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Hierarchical Relaxed Partitioning System
for Activity Recognition

Faisal Azhar, Student Member, IEEE, and Chang-Tsun Li, Senior Member, IEEE

Abstract—A hierarchical relaxed partitioning system (HRPS)
is proposed for recognizing similar activities which has a feature
space with multiple overlaps. Two feature descriptors are built
from the human motion analysis of a 2-D stick figure to represent
cyclic and noncyclic activities. The HRPS first discerns the pure
and impure activities, i.e., with no overlaps and multiple over-
laps in the feature space, respectively, then tackles the multiple
overlaps problem of the impure activities via an innovative major-
ity voting scheme. The results show that the proposed method
robustly recognizes various activities of two different resolution
data sets, i.e., low and high (with different views). The advantage
of HRPS lies in the real-time speed, ease of implementation and
extension, and nonintensive training.

Index Terms—Activity recognition, decision tree (DT), hierar-
chical relaxed partition, model.

I. INTRODUCTION

HUMAN activity recognition is important due to poten-
tial applications in video surveillance, assisted liv-

ing, animation, etc. [1], [2]. In general, a standard activity
recognition framework consists of feature extraction, feature
selection (dimension reduction), and pattern classification.
Feature extraction can be broadly categorized into the holis-
tic (shape or optical flow) [3]–[6], local feature (descriptors
of local regions) [7]–[10], and model-based (prior model) or
model-free (no prior model) approaches. Techniques such as
principal component analysis (PCA) [11] or linear discrim-
inant analysis [12] are commonly used to select the most
prominent features. Decision tree (DT) [3] or support vector
machines (SVMs) [2] are used for efficient classification.

Recognizing similar activities in real-time speed still
remains a challenge for numerous human activity recogni-
tion methods (see Section II). The local feature and holistic
approaches are computationally expensive and require inten-
sive training while the model-based/model-free approach is
efficient but less accurate. Therefore, the robust and effi-
cient implicit body model-based approach for significant body
point (SBP) detection described in [13] is used for feature
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extraction. In this context, we extend the work in [14] to
extract the leg frequency, torso inclination, leg power, and
torso power. Also, the SBP detection method is augmented
to extract features (similar to [6]) that extract variations in the
movement of different body parts at different directions, i.e.,
up, down, right, and left, during an activity. These features are
used to create two feature descriptors.

Most researchers use off-the-shelve classifier such as SVM
and DT but with a tradeoff of performance. For example,
SVM struggles due to the lack of generalized information,
i.e., each test activity is compared with the training activ-
ity of one subject [6]. On the other hand DT imposes hard
constraint that lead to separation problems when the number
of categories increases or when categories are similar, i.e., a
lack of clear separation boundary [15]. Similar to DT, hier-
archical methods [16], [17] are also used at lower levels for
feature-wise classification. The relaxed hierarchy (RH) method
in [15] focuses on building high-level class hierarchies and
look into the problem of class-wise partitioning. To achieve
high accuracy while being fast the RH [15] uses a relaxed
constraint, i.e., postpone decisions on confusing classes, to
tackle the increased number of categories but still remains
inadequate to accurately discern similar categories. The hier-
archical strategy (HS) method in [18] uses the RH and groups
together easily confused classes to improve the classification
performance. RH and HS have only been applied to the spatial
domain. We are motivated from the work of RH and HS to per-
form class-wise partitioning for recognizing similar activities
accurately.

We propose a hierarchical relaxed partitioning sys-
tem (HRPS) (see Section III for details) that classifies and
organizes activities in a hierarchical manner according to
their type, i.e., pure activities (easily separable) and impure
activities (easily confused). Subsequently, it applies relaxed
partitioning to all the easily confused activities by postponing
the decisions on them until the last level of the hierarchy,
where they are labeled by using a novel majority voting
scheme (MVS). As opposed to a conventional multiclass clas-
sifier as in [18] that can distinguish between only two similar
activities, i.e., two classes overlapping simultaneously, the pro-
posed MVS is able to discern between three or more similar
activities, i.e., three classes overlapping concurrently. Thus,
making the HRPS more robust and suitable for identifying
activities in real world scenarios.

The major contributions of this paper are: 1) feature descrip-
tors that represent changes in figure shape characteristics
during an activity; 2) expert knowledge at the root node to

2168-2267 c© 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



AZHAR AND LI: HRPS FOR ACTIVITY RECOGNITION 785

split activities into two groups, i.e., significant and no signifi-
cant translation; and 3) HRPS with a novel MVS to efficiently
recognize similar activities.

This paper is organized as follows. Section II reviews
related methods. Sections III and IV present the foundation of
HRPS and its application to activity recognition, respectively.
Experiments are shown in Section V.

II. LITERATURE REVIEW

A. Holistic and Local Feature Approaches

Several human activity recognition methods (see [3], [7],
[8], [19]–[24]) verified on the benchmark data sets (see [25] for
data sets) struggle in correctly classifying similar activities of
the Weizmann data set. The methods in [3], [5], [6], and [10]
that are able to correctly classify similar activities of the
Weizmann data set are either computationally expensive or
require intensive training or need to learn a large set of
features. Also, these methods require tuning of parameters
with respect to the data set. Therefore, they require exten-
sive retraining for new activities. The bag of words or bag of
feature-based methods [7], [8] have high computational cost,
requires intensive training, and confuses similar activities.

