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The Designated Convergence Rate Problems of
Consensus or Flocking of Double-Integrator Agents

With General Nonequal Velocity and Position
Couplings: Further Results and Patterns of

Convergence Rate Contours
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Abstract—This paper considers the designated convergence
rate (DCR) (or the designated convergence margin) problems of
consensus or flocking of coupled double-integrator agents. The
DCR problems are more valuable for systems design than just
convergence or stability conditions. The system setting in this
paper is general, i.e., the velocity coupling and position coupling
(VCPC) between agents, respectively, are set to be general and
nonequal (up to rescaling), together with distinct damping and
stiffness gains for the VCPC, respectively. This paper has two
primary contributions on consensus: 1) further necessary and
sufficient conditions are established to guarantee the DCR prob-
lems of the system, which have enriched the previous results and
2) the patterns of the convergence rate contours for the DCR
are characterized, in terms of the damping and stiffness gains,
which are closely related to the characteristics of the spectra
of the two Laplacian matrices of the VCPC. Additionally, this
paper has a contribution on matrix theory, i.e., the sufficient
conditions for the simultaneous upper-triangularization of two
independent Laplacian matrices, particularly from an easily ver-
ifiable topological perspective on the corresponding digraphs of
these Laplacian matrices.

Index Terms—Consensus margin, convergence margin, conver-
gence rate contour, cooperative control, designated convergence
margin, designated convergence rate (DCR), flocking, formation,
rendezvous, stability margin.

I. INTRODUCTION

COOPERATIVE control of multiple agents has
attracted a great deal of attention recently,

e.g., consensus [2], [6]–[9], [15], [19]–[22], [25], [30],
[32], coverage [16], deployment [18], flocking [1], [3]–[5],
[26], [27], rendezvous [12], [24], swarming [11], [13], [14],
[18], formation in the Euclidean space [17], or on the spher-
ical manifolds [18], etc. For a first-order (single-integrator)
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model, there is only position coupling between agents, for
which many results have been obtained. Flocking gener-
ally refers to the scenario when the agents (typically the
double-integrator agents) will move at a same velocity with
an explicitly [1], [3] or implicitly [26] described formation;
such a motion is called (second-order) consensus when the
agents will converge to a zero formation [1], [28], [34].

Flocking of double-integrator agents provides a framework,
within which one can introduce more complex behaviors
of agents into the networked system. For example, one
can introduce a leader or an external reference [23], cou-
pling delays [19], [20], [31], input constraints [28], optimal
control [29], into flocking [22].

For second-order (double-integrator) models of flocking or
consensus, the state of a single agent includes both velocity
and position. Thus, generally, there exist both velocity cou-
pling and position coupling (VCPC) among agents, together
with distinct damping and stiffness gains for the VCPC,
respectively.

The consideration of nonequal VCPC (up to rescaling) has
not only theoretical merits but also application implications.
For example, physical agents can possibly carry range detec-
tion sensors or proximity sensors (e.g., laser range-finders or
infrared proximity sensors), as well as velocity detection sen-
sors (e.g., a Doppler radar is a specialized radar that uses the
Doppler effect to produce velocity data about objects at a dis-
tance). Just due to the measurements (on relative velocity and
position) using different physical sensors, the nonequal VCPC
setting has its very physical meaning.

However, the VCPC setting in most reports is merely
assumed to be identical; it is known that, the VCPC play dis-
tinct roles in systems dynamics, thus, should be considered
nonequal in general [1], [3], [4], with the equal setting as its
special case. There is also insufficient attention on a general
setting of the damping/stiffness gains for the VCPC: usually
in literature, the stiffness gain was set to be unity, with only
the damping gain being a possible variable parameter, or the
damping and the stiffness gains were set to be just identical
(except for a few works, e.g., [1], [3], and [4], to the author’s
knowledge).
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Moreover, another major concern is what conditions can
ensure the designated convergence rate (DCR) or the desig-
nated convergence margin of a system, which extends many
categories of cooperative control problems (e.g., flocking, con-
sensus, swarming, formation, etc., which generally concern
merely about the convergence or stability) in the very large
literature. Convergence or stability conditions alone are insuf-
ficient for understanding the problems for at least two reasons:
1) a system should be designed more robust than having
merely the theoretical convergence or stability (in applications,
noise and inaccurate measurements may make a theoreti-
cally convergent or stable system unstable) and 2) it is often
important to design a system with a DCR (for consensus
problems and the consensus margin) [1]. Deriving conditions
for a system with a DCR has important implications, which
unfortunately was rarely concerned in most literature.

Recently, Li and Chen [1] have investigated one of the DCR
problems of consensus or flocking of double-integrator agents
with nonequal VCPC (as well as the distinct damping and
stiffness gains for the VCPC, respectively), and established
the necessary and sufficient conditions to guarantee the DCR,
which generalized the existing results in the field, and which
are valuable for systems design than merely the convergence or
stability conditions; refer to [1, Fig. 1] for the coverage of the
convergence and the DCR problems. Even for a linear system,
solving a DCR problem for unknown damping/stiffness gains
is still difficult, particular with a general nonequal setting of
the VCPC.

In this paper, we consider more forms of the DCR problems.
For convenience, we list the rationales for the consideration
of the different DCR forms in this paper in Section II-D, as
compared with the DCR form in [1].

The main contributions in this paper are listed as follows.
1) We provide further necessary and sufficient conditions

to guarantee the DCR problems, which have enriched
the previous results in [1]. Refer to Sections V and VI.

2) Particularly, we characterize different patterns of the
convergence rate contours for the DCR, which are the
functions of the damping and stiffness gains, and which
are closely related to the characteristics of the spectra
of the two Laplacian matrices of the VCPC, refer to
Section V-C. The convergence rate contours also show
that, increasing the damping gain does not necessarily
increase the convergence margin of consensus (or con-
sensus margin), which may be unexpected to one’s
intuition.

