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Abstract—In this paper, we investigate the stability of
Takagi–Sugeno fuzzy-model-based (FMB) functional observer-
control system. When system states are not measurable for
state-feedback control, a fuzzy functional observer is designed
to directly estimate the control input instead of the system
states. Although the fuzzy functional observer can reduce the
order of the observer, it leads to a number of observer gains
to be determined. Therefore, a new form of fuzzy functional
observer is proposed to facilitate the stability analysis such that
the observer gains can be numerically obtained and the sta-
bility can be guaranteed simultaneously. The proposed form
is also in favor of applying separation principle to separately
design the fuzzy controller and the fuzzy functional observer. To
design the fuzzy controller with the consideration of system sta-
bility, higher order derivatives of Lyapunov function (HODLF)
are employed to reduce the conservativeness of stability condi-
tions. The HODLF generalizes the commonly used first-order
derivative. By exploiting the properties of membership func-
tions and the dynamics of the FMB control system, convex and
relaxed stability conditions can be derived. Simulation examples
are provided to show the relaxation of the proposed stabil-
ity conditions and the feasibility of designed fuzzy functional
observer-controller.

Index Terms—Fuzzy functional observer-controller, higher
order derivatives of Lyapunov function (HODLF), nonlinear
system, stability analysis, Takagi–Sugeno (T–S) fuzzy model.

I. INTRODUCTION

STABILITY of nonlinear systems is complex and difficult
to be systematically analyzed. Fuzzy-model-based (FMB)

control scheme [1] has been proposed as an efficient approach
to conduct stability analysis and control synthesis for non-
linear systems. The nonlinear systems can be separated to
several linear subsystems which are smoothly combined by
membership functions. In this way, linear control techniques
such as state-feedback control can be applied and extended to
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fuzzy state-feedback controller for nonlinear systems. To begin
with, Takagi–Sugeno (T–S) fuzzy model [2] or polynomial
fuzzy model [3] are established via the sector nonlinear-
ity technique [1] (or other modeling methods) to describe
the nonlinear systems. The parallel distributed compensa-
tion (PDC) [4] is then exploited to design the fuzzy controller.
Based on the framework of FMB control system, the Lyapunov
stability theory [4] is employed to carry out the stability anal-
ysis. The stability conditions are in terms of linear matrix
inequalities (LMIs) [1], [5] or sum of squares (SOSs) [6]. By
numerically solving the stability conditions via convex pro-
gramming techniques, if a feasible solution exists, the stability
of the closed-loop nonlinear system can be guaranteed and
the feedback gains in the fuzzy controller can be obtained
simultaneously.

In the development of FMB control scheme, the conser-
vativeness of stability conditions is a critical problem which
attracts researchers’ attention. When solving the stability con-
ditions, the conservativeness results in infeasible solutions,
which means the feedback gains cannot be obtained. It restricts
the applicability of FMB control scheme. There are sev-
eral sources of conservativeness, one of which is the double
fuzzy summation. Pólya’s theory [7] was applied to investigate
higher dimensions of fuzzy summation, which offers progres-
sively necessary and sufficient conditions. The application of
this theory also generalizes some earlier works [8]. Another
source is the membership-function-independent stability con-
ditions, which means the stability conditions do not depend on
the membership functions under consideration. Therefore, the
membership-function-dependent approach is exploited to make
the stability conditions considering the specific membership
functions, which can reduce the conservativeness. This type
of approaches includes polynomial constraints [9], symbolic
variables [10], and approximated membership functions [11].

Apart from the above two sources, the form of Lyapunov
function affects the conservativeness meanwhile. The quadratic
Lyapunov function and its first-order derivative are com-
monly investigated in the stability analysis [4]. To relax
the stability conditions, more general types of Lyapunov
function candidates have been employed such as piecewise
linear Lyapunov function [12], [13], switching Lyapunov
function [14], fuzzy Lyapunov function [15]–[17], and poly-
nomial Lyapunov function [14]. Furthermore, instead of
using the first-order derivative, higher order derivatives of
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Lyapunov function (HODLF) have been considered to relax
the stability conditions. The HODLF was proposed in [18],
and later generalized by [19]. One of the advantages in [19] is
that the stability conditions are convex which can be numer-
ically solved by convex programming techniques. However,
only specific types of nonlinear systems were studied such
as polynomial systems. Consequently, the HODLF should be
combined with FMB control scheme such that general nonlin-
ear systems can be dealt with. In discrete-time FMB control
system, the nonmonotonic Lyapunov function [20]–[22] and
the multistep Lyapunov function were investigated [23]–[26].
Similar to HODLF, they involve the difference of Lyapunov
function in more steps instead of only one step. To the
best of our knowledge, the HODLF has not been applied
to continuous-time FMB control system. In continuous-time
FMB control system, the HODLF is difficult to be exploited to
relax the stability conditions due to the existence of the deriva-
tive of membership functions. The combination of HODLF
and continuous-time FMB control system is important since it
improves the applicability of both HODLF and FMB control
scheme, which is a worthwhile investigation.

With respect to other development of FMB control scheme,
it has been extended by considering various control prob-
lems [27]–[30], which also enhance the applicability of FMB
control scheme since these control problems exist in real
applications. The fuzzy observer [5], [31]–[38] has been
investigated to estimate the system states when they are not
measurable. In the case that the premise variables of member-
ship functions are measurable, the separation principle [39] can
be applied to design the fuzzy observer and fuzzy controller
separately.

