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Abstract—The capacitated arc routing problem (CARP) is
a challenging optimization problem with lots of applications in the
real world. Numerous approaches have been proposed to tackle
this problem. Most of these methods, albeit showing good per-
formance on CARP instances of small and median sizes, do not
scale well to large-scale CARPs, e.g., taking at least a few hours
to achieve a satisfactory solution on a CARP instance with thou-
sands of tasks. In this paper, an efficient and scalable approach is
proposed for CARPs. The key idea of the proposed approach is to
hierarchically decompose the tasks involved in a CARP instance
into subgroups and solve the induced subproblems recursively.
The output of the subproblems at the lower layer in the hierarchy
is treated as virtual tasks and new subproblems are formulated
based on these virtual tasks using clustering techniques. By this
means, the number of tasks (or virtual tasks) decreases rapidly
from the bottom to the top layers of the hierarchy, and the
sizes of all subproblems at each layer can be kept tractable even
for very large-scale CARPs. Empirical studies are conducted on
CARP instances with up to 3584 tasks, which are an order of
magnitude larger than the number of tasks involved in all CARP
instances investigated in the literature. The results show that the
proposed approach significantly outperforms existing methods in
terms of scalability. Since the proposed hierarchical decomposi-
tion scheme is designed to obtain a good permutation of tasks in
a CARP instance, it may also be generalized to other hard opti-
mization problems that can be formulated as permutation-based
optimization problems.

Index Terms—Capacitated arc routing problem (CARP),
clustering, combinatorial optimization, hierarchical decomposi-
tion (HD), scalability.
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I. INTRODUCTION

THE CAPACITATED arc routing problem (CARP) [1] is
a classical combinatorial optimization problem that seeks

an optimal set of routes to cover a certain subset of edges
and/or arcs in a given network subject to some specific con-
straints, where each edge typically stands for a road in the real
world [2], [3]. For its wide range of practical applications,
such as winter gritting [4], urban waste collection [5], [6]
and snow removal [7], [8], CARP has drawn considerable
attentions in the past few decades and a large number of
algorithms have been proposed [2], [7], [9]–[16]. However,
previous investigations are mostly limited to relatively small
scale CARPs. The largest CARP instance that has been used in
the literature, the EGL-G benchmark set [17], consists of up to
375 edges and 375 tasks. In contrast, with the ever growing of
big cities, a real-world CARP might involve much more roads
and tasks. For example, the central area of Beijing, China, con-
sists of more than 3000 main roads. Hence, it is natural to ask
whether existing approaches can still tackle such large-scale
CARP instances satisfactorily.

In spite of its importance, the scalability issue of CARP
solvers has been rarely addressed in the literature. Prior
to 2008, most algorithms for CARP were only tested
on small and medium-scale CARP instances, e.g., the
gdb [18], val [19], and Beullens’ benchmark sets [14], for
most of which the optimal solutions can be found by exact
methods. The above-mentioned EGL-G instances were pro-
posed in 2008 and widely used as an additional test set since
then. Results obtained on these instances show that the per-
formance of existing approaches clearly deteriorates with the
increasing size of CARP instance, both in terms of solution
quality (no optimal solution can be found for any EGL-G
instance) and in terms of computational cost (less than 10 s
for a small-scale val instance but about 30 min for an EGL-G
instance) [2], [20], [21].

Motivated by the above observation, Mei et al. [22]–[24] pro-
posed several approaches to tackle large-scale CARPs. These
methods share a similar iterative search framework called coop-
erative co-evolution (CC) [25]–[28]. That is, a CARP instance
is decomposed into a set of subproblems through dividing its
tasks into groups. The subproblems are tackled separately.
The obtained partial-solutions are combined into a complete
solution to the original CARP instance and evaluated. The
best-so-far complete solution is used to reset the decomposi-
tion in the next iteration. In these approaches, decomposition
(i.e., grouping tasks) is conducted either randomly [22] or
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based on a predefined route distance matrix [23], [24], and
different optimization techniques can be adopted to solve the
subproblems. These CC-based approaches, e.g., the route dis-
tance grouping scheme with memetic algorithm with extended
neighborhood search (RDG-MAENS) [23], perform signifi-
cantly better than previous approaches on EGL-G instances.
Such advantages should mainly be credited to solving the
problem in a divide-and-conquer manner. Nevertheless, these
CC-based methods all decompose CARP in a linear way. That
is, to keep the subproblems at a tractable size, the number
of subproblems needs to increase linearly with the number of
tasks. In this case, the complexity of appropriate task group-
ings increases rapidly with the size of CARP. Consequently,
it is more likely that inappropriate groupings of tasks
will be obtained on large-scale CARPs and mis-guide the
search. Although Shang et al. [29] proposed to improve the
CC-based RDG-MAENS [23], the improved RDG-MAENS
was not tested on the existing largest CARP instances
(i.e., the egl-large instances with up to 375 tasks). Thus, the
CC-based methods may still encounter scalability issues on
large-scale CARPs.

This paper aims to develop a novel approach that can scale
well to large-scale CARPs. Specifically, we are interested in
CARPs that are at least an order of magnitude larger than
the existing benchmark instances, and aim to develop methods
for achieving good solutions to such CARPs within acceptable
time, e.g., less than half an hour. A scalable approach based on
hierarchical decomposition (SAHiD) is proposed for this pur-
pose. The key idea of SAHiD is to hierarchically (rather than
linearly) decompose the tasks involved in a CARP instance
into subgroups. At the bottom layer of the hierarchy, tasks are
decomposed into a few groups and a subproblem is solved
for each group. At each intermediate layer of the hierarchy,
the output of the subproblems at the lower layer is treated
as virtual tasks and new subproblems are formulated based
on these virtual tasks rather than the original tasks. The final
solution is obtained at the top layer of the hierarchy. With such
a hierarchical structure, the number of tasks (or virtual tasks)
exponentially decreases from the bottom to the top layers of
the hierarchy. Thus, the number of task groups required at each
layer, except for the bottom layer, is significantly less than that
required for linear decomposition schemes. As a result, the
complexity of grouping tasks can be better controlled and inap-
propriate groupings are less likely to be obtained. Furthermore,
as will be shown by our empirical studies, a solution to large-
scale CARPs can be obtained efficiently in such a hierarchical
way, thus allowing repeating the process in an iterative man-
ner to achieve better solution quality than existing methods in
shorter runtime.