3) Additionally, this paper has another contribution on
matrix theory, i.e., the sufficient conditions for simul-
taneous upper-triangularization of two independent
Laplacian matrices, particularly from an easily verifiable
topological perspective on the corresponding digraphs of
these two Laplacian matrices. Refer to Section IV.

The rest of this paper is arranged as follows. Section II is
the problem. Section III is the preparations. Section IV is the
sufficient conditions for simultaneous upper-triangularization
of two independent Laplacian matrices. Sections V and VI are
the main results on the DCR problems. Finally, Section VII is
the conclusions.

II. PROBLEM DESCRIPTION

A. Model

Consider n agents in the N-dimensional Euclidean space.
Denote xi ∈ R

N as the position of agent i, i = 1, 2, . . . , n,
the dynamics of the agents can be described by the double-
integrators [1], [4], [25], [34]

ẋi = vi

v̇i = ui

where the control input [1], [4]

ui =
∑

j∈Mi

−bwij
(
ẋi − ẋj

)+
∑

j∈Ni

−kvij
(
xi − xj − aij

)
(1)

where b, k > 0 are the damping and stiffness gains, respec-
tively; wij ≥ 0 (vij ≥ 0) is the velocity (position) coupling
weight on agent i from agent j; Mi and Ni are the neighbor
sets of agent i; wij > 0 if j ∈ Mi, and vij > 0 if j ∈ Ni;
vectors aij ∈ R

N , i, j = 1, 2, . . . , n, are compatible.
System (1) is convergent iff ẋi → ẋj and xi−xj → aij for all

i, j. System (1) is called second-order consensus if the agents
will achieve the zero formation (i.e., aij = 0 for all i, j).

The Laplacian matrices L = [Lij] ∈ R
n×n and H = [Hij] ∈

R
n×n, which model the VCPC structures, respectively, are

defined as

Lij =
{−wij i �= j∑n

j=1,j �=i wij i = j , Hij =
{−vij i �= j∑n

j=1,j �=i vij i = j.

Define the weighted digraph of L as GL = (V, E,A), where
V = {1, 2, . . . , n}, E ⊆ V × V; eij = (i, j) ∈ E iff there is
a directed link from i to j, with wji being the weight of eij;
A = [Aij] = [wji] ∈ R

n×n is the weighted adjacency matrix
(note the sequence of i, j). Define the weighted digraph GH of
H similarly.

Denote I as the identity matrix, 1 = [1, 1, . . . , 1]T , 0 =
[0, 0, . . . , 0]T , with the dimension determined in the subscript
or the context. λ(·) denotes the spectrum of a matrix. Define

A :=
(−bL − kH

In 0

)
∈ R

2n×2n

which has at least two zero eigenvalues [1, Proposition 1];
thus, without loss of generality, denote

λ(A) = {�j ∈ C, j = 1, 2, . . . , 2(n− 1),�2n−1 = �2n = 0}.
Define the maximum of the real parts of the 2(n − 1)

eigenvalues as

rmax := max
j=1,...,2(n−1)

{
Re
(
�j
)}

where rmax is a function of L, H, b, and k.

B. DCR

If L, H, b, and k are all known, then calculation of rmax is
trivial.

Here, we consider an inverse problem—the DCR problem:
the gains b and k are two unknown variables to be designed,
then what values of b and k can ensure a designated condition
of rmax?
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Although system (1) is linear, the DCR problem for
unknown gains is nonlinear, particular with respect to general
nonequal VCPC [1].

C. Main Concerns in This Paper

Denote constant r0 > 0. A DCR problem considered in [1]
is for

rmax < −r0. (2)

If r0 = 0, conditions for (2) to hold reduce to the consensus
condition.

Different from [1], this paper considers the DCR prob-
lems for

rmax = −r0 (3)

rmax ≤ −r0. (4)

D. Rationale for Different Concerns of the DCR
Problems (2)–(4)

One may wonder, the DCR problems (2)–(4) can be merged
as one DCR problem, e.g., (4). Here, they are separated for
many reasons.

Reasons for Separating the DCR Problem (2):
a) For some cases, there is a solution for (2), but no solu-

tion for (3) [i.e., (4) with the equal sign], e.g., as shown
in Proposition 3 (the first two items).

b) The reduction of (2) with r0 = 0 is just the pure con-
sensus problem; thus, separating (2) is convenient to
compare the generalization/reduction.

Reasons for Separating the DCR Problem (3): The con-
vergence rate contours of b and k for (3) have important
properties, which are closely related to different types of the
spectra of the two Laplacian matrices of the VCPC; refer to,
e.g., Fig. 1, Proposition 2, Corollary 2, and Proposition 3 (the
last two items).

The DCR problem (3) is the main focus in this paper.

III. PREPARATIONS

A. Lemmas

Lemma 1: For a Laplacian matrix, there is at least one zero
eigenvalue, and all nonzero eigenvalues have positive real parts
(which can be derived from Geršgorin Disks Theorem [33]).

Without loss of generality, denote the n eigenvalues of the
Laplacian matrix L as λj ∈ C, j = 1, 2, . . . , n, and denote
the n eigenvalues of the Laplacian matrix H as μj ∈ C, j =
1, 2, . . . , n

Re(λj) ≥ 0, j = 1, 2, . . . , n− 1; λn = 0

Re(μj) ≥ 0, j = 1, 2, . . . , n− 1; μn = 0.

Further, Re(λj) > 0 for all j = 1, 2, . . . , n − 1, iff GL has
a directed spanning tree [34]. λ(H) has the same properties
as λ(L).

Furthermore, we write λj and μj, respectively, as

λj = uj + vji

μj = ũj + ṽji (5)

where uj, vj, ũj, ṽj ∈ R, uj, ũj ≥ 0, i = √−1 (the imaginary
unit).

Lemma 2 (Schur Decomposition): For matrix L, there exists
a unitary matrix U ∈ C

n×n (i.e., U∗ = U−1, where U∗ is the
complex conjugate transpose of U) such that U∗LU = V1 as

U∗LU = U−1LU = V1 :=

⎡

⎢⎢⎢⎢⎢⎣

λ1 ∗ . . . ∗ ∗
0 λ2 . . . ∗ ∗
...