While the fuzzy observer is widely studied, the fuzzy func-
tional observer receives relatively less attention. Since the
ultimate goal of estimating the system states is for state-
feedback control, it is more straightforward to estimate the
control input instead of the system states. Moreover, the
order of the functional observer is lower than the tradi-
tional observer, which reduces the complexity of the observer.
In [40], the fuzzy functional observer was proposed. Although
the separation principle can be exploited to separately design
the fuzzy controller and fuzzy observer, a number of observer
gains have to be manually designed. To ease the design pro-
cedure, the technique for linear functional observer [41] was
employed to design the fuzzy functional observer in [42].
Nevertheless, the stability of the FMB functional observer-
control system has to be checked after designing the feedback
gains due to the nonconvex stability conditions. These limi-
tations motivate us to explore a one-step design and extend
the functional observer to nonlinear systems under the FMB
control paradigm, which means the stability can be guaranteed
while the feedback gains are acquired.

In this paper, we aim to enhance the applicability of FMB
control scheme by relaxing the stability conditions and con-
sidering unmeasurable system states for feedback control.
The HODLF in [19] is exploited to achieve the relaxation
of stability analysis when designing the fuzzy controller. To
tackle the difficulty of the derivative of membership functions
and obtaining convex stability conditions, the technique used

in [15] is employed and improved in this paper. First, more
properties of membership functions and the dynamics of FMB
control system are utilized to derive convex conditions due
to the occurrence of higher order terms. Second, the lower
bound of the derivative of membership functions is allowed
to be different from the upper bound, which leads to more
relaxed conditions. Compared with existing work in discrete
time [20]–[26], this is the first attempt to consider HODLF
in continuous-time FMB control systems. Also, it can be
demonstrated from the simulation that the proposed stability
conditions from HODLF are more relaxed than those from
the fuzzy Lyapunov function in [15] by comparing the sta-
bilization region. Note that the boundary requirement of the
derivative of membership functions may not be met in some
cases [17]. More advanced techniques such as [16] and [17]
may be applied in the future to meet the boundary require-
ment or to provide more relaxed conditions. Other than the
relaxation of stability analysis, we design the fuzzy functional
observer to estimate the control input due to the unmeasurable
system states. We extend the technique for linear functional
observer [41] to design the fuzzy functional observer. To facil-
itate the analysis, we propose a new form of fuzzy functional
observer. Based on the proposed form, the separation princi-
ple [39] can be applied to design the fuzzy functional observer
separately from the fuzzy controller. In addition, convex sta-
bility conditions can be derived. Compared with existing fuzzy
functional observers [40], [42], the proposed fuzzy functional
observer can be designed by numerically solving the stability
conditions and the stability of FMB observer-control system
is guaranteed simultaneously.

This paper is organized as follows. The notations, formu-
lation of T–S fuzzy model and controller, and useful lemmas
are presented in Section II. Stability analysis of FMB func-
tional observer-control system is conducted via HODLF in
Section III. Simulation examples are given in Section IV
to demonstrate the proposed design procedure. Finally, the
conclusion is drawn in Section V.

II. PRELIMINARY

A. Notation

The following notation is employed throughout this paper.
The expressions of M > 0, M ≥ 0, M < 0, and M ≤ 0
denote the positive, semi-positive, negative, and semi-negative
definite matrices M, respectively. The symbol “*” in a
matrix represents the transposed element in the corresponding
position. The symbol “diag{· · · }” stands for a block-diagonal
matrix. The superscript “−T” represents the inverse of the
transpose. The superscript “+” stands for the Moore–Penrose
generalized inverse.

B. T–S Fuzzy Model

The ith rule of the T–S fuzzy model [2], [43] representing
a nonlinear plant is given as follows:

Rule i : IF f1(x(t)) is Mi
1 AND · · · AND f�(x(t)) is Mi

�

THEN ẋ(t) = Aix(t) + Biu(t)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T is the state vector, and
n is the dimension of the nonlinear system; fη(x(t)) is the
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premise variable corresponding to its fuzzy term Mi
η in rule i,

η = 1, 2, . . . , �, and � is a positive integer; Ai ∈ �n×n and
Bi ∈ �n×m are the known system and input matrices, respec-
tively; u(t) ∈ �m is the control input vector. The dynamics of
the nonlinear system is described by the following T–S fuzzy
model:

ẋ(t) =
p∑

i=1

wi(x(t))(Aix(t) + Biu(t)) (1)

where p is the number of fuzzy rules; wi(x(t)) is the nor-
malized grade of membership, wi(x(t)) = ((

∏�
η=1 μMi

η

( fη(x(t))))/(
∑p

k=1

∏�
η=1 μMk

η
( fη(x(t))))), wi(x(t)) ≥ 0,

i = 1, 2, . . . , p, and
∑p

i=1 wi(x(t)) = 1; μMi
η
( fη(x(t))),

η = 1, 2, . . . , �, are the grades of membership corresponding
to the fuzzy term Mi

η.

C. T–S Fuzzy Controller

For brevity, the time t associated with variables is dropped
from now for the case without ambiguity. Using the PDC
approach [4], the jth rule of the fuzzy controller is described
as follows:

Rule j : IF f1(x) is Mj
1 AND · · · AND f�(x) is Mj

�

THEN u = Gjx

where Gj ∈ �m×n is the controller gain. The fuzzy controller,
which is to control the nonlinear system, is given by

u =
p∑

j=1

wj(x)Gjx. (2)

D. Useful Lemmas

The following lemmas are employed in the later analysis.
Lemma 1 (HODLF): The nonlinear system ẋ = f (x)

( f : �n → �n has an equilibrium point at the origin) is
guaranteed to be asymptotically stable if there exist Lyapunov
functions V1(x) and V2(x) such that the following conditions
are satisfied [19]:

W(0) = V̇2(0) + V1(0) = 0 (3)

W(x) = V̇2(x) + V1(x) > 0 ∀x �= 0 (4)

Ẇ(x) = V̈2(x) + V̇1(x) < 0 ∀x �= 0. (5)

Lemma 2: With matrices X and Y of appropriate dimen-
sions and scalar β > 0, the following inequality holds [44]:

XTY + YTX ≤ βXTX + 1

β
YTY.

