)+ H2
R(x, r2) (29)

H2
L(x, r2) =

r2∑

i=r1+1

αihi(x) (30)

Fig. 4. Block diagram of local-minimum-based multistage cascade AdaBoost.

H2
R(x, r2) =

T∑

i=r2+1

αihi(x). (31)

In stage 2, the subwindows are rejected if the following
inequality holds:

H1
L(x, r1)+

[
H2

L(x, r2)+max
(

H2
R(x, r2)

)]
≤ t. (32)

Equation (32) is equivalent to

HL(x, r2)+max(HR(x, r2)) ≤ t (33)

because

HL(x, r2) = H1
L(x, r1)+ H2

L(x, r2). (34)

But (33) is more time-consuming than (32) because r2
(r2 > r1) weak classifiers are used to compute HL(x, r2)

in (33) whereas in (32) H1
L(x, r1) has been computed in stage 1

and H2
L(x, r2) can be efficiently computed using as small as

r2 − r1 weak classifiers where H1
L(x, r1) can be reused in

stage 2.
Analogously, the right classifier in stage i − 1 can be

represented by the left and right classifiers in stage i

Hi−1
R (x, ri−1) = Hi

L(x, ri)+ Hi
R(x, ri). (35)

The block diagram of the multistage cascade is shown in
Fig. 4, where the rejection rate pi is the ratio of subwindows
rejected in stage i. In stage 1, p1 fraction of subwindows is
directly rejected and 1− p1 fraction of subwindows is fed to
stage 2. Among the 1−p1 fraction of subwindows, p2 fraction
is rejected by stage 2, and 1 − p2 fraction is considered as
positive-class candidates and therefore fed to stage 3. This
means that (1 − p1)(1 − p2) fraction of total w subwindows
is to be classified by stage 3. p1 is defined as (11). Because
pi in stage i is dependent on pi−1 in stage i − 1 (i > 1), we
explicitly express pi as p(ri|ri−1) when necessary. Specifically,
the rejection rate p(ri|ri−1) is defined as

p
(
ri
∣∣ri−1

) = I
(∑ri

k=1 αkhk(x)+max(HR(x, ri)) ≤ t
)

I
(∑ri−1

k=1 αkhk(x)+max(HR(x, ri−1)) > t
) .

(36)

PANG et al.: CASCADE LEARNING BY OPTIMALLY PARTITIONING 4153

Fig. 5. Form of pi(ri|ri−1) and its properties. If r̃i−1 < ri−1, then
pi(ri |̃ri−1) > pi(ri|ri−1) and p′i(ri |̃ri−1) < p′i(ri|ri−1).

Fig. 5 shows two representative curves of p(ri|ri−1). The
properties of p(ri|ri−1) are summarized as follows:

p′
(
ri
∣∣ri−1

) ≥ 0 (37)

lim
ri→ri−1

p
(
ri
∣∣ri−1

) = 0 (38)

lim
ri→T

p
(
ri
∣∣ri−1

) = 1 (39)

p
(
ri
∣∣̃ri−1

)
> p

(
ri
∣∣ri−1

)
, if r̃i−1 < ri−1 (40)

p′
(
ri
∣∣̃ri−1

)
< p′

(
ri
∣∣ri−1

)
, if r̃i−1 < ri−1. (41)

We give a theoretical guarantee (i.e., Theorem 3) that adding
a stage results in reduction of computation cost if the certain
conditions are satisfied.

Theorem 3: Let r1, . . . , rS define an S + 1 stage cascade
structure whose computation cost is fS(r1, . . . , rS)

fS(r1, . . . , rS) =
S∑

i=1

f L
i (r1, . . . , ri)+ f R

S (rS) (42)

where

f L
i =

⎡

⎣
i−1∏

j=1

(
1− pj

(
rj|rj−1

))
⎤

⎦pi(ri|ri−1)(ri + ic) (43)

f R
S =

⎡

⎣
S∏

j=1

(
1− pj

(
rj|rj−1

))
⎤

⎦(T + (S+ 1)c). (44)

Let r1, . . . , rS−1 define an S stage cascade structure whose
computation cost is fS−1(r1, . . . , rS−1)

fS−1(r1, . . . , rS−1) =
S−1∑

i=1

f L
i (r1, . . . , ri)+ f R

S−1(rS−1). (45)

If pS(rS|rS−1) > c/(T + c− rS), then we have

fS−1(r1, . . . , rS−1) > fS(r1, . . . , rS−1, rS). (46)

Proof:

∵ fS−1(r1, . . . , rS−1)− fS(r1, . . . , rS−1, rS)

= f R
S−1(rS−1)− f L

S (r1, . . . , rS)− f R
S (rS)

=
⎡

⎣
S−1∏

j=1

(
1− pj

)
⎤

⎦[
pS

(
rS

∣∣rS−1
)
(T + c− rS)− c

]

∵ 1− pj > 0, pS > 0

∴ if pS
(
rS

∣∣rS−1
)

> c/(T + c− rS), then fS−1 > fS.

Note that if the computation cost c is omitted, then fS−1 > fS
as long as pS(rS|rS−1) > 0. In this case, it is optimal that each
stage contains a new weak classifier (i.e., the case S = T ,
r1 = 1, r2 = 2, . . . , rT = T). Since c �= 0 in practice, it is
necessary to let S < T and find a way to search the optimal
values of r1, . . . , rS.

B. Training Stage: How to Select Optimal ri

Now, we describe the training stage of the proposed method.
1) Existence and Uniqueness: Investigating Fig. 4, one can

find that the cascade structure is completely determined once
r1, . . . , rS are known. Therefore, the main task of the training
stage is to find the optimal r1, . . . , rS.

The r1 in stage 1 is obtained by the method in Section III-B.
Given r1, we learn the best r2

r2 = arg min
r

f2(r1, r) = arg min
r

f2(r|r1). (47)

Similar to the proof of Theorem 1, it can be proved that f2(r|r1)

has a unique solution.
Corollary 1: f2(r|r1) has a unique solution.
Proof: See the supplementary materials.
More generally, as a corollary of Theorem 1, we have the

following theorem.
Theorem 4: minr fi(r1, . . . , ri−1, r) = minr fi(r|r1, . . . ,

ri−1) has a unique minimum solution ri ∈ [ri−1, T]. Moreover,
fi(r|r1, . . . , ri−1) monotonically decreases with r until r = ri

and then increases with r.
Note that p(0) = 0 is used in proving Theorem 1 and the

term corresponding to p(0) = 0 in proving Theorem 4 and
Corollary 1 is pi(ri−1|ri−1). pi(ri−1|ri−1) means that the sam-
ples accepted by the ri−1 weak classifiers can not be rejected
by the ri−1 weak classifiers themselves.