...
. . .

...
...

0 0 . . . λn−1 ∗
0 0 . . . 0 λn

⎤

⎥⎥⎥⎥⎥⎦
.

If λ(L) ∈ R, then U reduces to be an orthogonal matrix U ∈
R

n×n.

B. L-Assumption for Two Independent Laplacian Matrices

In this paper, assume that the Laplacian matrix H can be
also transformed upper triangular by the same matrix U in
Lemma 2, i.e.,

U∗HU = U−1HU = V2 :=

⎡

⎢⎢⎢⎢⎢⎣

μ1 ∗ . . . ∗ ∗
0 μ2 . . . ∗ ∗
...

...
. . .

...
...

0 0 . . . μn−1 ∗
0 0 . . . 0 μn

⎤

⎥⎥⎥⎥⎥⎦
.

Definition 1: The L-assumption for two Laplacian matrices
is defined as follows: the two Laplacian matrices L and H can
be made upper triangular simultaneously by a same unitary
matrix.

Remark 1: Section IV provides one solution of the L-
assumption from an easily verifiable topological perspective.
Note that if the L-assumption holds, then the two zero eigen-
values λn and μn of L and H can be made simultaneously
appeared as the last diagonal entries in V1 and V2, respectively,
(for the reason, refer Remark 12 in the Appendix).

C. On Relaxation Concern of the L-Assumption

The L-assumption is certainly not a necessary condition for
consensus or the DCR problems. But it is still unknown that, to
what extent, the L-assumption could be relaxed for solving the
DCR problems (for the pure consensus problem with nonequal
VCPC, refer to [1], [3], and [4]).

An interesting yet unexpected simple example would pro-
vide some challenges on this relaxation question, please refer
to [1, Example 1], in which the VCPC of the agents are mod-
eled by two independent Laplacian matrices, and each of the
corresponding digraphs GH and GL is just a directed spanning
tree with the unit weight on each edge, but the directions of
the edges in GH and GL are opposite, refer to the topologies
illustrated in [1, Fig. 2] (here the two Laplacian matrices of
the topologies do not satisfy the L-assumption).

This example is very simple and satisfies the cliché of
the connectivity condition (that the digraphs have spanning
directed trees). However, the system with the very simple
topologies (the two different Laplacian matrices) will never be
stable for any positive gains b, k, not to mention consensus.
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IV. SOLVING THE L-ASSUMPTION FROM EASILY

VERIFIABLE TOPOLOGICAL PERSPECTIVE

Generally, it is very difficult to verify the L-assumption for
two arbitrary Laplacian matrices L and H, particularly if some
entries of L or H are either variables or unknown constants.

Here, we provide some sufficient conditions to ensure the
L-assumption, particularly from an easily verifiable topologi-
cal perspective, even for the Laplacian matrices L, H in which
some entries can be either variables or unknown constants.

Remark 2: This is another contribution in this paper on
matrix theory (i.e., the conditions for simultaneous upper-
triangularization of two independent Laplacian matrices).

A. Definition

Definition 2: The topology of a Laplacian matrix C ∈ R
n×n

belongs to the concatenated-directed-star (CDS) topology, if C
has the structure

C = ε1In − 1ε ∈ R
n×n (6)

where

ε := (ε1, ε2, . . . , εn) ∈ R
1×n, ε ≥ 0

is the arbitrary non-negative row vector, ε ≥ 0 means that all
εi ≥ 0 with at least one εi > 0. Note that εi > 0 can be any
positive value, not necessarily the unity.

From Definition 2, an all-to-all topology is a special type
of the CDS topology with ε > 0; a directed-star topology is
a special CDS topology with only one εi > 0 in ε, which
has only n − 1 directed edges from one agent i to agents
{1, 2, . . . , n}\i.

The geometric interpretation of the general topology is that:
for each index i, which index satisfying εi > 0, then there
are (n − 1) directed edges from agent i to all other agents
{1, 2, . . . , n} \ i, with the same edge weight εi. Each εi > 0
just corresponds to a directed-star topology, this is why the
word “concatenation” is used.

B. Property of the CDS Topology

Denote γ := (γ1, γ2, . . . , γn) ∈ R
1×n as an arbitrary vector

with constraint γ 1 = 1, denote γ(1) := [γ2, . . . , γn], and define
matrix T1 ∈ R

n×n as [3], [4] (T1 in [3] is denoted as T)

T1 :=
[

γ1 γ(1)

−1n−1 In−1

]
.

Consider the similarity transformation on an arbitrary
Laplacian matrix L, then

T1LT−1
1 =

[
0 ∗
0 L1

]

where L1 is independent of γ [4] (one may use any other
Ti, i = 1, 2, . . . , n, in [4] to perform the similarity transforma-
tion).

Lemma 3: Consider the Laplacian matrix with the CDS
topology

L = ε1In − 1ε ∈ R
n×n

then

L1 = ε1In−1.

Proof: Refer to the unique and elegant structure of
L1 in [4].

C. Results

Theorem 1: Consider two digraphs GL and GH . If any one
(GL or GH) belongs to the CDS topology, while another topol-
ogy (GH or GL) can be arbitrary, with arbitrary edge weights,
then the corresponding Laplacian matrices L, H of the digraphs
satisfy the L-assumption.

Proof: Refer to Proof of Theorem 1 in Appendix C.
Corollary 1: To ensure the L-assumption, the digraphs GL

and GH are not required to contain a same directed spanning
tree or to have a same numbered root-agent in their respective
directed spanning trees.

Remark 3: For the DCR of the system, each of GH and
GL should have a directed spanning tree as a prerequisite
[1, Proposition 2].

V. RESULTS FOR THE DCR PROBLEM (3)

This section provides the solutions of the DCR problem (3)
and the algorithm in a general case, and then provides the
analytical results for different types of nonequal VCPC, finally,
the interesting patterns of the convergence rate contours of
b and k for the DCR problem (3).

For system (1) with nonequal VCPC, always assume that:
the L-assumption holds, and each of GL and GH has a directed
spanning tree.