B. Model-Free and Model-Based Approaches

In model-free methods no prior model is used to deter-
mine the SBPs. For example, the method in [14] creates a
one-star (a shape that is formed by connecting the center of
mass of a human silhouette contour to the extreme boundary
points) by using a local maximum on the distance curve of the
human contour to locate the SBPs which are at the extrem-
ities. It uses two motion features, i.e., leg frequencies and
torso angles, to recognize only the Walk and Run activities.
A two star method [26] extends [14] by adding the high-
est contour point as the second star. It uses a 5-D feature
descriptor with a hidden Markov model (HMM) to detect the
fence climbing activity. The method in [23] extends [26] by
using the medial axis [27] to generate the junction points from
which variable star models are constructed. It is compared
with [14] and [26] on the fence climbing activity, and evalu-
ated on the Weizmann data set. In [28], multiple cues such as
the skin color, principal and minor axes of the human body,
the relative distances between convex points, convex point cur-
vature, etc., are used to enhance the method in [14] for the
task of posture estimation. It does not provide quantitative
results, and uses a nonstandard and nonpublicly available data
set. Thus, it requires extensive further work to validate and
apply it to activity recognition. The method in [24] assumes
that SBPs are given and uses the chaotic invariant for activity
recognition on the Weizmann data set. It uses the trajectories of
SBPs to reconstruct a phase space, and applies the properties
of this phase space such as the Lyapunov exponent, correla-
tion integral and dimension, to construct a feature vector, for
activity recognition. The above-described distance curve-based
methods are sensitive to the silhouette contour, occlusion,
resolution, etc., which affects their accuracy for activity recog-
nition. The methods in [23] and [24] confuse similar activities

while only two features of the method in [14] are not sufficient
for recognizing more than two similar activities.

In model-based methods a predefine body model is use to
determine SBPs. The model-based method in [29] uses the
Poisson equation to obtain the torso, and negative minimum
curvature to locate extremities which are labeled as SBPs using
a 2-D body model. An 8-D feature descriptor from the articu-
lated model is used with the HMM to recognize six activities.
In [30], the dominant points along the convex hull of a sil-
houette contour are used with the body ratio, appearance, etc.,
to fit a predefined model. It is extended in [31] for activ-
ity recognition. These methods are evaluated on nonstandard
and publicly unavailable data sets. The method in [32] uses
the convex hull with a topological body model to identify the
SBPs. However, it is designed to be used for surveillance pur-
poses. In [13] implicit body models are used with the convex
hull of a human contour to label SBPs. It tracks the SBPs by
using a variant of the particle filter. This method works in real-
time by fitting the knowledge from the implicit body models.
It outperforms most of the cutting edge methods that use the
distance curve method. Thus, we are motivated to extend and
apply it for activity recognition.

III. FOUNDATION OF PROPOSED METHOD-HRPS

Methods like DT and random forest assume that at each
node the feature-space can be partitioned into disjoint sub-
spaces, however, as mentioned in [15] this does not hold when
there are similar classes or when there are a large number of
classes. In this case, finding a feature-space partitioning that
reflects the class-set partitioning is difficult as observed in [15].
Therefore, similar to [15] and [18] the goal of this paper is to
establish a class hierarchy and then train a classifier such as
simple binary classifier at each node of the class hierarchy to
perform efficient and accurate classification. This allows us to
define different set of rules for classifying different types of
activities. This is important as different feature sets are useful
for discerning different types of activities [33].

Let us demonstrate the concept of creating an HRPS using
a simple example with three overlapping classes (A–C) that
represent similar categories as shown in Fig. 1(a). It can be
seen from Fig. 1(a) that it is not possible to clearly distin-
guish between only two overlapping classes by using the RH
method as it assumes that only two classes overlap simultane-
ously. This is because now the overlap is among three classes
concurrently, i.e., the overlap between the two classes A and B
also contain some overlap with the third class C. Similar phe-
nomena occurs for B and C, and A and C classes. In addition,
a combined overlap occurs, i.e., A ∩ B ∩ C �= ∅. Hence, the
RH method is not capable of tackling the multiple overlaps
class separation problem.

The proposed HRPS method addresses this deficiency in the
RH method by splitting the set of classes K = A′ ∪B′ ∪C′ ∪X,
where X = XAB ∪ XBC ∪ XAC and XAB = A ∩ B − A ∩ B ∩ C,
XBC = B ∩ C − A ∩ B ∩ C, XAC = A ∩ C − A ∩ B ∩ C, and
XABC = A ∩ B ∩ C. X contains samples from two or more
overlapping classes. First, at each level of the hierarchy the
clearly separable samples of each class are partitioned into
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Fig. 1. (a) Example of three classes to illustrate multiple overlaps class
separation problem. (b)–(d) HRPS: partition nonoverlapping samples from
class A, B, and C, respectively. (e) HRPS: remaining overlapping samples of
all the three classes discerned using the MVS (see Section IV-B for details).
(f) Corresponding class hierarchy structure.

the A′ or B′ or C′ as shown in Fig. 1(b)–(d)

A′ = A − XAB − XAC − XABC (1)

B′ = B − XAB − XBC − XABC (2)

C′ = C − XAC − XBC − XABC. (3)

Next, the overlapping samples of each class as shown in
Fig. 1(e) are partitioned into A or B or C via an MVS
(see Section IV-B). The class hierarchy structure for HRPS
method is shown in Fig. 1(f). Note that at each level one class
is partitioned from the remaining group of easily confused
classes [1], [18].