Theorem 4 implies that fi(r|r1, . . . , ri−1) has the similar
form as the curve in Fig. 3.

2) Efficient Search: The search range of ri is (ri−1, T).
However, because fi(r|r1, . . . , ri−1) monotonically decreases
with r until r = ri and then increases with r. To find the
unique minimum solution, r is increased from ri−1 with a
small step and stops at the value once fi(r|r1, . . . , ri−1) no
longer decreases. Therefore, the practical range is less than
(ri−1, T).

The search range can be further reduced according to the
following increasing phenomenon.

Theorem 5: If ri = arg minri−1<r<T fi(r|r1, . . . , ri−1),
ri−1 = arg minri−2<r<T fi−1(r|r1, . . . , ri−2), ri+1 =
arg minri<r<T fi+1(r|r1, . . . , ri), and 2ri − ri−1 < T , then it
holds

ri − ri−1 ≤ ri+1 − ri (48)

ri+1 ≥ 2ri − ri−1. (49)

We define r0 = 0, so we have

r2 ≥ 2r1. (50)

Proof: See the supplementary materials.
Fig. 6 illustrates the nature of Theorem 5, where the

objective functions (solid curves) and estimated optimal solu-
tions at saturation points are shown. The dashed curves are

4154 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 12, DECEMBER 2017

Fig. 6. Illustration of Theorem 5. The solid curves are computational cost
and the dashed ones are rejection rates.

Fig. 7. Local-minimum-based multistage cascade learning.

the rejection rates. The relationship of ri−1, ri, and ri+1 is
ri−1−ri−2 < ri−ri−1 < ri+1−ri (i.e., �ri−1 < �ri < �ri+1).

According to Theorem 5, if ri = arg minri−1<r<T

fi(r|r1, . . . , ri−1) and ri−1 = arg minri−2<r<T fi(r|r1, . . . , ri−2)

are already known, then the search range for ri+1 will be
reduced to [ri + (ri − ri−1), T] (i.e., [2ri − ri−1, T]) where
ri − ri−1 is called increasing step.

The training process is shown in Fig. 7, where the increasing
phenomenon is used for efficient minimization.

V. PROPOSED METHOD: JOINT-MINIMUM-BASED

MULTISTAGE CASCADE

A. Existence and Uniqueness of Jointly Optimal Solution

The method in Section IV is a greedy optimization algo-
rithm because it seeks an optimal rS on the condition that
(r1, . . . , rS−1) are known and fixed. The objective function
is fS(r|r1, . . . , rS−1). In this section, we give an algorithm
for jointly seeking the optimal (r1, . . . , rS) that globally
minimizes the objective function f (r1, . . . , rS) instead of
fS(r|r1, . . . , rS−1). That is, the goal of joint optimization is
to find (r∗1, . . . , r∗S) = arg min

r1,...,rS
fS(r1, . . . , rS).

For the sake of clarity, we start with establishing a globally
optimal three-stage cascade structure. The globally optimal

Fig. 8. Illustration of the intermediate values obtained by Algorithm 2.
r1 and r2 are the outputs of initialization. The sequence of the stage parameters
are updated in the following turn: r1 → r2 → r̃1 → r̃2 → ˜̃r1 → ˜̃r2 with
˜̃r1 < r̃1 < r1 and ˜̃r2 < r̃2 < r2.

cascade structure with more than three stages will be extended
from the three-stage one.

The goal of jointly optimal three-stage cascade learning
aims at finding (r∗1, r∗2) = arg minr1,r2 f2(r1, r2).

Obviously, if both f2(r|r1) = f2(r1, r) and f2(r|r2) =
f2(r, r2) have unique minimization solutions, then f2(r1, r2)

has unique minimization solutions. f2(r|r1) means the objec-
tive function of a three-stage cascade where the parameter r1
of stage 1 is known and the parameter r of stage 2 is a
unknown variable. f2(r|r2) stands for the situation, where the
parameter r2 of stage 2 is known and the parameter r of
stage 1 is a unknown variable. The theorems related to the
joint optimization are as follows.

Theorem 6: minr f2(r, r2) = minr f2(r|r2) has a unique
minimum solution r1.

Proof: See the supplementary materials.
Theorem 6 tells that if the information of stage 2 is given,

then one can find an optimal parameter r for stage 1 so that
the computation cost f2 of the final three-stage cascade is
minimized.

Theorem 7: f2(r1, r2) has a unique minimum solution
(r∗1, r∗2).

Proof: See the supplementary materials.
It is straightforward to generalize Theorem 7 to the follow-

ing theorem.
Theorem 8: fi(r1, . . . , ri) has a unique minimum solution

(r∗1, . . . , r∗i).

B. How to Search the Jointly Optimal Solutions

1) Algorithm: Theorem 8 guarantees the existence and
uniqueness of jointly optimizing the stages of a cascade. In
this section, we give algorithms (i.e., Algorithms 2 and 3) for
searching the solution and then justify the algorithms in the-
ory. We start with the algorithm for optimizing a three-stage
cascade and then generalize it to multistage one.

The task of jointly optimizing a three-stage cascade can be
expressed as (r∗1, r∗2) = arg minr1,r2 f2(r1, r2). The idea of our
optimization method is shown in Algorithm 2.

The proposed Algorithm 2 is an alternative optimization
procedure. In the initialization step, the solution r1 of the
two-stage cascade learning is searched in the largest range

PANG et al.: CASCADE LEARNING BY OPTIMALLY PARTITIONING 4155

Algorithm 2 Globally Optimal Three-Stage Cascade Learning
Input:

Strong classifier H(x) =∑T
i=1 αihi(x), its threshold t;

A set of true negative subwindows{x|l(x) = −1};
Output:

(r∗1, r∗2) = arg min
r1,r2

f2(r1, r2);

1: Initialization
2: Search the optimal solution r1 of f1(r) for stage 1 in the

range of (1, T): r1 = arg min
1<r<T

f1(r).