The rest of this paper is organized as follows. First,
the problem definition and notations of CARP are intro-
duced in Section II. After that, the hierarchical decomposi-
tion (HD) scheme and detailed steps of SAHiD are described
in Sections III and IV, respectively. Empirical studies are
presented in Section V to assess the performance of SAHiD
and compare it against state-of-the-art CARP solvers. Finally,
Section VI concludes this paper and discusses directions for
future research.

II. PROBLEM DEFINITION AND NOTATIONS

An undirected/directed CARP is defined on a connected and
undirected/directed graph G(V, E), where V and E represent
the sets of vertices and edges, respectively. A cost c(e) > 0
and a demand d(e) ≥ 0 are associated with each edge e ∈ E.
The edges with positive demands constitute the task set T , i.e.,
T = {τ ∈ E|d(τ ) > 0}. A vertex v0 ∈ V is predefined as the
depot, in which a fleet of vehicles are located. The aim of
CARP is to determine a set of routes for the vehicles to serve
all the tasks with minimal total costs, subject to the following
constraints.

1) Each route must start and end at the depot.
2) Each task is served exactly once (but the corresponding

edge can be traversed more than once).
3) The total demand of tasks served in each route cannot

exceed the vehicle capacity Q.
A solution of CARP can be represented by a sequence of

vertices, which directly indicates the order of vertices for the
vehicles to visit. However, given a sequence of the tasks,
the minimum cost can be easily achieved by summing up the
shortest paths between the vertices of each pair of consec-
utive tasks in the sequence in polynomial time [15]. Since
the task representation is more compact, it is adopted in
this paper. That is a solution to CARP is represented by
s = (R1, 0, R2 . . . , Rm), where m is the number of routes, the
kth route Rk = (τk,1, . . . , τk,lk), and 0 stands for a dummy
task that separates two routes. For each Rk, τk,t, and lk denote
the tth task and the number of tasks served in route Rk,
respectively. More formally, let u1(τ ) and u2(τ ) represent the
endpoints of task τ , and inv(τ ) the inverse direction of τ , i.e.,
u1(inv(τ )) = u2(τ ) and u2(inv(τ )) = u1(τ ), a CARP can be
formulated as follows:

minimize TC(s) (1)

s.t.
m∑

k=1

lk = |T| (2)

τk1,i1 �= τk2,i2 , ∀(k1, i1) �= (k2, i2) (3)

τk1,i1 �= inv
(
τk2,i2

)
, ∀(k1, i1) �= (k2, i2) (4)

lk∑

i=1

d
(
τk,i

) ≤ Q, ∀k = 1, 2, . . . , m. (5)

The objective function, i.e., (1), requires minimizing the
total cost TC(s)

TC(s) =
m∑

k=1

RC(Rk). (6)

RC(Rk) is the total cost of route Rk and can be computed
using

RC(Rk) =
lk∑

i=1

c
(
τk,i

)+ dc
(
v0, u1

(
τk,1

))

+
lk∑

i=2

dc
(
u2

(
τk,i−1

)
, u1

(
τk,i

))+ dc
(
u2

(
τk,lk

)
, v0

)

(7)
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Fig. 1. Hierarchical structure of HD.

where dc(vi, vj) > 0 stands for the deadheading cost induced
by traversing the shortest path from vertices vi to vj.

In constraints (3) and (4), the inequality (k1, i1) �= (k2, i2)
means that the two equalities k1 = k2 and i1 = i2 do not
hold simultaneously. These two constraints prohibit that a task
to be served more than once, either in the same route or
different routes. Thus, constraints (2)–(4) ensure that all the
tasks are served exactly once. Constraint (5) indicates that
the total demand of each route should not exceed the vehicle
capacity Q.

The challenge of CARP can be viewed from two perspec-
tives. First, the optimal permutation of tasks corresponds to
the optimal solution of CARP, and the latter can be obtained
from the former in polynomial time [15]. Second, if the opti-
mal assignments of tasks to vehicles are available, the optimal
solution of CARP can also be obtained by solving several
independent single-vehicle problems that are considerably eas-
ier than CARP. This paper takes the first perspective, i.e.,
the proposed approach aims to identify a good permutation
efficiently.

III. HIERARCHICAL DECOMPOSITION OF CARP

It can be observed that the scale of a CARP instance mainly
depends on the number of tasks to be served. Furthermore,
a CARP can be addressed in two steps, i.e., finding a permu-
tation of the task set and dividing this permutation into feasible
routes. The optimal permutation must correspond to an optimal
feasible solution, and vice versa [15], [30]. More importantly,
given a permutation of tasks, the corresponding best feasible
solution can be acquired in polynomial time [15]. Therefore,
the key challenge to CARP can be viewed as finding the
optimal permutation of tasks. The proposed HD scheme is
essentially a method for finding a good permutation of tasks
efficiently. To be concrete, HD introduces a number of vir-
tual tasks to construct a hierarchical structure, as demonstrated
in Fig. 1. In the figure, each node (in the lth layer) of the
hierarchy corresponds to a virtual task τ l

i , which is a permuta-
tion of several tasks. Kl−1 represents the number of virtual
tasks included in layer l. It will be discussed in detail in
Section III-A. Each node at the bottom layer (i.e., layer 1)
corresponds to a real task. The node at the top layer (i.e.,
layer h) represents a permutation of all the tasks. The hierarchy
is built in a bottom-up way. At the bottom layer (i.e., layer 1),