III. STABILITY ANALYSIS

In this section, we conduct the stability analysis for T–S
FMB functional observer-control systems. A new form of
the fuzzy functional observer will be proposed to make the
augmented system in triangular form such that the separa-
tion principle can be applied. Since the fuzzy controller and
fuzzy functional observer will be separately designed accord-
ing to separation principle, we first design the fuzzy controller.
The stability conditions are derived via HODLF. After that,

we design the fuzzy functional observer, where it will be
demonstrated that the separation principle can be applied.

A. Design of T–S Fuzzy Controller via HODLF

For brevity, the membership function wi(x) is denoted as wi.
The FMB control system consisting of the T–S fuzzy model (1)
and the fuzzy controller (2) is formulated as follows:

ẋ =
p∑

i=1

p∑

j=1

hij
(
Ai + BiGj

)
x (6)

where hij ≡ wiwj.
The control objective is to make the T–S FMB control sys-

tem (6) asymptotically stable, i.e., x → 0 as time t → ∞, by
determining the feedback gain Gj.

Theorem 1: The FMB control system (6) with differen-
tial membership functions is guaranteed to be asymptotically
stable if there exist an invertible matrix X ∈ �n×n, matri-
ces P̃1i = P̃T

1i ∈ �n×n, P̃2 = P̃T
2 ∈ �n×n, Ỹ1 = ỸT

1 ∈
�n×n, Ỹ2 ∈ �n×n, S̃i = S̃T

i ∈ �n×n, Nj ∈ �m×n, and pre-
defined scalars βij > 0, μ1, μ2, . . . , μ6, i, j = 1, 2, . . . , p such
that the following LMI-based conditions are satisfied:

�̃ij + �̃ji > 0 ∀i ≤ j (7)

P̃1i − Ỹ1 ≤ S̃i ∀i (8)

S̃i ≥ 0 ∀i (9)

� ij + � ji < 0 ∀i ≤ j (10)

where

�̃ij =
⎡

⎣ �̃
(11)

ij ∗
�̃

(21)

ij �̃
(22)

⎤

⎦

�̃
(11)

ij = P̃1i + μ1
(
AiXT + BiNj

)+ μ1
(
AiXT + BiNj

)T

�̃
(21)

ij = P̃2 − μ1X + μ2
(
AiXT + BiNj

)

�̃
(22) = −μ2

(
X + XT)

� ij =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃ij ∗ ∗ ∗ · · · ∗
ϒ̃ �(22) ∗ ∗ · · · ∗

�̃11 0 −β11I ∗ · · · ∗
�̃12 0 0 −β12I · · · ∗
...

...
...

...
. . .

...

�̃pp 0 0 0 · · · −βppI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

�(22) = − 1
∑p

r=1

∑p
s=1 βrs

I

�̃ij =

⎡

⎢⎢⎣

�̃
(11)

ij ∗ ∗
�̃

(21)

ij �̃
(22)

ij ∗
�̃

(31)
�̃

(32)

ij �̃
(33)

⎤

⎥⎥⎦

�̃
(11)

ij =
p∑

r=1

(
φr − φ

r

)
S̃r +

p∑

r=1

φ
r

(
P̃1r − Ỹ1

)

+ (
AiXT + BiNj

)+ (
AiXT + BiNj

)T

�̃
(21)

ij = P̃1i − X + μ3
(
AiXT + BiNj

)

+ μ4
(
AiXT + BiNj

)T
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�̃
(22)

ij = 2P̃2 − μ3
(
X + XT)+ μ5

(
AiXT + BiNj

)

+ μ5
(
AiXT + BiNj

)T

�̃
(31) = P̃2 − μ4X

�̃
(32)

ij = μ6
(
AiXT + BiNj

)− μ5X

�̃
(33) = −μ6

(
X + XT)

ϒ̃ = [
μ4I μ5I μ6I

]

�̃ij =
[
ρij

(
AiXT + BiNj − Ỹ2

)
0 0

]

φ
i

and φi are the lower and upper bounds of ẇi, respectively;
ρij is the upper bound of |ḣij|; and the controller gains are
obtained by Gj = NjX−T ∀j.

Proof: To ensure the stability of (6), we employ the HODLF
(Lemma 1). Choosing a fuzzy Lyapunov function candidate
V1(x) = xT(

∑p
i=1 wiP1i)x and a quadratic Lyapunov function

candidate V2(x) = xTP2x where P1i ∈ �n×n ∀i and P2 ∈ �n×n

are symmetric matrices, (3) in Lemma 1 is satisfied.
Remark 1: In general, the Lyapunov functions V1(x) and

V2(x) can be chosen as any candidates by users. In this paper,
we aim to compare the HODLF with existing fuzzy Lyapunov
function. Consequently, we choose V1(x) as a fuzzy Lyapunov
function candidate. It can be seen that the additional matrix
P2 may lead W(x) to provide more relaxed stability conditions
than only employing fuzzy Lyapunov function V1(x). Note that
the HODLF is not strictly relaxed than the compared one due
to the introduction of conservativeness in the analysis.

To satisfy conditions (4) and (5) and facilitate stability
analysis, the following properties are exploited [15]:

�1 = 2
(
xTμk1 M + ẋTμk2M

)

×
⎛

⎝
p∑

i=1

p∑

j=1

hij
(
Ai + BiGj

)
x − ẋ

⎞

⎠ = 0 (11)

�2 = 2
(
xTμk3 M + ẋTμk4M + ẍTμk5 M

)

×
( p∑

r=1

p∑

s=1

ḣrs(Ar + BrGs)x

+
p∑

i=1

p∑

j=1

hij
(
Ai + BiGj

)
ẋ − ẍ

⎞

⎠ = 0 (12)

�3 =
p∑

r=1

ẇrY1 = 0 (13)

�4 =
p∑

r=1

p∑

s=1

ḣrsY2 = 0 (14)

where M ∈ �n×n is an invertible matrix; μkl ∀kl are arbitrary
scalars; Y1 ∈ �n×n is a symmetric matrix; and Y2 ∈ �n×n is
an arbitrary matrix.

