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Evolutionary Dynamic Multiobjective Optimization:
Benchmarks and Algorithm Comparisons

Shouyong Jiang and Shengxiang Yang, Senior Member, IEEE

Abstract—Dynamic multiobjective optimization (DMO) has
received growing research interest in recent years since many
real-world optimization problems appear to not only have mul-
tiple objectives that conflict with each other but also change
over time. The time-varying characteristics of these DMO prob-
lems (DMOPs) pose new challenges to evolutionary algorithms.
Considering the importance of a representative and diverse set
of benchmark functions for DMO, in this paper, we propose
a new benchmark generator that is able to tune a number of
challenging characteristics, including mixed Pareto-optimal front
(convexity–concavity), nonmonotonic and time-varying variable-
linkages, mixed types of changes, and randomness in type change,
which have rarely or not been considered or tested in the litera-
ture. A test suite of ten instances with different dynamic features
is produced from the generator in this paper. Additionally, a few
new performance measures are proposed to evaluate algorithms
for DMOPs with different characteristics. Six representative
multiobjective evolutionary algorithms from the literature are
investigated based on the proposed DMO test suite and per-
formance measures. The experimental results facilitate a better
understanding of strengths and weaknesses of these compared
algorithms for DMOPs.

Index Terms—Benchmark, dynamic multiobjective
optimization (DMO), evolutionary algorithm, performance
metric.

I. INTRODUCTION

MANY real-world multiobjective optimization problems
(MOPs) appear to change over time in a dynamic envi-

ronment, such as planning [47], scheduling [7], design [40],
and control [55]. Dynamic MOPs (DMOPs) have gained
increasing attention in recent years. Due to the dynamics of
these problems, the optimization of DMOPs is much more
challenging than that of static MOPs as it has to deal with
not only the conflicting objectives, but also the changes in
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objective functions or constraints. In other words, dynamic
multiobjective optimization algorithms (DMOAs) must be
capable of tracking the changing Pareto-optimal front (POF)
to provide a diverse set of solutions that approximates the new
POF over time.

Artificial benchmark problems have played a fundamental
role in determining whether a DMOA has the ability to
solve DMOPs. Furthermore, benchmark problems contribute
to analyzing and identifying the strengths and weaknesses
of a DMOA in order to modify it and improve its per-
formance. However, one of the main issues in the field
of dynamic multiobjective optimization (DMO) is that
there are no standard test functions, and a few publica-
tions [10], [17], [18], [37], [49] pointed out that there should
be more investigation of DMOPs to promote the research
of DMO. Such issue is, however, yet to gain as much
attention as the fields of static MOPs [28], [35], [39]
and dynamic single-objective optimization prob-
lems [2], [5], [6], [15], [25], [32], [33], [38], [43], [45], [49].

The first research on constructing DMOPs was conducted
by Jin and Sendhoff [25], who proposed to aggregate different
objectives of the existing static MOPs and vary the weights
dynamically. Later, Farina et al. [10] made a clear classifica-
tion of DMOPs according to the possible effects of environ-
mental changes on the POF and the Pareto-optimal set (POS),
and they also considered several dynamic scenarios that may
appear in dynamic environments. Following those scenarios,
they further suggested a test suite of five FDA test functions
based on the existing DTLZ [9] and ZDT [50] test suites of
static MOPs. Since then, various dynamic benchmarks have
sprung up in [1], [3], [4], [14], [20], [23], and [37].

Recalling those existing DMOPs, we can observe that
most of commonly used DMOPs are adapted from the
DTLZ [9] and ZDT [50] test suites. In other words, they
are the variants of the FDA [10] test problems. As a con-
sequence, they share more or less same or similar properties
(e.g., same objective functions). Furthermore, few have taken
into account the following characteristics: 1) mixed POFs
in terms of convexity and concavity that change over time;
2) complicated diversity-resistant schemes that hinder a set of
diverse solutions; 3) problems that can change between dif-
ferent types during the evolution; and 4) nonmonotonic and
time-varying relationship between variables instead of static
monotonic variable-linkage used in the literature. The lack of
the above-mentioned characteristics in DMOPs implies that
the DMOPs currently used in the literature are not sufficiently
diverse and challenging. Therefore, developing a new set of
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test functions that covers those characteristics to compare the
performance of DMOAs becomes meaningful and essential,
which is greatly needed for the domain of DMO.