Algorithm 1: HD(VT)

Procedure: HD(VT)
Input: virtual task set VT
Output: a permutation of tasks PT

1 repeat
2 randomly choose the cluster number K ∈ [1, β · |VT|];
3 divide VT into groups by using k-means;
4 order the virtual tasks within each group;
5 VT ← {permutation of tasks in each group};
6 until |VT| = 1;
7 return the permutation of tasks in VT;

tasks are grouped and ordered within each group. The per-
mutation of tasks in each group is treated as a virtual task
at layer 2. This procedure is executed on the obtained virtual
tasks recursively until only 1 virtual task remains, which is
a permutation of all the tasks. For example, suppose there are
four tasks {τ 1

1 , τ 1
2 , τ 1

3 , τ 1
4 } at layer 1, each two of them are

connected to a node at layer 2, the virtual task corresponding
to this node, denoted by τ 2

i is a permutation of the two tasks,

e.g., τ 2
1 = (τ 1

2 , τ 1
1 ) and τ 2

2 = (τ 1
3 , τ 1

4 ). τ 2
1 and τ 2

2 are then
grouped and ordered, forming a virtual task at layer 3, e.g.,
τ 3

1 = (τ 2
2 , τ 2

1 ) = (τ 1
3 , τ 1

4 , τ 1
2 , τ 1

1 ). By this means, a permutation
of the four tasks is obtained.

From the above description, for a given CARP instance,
the HD scheme starts from the bottom layer and recursively
group tasks into virtual tasks of a larger size until only 1 vir-
tual task remains. Each node at nonbottom layers requires
solving a subproblem to find the optimal permutation of the
tasks (virtual tasks) assigned to that node, which is a partial-
solution to the problem of finding optimal permutation of
all tasks. Algorithm 1 demonstrates the general framework
of the HD scheme. The benefits offered by such a hierarchy
are twofold. From the perspective of problem decomposition,
a linear decomposition scheme (e.g., as adopted by the CC-
based approaches) has to involve a large number of small-size
subproblems to cope with large-scale CARPs. Meanwhile,
task grouping itself is a nontrivial problem, the complexity of
which increases exponentially with the number of task groups
(i.e., number of subproblems). Hence, it is highly likely that an
inappropriate grouping will be obtained on large-scale CARPs,
or a significant computational cost is needed to identify a good
grouping of tasks. In other words, the performance of linear
decomposition will deteriorate rapidly with the problem-size
of CARP. As a result, the solution quality may also deterio-
rate rapidly since the grouping of tasks significantly affects
the search course. In contrast, the HD scheme allows the
number of nodes (i.e., virtual tasks) to decrease exponentially
from the bottom layer toward the top layer. Thus, the cost
for identifying a suitable grouping of tasks increases slowly
with the scale of CARP. Hence, the scalability (in terms of
the quality of task grouping) of HD is expected to be bet-
ter than that of a linear grouping, and can lead to a better
grouping of tasks (and thereby solution quality) than linear
decomposition, especially when the total time budget for solv-
ing a CARP is limited and task grouping needs to be done as
fast as possible. From the perspective of search effectiveness,
since a subproblem (node) of an upper layer only takes the
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partial-solutions obtained at the lower layers as its input, but
does not change the inner structure of the partial-solutions,
the hierarchical structure naturally allows searching at differ-
ent step-sizes by solving subproblems at different layers and
may lead to a more effective search.

The HD strategy involves two design issues. That is, how
to group virtual tasks (i.e., lines 2 and 3 in Algorithm 1) and
how to find the optimal permutation in a group of virtual tasks
(i.e., line 4 in Algorithm 1). These will be detailed below.

A. Grouping Virtual Tasks

Intuitively, tasks close to each other are more likely to
be served successively in solutions with high quality. Hence,
a natural idea is to assign neighboring tasks to the same group.
Thus, the closeness between two virtual tasks needs to be
defined in order to group the virtual tasks. An intuitive idea is
to take the deadheading cost between two virtual tasks as the
closeness. Since the deadheading cost idefined between two
vertices rather than two virtual tasks (paths) and four differ-
ent deadheading costs can be obtained by connecting different
pairs of endpoints of two virtual tasks, the closeness between
virtual task τ l

i and τ l
j is defined as the average deadheading

cost between them

�
(
τ l

i , τ
l
j

)
= dc

(
vi, vj

)+ dc
(
ui, uj

)+ dc
(
vi, uj

)+ dc
(
ui, vj

)

4
(8)

where (vi, ui) and (vj, uj) denote the start and end vertices
of τ l

i and τ l
j , respectively. dc(vi, vj) is the deadheading cost

between vertices vi and vj. As a special case, the close-
ness between virtual task τ l

i and the depot v0 is �(v0, τ
l
i ) =

((dc(vi, v0)+ dc(ui, v0))/2).
Given the closeness measure of two virtual tasks, grouping

virtual tasks can be formulated as a clustering problem. In
principle, any clustering method can be applied for this pur-
pose. We choose the well-known k-means algorithm [31] for
its simplicity. The k-means algorithm requires calculating the
centroid of each cluster. This can be easily done in a real-
space but cannot be directly computed in case of clustering
virtual tasks. Hence, in each iteration of k-means, the centroid
of a cluster is defined as the virtual task with minimal average
closeness to other virtual tasks in the same cluster.