A. General Case

For j = 1, 2, . . . , n− 1, define

�j(b, k) := −ṽ2
j k2 + fj(b)k + gj(b)

Cj(b, k) := 4ũjk +
(

u2
j + v2

j

)
b2 − 8ujr0b+ 8r2

0

where

fj(b) := ũj(ujb− 2r0)
2 + ujvjṽjb

2

gj(b) := −r0(ujb− r0)
((

ujb− 2r0
)2 + v2

j b2
)

and

umin := min
i=1,2,...,n−1

ui

b0 := max
j=1,2,...,n−1

{
2r0

uj

}
= 2r0

umin
. (7)

Proposition 1: For the DCR (3) of system (1), a necessary
and sufficient condition on the gains is that, there exists an
index set I(b, k) ⊂ {1, 2, . . . , n − 1} (as a function of b and
k) such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�j(b, k) = 0, j ∈ I(b, k)
Cj(b, k) ≥ 0, j ∈ I(b, k)
�j(b, k) > 0, j = 1, 2, . . . , n− 1, j /∈ I(b, k)
Cj(b, k) > 0, j = 1, 2, . . . , n− 1, j /∈ I(b, k)
b ≥ b0
k > 0.

(8)
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Algorithm 1 Numerical Solutions of b, k for Inequalities (8)
1: given L, H, r0, and thus b0 [refer to (7) for its calculation]
2: given an upper limit bmax of b, i.e., b ∈ (b0, bmax)

3: � i.e., calculate a valid solution for the designated interval
4: for b = b0 do
5: calculate a solution of variable k for (8) with current value b:

• κ0 is a possible solution of (8) for all j with ṽj = 0
• κ1, κ2 are possible solutions of (8) for all j with ṽj �= 0

6: denote κ0 = κ1 = 0, κ2 = κ (κ is a large enough constant)
7: for j = 1 do
8: if ṽj = 0 then
9: calculate k0 from �j(b, k0) = 0, and kc from Cj(b, kc) = 0

10: if k0 ≥ kc and k0 > κ0 then
11: κ0 ← k0
12: else
13: return, no valid solution
14: end if
15: else if ṽj �= 0 then
16: calculate solutions k1, k2 for k from �j(b, k) = 0
17: if k1, k2 > 0 then � assume k1 ≤ k2
18: if k1 ∈ [κ1, κ2] or k2 ∈ [κ1, κ2] then
19: κ1 ← max{κ1, k1}, κ2 ← min{κ2, k2}
20: else
21: return, no valid solution
22: end if
23: else
24: return, no valid solution
25: end if
26: end if
27: j← j+ 1
28: end for
29: reassign kc = max{kj}, where Cj(b, kj) = 0 for all j with ṽj �= 0.

Only when κ2 ≥ max{κ0, kc}, inequalities (8) have solutions:
• κ2 is one solution;
• κ1 is a solution if κ1 ≥ max{κ0, kc};
• κ0 is a solution if κ0 ≥ max{κ1, kc}.

30: b← b+ ε, until b > bmax � ε > 0 is an incremental constant
31: end for

Proof: Refer to Proof of Proposition 1 in Appendix C.
Remark 4: One sufficient condition is that: I(b, k) is

a constant set that is independent of b and k (thus,
denoted as I).

Remark 5: Note that b0 may not be the infimum or the
“greatest lower bound” of b in (8), since �j(b, k) = 0 may
have no solution for b = b0 or b → b0 [which requires at
least f 2

j (b)+ 4ṽ2
j gj(b) ≥ 0].

For given L, H and r0, Algorithm 1 provides numerical
solutions of k (as a function of b) for inequalities (8) for a
designated interval b ∈ (b0, bmax), where b0 is defined in (7)
and bmax is the user-defined value. For b = b0, one needs to
consider if fj(b) = 0 when ṽj = 0.

B. Analytical Results for Different Types of Nonequal VCPC

Proposition 2: If the eigenvalues of H are all real. Then,
system (1) has the DCR (3), if b > b0 and k is a
function of b

k = max
j=1,2,...,n−1

{
r0

ũj
(ujb− r0)

(
1+ v2

j b2

(ujb− 2r0)2

)}
. (9)

Proof: Refer to Proof of Proposition 2 in Appendix C.
Definition 3: Denote 	 as the index set such that

uj = umin, ∀j ∈ 	.

Denote 	 = {1, 2, . . . , n− 1} when u1 = u2 = · · · = un−1.

Corollary 2: Trajectory (9) as the function of b and k has
the following properties:

1) For b→ b0, by definition in (7), then:
a) if there is one vj �= 0 with j ∈ 	, then k→∞;
b) if vj = 0 for all j ∈ 	, then

k = max
{

k̂0(b), k̃0(b)
}

<∞ (10)

where

k̂0(b) := max
j/∈	

{
r0

ũj
(ujb− r0)

(
1+ v2

j b2

(ujb− 2r0)2

)}

k̃0(b) := max
j∈	

{
r0

ũj
(ujb− r0)

}
= max

j∈	

{
r2

0

ũj

}
.

2) If b is sufficiently large, then

k ≈ max
j=1,2,...,n−1

{
r0

ũj
(ujb− r0)

(
1+ v2

j

u2
j

)}

which is approximately a linear function of b.
Proposition 3 in the following is the result on whether b =

b0 is the infimum to ensure (3).
Proposition 3: Assume that the eigenvalues of H are all

real. Then, for b = b0:
1) if the eigenvalues of L are all complex (except λn = 0),

then the system will never have the DCR (3) for any
k > 0;

2) if vj �= 0 for one j ∈ 	, then the system will never have
the DCR (3) for any k > 0;

3) for 	 �= {1, 2, . . . , n − 1}, a necessary and sufficient
condition for the DCR (3) is that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vj = 0, j ∈ 	

k ≥ max
j/∈	

{
r0
ũj

(ujb0 − r0)

(
1+ v2

j b2
0

(ujb0−2r0)
2

)}

k ≥ max
j∈	

{
r2
0

ũj

} (11)

4) for 	 = {1, 2, . . . , n − 1}, a necessary and sufficient
condition for the DCR (3) is that

⎧
⎨

⎩

vj = 0, j = 1, 2, . . . , n− 1

k ≥ max
j=1,2,...,n−1

{
r2
0

ũj

}
.

