3928

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 11, NOVEMBER 2017

A Scalable Approach to Capacitated Arc Routing
Problems Based on Hierarchical Decomposition

Ke Tang, Senior Member, IEEE, Juan Wang, Xiaodong Li, Senior Member, IEEE,
and Xin Yao, Fellow, IEEE

Abstract—The capacitated arc routing problem (CARP) is
a challenging optimization problem with lots of applications in the
real world. Numerous approaches have been proposed to tackle
this problem. Most of these methods, albeit showing good per-
formance on CARP instances of small and median sizes, do not
scale well to large-scale CARPs, e.g., taking at least a few hours
to achieve a satisfactory solution on a CARP instance with thou-
sands of tasks. In this paper, an efficient and scalable approach is
proposed for CARPs. The key idea of the proposed approach is to
hierarchically decompose the tasks involved in a CARP instance
into subgroups and solve the induced subproblems recursively.
The output of the subproblems at the lower layer in the hierarchy
is treated as virtual tasks and new subproblems are formulated
based on these virtual tasks using clustering techniques. By this
means, the number of tasks (or virtual tasks) decreases rapidly
from the bottom to the top layers of the hierarchy, and the
sizes of all subproblems at each layer can be kept tractable even
for very large-scale CARPs. Empirical studies are conducted on
CARP instances with up to 3584 tasks, which are an order of
magnitude larger than the number of tasks involved in all CARP
instances investigated in the literature. The results show that the
proposed approach significantly outperforms existing methods in
terms of scalability. Since the proposed hierarchical decomposi-
tion scheme is designed to obtain a good permutation of tasks in
a CARP instance, it may also be generalized to other hard opti-
mization problems that can be formulated as permutation-based
optimization problems.

Index Terms—Capacitated arc routing problem (CARP),
clustering, combinatorial optimization, hierarchical decomposi-
tion (HD), scalability.

Manuscript received November 29, 2015; revised March 26, 2016 and
June 5, 2016; accepted July 1, 2016. Date of publication August 4, 2016; date
of current version October 13, 2017. This work was supported in part by the
National Natural Science Foundation of China under Grant 61329302, in part
by the Program for New Century Excellent Talents in University under Grant
NCET-12-0512, in part by the EPSRC under Grant EP/K001523/1, in part
by the Royal Society Newton Advanced Fellowship under Grant NA150123,
and in part by the ARC Discovery under Grant DP120102205. The work of
X. Yao was supported by the Royal Society Wolfson Research Merit Award.
This paper was recommended by Associate Editor H. Ishibuchi.

K. Tang and J. Wang are with the USTC-Birmingham Joint Research
Institute in Intelligent Computation and Its Applications, School of Computer
Science and Technology, University of Science and Technology of China,
Hefei 230027, China (e-mail: ketang @ustc.edu.cn; jingze @mail.ustc.edu.cn).

X. Li is with the Evolutionary Computation and Machine Learning
Research Group, School of Computer Science and Information
Technology, RMIT University, Melbourne, VIC 3000, Australia (e-mail:
xiaodong.li@rmit.edu.au).

X. Yao is with the Center of Excellence for Research in Computational
Intelligence and Applications, School of Computer Science, University of
Birmingham, Birmingham B15 2TT, U.K. (e-mail: x.yao@cs.bham.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2016.2590558

I. INTRODUCTION

HE CAPACITATED arc routing problem (CARP) [1] is

a classical combinatorial optimization problem that seeks
an optimal set of routes to cover a certain subset of edges
and/or arcs in a given network subject to some specific con-
straints, where each edge typically stands for a road in the real
world [2], [3]. For its wide range of practical applications,
such as winter gritting [4], urban waste collection [5], [6]
and snow removal [7], [8], CARP has drawn considerable
attentions in the past few decades and a large number of
algorithms have been proposed [2], [7], [9]-[16]. However,
previous investigations are mostly limited to relatively small
scale CARPs. The largest CARP instance that has been used in
the literature, the EGL-G benchmark set [17], consists of up to
375 edges and 375 tasks. In contrast, with the ever growing of
big cities, a real-world CARP might involve much more roads
and tasks. For example, the central area of Beijing, China, con-
sists of more than 3000 main roads. Hence, it is natural to ask
whether existing approaches can still tackle such large-scale
CARP instances satisfactorily.