The number of clusters, K, is a user-defined parameter in
k-means and has a great influence on the clustering results.
In the HD scheme, since the clustering process is invoked at
each layer and the number of virtual tasks varies over layers,
a fixed value of K for all clustering processes is inappropriate.
Note that each virtual task at layer l corresponds to a clus-
ter obtained at layer l − 1. Hence, let Kl denote the number
of clusters obtained at layer l, we set it as an integer ran-
domly generated within [1, β · Kl−1], where β ∈ (0, 1) is
a predefined parameter. For the bottom layer (i.e., layer 1),
K1 = |T|.

Another important issue related to the effectiveness of
k-means is the selection of initial cluster centroids. The
initial centroids can be selected randomly or by using spe-
cific methods [32]–[34]. Here, we use a simple heuristic that
disperse the centroids as widely as possible. Specifically,

Algorithm 2: HDU(VT)

Procedure: HDU(VT)
Input: virtual task set VT
Output: a feasible solution s;

1 apply HD(VT) to generate a permutation of tasks PT;
2 apply Ulusoy’s splitting procedure to partition PT into

a solution s;
3 return s;

the heuristic works by adding noncentroid virtual tasks into
the centroid set one by one such that the sum of the closeness
between the newly added virtual task and existing ones in the
set is maximal. It should be noted that the depot is regarded
as a dummy virtual task and added to the centroid set at the
beginning.

B. Ordering Virtual Tasks

At each node of the hierarchical structure, the permutation
of a subset of tasks or virtual tasks needs to be optimized.
Recall that the capacity constraints are not considered when
solving these subproblems, since the HD scheme aims to
achieve the optimal permutation of all tasks regardless of
capacity constraints. There exist lots of heuristic methods for
finding such a permutation-based problem. Since a number of
such subproblems need to be solved for building the hierar-
chy, it is not worth adopting a time-consuming method. For
this consideration, we employ a greedy search heuristic named
best insertion heuristic (BIH). BIH first chooses the nearest
virtual task to the depot in terms of deadheading cost. Then,
at each iteration, the virtual task with the minimal deadhead-
ing cost to the current endpoint of the path is added to the
end of the path. If multiple virtual tasks satisfy this condition,
only one is randomly chosen. The process terminates when all
virtual tasks have been added to the path.

C. Generating Solution to CARP Based on
Hierarchical Decomposition

As mentioned before, the HD scheme seeks a good permu-
tation of all tasks in CARP regardless of capacity constraint.
Given a permutation of tasks, a solution (with respect to this
permutation) to CARP can be obtained by splitting the permu-
tation into a number of routes that satisfy capacity constraints.
This can be done with well-established methods in polynomial
time [15]. Herein, we employ the well-known Ulusoy’s split-
ting procedure [10], an exact method that has been proved
to be capable of solving the problem optimally. Thus, the
combination of the HD scheme and the Ulusoy’s splitting pro-
cedure, namely HDU as demonstrated in Algorithm 2, forms
our approach to CARPs.

IV. SCALABLE APPROACH BASED ON

HIERARCHICAL DECOMPOSITION

The HDU described in the previous section obtains a solu-
tion to a CARP in a constructive way. It can also be embedded
into an iterative search process, which allows the solution
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obtained using HDU to be further improved. The proposed
SAHiD is developed following this idea. Briefly speaking,
SAHiD is an individual-based iterative search method. At
each iteration, it first employs HDU to obtain a solution
to the CARP, and then some traditional local search oper-
ator is applied to further improve the solution obtained.
Specifically, SAHiD involves three phases, i.e., initialization,
reconstruction, and local search, as detailed below.

A. Initialization

At the first iteration, an initial solution, say s, is obtained by
applying HDU to the CARP instance. Then, the local search
operator is applied to s for further improvement.

B. Reconstruction

In the reconstruction phase, HDU is applied to generate
new candidate solutions. But different from in the initialization
phase, HDU is not applied to achieve a solution from scratch,
i.e., based on the un-ordered set of tasks. Instead, the solution
obtained in the last iteration, say s, is first randomly split into
a number of virtual tasks. Specifically, each route of s is split
into two virtual tasks with a predefined probability α, resulting
in a set of virtual tasks. Then, HDU is applied to this set to
obtain a new solution. Since s is built based on the original
set of tasks and polished with local search, it is expected to
contain some useful pattern of a good solution. Splitting the
routes does not change the permutation of tasks in the same
virtual task, and thus are likely to keep the useful patterns.
Hence, by applying HDU to the virtual tasks rather than the
original tasks, the useful pattern in the previous solution can
be exploited, and thus benefit the search for a better solution.

C. Local Search

When a solution is obtained by HDU, either in the ini-
tialization or reconstruction phase, a first improvement local
search procedure is applied to further improve it. The local
search starts with a reverse move operator similar to the 2-opt
operator [15] for a single route, i.e., it reverses the direction of
a subroute (i.e., part of a route). Suppose the reverse operator
is applied to a route consisting of t tasks. At each iteration, all
possible subroutes are enumerated with the length of subroute
increasing from 1 to t − 1. During this course, the current
solution is updated once a solution with a lower cost is found.
This procedure terminates when all subroutes of each route is
checked at least once, and the whole local search procedure
terminates if the solution obtained by HDU is updated at least
once.