Remark 2: In [15], only properties (11) and (13) are used in
the analysis. In this paper, however, the terms ẍ and ḣrs appear
in the analysis resulted from applying HODLF. Therefore,
properties (12) and (14) are added to handle this more complex
situation.

Defining the augmented vector z1 = [xT ẋT ]T and using
property (11) with k1 = 1 and k2 = 2, we have

W(x) = 2ẋTP2x + xT
p∑

i=1

wiP1ix + �1 =
p∑

i=1

p∑

j=1

hijzT
1 �ijz1

(15)

where

�ij =
[

�
(11)
ij ∗

�
(21)
ij �(22)

]

�
(11)
ij = P1i + μ1M

(
Ai + BiGj

)+ μ1
(
Ai + BiGj

)TMT

�
(21)
ij = P2 − μ1MT + μ2M

(
Ai + BiGj

)

�(22) = −μ2
(
M + MT)

and μ1 and μ2 are arbitrary scalars.
Therefore, condition (4) holds if

∑p
i=1

∑p
j=1 hij�ij > 0.

By congruence transform with premultiplying diag{X, X} and
post-multiplying diag{XT , XT}, where X = M−1, denoting
Nj = GjXT , P̃1i = XP1iXT , P̃2 = XP2XT , and grouping
the terms with the same membership functions, we obtain the
stability condition (7).

To eliminate the term ẇi in the following analysis, using
property (13) and assuming φ

i
≤ ẇi ≤ φi, P1i − Y1 ≤ Si ∀i

where Si ≥ 0, the time derivative of W(x) is:

Ẇ(x) = � + xT

( p∑

r=1

ẇrP1r − �3

)
x

= � + xT

( p∑

r=1

(
ẇr − φ

r

)
(P1r − Y1)

+
p∑

i=1

φ
r
(P1r − Y1)

)
x

≤ � + xT

( p∑

r=1

(
φr − φ

r

)
Sr

+
p∑

r=1

φ
r
(P1r − Y1)

)
x (16)

where � = 2ẍTP2x + 2ẋTP2ẋ + 2ẋT ∑p
i=1 wiP1ix.

Remark 3: In [15], it is required that −φi ≤ ẇi ≤ φi ∀i.
However, it is not necessary to require the lower bound of
ẇi to be φ

i
= −φi. Therefore, in this paper, we consider a

more general case that φ
i

≤ ẇi ≤ φi. By introducing the
information of the lower bound φ

i
and corresponding slack

matrix Si in (16), more relaxed stability conditions can be
obtained.

Defining the augmented vector z2 = [xT ẋT ẍT ]T and
using properties (11), (12), and (14) on (16) with k2 = 3,
k3 = 4, k4 = 5, k5 = 6, and μk1 = 1 (same as [15], it is
redundant to keep all μkl as variables due to the existence of
matrix variable M), we have

Ẇ(x) ≤
p∑

i=1

p∑

j=1

hijzT
2

(
�ij +

p∑

r=1

p∑

s=1

(
ϒT�rs + �T

rsϒ
)
)

z2

(17)
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where

�ij =
⎡

⎢⎣
�

(11)
ij ∗ ∗

�
(21)
ij �

(22)
ij ∗

�(31) �
(32)
ij �(33)

⎤

⎥⎦

�
(11)
ij =

p∑

r=1

(
φr − φ

r

)
Sr +

p∑

r=1

φ
r
(P1r − Y1)

+ M
(
Ai + BiGj

)+ (
Ai + BiGj

)TMT

�
(21)
ij = P1i − MT + μ3M

(
Ai + BiGj

)

+ μ4
(
Ai + BiGj

)TMT

�
(22)
ij = 2P2 − μ3

(
M + MT)+ μ5M

(
Ai + BiGj

)

+ μ5
(
Ai + BiGj

)TMT

�(31) = P2 − μ4MT

�
(32)
ij = μ6M

(
Ai + BiGj

)− μ5MT

�(33) = −μ6
(
M + MT)

ϒ = [
μ4MT μ5MT μ6MT

]

�ij = [
ḣij
(
Ai + BiGj − Y2

)
0 0

]

and μ3–μ6 are arbitrary scalars.
To eliminate the term ḣij in �ij, assuming |ḣij| ≤ ρij and

using Lemma 2 and the property that (Ai +BiGj −Y2)
T(Ai +

BiGj − Y2) ≥ 0 ∀i, j, condition (5) holds if

p∑

i=1

p∑

j=1

hij

(
�ij +

p∑

r=1

p∑

s=1

(
ϒT�rs + �T

rsϒ
)
)

≤
p∑

i=1

p∑

j=1

hij

(
�ij +

p∑

r=1

p∑

s=1

(
βrsϒ

Tϒ + 1

βrs
�T

rs�rs

))

≤
p∑

i=1

p∑

j=1

hij

(
�ij +

p∑

r=1

p∑

s=1

(
βrsϒ

Tϒ + 1

βrs
�̂

T
rs�̂rs

))
< 0

(18)

where

�̂ij = [
ρij
(
Ai + BiGj − Y2

)
0 0

]

and βij > 0 ∀i, j.
Remark 4: We have the relation that |ḣij| = |ẇiwj +

wiẇj| ≤ |ẇiwj|+ |wiẇj| ≤ |ẇi|+ |ẇj|. The upper bound of |ḣij|
can be approximated by the bounds of ẇi. However, it is very
conservative to apply this relation to choose ρij. More relaxed
stability conditions can be obtained by choosing smaller ρij.
The assumption |ḣij| ≤ ρij as well as φ

i
≤ ẇi ≤ φi can be

verified after the stability analysis.
By congruence transform with premultiplying diag{X, X, X}

and post-multiplying diag{XT , XT , XT} to (18), denoting Ỹ1 =
XY1XT , Ỹ2 = Y2XT , S̃i = XSiXT , using Schur complement
and grouping the terms with the same membership functions,
we obtain stability condition (10).