In spite of its importance, the scalability issue of CARP
solvers has been rarely addressed in the literature. Prior
to 2008, most algorithms for CARP were only tested
on small and medium-scale CARP instances, e.g., the
gdb [18], val [19], and Beullens’ benchmark sets [14], for
most of which the optimal solutions can be found by exact
methods. The above-mentioned EGL-G instances were pro-
posed in 2008 and widely used as an additional test set since
then. Results obtained on these instances show that the per-
formance of existing approaches clearly deteriorates with the
increasing size of CARP instance, both in terms of solution
quality (no optimal solution can be found for any EGL-G
instance) and in terms of computational cost (less than 10 s
for a small-scale val instance but about 30 min for an EGL-G
instance) [2], [20], [21].

Motivated by the above observation, Mei et al. [22]-[24] pro-
posed several approaches to tackle large-scale CARPs. These
methods share a similar iterative search framework called coop-
erative co-evolution (CC) [25]—[28]. That is, a CARP instance
is decomposed into a set of subproblems through dividing its
tasks into groups. The subproblems are tackled separately.
The obtained partial-solutions are combined into a complete
solution to the original CARP instance and evaluated. The
best-so-far complete solution is used to reset the decomposi-
tion in the next iteration. In these approaches, decomposition
(i.e., grouping tasks) is conducted either randomly [22] or

2168-2267 © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

TANG et al.: SCALABLE APPROACH TO CARPs BASED ON HD

based on a predefined route distance matrix [23], [24], and
different optimization techniques can be adopted to solve the
subproblems. These CC-based approaches, e.g., the route dis-
tance grouping scheme with memetic algorithm with extended
neighborhood search (RDG-MAENS) [23], perform signifi-
cantly better than previous approaches on EGL-G instances.
Such advantages should mainly be credited to solving the
problem in a divide-and-conquer manner. Nevertheless, these
CC-based methods all decompose CARP in a linear way. That
is, to keep the subproblems at a tractable size, the number
of subproblems needs to increase linearly with the number of
tasks. In this case, the complexity of appropriate task group-
ings increases rapidly with the size of CARP. Consequently,
it is more likely that inappropriate groupings of tasks
will be obtained on large-scale CARPs and mis-guide the
search. Although Shang et al. [29] proposed to improve the
CC-based RDG-MAENS [23], the improved RDG-MAENS
was not tested on the existing largest CARP instances
(i.e., the egl-large instances with up to 375 tasks). Thus, the
CC-based methods may still encounter scalability issues on
large-scale CARPs.

This paper aims to develop a novel approach that can scale
well to large-scale CARPs. Specifically, we are interested in
CARPs that are at least an order of magnitude larger than
the existing benchmark instances, and aim to develop methods
for achieving good solutions to such CARPs within acceptable
time, e.g., less than half an hour. A scalable approach based on
hierarchical decomposition (SAHiD) is proposed for this pur-
pose. The key idea of SAHID is to hierarchically (rather than
linearly) decompose the tasks involved in a CARP instance
into subgroups. At the bottom layer of the hierarchy, tasks are
decomposed into a few groups and a subproblem is solved
for each group. At each intermediate layer of the hierarchy,
the output of the subproblems at the lower layer is treated
as virtual tasks and new subproblems are formulated based
on these virtual tasks rather than the original tasks. The final
solution is obtained at the top layer of the hierarchy. With such
a hierarchical structure, the number of tasks (or virtual tasks)
exponentially decreases from the bottom to the top layers of
the hierarchy. Thus, the number of task groups required at each
layer, except for the bottom layer, is significantly less than that
required for linear decomposition schemes. As a result, the
complexity of grouping tasks can be better controlled and inap-
propriate groupings are less likely to be obtained. Furthermore,
as will be shown by our empirical studies, a solution to large-
scale CARPs can be obtained efficiently in such a hierarchical
way, thus allowing repeating the process in an iterative man-
ner to achieve better solution quality than existing methods in
shorter runtime.

The rest of this paper is organized as follows. First,
the problem definition and notations of CARP are intro-
duced in Section II. After that, the hierarchical decomposi-
tion (HD) scheme and detailed steps of SAHiD are described
in Sections III and IV, respectively. Empirical studies are
presented in Section V to assess the performance of SAHiD
and compare it against state-of-the-art CARP solvers. Finally,
Section VI concludes this paper and discusses directions for
future research.