Based on the understanding of the limitations of cur-
rent DMOP test problems and inspired by the works
of [9], [10], [21], and [50], we have recently proposed a
new benchmark generator [22] for DMOPs that can generate
DMOPs with several complex characteristics, e.g., changing
POFs of mixed types featuring both convexity and concav-
ity, which are rarely tested in the literature. Following this
line, in this paper, we further develop the proposed bench-
mark generator and produce a general class of DMOPs with
more dynamisms and characteristics for facilitating theoretical
analysis in DMO.

Besides suggesting a number of test instances derived from
the benchmark generator, in this paper, we also discuss perfor-
mance metrics used for DMO. Two new performance measures
are thus proposed, providing more information about the per-
formance of multiobjective evolutionary algorithms (MOEAs).
We also test six representative MOEAs due to their recency
and reported success. A fair and comprehensive comparison
helps to compare the performance of algorithms and assess
the nature and difficulty of the proposed benchmark functions.
For this purpose, we also examine some performance metrics,
including two new ones proposed in this paper, for assessing
DMO algorithms for DMOPs.

The remainder of this paper is organized as follows.
Section II presents a brief review of related work on
DMO. Section III introduces the proposed benchmark gen-
erator and a set of test cases derived from the generator.
Performance metrics are discussed in Section IV. Section V
presents a fair and comprehensive comparison of MOEAs
on the proposed test suite. Finally, Section VI concludes
this paper.

II. RELATED WORK

There are many dynamic characteristics involved in
DMOPs, and different DMOPs may have different math-
ematical definitions. This paper focuses on the DMOPs
defined as

min F(x, t) = ( f1(x, t), . . . , fM(x, t))T

s.t.

⎧
⎪⎨

⎪⎩

hi(x, t) = 0, i = 1, . . . , nh

gi(x, t) ≥ 0, i = 1, . . . , ng

x ∈ �x, t ∈ �t

(1)

where M is the number of objectives, and nh and ng are
the number of equity and inequity constraints, respectively.
�x ⊆ Rn is the decision space, t is the discrete time instance
defined as t = (1/nt)�(τ/τt)� (where nt, τt, and τ represent
the severity of change, the frequency of change, and the iter-
ation counter, respectively), and �t ⊆ R is the time space.
F(x, t) : �x × �t → RM is the objective function vector that
evaluates the solution x at time t.

Most artificial DMOPs developed by researchers in the lit-
erature conform to Eq. (1). A distinct characteristic of Eq. (1)
is that the POF and POS are susceptible to change, which
challenges the tracking ability of DMOAs. Farina et al. [10]

classified DMOPs into four types according to the dynamics
of POF and POS.

1) Type I: The POS changes over time while the POF
remains stationary.

2) Type II: Both POF and POS change over time.
3) Type III: The POF changes over time while the POS

remains stationary.
4) Type IV: Both POF and POS remain stationary, although

the objective function or constraints may change
over time.

Farina et al. [10] also created some FDA DMOPs by adapt-
ing the static problems from the DTLZ [9] and ZDT [50] test
suites. The FDA test suite has been widely used and further
modified by researchers to test algorithms’ performance. It
should be noted that there is a misunderstanding of the FDA2
test problem. Helbig and Engelbrecht [16] studied the per-
formance of several algorithms on FDA2, finding that all the
tested algorithms lose track of the changing POF. However,
the phenomenon of losing track of the changing POF they
observed does not exist in FDA2 because the approximated
POF would never be better than the true POF. Actually, their
misleading results may come from a misunderstanding of the
exact POS of FDA2 after a change.

Jin and Sendhoff [25] suggested a method for constructing
DMOPs by dynamically changing the weights that aggregate
the different objectives of static MOPs. But, their method
does not provide clear defined problems. Guan et al. [14]
studied DMOPs with objective replacement, where some
objectives may be replaced with new objectives during the
evolution. Mehnen et al. [37] argued that the DTLZ and
ZDT test suites are already challenging in their static ver-
sion, and simpler test functions are needed to analyze the
effect of dynamics in DMOPs. Hence, they suggested the
DSW functions for DMOPs. Furthermore, they proposed a
new generic scheme DTF that is a generalized FDA func-
tion and allows the scaling of the complexity of the dynamic
properties. They also added scalable and dynamic constraints
to DMOPs by moving circular obstacles in the objective
space.