This completes the proof.

B. Design of Fuzzy Functional Observer

In this section, the fuzzy functional observer is proposed
to estimate the control input when only system output y is
measurable instead of system state x. The T–S fuzzy model (1)
is assumed to be in the following form:

ẋ =
p∑

i=1

wi(y)
(
Aix + Biŭ

)

y = Cx (19)

where y ∈ �l is the system output and C ∈ �l×n is the out-
put matrix. Moreover, the fuzzy controller (2) is considered
to be

u =
p∑

j=1

wj(y)uj =
p∑

j=1

wj(y)Gjx (20)

where uj = Gjx ∈ �m is the control input in the jth rule.
Without loss of generality, we assume rank(C) = l and
rank(Gj) = m [41], which means C and Gj are of full
row rank.

The following fuzzy functional observer is proposed to
estimate the control input u in (20):

żj =
p∑

i=1

wi(y)
(
Nijzj + Jijy + Hijŭ

) ∀j

ŭj = zj + Ejy ∀j

ŭ =
p∑

j=1

wj(y)ŭj (21)

where zj ∈ �m is the observer state; ŭj ∈ �m is the estimated
control input in the jth rule; ŭ ∈ �m is the estimated control
input; Nij ∈ �m×m, Jij ∈ �m×l, Hij ∈ �m×m, and Ej ∈ �m×l

are observer gains to be designed.
Remark 5: The proposed form of fuzzy functional observer

is different from those in [40] and [42]. In what follows,
the separation principle [39] will be applied to separately
design the fuzzy controller and fuzzy functional observer.
Furthermore, the technique in [41] and [45] for linear func-
tional observer will be extended to design the fuzzy functional
observer. To achieve these two tasks, we choose such form of
fuzzy functional observer.

For brevity, the membership function wi(y) is denoted as wi.
The estimation error is defined as ej = uj − ŭj = Gjx − (zj +
Ejy) = Qjx − zj, where Qj = Gj − EjC, and then we have the
closed-loop system consisting of the T–S fuzzy model (19), the
fuzzy controller (20), and the fuzzy functional observer (21)
as follows:

ẋ =
p∑

i=1

wi

(
Aix + Bi

p∑

k=1

wkŭk

)

=
p∑

i=1

wi

(
Aix + Bi

p∑

k=1

wk(uk − ek)

)

=
p∑

i=1

p∑

l=1

hil

(
Aix + BiGlx − Bi

p∑

k=1

wkek

)
(22)
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ėj = Qjẋ − żj

=
p∑

i=1

p∑

l=1

hil

(
Qj

(
Aix + BiGlx − Bi

p∑

k=1

wkek

)

−
(

Nij
(
Qjx − ej

)+ JijCx

+ Hij

p∑

k=1

wk(Gkx − ek)

))

=
p∑

i=1

p∑

l=1

hil

(
(
�ij + 	ijGl

)
x + Nijej − 	ij

p∑

k=1

wkek

)
∀j

(23)

where hil ≡ wiwl,�ij = QjAi−NijQj−JijC,	ij = QjBi−Hij.
The control objective is to make the augmented FMB func-

tional observer-control system [formed by (22) and (23)]
asymptotically stable, i.e., x → 0 and ej → 0 ∀j as time
t → ∞, by determining the controller gain Gj and observer
gains Nij, Jij, Hij, and Ej.

In order to apply the separation principle [39] to design the
controller and observer separately, the following constraints
can be imposed:

�ij = 0 ∀i, j (24)

	ij = 0 ∀i, j. (25)

Defining the augmented vector xa =
[xT eT

1 eT
2 · · · eT

p ]T , the augmented FMB functional
observer-control system is written as

ẋa =
p∑

i=1

p∑

l=1

hil�ilxa (26)

where

�il =

⎡

⎢⎢⎢⎢⎢⎣

Ai + BiGl −Biw1 −Biw2 · · · −Biwp

0 Ni1 0 · · · 0
0 0 Ni2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Nip

⎤

⎥⎥⎥⎥⎥⎦
.

Remark 6: It has been justified in [39] that the separation
principle can be applied to the system in triangular form (26).
In other words, the fuzzy controller and the fuzzy functional
observer can be designed separately. Consequently, we begin
by designing the fuzzy controller using Theorem 1. Then the
obtained controller gain Gj is employed to design the fuzzy
functional observer.

To design the fuzzy functional observer, the objective is to
find observer gains Nij, Jij, Hij, and Ej such that the error
systems

ėj =
p∑

i=1

wiNijej ∀j (27)

are asymptotically stable and the constraints (24) and (25) are
satisfied.

In what follows, we first propose the stability conditions
ensuring the stability of the error systems (27). Then a design

procedure is presented to obtain all observer gains while
satisfying constraints (24) and (25).