IV. HRPS FOR ACTIVITY RECOGNITION

We present HRPS for the Weizmann data set [34] contain-
ing multiple similar activities such as Walk, Run, Side, Skip,
etc., that can easily confuse the activity recognition methods in
the literature. Application of HRPS to the multicamera human
action video (MuHAVi) data set [35] containing similar activ-
ities, e.g., Walk, Run, Turn, etc., is also described in order to
establish its generality, i.e., adaptability to work on a different
data set. The work flow of the proposed activity recognition
is shown in Fig. 3.

A. Feature Extraction

Distinguishing between the cyclic and noncyclic activities
is vital for activity recognition [36]. Thus, we augment our

Fig. 2. Feature extraction. (a) 2-D stick figure analysis for cyclic activities.
(b) Upper and lower body analysis based on the arm and feet movement.
(c) Process of acquiring D1 for the cyclic activities. The SBPs are labeled as
head (H), front arm (FA), back arm (BA), and feet (F).

earlier work in [13] to build two feature descriptors Di, i =
1, 2. The 2-D stick figure shown in Fig. 2(a) is used to describe

D1 = [V1 V2 V3 V4 V5] (4)

for cyclic activities, while the 2-D stick figure shown in
Fig. 2(b) is utilized to build

D2 = [V6 V7 V8 V9 V10 V11 V12 V13] (5)

for noncyclic activities. The Vi, i = 1, 2, . . . , 13 represents the
feature elements of the descriptors as explained later. In Fig. 2,
the SBPs are labeled as the head (H), front arm (FA), back arm
(BA), and feet (F). Each SBP abbreviation can be considered
as a vector which has a 2-D position, e.g., FA = (xFA, yFA),
F = (xF, yF). Here, the superscripts denote the abbreviations
of SBP.

The 2-D stick figure motion analysis method in [14] uses
two motion-based features, i.e., the leg power and torso incli-
nation angle, to discern between the Walk and Run activities.
This method is suitable for only classifying the cyclic activ-
ities with less interclass similarity, i.e., the activities are not
similar to each other. Therefore, we propose two more fea-
tures, i.e., the torso angle and torso power, to strengthen
the method in [14]. Given the global angle from contour
moments V6 = θ(t) at time t, center (xc, yc), and SBPs
from [13], we extend the method in [14] to acquire D1 which
contains four motion-based features, i.e., the leg cyclic fre-
quency (V1) and leg power (V2), the torso inclination angle
V3 = φ(t) = |90−(θ(t)3.14/180)|, and torso power V4 for the
cyclic activities. The foot point xF > xc is used for computing

θleg(t) = tan−1
(

xF − xc

yF − yc

)
. (6)

The computed torso angle V3 = φ(t) and leg angle θ(t)leg
are converted into radians. A highpass digital filter Y(ejw) is
applied to θ(t)leg

Y(ejw) = b(1) − b(2)e−jw. (7)

Here, b(1) = 1, b(2) = −0.9 as in [14]. The filtered leg angles
θ(t)leg are then autocorrelated in order to emphasize the major
cyclic components. The discrete Fourier transform (DFT) is
applied to the autocorrelated leg angles to quantify the leg
frequency V1 and magnitude expressed as leg power V2 in
decibels [14] as shown in Fig. 2(c). The proposed activity
recognition system also applies the high pass digital filter
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Fig. 3. Main components and work flow of the proposed human activity recognition.

Y(ejw) to the torso angle V3 (in radians) in order to remove
the low frequency components in contrast to [14] where this
filter is only applied to the leg angle θ(t)leg. This high pass
filter helps to remove the noise (which appears as large peaks
in the low frequency) produced by the autocorrelation pro-
cess. Next, the autocorrelation and DFT steps in Fig. 2(c) are
performed on the filtered torso angle to compute a new fea-
ture, i.e., the torso magnitude expressed as torso power V4 in
decibels. The change in direction of movement or position is
incorporated as

V5 = min
(

xt+1
c − xt

c

)
(8)

∀ t ∈ [1, N − 1], where N is the total number of frames and
min gives the minimum value. A positive and negative value of
V5, respectively, indicate whether subject moved in the same
direction or changed the direction (turn around) of movement
during an activity.

The feature descriptor D2 characterizes the upper body
(torso and arms) and lower body (legs) movements as a pro-
portion of the mean height μh at different directions during
an activity as shown in Fig. 2(b) for the noncyclic activities.
The interframe displacement (movement) of the front and back
arms are described as

V7 = max
(∣∣∣xFA

t+1 − xFA
t

∣∣∣)/μh, V8 = max
(∣∣∣yFA

t+1 − yFA
t

∣∣∣)/μh

(9)

V9 = max
(∣∣∣xBA

t+1 − xBA
t

∣∣∣)/μh, V10 = max
(∣∣∣yBA

t+1 − yBA
t

∣∣∣)/μh

(10)

∀ t ∈ 1, [N − 1], max gives the maximum value. The features
V7–V10 do not contain information with respect to the actual
positioning of the front and back arm SBPs, i.e., where the
arm displacement is being taken place. This information is
represented as

V11 = min
(

yFA
t

)
, V12 = min

(
yBA

t

)
, ∀ t ∈ [1, N] (11)

which uses the vertical position of the front and back arms to
represent their maximum height (as the minimum y location
of the front and back arms). The variation in the lower body
movement due to the leg can be represented by computing the

TABLE I
ACRONYMS FOR ACTIVITIES

maximum interframe horizontal displacement between the two
feet as

V13 = max
(∣∣xF

t+1 − xF
t

∣∣)/μh, ∀ t ∈ [1, N − 1]. (12)