(12)

Proof: Refer to Proof of Proposition 3 in
Appendix C.

Remark 6: In Propositions 2 and 3, the values of b and k
for the DCR (3) constitute a piece-wise continuous trajectory.
For (9), we have:

1) if one vj �= 0 with j ∈ 	, then k→∞ (Corollary 2) as
b→ b0, which is consistent with the nonexistence of k
in items 1) and 2) in Proposition 3;

2) if vj = 0 for all j ∈ 	, then (9) [refer to (10)], with
b → b0, is the lower bound of k in items 3) and 4) in
Proposition 3.

Remark 7: Note that ujb0 > 2r0 for j /∈ 	.
Corollary 3: If the eigenvalues of L and H are all real.

Then, to ensure the DCR (3), a necessary and sufficient
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condition on the gains is that

b > b0, k = max
j=1,2,...,n−1

{
r0

ũj

(
ujb− r0

)}

b = b0, k ≥ max
j=1,2,...,n−1

{
r0

ũj

(
ujb0 − r0

)}
. (13)

Proof: For b = b0, inequalities (11) reduce to be
⎧
⎪⎨

⎪⎩

k ≥ max
j/∈	

{
r0
ũj

(ujb0 − r0)
}

k ≥ max
j∈	

{
r2
0

ũj

}

which are equivalent to (13), since

r0

ũj
(ujb0 − r0) = r2

0

ũj
, for j ∈ 	.

Condition b > b0 is derived from Proposition 2. The results
hold.

Remark 8: Trajectory of b, k for (3) is piece-wise continu-
ous. If 	 = {1, 2, . . . , n− 1}, then (13) becomes

k ≥ max
j∈	

r2
0

ũj

which is consistent with (12).

C. Patterns of the Convergence Rate Contours
for the DCR (3)

There are four types of the patterns of the convergence
rate contours of b and k for the DCR (3), which are closely
related with different types of the spectra of the two Laplacian
matrices L and H.

1) Condition: If H has complex eigenvalues.
Pattern: This type of the pattern of b and k is illustrated
in Fig. 1(a), and note that b0 may not be the infimum
of b (Remark 5).
Example: Refer to �1(b, k) = 0 in Example 1.

2) Condition: If the eigenvalues of H are all real; while L
has complex eigenvalues, and there is one vj �= 0 with
j ∈ 	.
Pattern: This type of the pattern of b and k is described
by (9), with k → ∞ as b → b0, as illustrated in
Fig. 1(b).
Example: Refer to the first part of Item 1 in Corollary 2.

3) Condition: If the eigenvalues of H are all real; while L
has complex eigenvalues, and vj = 0 for all j ∈ 	.
Pattern: This type of the pattern of b and k has two parts,
as illustrated in Fig. 1(c), which are described by (11)
[corresponding to the dotted line in Fig. 1(c)] and (9)
[corresponding to the solid line in Fig. 1(c)]; the two
lines are continuous, and b0 is the infimum of b.
Example: Refer to the second part of item 1 in
Corollary 2.

4) Condition: If the eigenvalues of L and H are all real.
Pattern: This type of the pattern of b and k is given
in Corollary 3, and illustrated in Fig. 1(d). b0 is the
infimum of b.

(a) (b)

(c) (d)

Fig. 1. Illustration of four types of patterns of b and k for ensuring the
DCR (3). The x-axis represents the gain b, with b ≥ b0; the y-axis represents
the gain k. For Fig. 1(a), b0 may not be the infimum of b. For Fig. 1(b)–(d),
b0 is the infimum of b.

VI. RESULTS FOR THE DCR PROBLEM (4)

A. General Case

Proposition 4: A necessary and sufficient condition for (4)
is that ⎧

⎪⎪⎨

⎪⎪⎩

�j(b, k) ≥ 0, j = 1, 2, . . . , n− 1
Cj(b, k) ≥ 0, j = 1, 2, . . . , n− 1
b ≥ b0
k > 0.

(14)

Proof: Refer to Proof of Proposition 4 in Appendix C.
Remark 9: Note that b0 may not be the infimum of b

in (14), since �j(b, k) ≥ 0 may have no solution for b = b0
or b→ b0.

For solutions of inequalities (14): if H has complex
eigenvalues, deriving analytic solutions for b, k is complex;
numerical solutions provide practical alternatives (similar to
[1, Algorithm 1]). If the eigenvalues of H are all real, ana-
lytic solutions can be derived in an elegant way, which refers
to the following results.

Example 1: For system (1) given in [1, Example 2], i.e.,
n = 4

L =

⎡

⎢⎢⎣

0 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

⎤

⎥⎥⎦, H =

⎡

⎢⎢⎣

1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1

⎤

⎥⎥⎦.

To determine gains b and k to ensure the DCR (4) with r0 = 1.
Here gj(b) = −b3+5b2−8b+4, j = 1, 2, 3. fj(b) = b2−4b+4,
and j = 1, 2. f3(b) = 2b2 − 8b+ 8. Thus, b ≥ 2r0 = 2, and

�j(b, k) = −k2 +
(

b2 − 4b+ 4
)

k − b3

+ 5b2 − 8b+ 4, j = 1, 2

�3(b, k) =
(

2b2 − 8b+ 8
)

k − b3 + 5b2 − 8b+ 4

Cj(b, k) = 4k + b2 − 8b+ 8, j = 1, 2

C3(b, k) = 8k + b2 − 8b+ 8.

From [1, Algorithm 1] with the additional solutions for
�j(b, k) = 0, one gets the results of b, k (Fig. 2), which
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Fig. 2. Illustration of �j(b, k) ≥ 0. The two curves C1(b, k) = 0 and
C3(b, k) = 0 are below the curve �1(b, k) = 0.