Theorem 2: The error systems (27) are guaranteed to be
asymptotically stable if there exist matrices X = XT ∈
�m×m, Yij ∈ �m×2l, i, j = 1, 2, . . . , p such that the following
LMI-based conditions are satisfied:

X > 0 (28)

XFij − YijMij + FT
ijX − MT

ijY
T
ij < 0 ∀i, j (29)

Ẽi1j = Ẽi2j ∀i1 < i2, j (30)

where

Fij = GjAiG
+
j − GjAij


+
ij

[
CAiG

+
j

CG+
j

]
(31)

Mij =
(

I − 
ij

+
ij

)[CAiG
+
j

CG+
j

]
(32)

Aij = Ai

(
I − G+

j Gj

)
(33)


ij =
[

CAij

Cj

]
(34)

Cj = C
(

I − G+
j Gj

)
(35)

the controller gain Gj is determined by Theorem 1; Ẽij in (30)
is obtained by [Ẽij K̃ij] = XGjAij


+
ij + Yij(I − 
ij


+
ij ); and

Zij = X−1Yij.
Proof: The constraint (24) is equivalent to

�ij

[
G+

j I − G+
j Gj

]
= 0 ∀i, j (36)

where G+
j is the Moore–Penrose generalized inverse of Gj.

The proof of (36) is shown in the Appendix. From (36), we
get �ijG

+
j = 0 and �ij(I − G+

j Gj) = 0. Substituting Qj =
Gj − EjC into �ij, we have
((

Gj − EjC
)
Ai − Nij

(
Gj − EjC

)− JijC
)
G+

j = 0 ∀i, j (37)
((

Gj − EjC
)
Ai − Nij

(
Gj − EjC

)− JijC
)

×
(

I − G+
j Gj

)
= 0 ∀i, j. (38)

Since Gj is of full row rank, we have GjG
+
j = I. Using this

property, we simplify (37) and (38) to

Nij = GjAiG
+
j − EjCAiG

+
j − (

Jij − NijEj
)
CG+

j ∀i, j (39)

EjCAi

(
I − G+

j Gj

)
+ (

Jij − NijEj
)
C
(

I − G+
j Gj

)

= GjAi

(
I − G+

j Gj

)
∀i, j. (40)

Writing (39) and (40) into compact forms, we obtain

Nij = GjAiG
+
j − [

Ej Kij
]
[

CAiG
+
j

CG+
j

]
∀i, j (41)

[
Ej Kij

]

ij = GjAij ∀i, j (42)

where

Kij = Jij − NijEj (43)

and Aij and 
ij are defined in (33) and (34), respectively.
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According to [46], the general solution of linear matrix
equation (42) is

[
Ej Kij

] = GjAij

+
ij + Zij

(
I − 
ij


+
ij

)
∀i, j (44)

where Zij ∈ �m×2l ∀i, j are arbitrary matrices.
Remark 7: In [41], Ej and Kij can be obtained in (44) once

Zij is determined for linear functional observer. However, in
fuzzy functional observer case, since Zij varies with rule i and
Ej is obtained from Zij, Ej will also vary with rule i. That is
to say, we will get Eij rather than Ej as follows:

[
Eij Kij

] = GjAij

+
ij + Zij

(
I − 
ij


+
ij

)
∀i, j (45)

where Eij is obtained by giving Zij. In order to make Ej

not vary with rule i, the following constraints need to be
imposed: Ei1j = Ei2j,∀i1, i2. Defining 0 < X = XT ∈ �m×m,
then Ei1j = Ei2j is equivalent to stability condition (30),
where Ẽij = XEij. Ẽij in (30) is obtained by [Ẽij K̃ij] =
XGjAij


+
ij + Yij(I − 
ij


+
ij ), where Yij = XZij.

Substituting (44) to (41), we have

Nij = GjAiG
+
j

−
(

GjAij

+
ij + Zij

(
I − 
ij


+
ij

))[CAiG
+
j

CG+
j

]
∀i, j.

(46)

Writing (46) into a compact form, we obtain

Nij = Fij − ZijMij ∀i, j (47)

where Fij and Mij are defined in (31) and (32), respectively.
Therefore, the error system (27) becomes

ėj =
p∑

i=1

wi
(
Fij − ZijMij

)
ej ∀j. (48)

Applying the Lyapunov function V(ej) = eT
j Xej to investi-

gate the stability of (48) where X ∈ �m×m and X > 0, we
have the time derivative of V(ej) as follows:

V̇(ej) =
p∑

i=1

wieT
j

(
XFij − YijMij + FT

ijX − MT
ijY

T
ij

)
ej

where Yij = XZij. V̇(ej) < 0 holds if the stability condi-
tion (29) is satisfied.

This completes the proof.
With Zij obtained from Theorem 2, the following proce-

dure [41] is employed to determine the observer gains such
that the constraints (24) and (25) are satisfied.

1) Nij can be obtained from (47).
2) Ej and the intermediate variable Kij are given by (44).
3) Jij can be obtained from (43).
4) Hij is given by (25).
Remark 8: The stability conditions in Theorem 2 are con-

vex, which can be numerically solved by convex programming
techniques. Once Zij is obtained from Theorem 2, all observer
gains are determined and the stability of the error system is
guaranteed. Compared with [40] and [42], in this paper, there
is no need to manually design any observer gains or check the
stability after designing the gains.

Fig. 1. Stabilization regions obtained from Theorem 1 (© and +),
[15, Th. 6] (×), and [15, Th. 7] (�).

IV. SIMULATION EXAMPLES

In this section, two examples are provided to demonstrate
the feasibility of the proposed design procedure. A numerical
model is presented first for comparison of the conservative-
ness. Then an inverted pendulum is considered to test the
proposed fuzzy functional observer-controller.

A. Numerical Example

Consider the following 2-rule T–S fuzzy model [15]:

A1 =
[

3.6 −1.6
6.2 −4.3

]
, A2 =

[−a −1.6
6.2 −4.3

]

B1 = [−0.45 −3]T , B2 = [−b −3]T

where a and b are constant parameters to be determined. The
region of stabilization will be revealed with a and b being
chosen in the range of 0 ≤ a ≤ 10 and −44 ≤ b ≤ −24 at
the interval of 1 and 2, respectively.