B. Classification: HRPS for the Weizmann Data Set

The Weizmann data set contain ten activities, i.e., Walk (α1),
Run (α2), Skip (α3), Side (α4), Jump (α5), Jump-in-Place-on-
Two-Legs or Pause Jump (β7), Bend (β8), One Hand Wave
(β9), Two Hand Wave (β10), and Jack (β11) (see Table I).
In [37], a binary DT splits the activities into still and moving
categories at the root node in order to obtain better classifica-
tion. Therefore, motivated by Arbab-Zavar et al. [37], we add
an expert knowledge at the root node level 1 to automatically
split the above-mentioned ten activities in two groups, i.e.,
significant translation (α) and no significant translation (β) by
using

α = w1Iw > xc or xc > w2Iw

β = w1Iw < xc or xc < w2Iw
(13)

as shown in level 2 of Fig. 4. Iw is the frame width and Ih is
the frame height. The weights w1 and w2 have been empiri-
cally determined as 0.25 and 0.75, respectively. These weights
allow us to define a range that is used to determine whether
the subject’s initial position xc is within or outside this range



788 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 3, MARCH 2017

Fig. 4. HRPS for the Weizmann data set. �i, i = 1, 2, . . . , 10 are the decision
rules, and Xα and Xβ are the unassigned impure cyclic and noncyclic activities,
respectively, with significant multiple overlaps.

by using (13). When the subject’s initial position is outside
this range the subject is likely to perform an activity with
significant movement/translation across the frame, otherwise
the subject might perform an activity with no significant trans-
lation. Thus, based on (13) most cyclic activities, i.e., Walk
(α1), Run (α2), Skip (α3), Side (α4), and Jump (α5), which
have significant translation of the subject and repetitive nature
are grouped together under α. The cyclicity of activities with
significant translation is captured by using (6) to compute the
leg cyclic frequency (V1) as explained in Section IV-A. The
activities, i.e., the Pause Jump (β7), Bend (β8), One Hand
Wave (β9), Two Hand Wave (β10), and Jack (β11), which have
no significant translation of the subject are grouped under β.

An HRPS with eight levels is created with decision rules
�i, i = 1, 2, . . . , 10 as shown in Fig. 4. The decision rules �i,
i = 1, 2, . . . , 5 for cyclic activities are learned by using algo-
rithm cyclic activity learning algorithm (CAL) on the training
data set that contains the activities performed by eight subjects.
The last subject is used as the testing data set in a leave-one-
out cross validation approach to determine the performance
of the HRPS for cyclic activities. Algorithm CAL postpones
decisions on those samples of an activity that are closer to the
samples of all the remaining activities by updating the decision
rules �i, i = 1, 2, . . . , 5 according to variable adjustment κ .
In [13], SBPs were accurately detected by using implicit
body models (IBMs) that are based on the human kinesiol-
ogy and anthropometric studies, and observed human body
characteristics. This inspired us to define decision rules �i,
i = 6, 8, . . . , 10 that are fixed based on the human kinesiology
(torso flexion or extension V6) [38] and anthropometric stud-
ies (upper body motion V7–V10 and leg motion V13) [39], and
individual arm location V11 and V12), observed human body
characteristics and experimental cues for noncyclic activities.
The Pause Jump (β7) is a cyclic activity with no significant
translation but has repetitive nature. Thus, it is first separated
using (14) from the noncyclic activities, i.e., Bend (β8), One
Hand Wave (β9), Two Hand Wave (β10), and Jack (β11).
This knowledge will assure an increase in the accuracy and
reliability of the activity classification

�6 =
{

β7 if |90 − V6| < 9
�7 Otherwise.

(14)

Algorithm 1 Cyclic Activity Learning Algorithm (D1)

Input: Training sequences S1, . . . , SM

Corresponding labels y1, . . . , yM

Feature descriptor D1 = [V1 V2 V3 V4 V5]
Output: Decision rules �i, i = 1, 2, . . . , 5

1- For each activity, determine the mean μi and standard
deviation σi of feature elements Vi, i = 1, . . . , 5 from K
training subjects/samples as

μi = ∑K
k=1 Vk

i /K , σi =
√

1/K
∑K

k=1(V
k
i − μi)2.

2- Learn decision rules as one standard deviation on either
side of the mean

�i = μi − σi < Vi < μi + σi, i = 1, 2, . . . , 5.

3- Update decision rules by using a variable adjustment κ

to separate clearly separable samples, i.e., pure samples, of an
activity from the samples of all the remaining activities

�i = μi − σi + κ < Vi < μi + σi + κ, i = 1, 2, . . . , 5

4- Accumulate impure samples of an activity that are closer
to the samples of all the remaining activities in Xα .

A full flexion of the vertebra in the Bend (β8) activity causes
a large increase in the torso angle [38]. Based on the experi-
mental observation in Section V-A most training subjects have
a torso angle variation greater than 9 degrees, thus

�7 =
{

β8 if |90 − (V6180/3.14)| > 9
�8 Otherwise.

(15)

The Jack (β11) activity which involves a large upper body and
lower body movement is determined based on large arm and
feet displacement by using

�8 =
⎧⎨
⎩

β11 if V7 or V8 > 15/μh and V9 or V10 > 15/μh

and V13 > 20/μh

�9 Otherwise.
(16)

where μh = 68 pixels for the Weizmann data set. The human
head is one-eighth the human height, i.e., 0.125. Hence, a 15
pixel movement equates to 15/68 = 0.22 that is almost twice
of the height of the human head.