If the reverse operator fails to improve the solution obtained
by HDU, the merge-split (MS) operator [16] is applied to
conduct a best improvement search. That is, at each step,
all solutions that can be reached by the MS operator from
the current solution are examined and the best and improved
one is chosen to replace the current solution. Compared to
the reverse operator, MS is a search operator with a larger
step-size, and thus is more likely to escape from the cur-
rent solution, which is a local optimum. Interested readers are
referred to [16] for detailed steps of MS. If the MS operator

Algorithm 3: Local Search Procedure LS(s)
Procedure: LS(s)
Input: solution s
Output: potentially improved solution s

1 repeat
2 for each sub-routes SR of each route R in s do
3 reverse SR to obtain a new solution s′;
4 if s′ is better than s then
5 s← s′;
6 break;
7 end if
8 end for
9 until s remains unchanged;

10 if s is not updated then
11 apply MS operator to improve s;
12 if s is updated then
13 repeat
14 for each sub-routes SR of each route R in s do
15 reverse SR to obtain a new solution s′;
16 if s′ is better than s then
17 s← s′;
18 break;
19 end if
20 end for
21 until s remains unchanged;
22 end if
23 end if
24 return s;

manages to find a better solution, the reverse operator will be
applied to the improved solution again to exploit the new local
region. Otherwise, the whole local search procedure terminates
with the solution obtained by HDU remaining unchanged.

The pseudo-code of the local search procedure is presented
in Algorithm 3. Note that HDU always produces feasible solu-
tions, the reverse operator only changes the order of tasks
within a feasible route, and the MS operator also always gen-
erates feasible routes. Hence, no infeasible solution will be
produced during the search process of SAHiD. For this reason,
only the total costs are taken into account when comparing two
solutions.

Algorithm 4 depicts the steps of SAHiD. It is noteworthy
that the best solution found so far is stored in an external
archive (lines 10–12) and outputted as the final solution. It
might be inappropriate to keep the best solution in the search
process of SAHiD if it cannot be improved for a long time.
Otherwise, the search will be stuck at this local best solu-
tion. Hence, we adopt the threshold accepting idea [35] in
SAHiD. Given a solution s, if no better solution is found after
σ consecutive iterations, a new solution worse than s will still
be accepted (i.e., replace s) as long as its quality is not worse
than θ% of that of the best-found solution. Finally, the SAHiD
can be terminated either when a predefined time budget is used
up or no better solution is found for a predefined number of
iterations.

V. EXPERIMENTAL STUDIES

To evaluate the effectiveness of SAHiD, two sets of empir-
ical studies have been conducted to compare SAHiD against
a number of state-of-the-art approaches to CARPs. In the
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Algorithm 4: Pseudo Code of SAHiD(T)
Procedure: SAHiD(T)
Input: task set T
Output: a feasible solution s∗

1 generate an initial solution s using HDU(T);
2 apply LS(s) to improve s;
3 s∗ ← s
4 while stopping criteria are not met do
5 generate a virtual task set VT by splitting the routes of s;
6 generate a solution s′ using HDU(VT);
7 apply LS(s′) to improve s′;
8 if s′ is acceptable then
9 s← s′

10 if s′ is better than s∗ then
11 s∗ ← s

′

12 end if
13 end if
14 end while
15 return s∗;

TABLE I
INFORMATION OF INSTANCES IN HEFEI AND BEIJING TEST SET

first study, the performance of different algorithms is examined
in terms of the time required to achieve a predefined solution
quality. In the second study, the algorithms are compared from
the perspective of solution quality obtained using a predefined
time budget. In addition, further empirical analysis has also
been conducted to assess the contribution of the HD scheme
to SAHiD.

A. Benchmark Set

Since this paper mainly studies the scalability of search
methods, we are more interested in the performance on large-
scale CARPs rather than small scale ones. Furthermore, as
mentioned before, most of the existing small or median-scale
CARP benchmark instances can be solved near optimally in
a rather short time period (e.g., 10 s). Therefore, instead of
using the more traditional benchmark sets, two new sets of

TABLE II
PARAMETER SETTINGS OF SAHID

CARP instances, namely Hefei and Beijing test sets,1 are
generated. The Hefei set is generated from the map of the
Hefei city in China, which consists of 1212 main roads (i.e.,
edges). The Beijing set is generated from the central area (the
area inside the fifth ring road) of Beijing, China, which con-
sists of 3584 main roads. For each set, ten instances are
generated by randomly setting part of the edges as tasks. The
number of tasks for each set increases from 10% to 100% of
the number of edges with a step-size 10%. Table I shows the
detailed information of these two benchmark sets. It can be
observed that these two sets involves instances that are one
order of magnitude larger than the largest CARP benchmark
instances used in the literature, i.e., EGL-G, which consists
of at most 375 edges and 375 tasks. Furthermore, since the
major challenge of CARP depends on the number of tasks
rather than the number of edges, the Hefei and Beijing sets
allow assessing the scalability of an algorithm in this regard.
It should also be noted that the performance of an algorithm
on a CARP is also affected by the capacity constraints. Thus,
the same capacity constraints are set to all instances in the
same set, so as to focus our investigation on scalability. M is
the minimal number of vehicles required to serve all the tasks,
which is obtained as follows:

M =
⌈

�τ∈Td(τ )

Q

⌉
. (9)

B. Compared Algorithms

Three algorithms, including variable neighborhood
search (VNS) [7], tabu search algorithm 1 (TSA1) [17] and
RDG-MAENS [23], are chosen for our comparative studies.
VNS and TSA1 are both individual-based search approaches
for CARPs. They have shown appealing performance not only
in terms of solution quality, but also (and more importantly
in the context of this paper) in terms of efficiency. RDG-
MAENS is an approach dedicated to large-scale CARPs and
has been shown to outperform other population-based search
methods, e.g., MAENS [16], on large-scale CARP instances.
Thus, it was chosen as the state-of-the-art representative
population-based search methods for CARPs.