Fig. 3. Illustration of rmax as a function of b and k, and the contour plot.

are consistent with the calculation of the contour line
(with value −1) of rmax as a function of b and k (Fig. 3).
The values of b and k for �1(b, k) = 0 ensure the DCR (3)
with r0 = 1. Refer to Example 2 for the analytical results.

Remark 10: The digraphs GL and GH are not required to
have a same directed spanning tree or to have a same root
agent in their respective directed spanning trees to ensure the
DCR (Example 1).

Proposition 5: If the eigenvalues of L are all real, then, to
ensure the DCR (4), a necessary and sufficient condition on
the gains is that b and k satisfy inequalities

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b ≥ max
j∈S

{
2r0
uj

(
1+ ṽ2

j

ũ2
j
+ |ṽj|

ũj

√
1+ ṽ2

j

ũ2
j

)}

b ≥ b0

k ∈ ⋂
j∈S

[
ζj − δj, ζj + δj

]⋂
(0,∞)

k ≥ max
j/∈S

{
r0
ũj

(ujb− r0)
}

k > max
j∈S

{
u2

j b2−2(ujb−2r0)
2

4ũj

}
, b ∈

(
b0,

4r0+2
3
2 r0

uj

)

(15)

where S is the index set of all complex eigenvalues of H
(i.e., ṽj �= 0 for j ∈ S), and

ζj := ũj(ujb− 2r0)
2

2ṽ2
j

δj := ũj(ujb− 2r0)

2ṽ2
j

√√√√(ujb− 2r0)2 − 4
ṽ2

j (ujb− r0)r0

ũ2
j

≥ 0.

Remark 11: The inequalities (15) for the DCR (4)
are derived by replacing the middle three inequalities
of (17) with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b ≥ b0
k ∈ ⋂

j∈S

[
ζj − δj, ζj + δj

]⋂
(0,∞)

k ≥ max
j/∈S

{
r0
ũj

(ujb− r0)
}
.

Note that δj ≥ 0 and ζj ≥ δj, due to the first inequality of (15).
Example 2: For Example 1, we determine the gains b, k

to ensure the DCR (4) with r0 = 1. From Proposition 5,
one has
⎧
⎪⎪⎨

⎪⎪⎩

b ≥ 4+ 2
√

2

k ∈
[

(b−2)2

2 − (b−2)
√

b2−8b+8
2 ,

(b−2)2

2 + (b−2)
√

b2−8b+8
2

]

k ≥ b−1
2 .

Note that (b − 2)2 − (b − 2)
√

b2 − 8b+ 8 − (b − 1) > 0,
one has
⎧
⎨

⎩

b ≥ 4+ 2
√

2

k ∈
[

(b−2)2

2 − (b−2)
√

b2−8b+8
2 ,

(b−2)2

2 + (b−2)
√

b2−8b+8
2

]
.

Note that the two curves

k = (b− 2)2

2
− (b− 2)

√
b2 − 8b+ 8

2

k = (b− 2)2

2
+ (b− 2)

√
b2 − 8b+ 8

2

constitute �1(b, k) = 0 in Fig. 2.
Corollary 4: If the eigenvalues of L, H are all real. From

Proposition 5, to ensure (4), a necessary and sufficient condi-
tion is

b ≥ b0, k ≥ max
j=1,2,...,n−1

{
r0

ũj

(
ujb− r0

)}
.

Example 3: Consider system (1) with n = 4 agents, and

L =

⎡

⎢⎢⎣

1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 0

⎤

⎥⎥⎦, H =

⎡

⎢⎢⎣

0 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

⎤

⎥⎥⎦.

The system always achieves consensus for any b, k > 0, since

λ(A) =
⎧
⎨

⎩
−b± b

√
1− 4k

b2

2
,
−b± b

√
1− 4k

b2

2

−b± b
√

1− 4k
b2

2
, 0, 0

⎫
⎬

⎭.

Further, to determine the gains to ensure the DCR (4) with
r0 = 1. Then, from Corollary 4, one has b ≥ 2, k ≥ b− 1.



1332 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 5, MAY 2017

Fig. 4. Illustration of �j(b, k) ≥ 0, j = 1, 2, 3, from numerical calculation.

B. Results for Equal VCPC

Corollary 5: For L = H. To ensure the DCR (4), a
necessary and sufficient condition is that: b, k satisfy inequal-
ities (14), in which

�j(b, k) := −v2
j k2 + fj(b)k + gj(b)

Cj(b, k) := 4ujk +
(

u2
j + v2

j

)
b2 − 8ujr0b+ 8r2

0

fj(b) := uj(ujb− 2r0)
2 + ujv

2
j b2

gj(b) := −r0(ujb− r0)
(
(ujb− 2r0)

2 + v2
j b2
)
.

Example 4: Determine b, k to ensure (4) with r0 = 1

L = H =

⎡

⎢⎢⎣

1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1

⎤

⎥⎥⎦.

Note that λ1 = 1 + i, λ2 = 1 − i, are complex eigenvalues,
λ3 = 2. Thus, b ≥ 2, and

�1(b, k) = �2(b, k) = −k2 +
(

2b2 − 4b+ 4
)

k

− 2b3 + 6b2 − 8b+ 4

�3(b, k) =
(

b2 − 4b+ 4
)

k − b3 + 5b2 − 8b+ 4

C1(b, k) = C2(b, k) = 4k + 2b2 − 8b+ 8

C3(b, k) = 8k + 4b2 − 16b+ 8.

From [1, Algorithm 1] with additional solutions of
�j(b, k) = 0, one gets the results of b and k as in Fig. 4,
which is consistent with the calculation of the contour line
(with value −1) of rmax (the illustration omitted here).

VII. CONCLUSION

In this paper, we investigate the DCR problems of cou-
pled double-integrator agents, provide further necessary and
sufficient conditions for the DCR problems, and characterize
different types of the patterns of the convergence rate contours
for the DCR, in terms of the damping and stiffness gains,
which properties are closely related to different types of the
spectra of the Laplacian matrices of the VCPC. The DCR
problems have important implications for generic cooperative
control problems, e.g., flocking, consensus, rendezvous, and
swarming.