The individual arm motion in the Two Hand Wave (β10) and
One Hand Wave (β9) activities is discerned using the location
information. In the Two Hand Wave (β10) activity there will
be significant movement of both arms while in the One Hand
Wave (β9) activity there will be significant movement of only
one arm. Therefore, the Two Hand Wave (β10) and One Hand
Wave (β9) activities are

�9 =
⎧⎨
⎩

β10 if V13 < 20/μh and V8 ≥ 5/μh and
V10 ≥ 5/μh and V11 ≤ 55 and V12 < 50

�10 Otherwise
(17)

�10 =
⎧⎨
⎩

β9 if V13 < 20/μh and V8 or V10 ≤ 8/μh

and V11 ≤ 55 and V12 > 50
Xβ Otherwise.

(18)
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Fig. 5. Proposed MVS for the unassigned impure activities Xα and Xβ using
the mean D̄i, i = 1, 2.

1) Majority Voting Scheme: The justification for using the
proposed MVS is based on the fact that its design and accumu-
lated voting criteria is better suited to recognize three or more
similar activities, i.e., three classes overlapping simultaneously
(see Section III for details). Also, the current state-of-the-art
methods, i.e., RH and HS (using the conventional multi-
class classifier) can distinguish between only two similar
categories/activities.

The HRPS postpones decisions on those samples of an
activity that are closer to samples of all the remaining activi-
ties, so that they trickle to the bottom where they are captured
at the second last level (see Fig. 4). These unassigned activi-
ties are supplied to a novel MVS for classification at the last
level of the HRPS. The key idea of this scheme is to accumu-
late votes based on the rank, assigned weight and frequency
(mode) value in order to deduce more accurate decisions for
the unassigned activities in Xα and Xβ (see Fig. 4).

As shown in Fig. 5, given the mean feature descrip-
tors, i.e., D̄1 = [V̄1 V̄2 V̄3 V̄4 V̄5] and D̄2 =
[V̄5 V̄6 V̄7 V̄8 V̄9 V̄10 V̄11 V̄12], of the known activities of the
training data set, the goal is to label an unknown impure activ-
ity (which contain significant overlaps in the feature space) by
extracting the feature descriptors, i.e., D1 = [V1 V2 V3 V4 V5]
and D2 = [V6 V7 V8 V9 V10 V11 V12 V13], in order to
calculate the rank, weight, and mode as shown in Fig. 5.
D1 and D2 are used for cyclic and noncyclic activities,
respectively. V1–V13 represent each feature element of the

feature descriptors. The label for the unknown impure activity
is determined as follows.

1) Step 1: Compare each feature element of the feature
descriptor, i.e., D1 or D2, of one unknown impure activ-
ity with the respective mean feature elements of the
feature descriptor, i.e., D̄1 or D̄2, for each of the known
activities in order to enumerate three closest known
activities per mean feature element.

2) Step 2: Assign a score (rank) ν = 3, 2, 1 to the three
activities enumerated in step 1 based on their closeness
to each of the mean feature elements of D̄1 or D̄2. Next,
arrange them in the descending order of their ranks.

3) Step 3: Allocate a weight ω = 3, 2, 1 to the three ranked
activities in step 2 based on their strength of closeness
to the mean feature elements of D̄1 or D̄2.

4) Step 4: Find the three known activities that occur most
frequently (i.e., mode � ) per mean feature element of
D̄1 or D̄2.

5) Step 5: Calculate the final score to find the label of
the unknown activity. The known activity of the train-
ing data set whose rank, weight, and mode yield the
maximum score with respect to the unknown activity
is assigned as the label for the unknown activity, i.e.,
Label = max(� +ν +ω). This metric has been selected
based on empirical analysis on the training data set to
obtain an optimal decision.

Fig. 5 also shows how the label for an unknown impure
activity, e.g., Walk, is determined using the MVS. According
to step 1, each feature element of unknown activity is com-
pared with the mean feature elements to enumerate the three
closest known activities as Side, Jump, and Walk. In step 2,
their rank value is computed with respect to their closeness per
mean feature element. In step 3, the weights associated to each
activity is found to represent the strength of closeness of these
activities to the unknown activity. In step 4, the known activ-
ities that occur most frequently are counted per mean feature
element. In step 5, the final scores for each known activity is
calculated as an accumulation of the rank, weight and mode
values. The known activity with the maximum score is the
correct label for the unknown activity.

C. Classification: HRPS for the MuHAVi Data Set

The generality of the proposed HRPS method is further
validated by applying it with the same feature descrip-
tors Di, i = 1, 2 and expert knowledge on the MuHAVi
dataset [35]. The MuHAVi data set contains eight activi-
ties, i.e., Walk (α1), Run (α2), Turn (α6), Standup (β12),
Collapse (β13), Kick (β14), Punch (β15), and Guard-to-
Kick or Guard-to-Punch (β16/β17) (see Table I). As in
Section IV-B the root node is split into α and β activities by
using (13). An HRPS with seven levels is created with decision
rules �i, i = 11, . . . , 19 as shown in Fig. 6. Algorithm CAL is
used on the seven training samples of the MuHAVi data set to
learn the decision rules �i, i = 11, 12, 13 for the Walk (α1),
Run (α2), and Turn (α6) cyclic activities, respectively. The last
sample is used as the testing data in a leave-one-out procedure
to determine the performance of the HRPS.
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Fig. 6. HRPS for the MuHAVi data set. �i, i = 11, 12, . . . , 19 are the
decision rules, and Xα and Xβ are the unassigned impure cyclic and noncyclic
activities, respectively, with significant multiple overlaps.