3929

II. PROBLEM DEFINITION AND NOTATIONS

An undirected/directed CARP is defined on a connected and
undirected/directed graph G(V, E), where V and E represent
the sets of vertices and edges, respectively. A cost c(e) > 0
and a demand d(e) > O are associated with each edge e € E.
The edges with positive demands constitute the task set 7, i.e.,
T = {r € E|ld(t) > 0}. A vertex vy € V is predefined as the
depot, in which a fleet of vehicles are located. The aim of
CARRP is to determine a set of routes for the vehicles to serve
all the tasks with minimal total costs, subject to the following
constraints.

1) Each route must start and end at the depot.

2) Each task is served exactly once (but the corresponding

edge can be traversed more than once).

3) The total demand of tasks served in each route cannot

exceed the vehicle capacity Q.

A solution of CARP can be represented by a sequence of
vertices, which directly indicates the order of vertices for the
vehicles to visit. However, given a sequence of the tasks,
the minimum cost can be easily achieved by summing up the
shortest paths between the vertices of each pair of consec-
utive tasks in the sequence in polynomial time [15]. Since
the task representation is more compact, it is adopted in
this paper. That is a solution to CARP is represented by
s=(R1,0,Ry...,R,,), where m is the number of routes, the
kth route Ry = (i1, ..., k), and O stands for a dummy
task that separates two routes. For each Ry, tx s, and /; denote
the rth task and the number of tasks served in route Ry,
respectively. More formally, let u1(7) and up(7) represent the
endpoints of task 7, and inv(7t) the inverse direction of 7, i.e.,
up(inv(t)) = up(t) and up(inv(t)) = ui(r), a CARP can be
formulated as follows:

minimize TC(s) (D)
m

st Y =T (2)
k=1

Thy,iy 7 Thaia» V(K1 01) # (k2, i2) 3)

Thpiy 7 0V(Thy.iy), Viki, 1) # (ko i) (4)

I

Y d(ui) <0, Vk=1,2,....m. (5)

i=1

The objective function, i.e., (1), requires minimizing the
total cost TC(s)

TC(s) = Y _RC(Ry). (6)

k=1
RC(Ry) is the total cost of route Ry and can be computed

using

I
RC(Ry) = ZC(‘L’/{,,‘) + dC(Vo, uj (Tk,l))
i=1
Ik

3 de(un(riim) i (211)) + de(un(ri). vo)

i=2
(N

3930
layer h
layer 2
IONOIONMORIOMO
Fig. 1. Hierarchical structure of HD.

where dc(v;, v;) > 0 stands for the deadheading cost induced
by traversing the shortest path from vertices v; to v;.

In constraints (3) and (4), the inequality (k1, i) # (ka, i2)
means that the two equalities k&; = k> and i; = i do not
hold simultaneously. These two constraints prohibit that a task
to be served more than once, either in the same route or
different routes. Thus, constraints (2)—(4) ensure that all the
tasks are served exactly once. Constraint (5) indicates that
the total demand of each route should not exceed the vehicle
capacity Q.

The challenge of CARP can be viewed from two perspec-
tives. First, the optimal permutation of tasks corresponds to
the optimal solution of CARP, and the latter can be obtained
from the former in polynomial time [15]. Second, if the opti-
mal assignments of tasks to vehicles are available, the optimal
solution of CARP can also be obtained by solving several
independent single-vehicle problems that are considerably eas-
ier than CARP. This paper takes the first perspective, i.e.,
the proposed approach aims to identify a good permutation
efficiently.

III. HIERARCHICAL DECOMPOSITION OF CARP

It can be observed that the scale of a CARP instance mainly
depends on the number of tasks to be served. Furthermore,
a CARP can be addressed in two steps, i.e., finding a permu-
tation of the task set and dividing this permutation into feasible
routes. The optimal permutation must correspond to an optimal
feasible solution, and vice versa [15], [30]. More importantly,
given a permutation of tasks, the corresponding best feasible
solution can be acquired in polynomial time [15]. Therefore,
the key challenge to CARP can be viewed as finding the
optimal permutation of tasks. The proposed HD scheme is
essentially a method for finding a good permutation of tasks
efficiently. To be concrete, HD introduces a number of vir-
tual tasks to construct a hierarchical structure, as demonstrated
in Fig. 1. In the figure, each node (in the /th layer) of the
hierarchy corresponds to a virtual task tl.l, which is a permuta-
tion of several tasks. K;_j represents the number of virtual
tasks included in layer . It will be discussed in detail in
Section III-A. Each node at the bottom layer (i.e., layer 1)
corresponds to a real task. The node at the top layer (i.e.,
layer h) represents a permutation of all the tasks. The hierarchy
is built in a bottom-up way. At the bottom layer (i.e., layer 1),