3: Given r1, search the optimal solution r2 of f2(r|r1) for
stage 2 in the range of [2r1, T): r2 = arg min

2r1≤r<T
f2(r|r1).

See Theorem 5 for the reason of r ≥ 2r1.
4: repeat
5: Given r2, search the optimal solution r̃1 of f2(r|r2) in the

range of 1 < r ≤ r1 for stage 1: r̃1 = arg min
1<r≤r1

f2(r|r2).

Note that r̃1 < r1 (see Theorem 9). An efficient search
strategy is decreasing r from r1 step by step until
f2(r|r2) does not decrease. f ← f2(r|r2).

6: Given r̃1, search the optimal solution r̃2 of f2(r|r̃1)

for stage 2 in the range of r̃1 < r ≤ r2: r̃2 =
arg min

r̃1<r≤r2

f2(r|r̃1). Note that r̃2 ≤ r2 (see Theorem 12).

An efficient search strategy is decreasing r from r2 step
by step until f2(r|r̃1) does not decrease. f̃ ← f2(r|r̃1).

7: Update r1 ← r̃1, r2 ← r̃2.
8: until f − f̃ ≤ μ

9: return r∗1 ← r̃1, r∗2 ← r̃2.

1 < r < T : r1 = arg min1<r<T f1(r). The value of r1 is
shown in Fig. 8, where “#1” means that r1 is obtained first.
The obtained r1 is used as the upper bound of the search-
ing range for the better solution r̃1 in line 5 of Algorithm 2.
After r1 is given, line 3 of Algorithm 2 searches the opti-
mal solution r2 of f2(r|r1) for stage 2 in the range of
2r1 ≤ r < T : r2 = arg min2r1≤r<T f2(r|r1). Based on (50),
the search range starts from 2r1. The value of r2 is shown in
Fig. 8, where “#2” means that r2 is the second value obtained
by Algorithm 2.

In line 5 of Algorithm 2, r2 is given and the task is to search
the optimal solution r̃1 of f2(r|r2) in the range of 1 < r ≤ r1
for stage 1: r̃1 = arg min1<r≤r1 f2(r|r2). Because r1 � T ,
the search range 1 < r ≤ r1 is much smaller than the one
(i.e., 1 < r < T) in line 2. Theorem 9 guarantees r̃1 ≤ r1 for
the first round of iteration. r̃1 is the third value obtained by
Algorithm 2 which is shown near “#3” in Fig. 8. Experimental
results and intuitive analysis show that the absolute distance
|r̃1 − r1| from r̃1 to r1 is much smaller than the absolute dis-
tance |1 − r̃1| from 1 to r̃1. Therefore, the search strategy
of decreasing r from r1 step by step until f2(r|r2) does not
decrease is more efficient than the one of increasing r from 1
step by step until f2(r|r2) does not decrease.

In line 6 of Algorithm 2, r̃1 is given and the task is to search
the optimal solution r̃2 of f2(r|r̃1) in the range of r̃1 < r ≤ r2
for stage 2: r̃2 = arg minr̃1<r≤r2 f2(r|r̃1). Because r2 < T , the
upper bound of the search range is much smaller than the one
(i.e., T) in line 3. Moreover, as iteration continues, the updated
r2 becomes smaller and so the upper bound of search range

for r̃2 becomes smaller too. Theorem 10 guarantees r̃2 ≤ r2.
The value of r̃2 is shown in Fig. 8 which is “#4” obtained by
Algorithm 2. Experimental results and intuitive analysis show
that the absolute distance |r̃2−r2| from r̃2 to r2 is much smaller
than the absolute distance |r̃1 − r̃2| from r̃1 to r̃2; the search
strategy of decreasing r from r2 step by step until f2(r|r̃1)

does not decrease is more efficient than the one of increasing r
from r̃1 step by step until f2(r|r̃1) does not decrease.

In the second round of iteration, because r̃2 ≤ r2, the param-
eter value ˜̃r1 for stage 1 is obtained and shown in Fig. 8
with a label “#5.” According to Theorem 11, it is true that
˜̃r1 ≤ r̃1. Subsequently, the parameter value ˜̃r2 for stage 2 is
obtained and shown in Fig. 8 with a label “#6.” According to
Theorem 10, it is true that ˜̃r2 ≤ r̃2.

The iteration stops if the difference between the value f of
objective function in line 5 of Algorithm 2 and the one f̃ in
line 6 of Algorithm 2 is equal to or smaller than the threshold
μ ≥ 0.

Decreasing Phenomenon: Fig. 8 illustrates an interesting
phenomenon.

1) Once a new stage 2 is added, the parameter r1 of stage 1
should be updated by decreasing r1 to a smaller number
r̃1 so that the computation cost is minimized.

2) Once the number of stages is fixed, the parameter for
each stage decreases gradually as iteration proceeds.

2) Justification of the Algorithm: Theorems 9–12 are given
to theoretically interpret the so-called decreasing phenomenon
and justify Algorithm 2. Theorem 9 implies that the parameter
r1 of stage 1 should be updated by decreasing to a smaller
number when the parameter r2 of stage 2 is fixed.

Theorem 9: r̃1 = arg minr f2(r|r2) ≤ arg minr f1(r) = r1,
where r2 > r1.

Proof: See the supplementary materials.
As a lemma of Theorem 9, we have the following theorem.
Theorem 10: If (ri∗

1 , . . . , ri∗
i) = arg minr1,...,ri fi(r1, . . . , ri)

and (r∗(i+1)
1 , . . . , r∗(i+1)

i , r∗(i+1)
i+1) = arg minr1,...,ri,ri+1

fi(r1, . . . , ri, ri+1), then r∗(i+1)
j ≤ r∗ij , j = 1, . . . , i.

As a generalized version of Theorem 9, Theorem 10 tells
that once a new stage i+1 is added, all the optimal parameters
of the existing stages 1, . . . , i should be updated and decreased
so that the computation cost is minimized.

Theorem 11: If r̃2 < r2, then r̃1 = arg minr f2(r|r̃2) ≤
arg minr f2(r|r2) = r1.

Proof: See the supplementary materials.
Theorem 12: If r̃1 < r1, then r̃2 = arg minr̃1<r<T f2(r|r̃1) ≤

arg minr1<r<T f2(r|r1) = r2.
Proof: See the supplementary materials.
Theorems 9, 11, and 12 can be extended to multistage cas-

cade. Correspondingly, decreasing phenomenon can be gener-
alized to generalized decreasing phenomenon and Algorithm 2
can be generalized to Algorithm 3.