Similar to Section IV-B, we define decision rules �i,
i = 14, . . . , 19 that are fixed based on the human kinesi-
ology [38], anthropometry [39], and body characteristics for
noncyclic activities. Let the reference global angle V6 = θ(t)
in Stand posture be 90◦. Then, based on biomechanical anal-
ysis [40] of human spine the maximum flexion of torso is
60◦, i.e., (90 − 60 = 30 or 90 + 60 = 150), which causes a
significant change in posture. Thus

�14 =
{

�15 if 30 ≥ V6 ≥ 150
�17 Otherwise

(19)

is used to determine whether a transition occurred ∀t ∈ [1, N]
frames of the activity video. The transition �15 includes
Standup (β12) and Collapse (β13) activities which con-
tain significant change in posture while the nontransition
�16 contain Kick (β14), Punch (β15), and Guard-to-Kick
or Guard-to-Punch (β16/β17) which do not have significant
change in posture. The decision rules for the Standup (β12)
and Collapse (β13), i.e., �15 and �16, respectively, are
defined as

�15 =
⎧⎨
⎩

β12 if 30 ≥ V6 ≥ 150, at t = 1
and 65 ≤ V6 ≤ 125,∀ t ∈ 2, N

�16 Otherwise
(20)

�16 =
⎧⎨
⎩

β13 if 65 ≤ V6 ≤ 125, at t = 1
and 30 ≥ V6 ≥ 150,∀ t ∈ 2, N

Xβ Otherwise.
(21)

The range 125 − 65 = 60◦ [40] is selected as it corresponds
to the flexion and extension range of the human body while
maintaining a somewhat Stand posture. The decision rules �17
to �19 are defined based on the empirical analysis of the
body characteristics in [13]. Hence, for the Kick (β14) and
Punch (β15) activities

�17 =
{

β14 if 2 ≤ 90 − V6 ≤ 15
�18 Otherwise

(22)

�18 =
{

β15 if 90 − V6 > 15
�19 Otherwise.

(23)

Note that in Punch (β15), the arm moves across the body in
a diagonal manner and as a result the angle of the body from
the vertical is quite large. The Guard-to-Punch and Guard-to-
Kick are considered as one class because both primarily have
a guard activity with minimal movement of the arms and legs.
In Guard-to-Kick or Guard-to-Punch (β16/β17), the human

remains in the Stand posture with the least angle of the body
from the vertical. Hence

�19 =
{

β16/β17 if 90 − V6 < 2
Xβ Otherwise.

(24)

The unassigned impure activities Xα and Xβ are given a label
by using the MVS (see Section IV-B).

V. EXPERIMENTAL RESULTS

We have used two standard publically available data sets,
i.e., Weizmann and MuHAVi, with a standard leave-one-out
cross validation method to ensure a correct comparative study,
i.e., with same environment and data set. The Weizmann data
set [34] contains low resolution videos 180 × 144, imperfect
silhouettes and ten routine activities performed by nine subject.
In contrast, the MuHAVi data set [35] contains high resolution
videos 720 × 576, perfect silhouettes and nine routine and
nonroutine activities of two actors with two samples with two
different views (cameras 3 and 4), i.e., in total eight samples,
per activity. The activities and their acronyms are shown in
Table I.

The main challenges of the Weizmann data set are as fol-
lows: 1) low resolution videos make it challenging to detect
body parts; 2) rapid limb movements make it difficult to track
body parts in self occlusion; and 3) very similar activities are
difficult to recognize. The main challenges of the MuHAVi
data set are as follows: 1) rapid change of posture including
mild-to-severe occlusion makes it difficult to detect and track
body parts and 2) similar activities and activities with similar
postural changes are difficult to recognize. In addition, both
the data sets contain background illumination variation and
subjects of different height and built. Therefore, the proposed
HRPS method has been verified on two extremely challenging
data sets.

A. Feature Descriptors Evaluation

The 3-D scatter plots of the selected features are shown
in Figs. 7 and 8 to visualize the distribution of the activities
of the input data set. It can be seen from Fig. 7(a) that the
Walk activity has the least leg frequency (most blue circles
are between 2–3 Hz) and the Run activity has the maximum
leg frequency (green pentagons lie between 4–6 Hz onward).
Similarly, it can be seen in Fig. 7(b) that the torso power
of the Walk activity is much less than the remaining cyclic
activities. In Fig. 7(c) it can be seen that the torso angle of
most of the Run (green pentagons), Jump (purple diamonds),
and Skip (light blue square) activities is greater than the Walk
(blue circles) and Side (red stars) activities. It can be observed
from Fig. 7(c) that the Walk activity has the least torso angle
(blue circles between 0–0.05 radian) while the torso angle for
the Side (red stars) activity is concentrated between 0.05–0.1
radian.

Fig. 8(a) shows the 3-D scatter plots of the selected fea-
tures for the Bend, Jack, One Hand Wave, and Two Hand
Wave activities of the Weizmann data set. It can be seen that
the Jack activity has the maximum displacement of the feet
as a proportion of the mean height of the subject. Also, it
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Fig. 7. 3-D scatter plots of the selected features that show the distribution of the cyclic activities for the input Weizmann data set. (a) Leg power, leg
frequency, and torso angle, (b) Leg power, leg frequency, and torso power. (c) Leg power, torso angle and torso power.