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 11, NOVEMBER 2017

Algorithm 1: HD(VT)

Procedure: HD(VT)
Input: virtual task set VT
Output: a permutation of tasks PT
repeat
randomly choose the cluster number K € [1, B - |VT|];
divide VT into groups by using k-means;
order the virtual tasks within each group;
VT < {permutation of tasks in each group};
until |VT| =1;
return the permutation of tasks in VT;

NS R W N e

tasks are grouped and ordered within each group. The per-
mutation of tasks in each group is treated as a virtual task
at layer 2. This procedure is executed on the obtained virtual
tasks recursively until only 1 virtual task remains, which is
a permutation of all the tasks. For example, suppose there are
four tasks {tll, 121, r31, 141} at layer 1, each two of them are
connected to a node at layer 2, the virtual task corresponding
to this node, denoted by riz is a permutation of the two tasks,
e.g., rlz = (rzl, rll) and r22 = (r31, 141). rlz and 122 are then
grouped and ordered, forming a virtual task at layer 3, e.g.,
113 = (rzz, tlz) = (731, ri, ‘L'21, rll). By this means, a permutation
of the four tasks is obtained.

From the above description, for a given CARP instance,
the HD scheme starts from the bottom layer and recursively
group tasks into virtual tasks of a larger size until only 1 vir-
tual task remains. Each node at nonbottom layers requires
solving a subproblem to find the optimal permutation of the
tasks (virtual tasks) assigned to that node, which is a partial-
solution to the problem of finding optimal permutation of
all tasks. Algorithm 1 demonstrates the general framework
of the HD scheme. The benefits offered by such a hierarchy
are twofold. From the perspective of problem decomposition,
a linear decomposition scheme (e.g., as adopted by the CC-
based approaches) has to involve a large number of small-size
subproblems to cope with large-scale CARPs. Meanwhile,
task grouping itself is a nontrivial problem, the complexity of
which increases exponentially with the number of task groups
(i.e., number of subproblems). Hence, it is highly likely that an
inappropriate grouping will be obtained on large-scale CARPs,
or a significant computational cost is needed to identify a good
grouping of tasks. In other words, the performance of linear
decomposition will deteriorate rapidly with the problem-size
of CARP. As a result, the solution quality may also deterio-
rate rapidly since the grouping of tasks significantly affects
the search course. In contrast, the HD scheme allows the
number of nodes (i.e., virtual tasks) to decrease exponentially
from the bottom layer toward the top layer. Thus, the cost
for identifying a suitable grouping of tasks increases slowly
with the scale of CARP. Hence, the scalability (in terms of
the quality of task grouping) of HD is expected to be bet-
ter than that of a linear grouping, and can lead to a better
grouping of tasks (and thereby solution quality) than linear
decomposition, especially when the total time budget for solv-
ing a CARP is limited and task grouping needs to be done as
fast as possible. From the perspective of search effectiveness,
since a subproblem (node) of an upper layer only takes the

TANG et al.: SCALABLE APPROACH TO CARPs BASED ON HD

partial-solutions obtained at the lower layers as its input, but
does not change the inner structure of the partial-solutions,
the hierarchical structure naturally allows searching at differ-
ent step-sizes by solving subproblems at different layers and
may lead to a more effective search.

The HD strategy involves two design issues. That is, how
to group virtual tasks (i.e., lines 2 and 3 in Algorithm 1) and
how to find the optimal permutation in a group of virtual tasks
(i.e., line 4 in Algorithm 1). These will be detailed below.