Generalized Decreasing Phenomenon: If the alternative
optimization Algorithm 3 is used to find the globally opti-
mal solution (r∗i1 , r∗i2 , . . . , r∗ii) = arg minr1,...,ri, fi(r1, . . . , ri),
then it holds the following.

1) Once a new stage i+ 1 is added, all the optimal param-
eters of the existing stages 1, . . . , i are updated and
decreased so that the computation cost is minimized.

4156 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 12, DECEMBER 2017

Algorithm 3 Globally Optimal Multistage Cascade Learning
Input:

Strong classifier H(x) =∑T
i=1 αihi(x), its threshold t;

A set of true negative subwindows{x|l(x) = −1};
Output:

(r∗1, . . . , r∗S) = arg min
r1,...,rS

fS(r1,, rS) where S+1 is the

number of stages in the final cascade structure;
1: Search the optimal solution r∗(1)

1 of f1(r) for stage 1 in the
range of 1 < r < T: r∗(1)

1 = arg min
1<r<T

f1(r). f ← f1(r1);

2: for i = 2 to S do
3: Initialize the upper bound ru

1, . . . , ru
i−1 of r1, . . . , ri−1:

ru
j ← r∗(i−1)

j for j = 1, . . . , i− 1;
4: Initialize the upper bound ru

i of ri by finding ru
i =

arg min
ri≥2r∗(i−1)

i−1 −r∗(i−1)
i−2 ,

fi
(

ri|r∗(i−1)
1 , . . . , r∗(i−1)

i−1

)
with the

search range ri ≥ 2r∗(i−1)
i−1 − r∗(i−1)

i−2 and r∗(1)
0

�= 0.

5: f ← fi(r
∗(i−1)
1 , . . . , r∗(i−1)

i−1), f̃ ← fi(ru
1, . . . , ru

i).
6: while f − f̃ > ε do
7: f ← f̃ ;
8: for j = 0 to i do
9: r∗j = arg min

rj≤ru
j

fi(rj|ru
k , k �= j);

10: end for
11: f̃ ← fi(r∗1, . . . , r∗i), ru

j ← r∗j .

12: end while
13: r∗ij ← ru

j , j = 1, . . . , i;
14: end for
15: return r∗i ← r∗Si , i = 1, . . . , S.

2) Once the number of stages is fixed, the parameter for
each stage decreases gradually as iteration proceeds.

In Algorithm 3, f̃ is the objective function after a new stage i
is added while f is the one before stage i is added. That is, f
is the value of objective function when there are i− 1 stages.
According to Theorem 5, when a new stage i is to be added,
the optimal solution ri can be searched by increasing ri from
2r∗(i−1)

i−1 − r∗(i−1)
i−2 instead of r∗(i−1)

i−1 . Because 2r∗(i−1)
i−1 − r∗(i−1)

i−2

is much larger than r∗(i−1)
i−1 , the search efficiency is very high.

The iteration in line 6 of Algorithm 3 stops if the difference
between f and f̃ is below a threshold ε > 0, which implies
that the algorithm arrives at global minimum solution for S
stages.

Fig. 9 shows the classification procedure of the multistage
iCascade, where the partition points (r1, . . . , rS) are given by
Algorithm 3. The computation cost fS of iCascade can be
estimated by

fS =
S∑

i=1

(ri + ic)

⎡

⎣
i∏

j=1

(
1− pj−1

(
rj−1

))
⎤

⎦pi(ri)

+ (T + (S+ 1)c)

⎡

⎣
S+1∏

j=1

(
1− pj−1

(
rj−1

))
⎤

⎦. (51)

Fig. 9. Classification procedure of the multistage iCascade algorithm.

C. Threshold Learning in iCascade

Once globally optimal partitions r1, . . . , rS for each stage
are determined by Algorithm 3, the parameters affecting the
computation cost are the thresholds ti, i = 1, . . . , S. In this
section, we give the theorem and algorithm for setting the
thresholds (t1, . . . , tS). As stated in Section III-B, the rejection
rate p(r, t) is a function of the number r of weak classifiers
and the stage threshold t. Because r is fixed, here in after, p
is expressed as the function of the threshold t. That is, p(t) is
used in Section V-C.

Theorem 13 tells that computation cost fS monotonically
decreases with the increase of ti and pi(ti), i = 1, . . . , S. So
computation cost can be reduced by increasing the thresholds
under the constraint of minimum-acceptable detection rate.

Theorem 13: fS monotonically decreases with the increase
of ti and pi(ti), i = 1, . . . , S.

Proof: See the supplementary materials.
If the detection rate D = 1 (i.e., all the positive training sam-

ples are correctly classified) is the constraint, then the optimal
threshold t∗i can be expressed as

t∗i = arg max ti, s.t. d(ti) = 1, i = 1, . . . , S (52)

which guarantees D = ∏S
i=1 d(t∗i) = 1. In (52), d(ti) is the

detection rate of stage i defined by

d(ti) =
∑

x I
(∑ri

j=1 αjhj(x) > ti
)

∑
x I(l(x) = 1)

. (53)

It is challenging to choose the optimal thresholds if the
expected detection D < 1. It is well known that the detection
rate D of the system is the product of the detection rate d(ti)
of each stage. A popular way to set d(ti) is

d(ti) = D1/S, i = 1, . . . , S. (54)

However, when the number of stages of iCascade is very
large, it holds that d(ti) ≈ 1. Such high d(ti) makes the thresh-
old ti very small and the corresponding computation cost is
very large.

To deal with the above problem, we propose to use
Algorithm 4 for threshold learning. The initial thresholds are
chosen by (52) guaranteeing the initial detection rate D being 1
and the detection rate of each stage being 1 as well. The

PANG et al.: CASCADE LEARNING BY OPTIMALLY PARTITIONING 4157

corresponding initial computation cost is denoted by fS. The
main issue is to select which stage to increase its initial thresh-
old by a small step �ti. In our algorithm, the derivative f ′S of
the computation cost fS against detection rate D is computed by

f ′S(i) ≈ �fS/�Di (55)

where �Di is the variation of the system detection rate. Note
that the variation �Di is caused by changing ti to ti + �ti
while the thresholds tk of other stages (i.e., k �= i) remain
unchanged.