Fig. 8. 3-D scatter plots of the selected features that show the distribution of the activities for the input Weizmann and MuHAVi data sets. (a) Front and
back arm position, and feet displacement. (b) Leg power, leg frequency and torso power.

can be seen that in the Two Hand Wave (light blue square)
activity both front and back arm have minimum position in
pixels, and is well separate from the One Hand Wave (red star)
activity. Fig. 8(b) shows the 3-D scatter plots of a selected
feature for the Guard-to-Punch or Guard-to-Kick, Kick, and
Punch activities of the MuHAVi data set. It can be seen that
the Guard-to-Punch or Guard-to-Kick has the least variation
in the angle of the body from the vertical and the Punch
has the maximum angle of the body from the vertical. The
angle of the body from the vertical for the Kick activity lies
in between the Guard-to-Punch or Guard-to-Kick and Punch
activities.

In Fig. 9, we illustrate the ability of some of the features
from Di, i = 1, 2 to discern various human activities of the
Weizmann and MuHAVi data sets. The error bars show 95%
confidence intervals on selected features with two standard
deviations as an error metric. Although the leg frequency, i.e.,
V1, of the Walk (α1) and Run (α2) activities is dissimilar based
on the speed of the leg movement, anomalies like some sub-
jects walking faster causes misclassification. However, it can
be seen from Fig. 9(a) that the torso angle V3 = φ(t) pro-
vides a good separation to discern the Walk (α1) and Run (α2)
activities. Similarly, the newly introduced torso power feature
V4 provides a reasonable distinction between the Side (α4)
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Fig. 9. Significance of the extracted features for discerning activities. Error bars show 95% confidence intervals on selected features with two standard
deviations as an error metric. (a)–(e) Weizmann data set. (f) MuHAVi data set.

and Pause Jump (β7) activities as shown in Fig. 9(b). In
Fig. 9(c), the global angle V6 = θ(t) provides clear separation
between the Pause Jump (β7) and Bend (β8) activities while in
Fig. 9(d) the torso angle V3 = φ(t) provides sufficient discern-
ing ability between the Bend (β8) and Jack (β11) activities.
It can be observed from Fig. 9(e) that the distance between
the legs, i.e., V13, gives a very good separation among the
Jack (β11), One Hand Wave (β9), and Two Hand Wave (β10)
activities. Finally, in Fig. 9(f) the global angle V6 = θ(t = 1)

easily discern the Standup (β12) and Collapse (β12 = 3)
activities. Thus, the Di, i = 1, 2 acquires meaningful informa-
tion. However, there is a slight overlap in the confidence inter-
vals of some of the features, e.g., Fig. 9(a), (b), and (d). This
illustrate the importance of using HRPS to postpone decisions
on such samples that lie closer to the samples of another activ-
ity. Also, for these samples the MVS is better suited because it
takes into account multiple criteria based on the average values
of all the feature elements obtained from the training data set
to assign a label to an unknown activity. As stated in [6] the
average features provide more generalized information about
the movement pattern of the body during an activity.

B. Classification Evaluation

The confusion tables for the HRPS method on
the Weizmann and MuHAVi data set are shown in
Fig. 10(a) and (b), respectively. We obtained a mean
classification accuracy of 96.7% for ten activities of the
Weizmann data set (see Table II and details below for
significance in comparison to other methods). This shows that
our method robustly recognizes activities that have significant
multiple overlaps in the feature space. In particular, our
method recognizes four activities, i.e., Run (α2), Side (α4),

Jump (α5), and Pause Jump (β13), out of the six cyclic activ-
ities with a mean classification accuracy of 100%. Thus, our
method robustly discerns similar cyclic activities. It obtains a
mean classification accuracy of 94.5% for all the six cyclic
activities, i.e., Walk (α1), Run (α2), Side (α4), Jump (α5),
Skip (α3), and Pause Jump (β13). The decomposition of
the Walk (α1) into the Run (α2) and Jump (α5) activities is
reasonable due to similar motion. Also, the Skip (α3) and
Jump (α5) activities are similar in the way the subject bounces
across the video. The noncyclic activities, i.e., Bend (β14),
Jack (β11), Two Hand Wave (β10) and One Hand Wave (β15)
are robustly classified with a mean classification accuracy
of 100%. This proves that the decision rules based on human
kinesiology and body characteristics work well. We obtained
a mean classification accuracy of 100% for eight activities
of the MuHAVi data set as shown in Fig. 10(b). The results
demonstrate that the proposed HRPS method can robustly
distinguish various activities in two different (low and high)
resolution data sets. It also shows that our method performs
well under different views, i.e., cameras 3 and 4, for the
MuHAVi data set. A high accuracy on the Standup (β12),
Collapse (β13), Kick (β14), Punch (β15), and Guard-to-Kick
or Guard-to-Punch (β16/β17) activities demonstrates the
importance of decision rules based on human kinesiology and
body characteristics.

Fig. 11(a) shows the HRPS’s classification performance
with respect to the training subjects of the Weizmann data set.
It can be seen that the classification accuracy of the proposed
method is about 70% with only one training subject. However,
as the number of training subjects increase the classification
accuracy also improves. The best performance is achieved
with eight training subjects. The classification performance
with respect to the training samples of the MuHAVi data set
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Fig. 10. Confusion table (see Table I for α and β). (a) Weizmann data set.
(b) MuHAVi data set.

Fig. 11. Classification performance. (a) Weizmann data set. (b) MuHAVi
data set.

is shown in Fig. 11(b). It can be seen that the classification
performance increases steadily till it reaches 100% with seven
samples used for training.