The nonequal VCPC case is much different from the equal
VCPC case, the consensus analysis is a challenge for a general
nonequal VCPC case (refer to Section III-C).

Future work includes the DCR problems of a flocking sys-
tem with considerations of, e.g., coupling delays (refer to
Appendix A for an example), communication constraints, and
nonlinear dynamics of agents, etc. In applications, switched
topologies and noise may also exist; as such, what are the
results for the DCR problems? Other questions also remain
to be answered: the L-assumption reflects a relation between
the topologies GL and GH , so what is this relation (besides
Theorem 1)? For a general nonequal VCPC case, what are the
DCR conditions for the system if without the L-assumption?
These kinds of the problems are worth of further investigation.

APPENDIX A

For the DCR problems of flocking or consensus, the fol-
lowing is one example for the control input with coupling
delay:

ui =
∑

j∈Mi

−bwij
(
ẋi(t − τ)− ẋj(t − τ)

)

+
∑

j∈Ni

−kvij
(
xi(t − τ)− xj(t − τ)− aij

)

where τ > 0 models the coupling delay, the uniform delay,
and one can further consider nonuniform delays for the VCPC.

The nonequal VCPC case is much different from the equal
VCPC case. For example, consider four agents with the very
simple VCPC given in [4, eqs. (5) and (6)], solving the eigen-
values with respect to symbolic variables of the gains is still
difficult [4], not to mention a system of a larger number of
agents with general VCPC. Without the L-assumption, how to
solve the DCR is still a problem.

APPENDIX B

The following is some results in [1] for convenience of
reference. To ensure the DCR (2), a necessary and sufficient
condition is

⎧
⎪⎪⎨

⎪⎪⎩

�j(b, k) > 0, j = 1, 2, . . . , n− 1
Cj(b, k) > 0, j = 1, 2, . . . , n− 1
b > b0
k > 0.

(16)

If the eigenvalues of L are all real, to ensure the DCR (2), a
necessary and sufficient condition on the gains is that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b ≥ max
j∈S

{
2r0
uj

(
1+ ṽ2

j

ũ2
j
+ |ṽj|

ũj

√
1+ ṽ2

j

ũ2
j

)}

b > b0
k ∈ ⋂

j∈S

(
ζj − δj, ζj + δj

)

k > max
j/∈S

{
r0
ũj

(ujb− r0)
}

k > max
j∈S

{
u2

j b2−2(ujb−2r0)
2

4ũj

}
, b ∈

(
b0,

4r0+2
3
2 r0

uj

)
.

(17)
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APPENDIX C

A. Proof Preparation

Denote x := [
xT

1 − aT
1 , xT

2 − aT
2 , . . . , xT

n − aT
n

]T ∈ R
Nn,

where ai ∈ R
N , i = 1, 2, . . . , n, satisfy aij = ai − aj for

all i, j [4, Proposition 1]. System (1) can be written as

ẍ+ bL⊗ INẋ+ kH ⊗ INx = 0
(
ẍT , ẋT)T = A⊗ IN

(
ẋT , xT)T .

Define y := [yT
c , yT

e ]T = T1 ⊗ INx, where yc ∈ R
N , ye ∈

R
N(n−1)

ye =
[
xT

2 , xT
3 , . . . , xT

n

]T − 1⊗ x1.

The shaped-subsystem is

ÿe + bL1 ⊗ INẏe + kH1 ⊗ INye = 0 (18)

which is equivalent to system (1) in terms of formation and
stability. In (18), L1 and H1 are derived using the similarity
transformations

T1LT−1
1 =

[
0 ∗
0 L1

]
, T1HT−1

1 =
[

0 ∗
0 H1

]
(19)

where L1 and H1 are independent of γ [4] (one may use any
other Ti, i = 1, 2, . . . , n, in [4] to perform the transformation).

B. Proof

Proof of Theorem 1: Without loss of generality, assume that
the topology GL of L is the CDS topology, and the topology GH

of H is arbitrary, with arbitrary edge weights. That is, L has the
structure as described in Definition 2: L = ε1In − 1ε ∈ R

n×n,

and H is an arbitrary Laplacian matrix.
Consider the similarity transformations on L and H, we

have (19), in which L1 and H1 are independent of γ , refer
to the structure of L1 and H1 in [4]. Then, from Lemma 3,
L1 = ε1In−1.

1) For matrix H1, from Schur decomposition, there exists
a unitary matrix Ũ1 ∈ C

(n−1)×(n−1) (i.e., Ũ∗1 = Ũ−1
1 )

such that Ũ∗1H1Ũ1 = Ũ−1
1 H1Ũ1 is upper triangular

Ũ∗1H1Ũ1 = Ũ−1
1 H1Ũ1 =

⎡

⎢⎢⎢⎣

μ1 ∗ . . . ∗
0 μ2 . . . ∗
...

...
. . .

...

0 0 . . . μn−1

⎤

⎥⎥⎥⎦.

2) While for the same unitary matrix Ũ1, we have

Ũ∗1L1Ũ1 = Ũ−1
1 L1Ũ1 = ε1In−1

which is the identity matrix multiplied by the coefficient
ε1 > 0.

That is, L1 and H1 have a same unitary matrix Ũ1 in Schur
decomposition. And from the similarity transformations on the
Laplacian matrices L and H, we can conclude that the L-
assumption holds. For the Schur decompositions of L and H,
refer to the following remark.

Remark 12: From the transformation (19), we have the con-
clusion that: the L-assumption is equivalent to the condition
that there exists a unitary matrix U1 ∈ C

(n−1)×(n−1)

such that

U∗1L1U1 = U−1
1 L1U1 =

⎡

⎢⎢⎢⎣

λ1 ∗ . . . ∗
0 λ2 . . . ∗
...

...
. . .

...