The ZJZ problem defined by Zhou et al. [58] is the first
DMOP with variable linkages, which is a modified version of
FDA1 but more challenging. Zhou et al. [57] further argued
that most DMOPs derived from the FDA test suite are too
simple, and the correlation between decision variables should
be enhanced. Thus, they gave four new DMOP test instances
that have nonlinear correlation between the decision variables.
Helbig and Engelbrecht [18] made a sound investigation into
the current DMOPs used in the literature, and identified their
shortcomings: none of them had deceptive and isolated fea-
tures in the POF. Then, they developed DMOPs with either
an isolated or deceptive POF that follows the concept of
the static WFG [21] test suite. In addition, they proposed
some HE problems that have complicated POSs based on the
MOPs of [34].

Most existing DMOPs that have been discussed in the liter-
ature are included in the first three types of change mentioned
earlier, but none of them is a type IV problem. Recently,
Huang et al. [20] created several type IV problems by implying
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that the current found POS may further affect the follow-
ing POS or POF. Furthermore, they introduced two DMOPs
where the number of decision variables or objective functions
changes over time.

Most recently, Biswas et al. [1] discussed some ways of
designing DMOPs and proposed some general techniques
for introducing dynamisms into the POS and POF through
shifting, shape variation, phase variation, and several other
types. By extending the bound-constrained multiobjective test-
bed developed by Li and Zhang [34], they suggested nine
benchmark functions for DMO.

III. PROPOSED BENCHMARK GENERATOR

AND TEST INSTANCES

A. Proposed Benchmark Generator

The proposed benchmark generator is based on the follow-
ing framework:

JY :

⎧
⎪⎨

⎪⎩

min F(x, t) = ( f1(x, t), f2(x, t))T

f1(x, t) = (1+ g(xII, t))(h(xI)+ At sin(Wtπh(xI)))
αt

f2(x, t) = (1+ g(xII, t))(1 − h(xI)+ At sin(Wtπh(xI)))
βt

(2)

where 0 ≤ h(xI) ≤ 1, and xI and xII are subvectors of the
decision vector x. At and Wt are two parameters to control the
local shape of the POF, with At adjusting the curvature and
Wt controlling the number of mixed convex and concave seg-
ments on the POF. A large value of Wt causes the POF to have
disconnected regions, while a small value produces a continu-
ous POF. Here, Wt is recommended to be an integer. αt and βt

(αt > 0, βt > 0) are parameters that control the overall shape
of the POF: when αt > 1 and βt > 1 or αt < 1 and βt < 1,
the overall shape is convex or concave, respectively; when
αt = βt = 1, the overall shape is linear; otherwise, the overall
shape is mixed. g(xII, t) is a non-negative function, hindering
algorithms from converging toward the true POF. The mini-
mum of g(xII, t) is zero. Thus, Eq. (2) can produce various
POF geometries by properly configuring relevant parameters.
Generally, the mathematical description of the continuous POF
for Eq. (2) is as follows:

f
1
αt

1 + f
1
βt

2 = 1 + 2At sin

⎛

⎜
⎝Wtπ

f
1
αt

1 − f
1
βt

2 + 1

2

⎞

⎟
⎠ (3)

where the values of At and Wt must enable Eq. (2) to be a con-
tinuous POF. To have a better understanding of the proposed
generator, we denote F1 = αt

√
f1 − βt

√
f2 and F2 = αt

√
f1 + βt

√
f2.

This means that a clockwise rotation with an angle π/4 is
made from the current coordinate axis. Then, Eq. (3) can be
rewritten as

F2 = 1 + 2At sin

(

Wtπ
F1 + 1

2

)

(4)

where a sine wave is described if Wt �= 0 and At �= 0. Thus,
the proposed generator has a wave-like geometry, containing
both concave and convex regions. Fig. 1 illustrates examples
of POFs of JY with linear and nonlinear overall shapes.