C. Experimental Protocol

To make a fair comparison, all algorithms involved in the
empirical studies are implemented in C++ and run on the
same computing platform, i.e., Intel Core i7-4790 processor

1Instances of the two test sets are available at http://staff.ustc.edu.cn/
∼ketang/codes/LSCARPset.zip.
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Fig. 2. Heat map of average total cost obtained by SAHiD with different values of α and β on instances Hefei-1, Hefei-10, Beijing-1, and Beijing-10.
Blue indicates better results and red stands for worse results.

with 3.6 GHz. For all experiments presented hereafter, the
results are obtained by executing the algorithms for 25 inde-
pendent runs. Each of the tested algorithms consists of a few
parameters to be predefined.

SAHiD has five user-defined parameters, i.e., the scale
parameter β in HD; the probability α of partitioning a route in
the reconstruction phase; parameter p introduced by the MS
operator [16] and θ and σ introduced by threshold accept-
ing strategy [35], [36]. Since the last three parameters are
proposed in the previous works for local search, but are
not introduced by the HD decomposition scheme, the val-
ues suggested in the original publications are directly adopted.
For the parameters α and β, a sensitivity analysis is carried
out to test the performance of SAHiD as well as choosing
parameter values for more comprehensive empirical studies.
Specifically, five values (0.1, 0.3, 0.5, 0.7, and 0.9) were tested
for both parameters, which led to 25 combinations of param-
eters values. The sensitivity analysis is conducted on four
typical instances, including Hefei 1, Hefei 10, Beijing 1, and
Beijing 10. For each instance, SAHiD is executed for 10 times
with each of the 25 parameter combinations (i.e., 250 runs in
total). Fig. 2 depicts the heat maps of the average results (over
10 runs) obtained by SAHiD with different values of α and β.
It can be observed that α is more critical to performance on

larger instances (Hefei 10 and Beijing 10), while β mainly
affects the performance of SAHiD on smaller instances. The
reason is that, HD is the core of SAHiD, the tree size obtained
by HD has a great influence on the algorithm performance.
Both α and β affect the size of tree, α determines the number
of leaf nodes and β controls the upper bound of number of
intermediate nodes. As described in Section III-A, the num-
ber of nodes in layer l is within [1, β · Kl−1], where Kl−1
is the number of nodes in layer l − 1. Hence, the number of
intermediate nodes is not only affected by β but also deter-
mined by the number of bottom nodes (leaf nodes), which
means α plays a more important role than β when the problem
size is large. On the smaller instances (Hefei 1 and Beijing 1),
the number of routes is relatively small. Thus, a larger α is
needed to ensure a sufficient number of leaf nodes (virtual
tasks), if there are very few leaf nodes, the role of the hier-
archy will be greatly reduced. For the larger instances (i.e.,
Hefei 10 and Beijing 10), on the other hand, a small value
of α already led to splitting a large number of routes. In fact,
Table I indicates that the routes (i.e., the number of vehi-
cles, M) in a solution to Hefei 10 is about 10 times larger
than that in a solution to Hefei 1. Thus, setting α to 0.9 and
0.1 for Hefei 1 and Hefei 10 actually resulted in compara-
ble number of routes being split. Hence, as a rule of thumb,
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Fig. 3. Average computational time (to achieve a predefined solution quality) versus the number of tasks over all the instances of Hefei and Beijing sets for
each compared algorithm.

TABLE III
RESULTS ON HEFEI BENCHMARK SET IN TERMS OF THE TOTAL SOLUTION COSTS. BEST AND AVERAGE STAND FOR THE BEST AND AVERAGE RESULTS

OBTAINED FROM 25 INDEPENDENT RUNS. STD STANDS FOR THE STANDARD DEVIATION. THE MINIMAL AVERAGE RESULTS ARE MARKED WITH *.
FOR EACH INSTANCE, BOLD (UNDERLINED) RESULTS INDICATE THAT THE CORRESPONDING ALGORITHM IS BETTER (WORSE)

THAN SAHID BASED ON WILCOXON RANK-SUM TEST WITH THE LEVEL OF SIGNIFICANCE 0.05. “# OF ‘W-D-L’”
SUMMARIZES THE NUMBER OF “WIN-DRAW-LOSE” OF SAHID VERSUS THE OTHER ALGORITHMS

α is suggested to take the value that will lead to the split of
around seven routes in the reconstruction phase. Since β does
not appear to affect SAHiD as much as α, 0.1 can be used as
the default value. The results reported in this paper were all
obtained with α = 0.1 and β = 0.1.

Table II summarizes the parameter settings for SAHiD. For
the compared VNS [7], TSA1 [17], and RDG-MAENS [23],
the best parameter settings reported in the original publications
are employed. By this means, we hope to keep the comparison
as fair as possible.

D. Comparison in Terms of Runtime

Runtime is one of the most important issues when inves-
tigating the scalability of an algorithm. Ideally, the runtime
for an algorithm to achieve the optimal solution or a solu-
tion within a given approximation ratio should be tested.
However, such an analysis cannot be done for large-scale
CARP instances used in this paper, because the optimal solu-
tion and the lower bound on the total cost are unknown for

the instances. Hence, we resort to a threshold of total costs
as the target for the compared algorithms. Specifically, for
the Hefei and Beijing sets, SAHiD is first run for 25 times.
A time budget of 30 s is given for each run on each instance
of Hefei and Beijing sets. For each instance, the total costs
of the 25 final solutions are recorded. The largest one among
these 25 values indicates the worst performance of SAHiD in
the 25 runs. Thus, it is used as the target for other compared
algorithms. The runtime for each of the other algorithms to
achieve the same solution quality for the first time is recorded.
Since no matter how the target solution quality is chosen, it is
possible that an algorithm may not reach this target or takes
extremely long time to reach it, the compared algorithms are
terminated if a larger time budget of 30 min is used up.