A. Grouping Virtual Tasks

Intuitively, tasks close to each other are more likely to
be served successively in solutions with high quality. Hence,
a natural idea is to assign neighboring tasks to the same group.
Thus, the closeness between two virtual tasks needs to be
defined in order to group the virtual tasks. An intuitive idea is
to take the deadheading cost between two virtual tasks as the
closeness. Since the deadheading cost idefined between two
vertices rather than two virtual tasks (paths) and four differ-
ent deadheading costs can be obtained by connecting different
pairs of endpoints of two virtual tasks, the closeness between
virtual task ril and rjl is defined as the average deadheading
cost between them

A(‘[! 'L’l) _ dC(V,‘, Vj) + dC(M,', Mj) + dC(V,’, uj) + dc(u,-, Vj)
4

®)

where (v;, u;) and (vj, u;) denote the start and end vertices
of ril and r/l, respectively. dc(v;, v;) is the deadheading cost
between vertices v; and v;. As a special case, the close-
ness between virtual task ril and the depot vg is A(vo, ril) =
((de(vi, vo) + de(ui, v0))/2).

Given the closeness measure of two virtual tasks, grouping
virtual tasks can be formulated as a clustering problem. In
principle, any clustering method can be applied for this pur-
pose. We choose the well-known k-means algorithm [31] for
its simplicity. The k-means algorithm requires calculating the
centroid of each cluster. This can be easily done in a real-
space but cannot be directly computed in case of clustering
virtual tasks. Hence, in each iteration of k-means, the centroid
of a cluster is defined as the virtual task with minimal average
closeness to other virtual tasks in the same cluster.

The number of clusters, K, is a user-defined parameter in
k-means and has a great influence on the clustering results.
In the HD scheme, since the clustering process is invoked at
each layer and the number of virtual tasks varies over layers,
a fixed value of K for all clustering processes is inappropriate.
Note that each virtual task at layer / corresponds to a clus-
ter obtained at layer / — 1. Hence, let K; denote the number
of clusters obtained at layer [, we set it as an integer ran-
domly generated within [I, B -K;_1], where 8 € (0, 1) is
a predefined parameter. For the bottom layer (i.e., layer 1),
K =|T]|.

Another important issue related to the effectiveness of
k-means is the selection of initial cluster centroids. The
initial centroids can be selected randomly or by using spe-
cific methods [32]-[34]. Here, we use a simple heuristic that
disperse the centroids as widely as possible. Specifically,

3931

Algorithm 2: HDU(VT)

Procedure: HDU(VT)
Input: virtual task set VT
QOutput: a feasible solution s;
1 apply HD(VT) to generate a permutation of tasks PT;
2 apply Ulusoy’s splitting procedure to partition PT" into
a solution s;
3 return s;

the heuristic works by adding noncentroid virtual tasks into
the centroid set one by one such that the sum of the closeness
between the newly added virtual task and existing ones in the
set is maximal. It should be noted that the depot is regarded
as a dummy virtual task and added to the centroid set at the
beginning.

B. Ordering Virtual Tasks

At each node of the hierarchical structure, the permutation
of a subset of tasks or virtual tasks needs to be optimized.
Recall that the capacity constraints are not considered when
solving these subproblems, since the HD scheme aims to
achieve the optimal permutation of all tasks regardless of
capacity constraints. There exist lots of heuristic methods for
finding such a permutation-based problem. Since a number of
such subproblems need to be solved for building the hierar-
chy, it is not worth adopting a time-consuming method. For
this consideration, we employ a greedy search heuristic named
best insertion heuristic (BIH). BIH first chooses the nearest
virtual task to the depot in terms of deadheading cost. Then,
at each iteration, the virtual task with the minimal deadhead-
ing cost to the current endpoint of the path is added to the
end of the path. If multiple virtual tasks satisfy this condition,
only one is randomly chosen. The process terminates when all
virtual tasks have been added to the path.

C. Generating Solution to CARP Based on
Hierarchical Decomposition

As mentioned before, the HD scheme seeks a good permu-
tation of all tasks in CARP regardless of capacity constraint.
Given a permutation of tasks, a solution (with respect to this
permutation) to CARP can be obtained by splitting the permu-
tation into a number of routes that satisfy capacity constraints.
This can be done with well-established methods in polynomial
time [15]. Herein, we employ the well-known Ulusoy’s split-
ting procedure [10], an exact method that has been proved
to be capable of solving the problem optimally. Thus, the
combination of the HD scheme and the Ulusoy’s splitting pro-
cedure, namely HDU as demonstrated in Algorithm 2, forms
our approach to CARPs.