0 0 . . . λn−1

⎤

⎥⎥⎥⎦

U∗1H1U1 = U−1
1 H1U1 =

⎡

⎢⎢⎢⎣

μ1 ∗ . . . ∗
0 μ2 . . . ∗
...

...
. . .

...

0 0 . . . μn−1

⎤

⎥⎥⎥⎦.

This explains why the Schur decompositions of L and H
in the L-assumption make the two zero eigenvalues λn and
μn appearing as the last diagonal entries of V1 and V2,
respectively.

Proposition A1: Denote λ2
j − (4k/b2)μj := aj + dji ∈ C,

where aj, dj ∈ R, then

aj := u2
j − v2

j −
4k

b2
ũj, dj := 2ujvj − 4k

b2
ṽj.

The real parts of the eigenvalues of A are

Re
{
�2j−1,�2j

} = −b

2
uj ± b

2
√

2
·
√

aj +
√

a2
j + d2

j

where j = 1, 2, . . . , n, no matter dj = 0 or dj �= 0.
Proof of Proposition 1: By Proposition A1, to guarantee (3),

a necessary and sufficient condition is that, the maximum
of the real parts of {�2j−1,�2j}, j = 1, 2, . . . , n − 1, is
equal to −r0

max
j=1,2,...,n−1

{
−b

2
uj + b

2
√

2

√
aj +

√
a2

j + d2
j

}
= −r0.

Equivalently, there exists a nonempty index set I(b, k) ⊂
{1, 2, . . . , n− 1}, which is a function of b, k, such that

−b

2
uj + b

2
√

2

√
aj +

√
a2

j + d2
j = −r0, for j ∈ I(b, k)

and

max
j/∈I(b,k)

{
−b

2
uj + b

2
√

2

√
aj +

√
a2

j + d2
j

}
< −r0.

And, similarly to the procedure of [1, Proof of Th. 2], the
result holds, the details are omitted here.

Proof of Proposition 2: For λ(H) ∈ R, then ṽj = 0 and
�j(b, k) = fj(b)k+gj(b), for all j, where gj(b) remains the same
in Section V, but fi(b) reduces to be fj(b) = ũj(ujb − 2r0)

2.
Thus

−gj(b)

fj(b)
=

r0(ujb− r0)
(
(ujb− 2r0)

2 + v2
j b2
)

ũj(ujb− 2r0)2

= r0

ũj
(ujb− r0)

(
1+ v2

j b2

(ujb− 2r0)2

)
.
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From Proposition 1, b ≥ b0, and considering the definition (7),
one has ujb ≥ 2r0, so ujb > r0, and thus −gj(b)/fj(b) > 0 for
all j.

1) From Proposition 1, condition �j(b, k) = 0 for j ∈
I(b, k), one has k = −gj(b)/fj(b); and thus k > 0 for
all j ∈ I(b, k). Note that Cj(b, k) ≥ 0 is equivalent to

k ≥ − (u2
j + v2

j )b
2 − 8ujr0b+ 8r2

0

4ũj
.

And note that

r0

ũj
(ujb− r0)−

⎛

⎝−
(

u2
j + v2

j

)
b2 − 8ujr0b+ 8r2

0

4ũj

⎞

⎠

= 1

4ũj

(
4r0ujb− 4r2

0 +
(

u2
j + v2

j

)
b2 − 8ujr0b+ 8r2

0

)

= 1

4ũj

(
v2

j b2 + (ujb− 2r0)
2
)

> 0.

Thus, k = −gj(b)/fj(b) implies Cj(b, k) > 0.
2) From Proposition 1, �j(b, k) > 0 for j /∈ I(b, k), then

k > −gj(b)/fj(b) and thus k > 0 for j /∈ I(b, k);
note that k > −gj(b)/fj(b) implies Cj(b, k) > 0
[1, Proof of Th. 4].

Thus, the result holds.
Proof of Proposition 3: From (7), b0 = (2r0/uj) for j ∈ 	.

For j ∈ 	, one has

fj

(
2r0

uj

)
= 0, gj

(
2r0

uj

)
= −4

v2
j

u2
j

r4
0 ≤ 0

thus, �j(b, k) ≤ 0 for j ∈ 	. Thus, for j ∈ 	, one has
�j(b, k) = 0 only when vj = 0. Items 1) and 2) are proved.

3) For 	 �= {1, 2, . . . , n− 1}. Note that

fj

(
2r0

uj

)
> 0, for j /∈ 	

and k needs to satisfy
{

k > 0, k ≥ max
j/∈	 −

gj(b0)

fj(b0)

}

to ensure �j(b0, k) ≥ 0. For j ∈ 	, vj = 0 is required to ensure
�j(b, k) = 0. And, Cj(b0, k) ≥ 0 is required for all j. Thus

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vj = 0, j ∈ 	

k ≥ max
j=1,2,...,n−1,j/∈	

{
− gj(b0)

fj(b0)

}

Cj(b0, k) ≥ 0, j = 1, 2, . . . , n− 1
k > 0.

Note that

k ≥ max
j/∈	
{−(gj(b0)/fj(b0)

)}

implies both k > 0 and Cj(b0, k) ≥ 0, for j /∈ 	 (refer to
[1, Proof of Th. 4]).

And, Cj(b0, k) ≥ 0 with j ∈ 	 and vj = 0 implies that

k ≥ max
j∈	

{
−u2

j b2
0 − 8ujr0b0 + 8r2

0

4ũj

}
= max

j∈	

{
r2

0

ũj

}

where the last equal sign holds since uj = umin and b0 =
(2r0/umin).

4) The result of 	 = {1, . . . , n− 1} follows from item 3.
Proof of Proposition 4: By Proposition A1, to guarantee (4),

a necessary and sufficient condition is that, the maximum of
the real parts of {�2j−1,�2j}, j = 1, 2, . . . , n− 1, is no large
than −r0

max
j=1,2,...,n−1

{
−b

2
uj + b

2
√

2

√
aj +

√
a2

j + d2
j

}
≤ −r0.

And, similarly to the procedure of [1, Proof of Th. 2], the
result holds, the details are omitted here for a limited space.
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