Fig. 3 depicts the average runtime for the compared algo-
rithms on the Hefei and Beijing sets. Each point in the
figure corresponds to the runtime of an algorithm on an
instance. Note that, since the worst total costs obtained by
SAHiD are used as the target, the average runtime required
by SAHiD on each instance is always not greater than 30 s
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TABLE IV
RESULTS ON BEIJING BENCHMARK SET IN TERMS OF THE TOTAL SOLUTION COSTS. BEST AND AVERAGE STAND FOR THE BEST AND AVERAGE

RESULTS OBTAINED FROM 25 INDEPENDENT RUNS. STD STANDS FOR THE STANDARD DEVIATION. THE MINIMAL AVERAGE RESULTS ARE

MARKED WITH *. FOR EACH INSTANCE, BOLD (UNDERLINED) RESULTS INDICATE THAT THE CORRESPONDING ALGORITHM IS

BETTER (WORSE) THAN SAHID BASED ON WILCOXON RANK-SUM TEST WITH THE LEVEL OF SIGNIFICANCE 0.05.
# OF W-D-L SUMMARIZES THE NUMBER OF WIN-DRAW-LOSE OF SAHID VERSUS THE OTHER ALGORITHMS

TABLE V
RESULTS ON EGL-G BENCHMARK SET IN TERMS OF THE TOTAL SOLUTION COSTS. BEST AND AVERAGE STAND FOR THE BEST AND AVERAGE

RESULTS OBTAINED FROM 25 INDEPENDENT RUNS. STD STANDS FOR THE STANDARD DEVIATION. THE MINIMAL AVERAGE RESULTS ARE

MARKED WITH *. FOR EACH INSTANCE, BOLD (UNDERLINED) RESULTS INDICATE THAT THE CORRESPONDING ALGORITHM IS

BETTER (WORSE) THAN SAHID BASED ON WILCOXON RANK-SUM TEST WITH THE LEVEL OF SIGNIFICANCE 0.05.
# OF W-D-L SUMMARIZES THE NUMBER OF “WIN-DRAW-LOSE” OF SAHID VERSUS THE OTHER ALGORITHMS

for Hefei and Beijing sets. From the figure, it can be observed
that VNS, TSA1, and RDG-MAENS all consume much more
runtime than SAHiD. In fact, some even fail to reach the target
solution quality in 30 min for some large-scale instances. For
example, RDG-MAENS fails in all 25 runs on all the Beijing
instances except for Beijing-1, on which the average runtime
consumed is still close to the given time budget. TSA1 also
reaches the given time budget on 2 out of the 20 instances, and
always takes more than 500 s to reach the target solution qual-
ity. VNS appears to be more efficient than RDG-MAENS and
TSA1, but the runtime consumed by it show a growth trend
with respect to the problem size and thus its scalability is not
as good as SAHiD. These observations clearly demonstrate
the superiority of SAHiD to the compared algorithms.

E. Comparison in Terms of Solution Quality

In addition to runtime, another important characteristic of
an algorithm is the solution quality that can be achieved with

a given time budget. This is evaluated by our second experi-
ment. Specifically, each algorithm is given 30 min to search for
the solution to a CARP instance in Hefei and Beijing bench-
mark sets. Further, since the EGL-G benchmark set [17] has
been used to evaluate TSA1 and RDG-MAENS in the origi-
nal publications, this set of instances is also employed in the
experiment. The time budget is set to 15 min as the scale of
EGL-G is much smaller than Hefei and Beijing sets.

Tables III–V present the costs of the final solutions obtained
by the compared algorithms on the three test sets. The first
5 columns present the basic information of instances. For
each compared algorithm, the columns headed “best” and
“average” provide the best and average costs among the
25 runs, respectively. The last column headed “std” present
the standard deviations calculated over the 25 runs. The min-
imal average results are marked with “*.” On each instance,
SAHiD is compared to RDG-MAENS, VNS, and TSA1 by
using Wilcoxon rank-sum test with the level of significance
0.05 over 25 runs, results highlighted in bold/underline
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TABLE VI
RESULTS OF SAHID AND SARANDOM ON ALL TEST SETS IN TERMS OF THE TOTAL SOLUTION COSTS. BEST AND AVERAGE STAND FOR THE BEST

AND AVERAGE RESULTS OBTAINED FROM 25 INDEPENDENT RUNS. STD STANDS FOR THE STANDARD DEVIATION. FOR EACH INSTANCE,
BOLD (UNDERLINED) RESULTS INDICATE THAT SARANDOM IS BETTER (WORSE) THAN SAHID BASED ON

WILCOXON RANK-SUM TEST WITH THE LEVEL OF SIGNIFICANCE 0.05

indicate that the corresponding algorithm is significantly bet-
ter/worse than SAHiD on the corresponding instance. Results
without any symbol indicate that the difference between
SAHiD and the corresponding algorithm is statistically
insignificant.

From Tables III and IV, it can be observed that SAHiD
significantly outperforms the other algorithms in terms of solu-
tion quality. It achieves the smallest total costs on 7 out
of 10 instances in Hefei and 9 out of 10 instances in
Beijing. Statistical tests also confirmed that the significant
difference between SAHiD and the other algorithms. The
results in Tabel V are more mixed. To be specific, SAHiD
is not as competitive as RDG-MAENS on the 10 EGL-G
instances. In comparison to TSA1, SAHiD performs better on
six instances, i.e., EGL-G1-D, EGL-G1-E, EGL-G2-B, EGL-
G2-C, EGL-G2-D, and EGL-G2-E, while is inferior on the
other four instances. SAHiD still outperforms VNS on all
ten instances. The inferior performance of SAHiD to RDG-
MAENS on the EGL-G set is understandable, because the
former is designed with the aim to tackle large-scale CARPs.
As the size of EGL-G is relatively small, a more costly but
more precise search method like RDG-MAENS should be able
to find a better solution while the computational time is still

acceptable. In addition, unlike the Hefei and Beijing sets,
different EGL-G instances are subject to different capacity
constraints. Thus, another interesting observation from Table V
is that SAHiD outperforms TSA1 mainly in the cases where
the capacity constraints are tighter. A possible reason might be
that SAHiD always visits feasible solutions during the search,
while TSA1 may generate infeasible solutions and thus only
part of the time budget is used for searching in the feasible
region.