IV. SCALABLE APPROACH BASED ON
HIERARCHICAL DECOMPOSITION

The HDU described in the previous section obtains a solu-
tion to a CARP in a constructive way. It can also be embedded
into an iterative search process, which allows the solution

3932

obtained using HDU to be further improved. The proposed
SAHID is developed following this idea. Briefly speaking,
SAHiID is an individual-based iterative search method. At
each iteration, it first employs HDU to obtain a solution
to the CARP, and then some traditional local search oper-
ator is applied to further improve the solution obtained.
Specifically, SAHiD involves three phases, i.e., initialization,
reconstruction, and local search, as detailed below.

A. Initialization

At the first iteration, an initial solution, say s, is obtained by
applying HDU to the CARP instance. Then, the local search
operator is applied to s for further improvement.

B. Reconstruction

In the reconstruction phase, HDU is applied to generate
new candidate solutions. But different from in the initialization
phase, HDU is not applied to achieve a solution from scratch,
i.e., based on the un-ordered set of tasks. Instead, the solution
obtained in the last iteration, say s, is first randomly split into
a number of virtual tasks. Specifically, each route of s is split
into two virtual tasks with a predefined probability «, resulting
in a set of virtual tasks. Then, HDU is applied to this set to
obtain a new solution. Since s is built based on the original
set of tasks and polished with local search, it is expected to
contain some useful pattern of a good solution. Splitting the
routes does not change the permutation of tasks in the same
virtual task, and thus are likely to keep the useful patterns.
Hence, by applying HDU to the virtual tasks rather than the
original tasks, the useful pattern in the previous solution can
be exploited, and thus benefit the search for a better solution.

C. Local Search

When a solution is obtained by HDU, either in the ini-
tialization or reconstruction phase, a first improvement local
search procedure is applied to further improve it. The local
search starts with a reverse move operator similar to the 2-opt
operator [15] for a single route, i.e., it reverses the direction of
a subroute (i.e., part of a route). Suppose the reverse operator
is applied to a route consisting of ¢ tasks. At each iteration, all
possible subroutes are enumerated with the length of subroute
increasing from 1 to r — 1. During this course, the current
solution is updated once a solution with a lower cost is found.
This procedure terminates when all subroutes of each route is
checked at least once, and the whole local search procedure
terminates if the solution obtained by HDU is updated at least
once.

If the reverse operator fails to improve the solution obtained
by HDU, the merge-split (MS) operator [16] is applied to
conduct a best improvement search. That is, at each step,
all solutions that can be reached by the MS operator from
the current solution are examined and the best and improved
one is chosen to replace the current solution. Compared to
the reverse operator, MS is a search operator with a larger
step-size, and thus is more likely to escape from the cur-
rent solution, which is a local optimum. Interested readers are
referred to [16] for detailed steps of MS. If the MS operator

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 11, NOVEMBER 2017

Algorithm 3: Local Search Procedure LS(s)

Procedure: LS(s)
Input: solution s
Output: potentially improved solution s

1 repeat

2 for each sub-routes SR of each route R in s do
3 reverse SR to obtain a new solution s;

4 if ' is better than s then

5 s < s';

6 break;

7 end if

8 end for

9 until s remains unchanged,;

10 if s is not updated then

11 apply MS operator to improve s;

12 if s is updated then

13 repeat

14 for each sub-routes SR of each route R in s do
15 reverse SR to obtain a new solution s’;
16 if 5" is better than s then

17 s« s

18 break;

19 end if

20 end for

21 until s remains unchanged;

22 end if

23 end if

24 return s;

manages to find a better solution, the reverse operator will be
applied to the improved solution again to exploit the new local
region. Otherwise, the whole local search procedure terminates
with the solution obtained by HDU remaining unchanged.

The pseudo-code of the local search procedure is presented
in Algorithm 3. Note that HDU always produces feasible solu-
tions, the reverse operator only changes the order of tasks
within a feasible route, and the MS operator also always gen-
erates feasible routes. Hence, no infeasible solution will be
produced during the search process of SAHiD. For this reason,
only the total costs are taken into account when comparing two
solutions.