Table II compares the HRPS with relevant state-of-the-
art methods (see Section II) for activity recognition on the
Weizmann data set. It shows that our method outperforms
the methods in [7], [8], [23], and [24] in terms of accuracy.
Ali et al. [24] only deal with nine activities. The method
in [5]–[8] and [10] are not real-time since they require inten-
sive training for learning the vocabulary. Jiang et al. [3]
required both shape and motion features to achieve 100% accu-
racy. On a similar basis, i.e., using motion features, they obtain

TABLE II
COMPARISON ON THE WEIZMANN DATA SET

TABLE III
COMPARISON ON THE MUHAVI DATA SET

88.89% accuracy while our method obtains 96.7%. Their
method is reported to be fast but requires intensive training and
uses optical flow which is usually computationally expensive.
Hence, these methods are not suitable for real-world appli-
cations. In contrast, our method operates in real-time, avoid
intensive training, and it is simple to implement and extend for
new activity categories (i.e., for each new category new fea-
tures can be added to the HRPS). This makes it more suitable
for real world applications. The model-free method in [14]
recognizes only two activities, i.e., Walk and Run with 97%
accuracy. On similar activities, i.e., Walk (α1), Run (α2), and
Jump (α5), the method in [29] has mean classification accuracy
of 82.4% while we obtain 92.7% mean classification accuracy.
Although, the method in [41] can work in real-time, it achieves
only 90.32% on the Weizmann data set.

In Table III, our HRPS method is compared with recent
methods on the MuHAVi data set. Our method achieved better
recognition rate than most of the methods and works in real-
time with no intensive training. On both data sets our method
is comparable to the method in [22].

In order to avoid blaming heavy training for high accuracy
of the HRPS one can either perform another experiment with a
new data set or alternatively use the HRPS trained on one data
set to recognize same activities present in the other data set.
The alternative approach might be more appropriate because
a heavily trained HRPS on one data set will not work well for
another data set due to overfitting. If the HRPS works well then
one cannot blame heavy training for its high accuracy. The
alternative approach also allows to verify whether the decision
rules learned on one data set are generic enough to recognize
same activities of another data set. Table IV shows result of
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TABLE IV
RECOGNITION ACCURACY OF HRPS ON SAME ACTIVITIES

WITH DIFFERENT TRAINING DATA SET

recognizing the Walk and Run activities of the MuHAVi data
set using the HRPS trained on the Weizmann data set, and vice
versa. The 100% recognition accuracy shows that the proposed
HRPS is generic and heavy training cannot be blamed for its
high accuracy.

C. Computational Complexity

The feature extraction of our HRPS method computes
convex hull using the Sklanskys algorithm which has a com-
putational complexity of O(N), where N in the number of
convex points. The contour moments algorithm is based on
the Green theorem which has a computational complexity of
O(L), where L is the length of the boundary of the object.
The particle filter with N = 100 particles has an approximate
complexity of O(N). DFT has O(N log N) complexity.

The optical flow Lucas–Kanade method has a time com-
plexity of O(n2N + n3), where n is the number of warp
parameters and N is the number of pixels. k-mean clustering
is O(nkdi) complex, where n is the number of d-dimensional
vectors, k the number of clusters and i the number of itera-
tions needed until convergence. The computational complexity
of the expectation maximization algorithm for Gaussian mix-
ture models (GMMs) is O(iND2), where i is the number of
iterations performed, N is the number of samples, and D is
the dimensionality of the state. Time complexity of PCA is
O(p2n + p3), where n is the number of data points and each
point is represented with p features. Locality preserving pro-
jection (LPP) algorithm is O((n + k)m2 + (n + d)n2), where n
is dimensions, m is data points, d is dimension of subspace,
and k is the number of nearest neighbor. For k nearest neigh-
bor search, the complexity is O((n + k)m2). The complexity
of singular value decomposition (SVD) is O(n3). A standard
DT has a time complexity of O(MN2), where M is the size
of the training data and N is the number of attributes. Time
complexity of SVM is O(n3), where n is number of pattern.
HMM has a time complexity of O(NTT), where N is state
paths and T is the length of paths.

The method in [3] and [5]–[7] uses optical flow method.
The method in [3] and [5], respectively, use k-means and
GMMs for clustering. Also, the method in [43] uses k-means
clustering. The method in [5] and [7] uses PCA for dimension
reduction. The method in [10] uses LPP. The method in [3]
uses DT, the method in [22] uses SVM or k-nearest neigh-
bor, and the method in [23] and [44] uses HMM for activity
recognition.

On Intel Core i7 2.93 GHz with 4 GB RAM and Windows 7,
the feature extraction in OpenCV 2.4.6 takes 0.031 and 0.071 s

per image frame on the Weizmann and MuHAVi data sets,
respectively. The classification in MATLAB takes 0.183 s
for all activities. Alcantara et al.’s [22] method takes 4.85
and 2859.29 s for feature extraction on the Weizmann and
MuHAVi data sets, respectively. This demonstrates that the
HRPS method works in real-time.

VI. CONCLUSION

In light of the inadequacy of existing activity recognition
methods, we proposed an HRPS to efficiently and robustly
recognize activities. Our method first discerns the pure activ-
ities from the impure activities, and then tackles the multiple
overlaps problem of the impure activities via an innovative
MVS. The results proved that our method not only accurately
discerns similar activities but also obtains real-time recogni-
tion on two (low and high) resolution data sets, i.e., Weizmann
and MuHAVi, respectively. It also performs well under two
different views of the MuHAVi data set. These attributes
make our method more suitable for real-world applications
in comparison to the state-of-the-art methods.
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