The region of interest is defined as x1 ∈ [−0.2, 0.2] and
x2 ∈ [−0.5, 0.5] where x = [x1 x2]T are the system states.
The membership functions are chosen as w1(x1) = e−((x2

1)/18)

and w2(x1) = 1 − w1(x1).
In this example, since we aim to show the relaxation of sta-

bility conditions in Theorem 1, only Theorem 1 is employed to
design the fuzzy controller to stabilize the system. We choose
βij = 1, μ1 = −10−2, μ2 = −10−4, μ3 = 0.04, μ4 = −10−2,
μ5 = 10−4, μ6 = 10−6, φ

i
= −1, φi = 1, ρ11 = ρ22 = 1,

ρ12 = ρ21 = 0.1, i, and j = 1, 2. Finding the solution using
MATLAB LMI toolbox, the stabilization region is indicated
by “©” in Fig. 1.

Remark 9: To our experience, the predefined parameters
βij > 0, μ1, μ2, . . . , μ6, i, j = 1, 2, . . . , p in Theorem 1 can
be determined in the following way in order to obtain more
relaxed results. According the conditions in Theorem 1, the
sign of μ2 should be opposite to those of μ3 and μ6. Users
can start choosing the magnitudes of μ1, μ2, . . . , μ6 very
small such as 10−6, and then gradually increase the magni-
tudes. For βij, start from large values and gradually reduce
them. The reason is that by starting with these settings, the
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Fig. 2. Phase plot of x1(t) and x2(t) for a = 5 and b = −40 in © where
the initial conditions are indicated by ◦.

conditions are similar to those in [15] using fuzzy Lyapunov
function. Then the adjustment enlarges the effect of HODLF.

To show the influence of adding the information of the
lower bound φ

i
and corresponding slack matrix Si in the pro-

posed analysis, we consider another case where φ
i
�= −φi. We

choose φ
1

= −0.4, φ2 = 0.4 and keep other parameters the
same, the corresponding stabilization region is obtained as +
in Fig. 1. It can be seen that the slack matrix leads to more
relaxed results.

Remark 10: To compare the proposed stability conditions
with those derived from the fuzzy Lyapunov function [15], we
consider two set of conditions: 1) time-derivative dependent
conditions [15, Th. 6] and 2) time-derivative independent con-
ditions [15, Th. 7]. We apply [15, Th. 6] by choosing μ = 0.04
and φ1,2 = 1. Also, [15, Th. 7] is employed by choosing
μ = 0.04 and all possible substructures of decision matrices.
Finding the solution using MATLAB LMI toolbox, the stabi-
lization region is obtained and indicated by “×” and “�” in
Fig. 1. It is shown that the HODLF in this paper provides more
relaxed stability conditions than fuzzy Lyapunov function [15].

To verify the stabilization results, we consider two cases by
choosing a = 5 and b = −40 in © and a = 1 and b = −42
in +. The controller feedback gains are obtained as G1 =
[−1.0335 × 10 2.6297], G2 = [8.0449 × 10−2 3.2949 ×
10−2] and G1 = [−1.1608 × 10 2.9394], G2 = [−1.9578 ×
10−1 7.6306 × 10−2], respectively, for both cases. With the
initial conditions indicated by “◦,” the phase plots of x1(t)
and x2(t) are shown in Figs. 2 and 3. It can be seen that
all the trajectories asymptotically reach the equilibrium point
x = 0. Furthermore, we check that the constraints φ

i
≤ ẇi ≤

φi and |ḣij| ≤ ρij are satisfied for these two cases. For a =
5 and b = −40 in ©, we have −6.0569 × 10−2 ≤ ẇ1 ≤
6.4402 × 10−3, −6.4402 × 10−3 ≤ ẇ2 ≤ 6.0569 × 10−2,
|ḣ11| ≤ 1.2087 × 10−1, |ḣ12|, |ḣ21| ≤ 6.0300 × 10−2, and
|ḣ22| ≤ 2.6890×10−4. Similarly for a = 1 and b = −42 in +,
we have −6.3499 × 10−2 ≤ ẇ1 ≤ 6.6410 × 10−3, −6.6410 ×
10−3 ≤ ẇ2 ≤ 6.3499 × 10−2, |ḣ11| ≤ 1.2672 × 10−1, |ḣ12|,
|ḣ21| ≤ 6.3217 × 10−2, and |ḣ22| ≤ 2.8191 × 10−4. Therefore,
the constraints are all satisfied for these two cases.

Fig. 3. Phase plot of x1(t) and x2(t) for a = 1 and b = −42 in + where
the initial conditions are indicated by ◦.

B. Inverted Pendulum

In this example, we consider an inverted pendulum on a cart
in the following state-space form [4]:

ẋ1 = x2

ẋ2 = g sin(x1) − ampLx2
2 sin(x1) cos(x1) − a cos(x1)u

4L/3 − ampL cos2(x1)
(49)

where x = [x1 x2]T are the system states; g = 9.8 m/s2 is the
acceleration of gravity; mp = 2 kg and Mc = 8 kg are the mass
of the pendulum and the cart, respectively; a = 1/(mp + Mc);
2L = 1m is the length of the pendulum; u is the control input
force imposed on the cart.