The stage j with the largest derivative is selected and its
threshold tj is then increased by the small step �tj

j = arg max
i

�fS
�Di

(56)

tj ← tj +�tj (57)

with the thresholds of the stages (i.e., i �= j) unchanged.
Recompute the computation cost fS and detection rate D

after tj is updated

fS ← fS −�fS (58)

D← D−�Dj. (59)

The step �ti is small enough to keep the detection rate D
bigger than the target detection rate Do.

As shown in Algorithm 4, the iteration of choosing the
most important stage j = arg maxi �fS/�Di, updating its
threshold tj ← tj + �tj and corresponding computation cost
fS ← fS − �fS and detection rate D ← D − �Dj runs until
the updated detection rate D is equal to or smaller than the
expected detection rate Do.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

The experimental results in Sections VI-B and VI-C are
obtained from the MIT-CMU frontal face dataset [20], [35]
and the experimental results in Section VI-D are obtained
from the Caltech pedestrian dataset [36], [37]. The proposed
method is compared with Fixed Cascade [20], Recycling
Cascade [9], Recycling and Retracting Cascade [9], and
Soft-Cascade [22]. Haar features [20], ACF features [34],
and non-neighboring and neighboring features with level 4
decision trees (NNNF-L4) features [18] are employed.

In order to test on the MIT-CMU frontal face dataset, the
positive training dataset consists of about 20 000 normalized
face images and the negative training dataset contains 5000
nonface images. They are collected from Web sites. The test-
ing dataset consists of 130 gray-scale images containing 507
labeled frontal faces. The Caltech pedestrian dataset consists
of 11 videos with the first 6 videos used for training and the
last 5 ones for testing. The Caltech training images are gener-
ated by sampling a frame from every 30 frames of the training
videos and the Caltech 10× training images are generated by
sampling a frame from every 3 frames of the training videos.
The testing dataset consists of 4024 frames among which there
are 1014 positives.

Fixed Cascade is proposed by Viola and Jones [20]. “Fixed”
means that the detection rate di and the false positive rate fi of

Algorithm 4 Threshold Learning Algorithm for iCascade
Input:

Expected detection rate Do;
Positve and negative training samples;
Strong classifiers H(x) =∑T

i=1 αihi(x);
Output:

The optimal thresholds ti of all the S stages;
1: Initialize the thresholds ti for each stage by ti = arg max ti,

s.t. d(ti) = 1, i = 1, . . . , S so that the system detection
rate D = 1;

2: Corresponding to the initial thresholds, the initial compu-
tation cost of the system is computed by (51) and denoted
by fS;

3: repeat
4: For each stage, compute the approximation of the

derivative �fS/�Di of the computation cost fS against
detection rate D. The variations �fS and �Di are caused
by changing ti to ti+�ti while the thresholds tk of other
stages (i.e., k �= i) remain unchanged;

5: From all the S stages, choose the stage j with largest
derivative j = arg max

i
�fS/�Di. Then increase the

threshold tj of the stage j by a small step �tj :
tj ← tj +�tj;

6: Update the computation cost fS and detection rate D:
fS ← fS −�fS, D← D−�Dj;

7: until D ≤ Do

8: return the updated thresholds ti of all the S stages.

each stage are fixed. If the target detection rate of the cascade
is Do, the target false positive rate is F, and the number of
the stages is N, then di = D1/N

o and fi = F1/N . In Recycling
Cascade, the score from the previous strong classifier stages
serves as a starting point for the score of the new strong classi-
fier stage. The detection rate di and false positive rate fi in each
stage are same as Fixed Cascade. The benefit of Recycling
Cascade is the reduction of the number of the weak classifiers
in the strong classifier stages and the reduction of the compu-
tation cost. A useful effect of Recycling Cascade is that the
last stage of cascade can serve as an accurate strong classifier.
Recycling and Retracting Cascade chooses a threshold after
each weak classifier produced by Recycling Cascade to reject
some negative subwindows. To set these thresholds, it evalu-
ates each score on the set of the positive examples and chooses
the minimum score as the threshold so that all the positive
examples in the set can pass all the weak classifiers. Soft-
Cascade and Recycling and Retracting Cascade are similar to
iCascade in the sense of accumulatively using the responses
of stages. Thus, Recycling Cascade, Recycling and Retracting
Cascade, Soft-Cascade, and iCascade are all the embedded
cascade.

A strong classifier H(x) =∑T
i=1 αihi(x) is considered input

of iCascade. By using the technology of bootstrap, the strong
classifier is obtained by standard AdaBoost without designing
of cascade structure. If the detected rectangle and the ground-
truth rectangle are at least 50% of overlap, we call the detected
rectangle a correct detection.

4158 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 12, DECEMBER 2017

TABLE I
COMPUTATION COST f OF THE ALGORITHM IN FIG. 4 VARIES WITH THE NUMBER (i+ 1) OF STAGES

Fig. 10. (a) Negative rejection rate p(r). (b) Computation cost f (r).

Fig. 11. (a) Some properties of p(r2|r1). (b) Derivative of p(r2|r1).

B. Intermediate Results of iCascade on the
MIT-CMU Face Dataset

Some intermediate results are shown in this section. These
results show the rationality of the assumptions and the correct-
ness of the proposed theorems and algorithms. Haar features
are employed. The computation cost means the number of
average weak classifiers per window.

1) Local-Minimum-Based Cascade: In Section III, the reg-
ular strong AdaBoost classifier is divided into HL(x, r) and
HR(x, r) to reject some negative subwindows earlier, and the
key problem is to determine an optimal r to minimize the com-
putation cost. To solve this problem, it is necessary to reveal
the relationship between r and the negative rejection rate p.

In this part, with the MIT-CMU training dataset described
in Section VI-A, we train a regular strong AdaBoost classifier
and split it into two parts by r, which varies from 1 to T . In the
case that detection rate is fixed at 1, Fig. 10(a) shows that the
negative rejection rate p increases with r. p first grows quickly
from 0 to 0.96 when r changes from 1 to a small value r∗ = 80,
and then becomes stable when r is larger than r∗. Thus, we can
model p(r) by combining two linear functions: p1(r) = 0.012r
with r < r∗ and p2(r) = 1 with r ≥ r∗. Fig. 10(a) demonstrates
the rationality of (16)–(25). Fig. 10(b) shows that the compu-
tation cost f first decreases and then increases with r, and
the unique minimum is nearby r∗. Fig. 10(b) experimentally
proves the correctness of Theorems 1 and 2.