Furthermore, the performance of the algorithm is also tested
using different time budgets less than the above given time
budgets. The average costs obtained over 25 runs are plotted in
Fig. 4. For the sake of brevity, only the results on two instances
are provided for each benchmark set. The results on other
instances follow a similar pattern and are made available in the
online appendix.2 The figure further confirms the superiority
of SAHiD on large scale instances. For instance, the curve for
SAHiD is always beneath the curves of the other algorithms
on Hefei-10 and Beijing-10, indicating that SAHiD can always
perform the best among the 4 algorithms if a solution is needed
with a tighter time budget on a large scale instance. As for the

2Available at http://staff.ustc.edu.cn/∼ketang/codes/SAHiDresults.pdf.
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Fig. 4. Convergence curves of SAHID, RDG-MAENS, VNS, and TSA1 on instances EGL-G1-A, EGL-G2-E, Hefei-1, Hefei-10, Beijing-1, and Beijing-10.

EGL-G instances, it can be found that curves of SAHiD drop
rapidly with time, but level off later. RDG-MAENS improves
the solution slower than SAHiD at the beginning, but continues
to improve it. This observation is consistent with the expec-
tation that RDG-MAENS is a more costly but more precise
method, which might achieve better solutions than SAHiD if
the problem size is moderate in comparison to the time budget.

F. Analysis of the Contribution of HD to SAHiD

Since the core component of SAHiD is the HD scheme. It
is also interesting to investigate whether the HD scheme is
indispensable for SAHiD. For this purpose, another algorithm
namely SArandom is developed. The only difference between
SAHiD and SArandom is that the latter does not use the HD
scheme in the reconstruction phase (line 6 in Algorithm 4).
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Instead, SArandom randomly merges virtual tasks into per-
mutations. As in Section V-E, SArandom is applied to the three
benchmark sets and the results are summarized in Table VI.
The relative percentage of deviation (RPD) is given in the last
column for each instance. RPD is the ratio of the difference
between the average costs obtained by SAHiD and SArandom
to the average costs obtained by SArandom. It measures the
improvement that can be achieved by replacing the random
permutation scheme with the HD scheme, i.e., a larger RPD
indicates a more significant influence of HD on SAHiD.

Table VI shows that SAHiD outperforms SArandom on
28 out of 30 test instances and the gap between them shows
a growing trend with respect to the problem size (e.g., the aver-
age RPD on EGL-G, Hefei and Beijing are 2.65%, 4.86%,
and 7.69%, respectively). Moreover, comparing Table VI to
Tables III and IV reveals that the results of SArandom are
significantly worse than those of RDG-MAENS, VNS, and
TSA1. Specifically, SArandom achieves worse performance
than TSA1 on 11 out of 20 instances in Hefei and Beijing sets
(the largest 5 of Hefei instances and 6 of Beijing instances).
When compared to RDG-MAENS, SArandom performs worse
on all the Hefei instances and the largest 3 Beijing instances
(i.e., Beijing-8, Beijing-9, and Beijing-10). The gap between
SArandom and VNS is more obvious, VNS beats SArandom
on 16 out of 20 instances in Hefei and Beijing sets (8 of Hefei
and 8 of Beijing). This fact confirms that the advantages of
SAHiD over the other compared algorithms should be credited
to the HD scheme.

VI. CONCLUSION

This paper presents a novel approach, namely SAHiD, to
CARPs. SAHiD distinguishes from previous methods in the
sense that it employs a HD scheme, which is capable of
generating a good permutation of tasks, i.e., an intermediate
solution to the CARP, in a very efficient way. By employ-
ing the proposed HD scheme in an iterative search process,
SAHiD can tackle CARP instances of large scales. Empirical
studies on two new CARP benchmark sets that are one order
of magnitude larger than the existing ones show that SAHiD
significantly outperforms state-of-the-art methods in terms of
both computational time and solution quality (given a time
budget less than 30 min). Hence, SAHiD can better scale up
to large-scale CARPs than the compared methods, particularly
in cases when a solution needs to be obtained in a few minutes
or even seconds.

The promising performance of SAHiD has pointed to sev-
eral future research directions. First, in addition to the HD
scheme, the other components of SAHiD, e.g., the methods of
grouping and ordering virtual tasks in HD and the local search
procedure, can be improved using alternative techniques in
the literature. Since instances generated from real-world maps
may not represent all instances that could be synthesized using
the mathematical formulation of CARP. The specific cluster-
ing method used in HD might fail in some of the latter cases.
Hence, the interactions between them and the decomposition
scheme can be further investigated, so as to develop novel
components that suit SAHiD better. Second, the experimental

results reveal that the capacity constraints may also affect
the scalability of an algorithm on CARPs. Although this
observation seems to be obvious, it has never been sys-
tematically studied and it is unclear how the scalability of
CARP solvers can be enhanced in this aspect. Finally, the
HD scheme proposed in this paper is in essence a method
for efficiently obtaining good permutations of tasks. It can be
generalized to other permutation-based optimization problems,
e.g., vehicle routing [37], [38], scheduling [39]–[41], and path
planning [42], [43], as long as a suitable closeness measure
could be designed. Note that, in practice, some of these prob-
lems may need to be solved either in real-time [44], [45]
or in dynamic environments [46], which means efficiency is
even more important for these problems than for CARP. The
idea of HD is expected to benefit the development of scalable
approaches in those domains.
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