The region of interest is defined as x1 ∈
[−(80π/180), (80π/180)]. The dynamics of the inverted
pendulum (49) is represented by a 2-rule fuzzy model [4]
with the following parameters:

A1 =
⎡

⎣
0 1
g

4L
3 − ampL

0

⎤

⎦, A2 =
⎡

⎢⎣
0 1

2g

π
(

4L
3 − ampLβ2

) 0

⎤

⎥⎦

B1 =
[

0 − a
4L
3 − ampL

]T

, B2 =
[

0 − aβ

4L
3 − ampLβ2

]T

C = [1 0]

where β = cos (80π/180). The membership functions are
chosen as w1(x1) = e−(x2

1/0.32) and w2(x1) = 1 − w1(x1).
To design the proposed fuzzy functional observer-controller,

Theorem 1 is employed to design the fuzzy controller first.
We choose βij = 1, i, j = 1, 2, μ1 = −10−2, μ2 = −10−4,
μ3 = 0.04, μ4 = −10−3, μ5 = 10−4, μ6 = 10−6, φ

1
=

−5, φ1 = 10, φ
2

= −10, φ2 = 5, ρ11 = ρ22 = 15, and
ρ12 = ρ21 = 6. The controller feedback gains are obtained
as G1 = [3.8334 × 102 1.1677 × 102] and G2 = [1.2092 ×
103 4.0828 × 102] using MATLAB LMI toolbox.

After obtaining the controller feedback gains, Theorem 2
and the procedure at the end of Section III-B are employed
to design the fuzzy functional observer using MATLAB
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Fig. 4. Time response of system state x1(t) with z1(0) = z2(0) = 0.

Fig. 5. Time response of system state x2(t) with z1(0) = z2(0) = 0.

toolbox SOSTOOLS [6]. The observer gains are obtained as
N11 = −5.4762, N12 = −2.3765, N21 = −5.4762, N22 =
−2.3765, H11 = −2.0606 × 10, H12 = −7.2049 × 10, H21 =
−3.0554, H22 = −1.0683 × 10, J11 = −1.4823 × 103, J12 =
4.7550×103, J21 = −2.4040×103, J22 = 1.5323×103, E1 =
1.0228×103, and E2 = 2.1795×103. In this example, we ver-
ify the satisfaction of constraints (24) and (25). By substituting
these gains into constraints (24) and (25), we have �ij ≈ 0
(the magnitude of all values is less than 10−6) and 	ij = 0
∀i, j. Accordingly, these constraints are satisfied as proved in
the theory.

The designed controller gains and observer gains are applied
to the original dynamic system of the inverted pendulum (49).
Considering four different initial conditions, the time response
of system states are shown in Figs. 4 and 5. The initial
conditions for the observer states are chosen as z1(0) =
z2(0) = 0. It is demonstrated that the inverted pendulum can
be successfully stabilized by the proposed fuzzy functional
observer-controller.

Choosing the initiation conditions x(0) = [(80π/180) 0]T

for further demonstration, the objective control input u(t) and
estimated control input ŭ(t) are shown in Fig. 6. Under this
case, we also check that the constraints φ

i
≤ ẇi ≤ φi and

Fig. 6. Time response of objective control input u(t) and estimated control
input ŭ(t) with x(0) = [(80π/180) 0]T and z1(0) = z2(0) = 0.

|ḣij| ≤ ρij are satisfied. It can be numerically calculated that
−1.9179 ≤ ẇ1 ≤ 8.9285, −8.9285 ≤ ẇ2 ≤ 1.9179, |ḣ11| ≤
1.1197 × 10, |ḣ12|, |ḣ21| ≤ 3.8055, and |ḣ22| ≤ 1.0785 × 10.
Therefore, the constraints are satisfied according to the previ-
ous settings.

Remark 11: Instead of estimating the system states,
the fuzzy functional observer can estimate the con-
trol input directly, which reduces the order of fuzzy
observer [5], [31]–[34] from 2 to 1. Additionally, we
compare the proposed fuzzy functional observer with
the existing one in [42]. The closed-loop poles are
chosen as −2 and −5 for controller design and −3
for observer design in all rules. The controller gains
are obtained as K1 = [1.5467 × 102 3.9667 × 10]
and K2 = [7.4146 × 102 2.6753 × 102]. The observer gains
are F1 = F2 = −3. Applying [42, Th. 2], however, no feasible
common matrix P is found. Consequently, the stability cannot
be guaranteed. This comparison demonstrates the superiority
of the proposed method that the stability is guaranteed while
the feedback gains are obtained.

V. CONCLUSION

In this paper, the applicability of FMB control scheme has
been improved by relaxing stability conditions and consid-
ering unmeasurable system states. First, the fuzzy controller
has been designed via HODLF to obtain relaxed stability
conditions. To derive convex conditions, the properties of
membership functions and the dynamics of the FMB control
system have been exploited. More information of the deriva-
tive of membership functions has been utilized to relax the
stability conditions. Next, the fuzzy functional observer has
been designed to estimate the control input rather than the
system states, which can reduce the order of the observer.
A new form of fuzzy functional observer has been proposed
which is in favor of applying the separation principle and
deriving convex stability conditions. Based on the proposed
fuzzy functional observer, users can easily obtain the observer
gains while ensuring the stability. Simulation examples have
been presented to verify the relaxation and the validity of
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designed fuzzy functional observer-controller. In the future,
more advanced techniques may be applied to meet the bound-
ary requirement of the derivative of membership functions or
to provide more relaxed conditions. The discrete-time fuzzy
functional observer can also be investigated by extending the
technique in discrete-time linear functional observer.

APPENDIX

PROOF OF (36)

Consider the following two matrices:

P =
[
G+

j In

]

Q =
[

Im −Gj

0 In

]

where In is n × n identity matrix. Due to Gj ∈ �m×n and
G+

j ∈ �n×m, we have rank(P) = n and rank(Q) = m + n
where Q is of full rank.

Therefore, we have

rank(PQ) = rank(P) = n

where PQ = [G+
j In − G+

j Gj]. Due to [G+
j In − G+

j Gj] ∈
�n×(m+n), [G+

j In − G+
j Gj] is of full row rank.

According to the rank-nullity property [47], the rank of the
left nullspace of [G+

j In − G+
j Gj] is 0. Then, we can get the

equivalent relation

�ij

[
G+

j In − G+
j Gj

]
= 0 ⇐⇒ �ij = 0.
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