When we split the regular strong AdaBoost classifier into
HL(x, r1) and HR(x, r1), the subwindows not rejected by

Fig. 12. Generalized decreasing phenomenon in joint-minimum-based
multistage cascade.

stage 1 are fed to stage 2. Then, we can divide HR(x, r1)

into two parts to form a 3-stage cascade. In this process, we
should know some properties of the negative rejection rate of
stage 2 [i.e., p(r|r1)]. Fig. 11(a) shows how p(r|r1) changes
with r, where the curves of p(r|r1) when r1 = 10 and r1 = 30
are given, respectively. p(r|r1) has the similar characteristics
to p(r). Fig. 11(b) shows how the derivative of p(r|r1) changes
with r. Obviously, when r̃1 < r1, p(r2 |̃r1) > p(r2|r1) and
p′(r2 |̃r1) < p′(r2|r1). Fig. 11 directly supports the correctness
of (37)–(41).

We use the local-minimum-based multistage cascade learn-
ing algorithm (see Fig. 7) to train an 9-stage cascade classifier.
Table I shows how the computation cost f changes with the
number of stages. The computation cost first decreases quickly
and then becomes stable. This phenomenon can be explained
as follows. Because the first few stages can reject the most
part of the subwindows, and then only some small part of the
subwindows can arrive at last few stages which takes little
computation cost.

2) Joint-Minimum-Based Cascade: In the local-minimum-
based multistage cascade, it seeks an optimal ri on the
condition that (r1, . . . , ri−1) are known and fixed, so
(r1, . . . , ri−1, ri) cannot be jointly optimal for minimizing the
computation cost f (r1, . . . , ri) where not only ri but also
r1, . . . , ri−1 are variable. Thus, Algorithm 3 is proposed to
train the joint-minimum-based multistage cascade.

Fig. 12 shows the iteration process of Algorithm 3. The
number 48 on the top blue line is r∗(1)

1 = arg min f1(r), which
is the result of line 1 of Algorithm 3. The right number 172 on
the top red line is ru

2 = arg min f2(r2|r∗(1)
1) = 172 (see line 4

of Algorithm 3). Obviously ru
2 = 172 is the solution of local-

minimum-based optimization. The numbers 17 and 82 on the
second blue line are solutions of joint-minimum-based opti-
mization (i.e., line 13 of Algorithm 3). Generally, the right
most number on each red line is the upper bound ru

i of
Algorithm 3, and the numbers on each blue line are the solu-
tions of joint-minimum-based optimization r∗ij , j = 1, . . . , i.

PANG et al.: CASCADE LEARNING BY OPTIMALLY PARTITIONING 4159

TABLE II
COMPUTATION COST OF THE CASCADE TRAINED BY ALGORITHM 3 VARIES WITH THE NUMBER (i+ 1) OF THE STAGES

Fig. 13. (a) Comparison of the computation cost between local-minimum-
based multistage cascade and joint-minimum-based one. (b) Computation cost
decreases with the update of threshold ti.

The generalized decreasing phenomenon can be seen from
Fig. 12. For example, r1 decreases from 48 to 17, 12; r2
decreases from 172 to 82, 45, 33; and r3 decreases from 180
to 172, 69, 60. Table II gives the computation cost of the cas-
cade corresponding to Fig. 12. i + 1 means the number of
the stages in the cascade. flocal(i) means the computation cost
f (ri|r1, . . . , ri−1). In Table II, flocal(1) = 74.42 is the com-
putation cost f (r1) with r1 = 48, and flocal(2) = 52.87 is
equal to f (r2|r1) with r1 = 48 and local optimization solu-
tion r2 = 172. fjoint(i) is the computation cost f (r1, . . . , ri)

of the proposed joint-minimum algorithm, where r1, . . . , ri

are all unknown. Note that fjoint(1) = flocal(1), because the
local-minimum and joint-minimum is same for two-stage cas-
cade. However, fjoint(2) = 37.83 and fjoint(3) = 26.67 are
much smaller than flocal(2) = 52.87 and flocal(3) = 31.24,
respectively.

To compare the joint-minimum Algorithm 3 with the local-
minimum algorithm, we visualize fjoint in Table II and f in
Table I in Fig. 13(a). With the number of stages increasing,
the computation costs both decrease. But the difference is that
the computation cost of joint-minimum algorithm decreases
more quickly than that of local-minimum algorithm. For exam-
ple, when the numbers of stages are 4 and 9, the computation
costs of the joint-minimum and local-minimum algorithms are
(26.67 and 18.99) and (52.16 and 52.14), respectively. In sum-
mary, Fig. 13(a) demonstrates the advantage and importance
of the proposed joint-minimum optimization algorithm.

3) Threshold Learning: The thresholds ti, i = 1, . . . , S
affect the computation cost of iCascade. Algorithm 4 gives
the iteration process to choose the threshold of each stage
for iCascade. Note that the variation �Di of detection rate is
obtained by changing ti to ti +�ti. As �ti gradually decreases,
the detection accuracy increases whereas the training time
drastically grows. A set of ti is evaluated. We find that the
performance is stably good if �ti ≤ 0.02. As a tradeoff,
�ti = 0.01 is empirically employed. Fig. 13(b) shows how
the computation cost updates in the iteration process of the
first 20 stages’ thresholds. It can be seen that the computation

Fig. 14. Computation cost shown as a function of image location. (a) Original
image. (b) Recycling response image. (c) Recycling and retracting response
image. (d) iCascade response image.

cost significantly decreases with the iteration. Fig. 13(b) shows
the convergence of the proposed threshold learning algorithm.
Fig. 13(b) also supports the correctness of Theorem 13.

C. Comparison on the MIT-CMU Face Dataset

In this section, we compare iCascade with Fixed
Cascade [20], Recycling Cascade [9], and Recycling and
Retracting Cascade [9]. Haar features are adopted.

The number of average features per window is used to rep-
resent the computation cost. Fig. 14 reflects the computation
cost of different algorithms (i.e., iCascade, Recycling Cascade,
and Retracting and Recycling Cascade) as a function of image
locations. The number of the average features used in a slid-
ing window is accumulated to the center pixel of the sliding
window. After detection, the value of each pixel is normalized
to 0–255. The larger the value is, the greater the computation
cost is, and the greater the probability that a face exists. It can
be observed that Fig. 14(d) (i.e., iCascade) is much darker
and sparser than Fig. 14(b) and (c). The darkness and sparsity
imply that iCascade consumes less computation cost than the
other two algorithms.