Algorithm 4 depicts the steps of SAHiD. It is noteworthy
that the best solution found so far is stored in an external
archive (lines 10-12) and outputted as the final solution. It
might be inappropriate to keep the best solution in the search
process of SAHID if it cannot be improved for a long time.
Otherwise, the search will be stuck at this local best solu-
tion. Hence, we adopt the threshold accepting idea [35] in
SAHID. Given a solution s, if no better solution is found after
o consecutive iterations, a new solution worse than s will still
be accepted (i.e., replace s) as long as its quality is not worse
than 6% of that of the best-found solution. Finally, the SAHiD
can be terminated either when a predefined time budget is used
up or no better solution is found for a predefined number of
iterations.

V. EXPERIMENTAL STUDIES

To evaluate the effectiveness of SAHiD, two sets of empir-
ical studies have been conducted to compare SAHiD against
a number of state-of-the-art approaches to CARPs. In the

TANG et al.: SCALABLE APPROACH TO CARPs BASED ON HD

Algorithm 4: Pseudo Code of SAHiID(T)

Procedure: SAHID(T)
Input: task set T
Output: a feasible solution s*
1 generate an initial solution s using HDU(T);
2 apply LS(s) to improve s;
35% <
4 while stopping criteria are not met do

5 generate a virtual task set VT by splitting the routes of s;
6 generate a solution s’ using HDU(VT);

7 apply LS(s) to improve s';

8 if 5" is acceptable then

9 s <5

10 if 5" is better than s* then

1 ‘ st s

12 end if

13 end if

14 end while
15 return s*;

TABLE I
INFORMATION OF INSTANCES IN HEFEI AND BEIJING TEST SET

Name 14 |E| |T| Proportion of tasks Q M
Hefei-1 850 1212 121 10% 9000 7
Hefei-2 850 1212 242 20% 9000 14
Hefei-3 850 1212 364 30% 9000 19
Hefei-4 850 1212 485 40% 9000 28
Hefei-5 850 1212 606 50% 9000 35
Hefei-6 850 1212 727 60% 9000 42
Hefei-7 850 1212 848 70% 9000 49
Hefei-8 850 1212 970 80% 9000 56
Hefei-9 850 1212 1091 90% 9000 63

Hefei-10 850 1212 1212 100% 9000 69
Beijing-1 2820 3584 358 10% 25000 7

Beijing-2 2820 3584 717 20% 25000 11
Beijing-3 2820 3584 1075 30% 25000 18
Beijing-4 2820 3584 1433 40% 25000 23
Beijing-5 2820 3584 1792 50% 25000 30
Beijing-6 2820 3584 2151 60% 25000 36
Beijing-7 2820 3584 2509 70% 25000 41
Beijing-8 2820 3584 2868 80% 25000 47
Beijing-9 2820 3584 3226 90% 25000 52
Beijing-10 2820 3584 3584 100% 25000 58

first study, the performance of different algorithms is examined
in terms of the time required to achieve a predefined solution
quality. In the second study, the algorithms are compared from
the perspective of solution quality obtained using a predefined
time budget. In addition, further empirical analysis has also
been conducted to assess the contribution of the HD scheme
to SAHiD.

A. Benchmark Set

Since this paper mainly studies the scalability of search
methods, we are more interested in the performance on large-
scale CARPs rather than small scale ones. Furthermore, as
mentioned before, most of the existing small or median-scale
CARP benchmark instances can be solved near optimally in
a rather short time period (e.g., 10 s). Therefore, instead of
using the more traditional benchmark sets, two new sets of

3933

TABLE II
PARAMETER SETTINGS OF SAHID

Name Description Value
B Scale parameter in HD (Sub-Section III.A) 0.1
a Probability of partitioning a route (Section IV) 0.1
D Parameter of the MS operator (Section IV) 2
0 Parameter of Threshold accepting (Section IV) 110%

Maximum number of idle iterations for accepting|
o - . 10000
an ascending move (Section IV)

CARP instances, namely Hefei and Beijing test sets,! are
generated. The Hefei set is generated from the map of the
Hefei city in China, which consists of 1212 main roads (i.e.,
edges). The Beijing set is generated from the central area (the
area inside the fifth ring road) of Beijing, China, which con-
sists of 3584 main roads. For each set, ten instances are
generated by randomly setting part of the edges as tasks. The
number of tasks for each set increases from 10% to 100% of
the number of edges with a step-size 10%. Table I shows the
detailed information of these two benchmark sets. It can be
observed that these two sets involves instances that are one
order of magnitude larger than the largest CARP benchmark
instances used in the literature, i.e.