Fig. 15(a) shows the number of average features per
window of different methods at different target detection
rates D0. For example, when the target detection rate is 0.97,
iCascade averagely uses 5.95 features, whereas Fixed Cascade,
Recycling Cascade, and Recycling and Retracting Cascade use
22.84, 20.78, and 13.32 features, respectively. Fig. 15(b) shows
the receiver operating characteristic (ROC) of the different
algorithms. The difference between detection performances
of different methods is insignificant. We can conclude from
Fig. 15 that iCascade has less computation cost without loss
of detection performance.

4160 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 12, DECEMBER 2017

Fig. 15. (a) Comparison of the computation cost between different algo-
rithms on the MIT-CMU face dataset. (b) ROC of different algorithms on the
MIT-CMU face dataset.

Fig. 16. Results on the Caltech dataset when ACF features [34] are employed.
(a) Computation cost. (b) ROC curves.

D. Comparison on the Caltech Pedestrian Dataset

In this section, the Caltech pedestrian dataset [36] is used
to compare iCascade with Fixed Cascade [20] and Soft-
Cascade [22]. The state-of-the-art NNNF-L4 features [18]
and the classical ACF features [34] are adopted, respectively.
Caltech and Caltech 10× training datasets are used for the
ACF and NNNF-L4 features, respectively. In ACF [34], 4096
level-2 decision trees are used for ACF. The decision trees are
obtained after four rounds. In each round, 5000 hard negatives
are added and the cumulative negatives are limited to 10 000.
In [18], 4096 level-4 decision trees are used for NNNF-L4. The
decision trees are obtained after five rounds. In each round,
20 000 hard negatives are added and the cumulative negatives
are limited to 50 000. The number of average detection trees
per window is used to represent the computation cost.

Fig. 16 shows the results when the ACF features are
employed. Fig. 16(a) shows that the number of decision trees
per window is used. Specifically, iCascade averagely uses 5.41
level-2 decision trees per window, Soft-Cascade uses 7.28
level-2 decision trees, and Fixed Cascade uses 32.51 decision
trees. Thus, the number of level-2 decision trees per window
used by iCascade is 1.87 smaller than that used by Soft-
Cascade. As two features are calculated per level-2 decision
tree, the number of features per window used by iCascade is
3.74 smaller than that used by Soft-Cascade. Fig. 16(b) shows
that the log-average miss rates of iCascade and Soft-Cascade
are 43.88% and 43.92%, respectively. It means that iCascade
has less computation cost than Soft-Cascade when they have
almost the same detection performance.

Fig. 17 shows the results when the NNNF-L4 features are
employed. It is observed from Fig. 17(a) shows that iCascade
requires the smaller number of features than Soft-Cascade.

Fig. 17. Results on the Caltech dataset when NNNF-L4 features [18] are
employed. (a) Computation cost. (b) ROC curves.

Specifically, iCascade and Soft-Cascade require 4.27 and 5.57
level-4 decision trees per window, respectively. Thus, the num-
ber of level-4 decision trees per window used by iCascade
is 1.30 smaller than that used by Soft-Cascade. In other
word, the number of features per window used by iCascade
is 5.20 smaller than that used by iCascade. Fig. 17(b) shows
that iCascade and Soft-Cascade have the similar performance.
Thus, iCascade has less computation cost than Soft-Cascade
without performance loss.

VII. CONCLUSION

In this paper, we have proposed to design a two-stage
cascade structure by partitioning a strong classifier into left
and right parts. Moreover, we have proposed to design a
multistage cascade structure by iteratively partitioning the right
parts. Solid theories have been provided to guarantee the exis-
tence and uniqueness of the optimal partition points with the
goal of minimizing computation cost of the designed cascade
classifier. Decreasing phenomenon has been discovered and
theoretically justified for efficiently searching the optimal solu-
tions. In addition, we have presented an effective algorithm
for learning the optimal threshold of each stage classifier. In
the future, we plan to develop more efficient cascade learning
algorithm by flexibly and optimally changing the ordering of
the weak classifier obtained by the AdaBoost algorithm.

REFERENCES

[1] Y. Pang, H. Zhu, X. Li, and X. Li, “Classifying discriminative fea-
tures for blur detection,” IEEE Trans. Cybern., to be published,
doi: 10.1109/TCYB.2015.2472478.

[2] J. Marín, D. Vázquez, A. M. López, J. Amores, and L. I. Kuncheva
“Occlusion handling via random subspace classifiers for human detec-
tion,” IEEE Trans. Cybern., vol. 44, no. 3, pp. 342–354, 2014.

[3] Y. Pang, K. Zhang, Y. Yuan, and K. Wang, “Distributed object
detection with linear SVMs,” IEEE Trans. Cybern., vol. 44, no. 11,
pp. 2122–2133, Nov. 2014.

[4] M. A. A. Aziz, J. Niu, X. Zhao, and X. Li, “Efficient and robust learning
for sustainable and reacquisition-enabled hand tracking,” IEEE Trans.
Cybern., vol. 46, no. 4, pp. 945–958, Apr. 2016.

[5] S. Paisitkriangkrai, C. Shen, and A. van den Hengel, “A scalable
stagewise approach to large-margin multiclass loss-based boosting,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 5, pp. 1002–1013,
May 2014.

[6] S. Paisitkriangkrai, C. Shen, Q. Shi, and A. van den Hengel,
“RandomBoost: Simplified multiclass boosting through randomization,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 4, pp. 764–779,
Apr. 2014.

[7] L. Shao, L. Liu, and X. Li, “Feature learning for image classification via
multiobjective genetic programming,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 25, no. 7, pp. 1359–1371, Jul. 2014.

PANG et al.: CASCADE LEARNING BY OPTIMALLY PARTITIONING 4161

[8] R. Benenson, M. Omran, J. Hosang, and B. Schiele, “Ten years of pedes-
trian detection, what have we learned?” in Proc. Eur. Conf. Comput. Vis.,
Zürich, Switzerland, 2014, pp. 613–627.

[9] S. C. Brubaker, J. Wu, J. Sun, M. D. Mullin, and J. M. Regh, “On
the design of cascades of boosted ensembles for face detection,” Int. J.
Comput. Vis., vol. 77, no. 1, pp. 65–86, 2008.

[10] G. Gualdi, A. Prati, and R. Cucchiara, “Multistage particle windows for
fast and accurate object detection,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 34, no. 8, pp. 1589–1604, Aug. 2012.

[11] B. Jun, I. Choi, and D. Kim, “Local transform features and hybridization
for accurate face and human detection,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 6, pp. 1423–1436, Jun. 2013.

[12] C. Zhang and P. Viola, “Multi-instance pruning for learning efficient
cascade detectors,” in Proc. Adv. Neural Inf. Process. Syst., Vancouver,
BC, Canada, 2007, pp. 1681–1688.

[13] Y. Pang, J. Cao, and X. Li, “Learning sampling distributions for
efficient object detection,” IEEE Trans. Cybern., to be published,
doi: 10.1109/TCYB.2015.2508603.

[14] R. Benenson, M. Mathias, R. Timofte, and L. V. Gool, “Pedestrian detec-
tion at 100 frames per second,” in Proc. IEEE Int. Conf. Comput. Vis.
Pattern Recognit., Providence, RI, USA, 2012, pp. 2903–2910.

[15] Y. Pang, H. Yan, Y. Yuan, and K. Wang, “Robust CoHOG feature extrac-
tion in human centered image/video management system,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 458–468, Apr. 2012.

[16] X. Wang, T. Han, and S. Yan, “An HOG-LBP human detector with
partial occlusion handing,” in Proc. IEEE Int. Conf. Comput. Vis., 2009,
pp. 32–39.

[17] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast human detec-
tion using a cascade of histograms of oriented gradients,” in Proc. IEEE
Int. Conf. Comput. Vis. Pattern Recognit., New York, NY, USA, 2006,
pp. 1491–1498.

[18] J. Cao, Y. Pang, and X. Li, “Pedestrian detection inspired by appearance
constancy and shape symmetry,” in Proc. Int. Conf. Comput. Vis. Pattern
Recognit., 2016.

[19] M. Saberian and N. Vasconcelos, “Boosting classifier cascades,” in
Proc. Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2010,
pp. 2047–2055.

[20] P. Viola and M. Jones, “Robust real-time face detection,” Int. J. Comput.
Vis., vol. 57, no. 2, pp. 137–154, 2004.

[21] R. Xiao, L. Zhu, and H. Zhang, “Boosting chain learning for object
detection,” in Proc. IEEE Int. Conf. Comput. Vis., 2003, pp. 709–715.

[22] L. Bourdev and J. Brandt, “Robust object detection via soft cascade,” in
Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., San Diego, CA,
USA, 2005, pp. 236–243.

[23] M. Pham, V. Hoang, and T. Cham, “Detection with multi-exit asymmet-
ric boosting,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit.,
Anchorage, AK, USA, 2008.

[24] S. Z. Li and Z. Zhang, “Floatboost learning and statistical face
detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9,
pp. 1112–1123, Sep. 2004.

[25] J. Wu, S. C. Brubaker, M. D. Mullin, and J. M. Rehg, “Fast asymmetric
learning for cascade face detection,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 30, no. 3, pp. 369–382, Mar. 2008.

[26] P. Wang, C. Shen, N. Barnes, and H. Zheng, “Fast and robust object
detection using asymmetric totally corrective boosting,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 23, no. 1, pp. 33–46, Jan. 2012.

[27] C. Shen, P. Wang, S. Paisitkriangkrai, and A. van den Hengel, “Training
effective node classifiers for cascade classification,” Int. J. Comput. Vis.,
vol. 103, no. 3, pp. 326–347, 2013.

[28] H. Luo, “Optimization design of cascaded classifiers,” in Proc. IEEE
Int. Conf. Comput. Vis. Pattern Recognit., San Diego, CA, USA, 2005,
pp. 480–485.

[29] J. Sochman and J. Matas, “WaldBoost—learning for time constrained
sequential detection,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern
Recognit., San Diego, CA, USA, 2005, pp. 150–156.

[30] S. C. Brubaker, M. D. Mullin, and J. M. Rehg, “Towards optimal training
of cascaded detectors,” in Proc. Eur. Conf. Comput. Vis., Graz, Austria,
2006, pp. 325–337.

[31] X. Chen and A. Yuille, “A time-efficient cascade for real-time object
detection: With applications for the visually impaired,” in Proc. IEEE
Int. Conf. Comput. Vis. Pattern Recognit., San Diego, CA, USA, 2005,
p. 28.

[32] M. Chen, Z. Xu, K. Weinberger, O. Chapelle, and D. Kedem, “Classifier
cascade for minimizing feature evaluation cost minmin,” in Proc. Int.
Conf. Artif. Intell. Statist., 2012, pp. 218–226.

[33] Z. Xu, M. Kusner, K. Weinberger, and M. Chen, “Cost-sensitive tree of
classifiers,” in Proc. Int. Conf. Mach. Learn., 2013, pp. 133–141.

[34] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fastest feature pyramids
for object detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 8, pp. 1532–1545, Aug. 2014.

[35] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face
detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 1,
pp. 22–38, Jan. 1998.

[36] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
An evaluation of the state of the art,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 34, no. 4, pp. 743–761, Apr. 2012.

[37] P. Dollár, Z. Tu, P. Perona, and S. Belongie. “Integral channel features,”
in Proc. Brit. Mach. Vis. Conf., 2009, pp. 1–11.

Yanwei Pang (M’07–SM’09) received the Ph.D.
degree in electronic engineering from the University
of Science and Technology of China, Hefei, China,
in 2004.

He is currently a Professor with Tianjin
University, Tianjin, China. His current research
interests include object detection and image pro-
cessing. He has published over 100 scientific papers
including 24 IEEE TRANSACTION papers in the
above areas.

Jiale Cao received the B.S. degree in electronic
engineering from Tianjin University, Tianjin, China,
in 2012, where he is currently pursuing the Ph.D.
degree.

His current research interests include object detec-
tion and image analysis.

Xuelong Li (M’02–SM’07–F’12) is a Full Professor with the Center for
Optical Imagery Analysis and Learning, State Key Laboratory of Transient
Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics,
Chinese Academy of Sciences, Xi’an, China.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