Fig. 1. POFs of JY with different overall shapes. (a) αt = βt = 1, At = 0.1,
and Wt = 3. (b) αt = βt = 1, At = 0.05, and Wt = 6. (c) Convex or concave
overall shapes with At = 0.05 and Wt = 6. (d) Mixed overall shapes with
At = 0.05 and Wt = 6.

B. Test Instances

In this paper, we concentrate on h(xI) = x1, although we
recognize that movement across the POF can be achieved
by adjusting a number of variables, i.e., the use of rotation
matrices for h(xI) and the normalization of h(xI). Below, we
provide ten benchmark instances with detailed information for
a number of types of changes in the environment.

JY1, as shown in Eq. (5), is a type I problem, where
the POS changes over time in a regular pattern, with
xi = G(t), ∀xi ∈ xII. It mainly tests the convergence
speed and reactivity of an algorithm, and fast-convergence
algorithms can easily solve this problem. The control of
processing plant [20], where the POS varies in different time-
dependent scenarios and controllers are required to have a fast
response speed, can be a corresponding real-world application
of JY1.

JY1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min F(x, t) = ( f1(x, t), f2(x, t))T

f1(x, t) = (1 + g(xII, t))(x1 + At sin(Wtπx1))

f2(x, t) = (1 + g(xII, t))(1 − x1 + At sin(Wtπx1))

g(xII, t) = ∑
xi∈xII

(xi − G(t))2, G(t) = sin(0.5π t)

A(t) = 0.05, W(t) = 6

xI = (x1) ∈ [0, 1], xII = (x2, . . . , xn) ∈ [−1, 1]n−1.

(5)

JY2, as shown in Eq. (6), is a type II problem with dynamic
POFs and POSs. The POS changes over time, and the objec-
tive vector oscillates among several modes. As a result, the
POF, as illustrated in Fig. 2, changes its shape over time
[refer to Eq. (3)]. A similar real-world application is the elec-
tric power supply problem [29], where the objective functions
oscillate among several optimization modes, resulting in the
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Fig. 2. POF of JY2 with 21 time windows varying from 0 to 2. For a better
visualization, f1 + 2t and f2 + 2t are shown on the x- and y-axis, respectively.

change of optimal solutions in real time.

JY2 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min F(x, t) = ( f1(x, t), f2(x, t))T

f1(x, t) = (1 + g(xII, t))(x1 + At sin(Wtπx1))

f2(x, t) = (1 + g(xII, t))(1 − x1 + At sin(Wtπx1))

g(xII, t) = ∑
xi∈xII

(xi − G(t))2, G(t) = sin(0.5π t)

A(t) = 0.05, W(t) = �6sin(0.5π(t − 1))�
xI = (x1) ∈ [0, 1], xII = (x2, . . . , xn) ∈ [−1, 1]n−1.

(6)

JY3, as shown in Eq. (7), introduces time-varying non-
monotonic dependencies between any two decision variables,
which is close to real-world problems like the greenhouse sys-
tem [48]. The POF of JY3 is similar to that of JY2, and the
POS is y1 = |x1sin((2α + 0.5)πx1)|, α = �100sin2(0.5π t)�,
and yi = √

yi−1, i = 2, . . . , n, meaning that each variable has
different amount of change. The POS for variables x1 and x2 is
shown in Fig. 3, where the dependency between these two vari-
ables is nonmonotonic and becomes increasingly complicated
as the time increases. Furthermore, the density of solutions
also changes over time. Therefore, JY3 not only assesses
the effect of variable-linkage but also tests the diversity
performance of an algorithm in a dynamic environment.

JY3 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min F(x, t) = ( f1(x, t), f2(x, t))T

f1(x, t) = (1 + g(xII, t))(y1 + At sin(Wtπy1))

f2(x, t) = (1 + g(xII, t))(1 − y1 + At sin(Wtπy1))

g(xII, t) = ∑
xi∈xII

(y2
i − yi−1)

2, A(t) = 0.05

W(t) = �6sin(0.5π(t − 1))�, α = �100 sin2(0.5π t)�
y1 = |x1sin((2α + 0.5)πx1)|, yi = xi, i = 2, . . . , n

xI = (x1) ∈ [0, 1], xII = (x2, . . . , xn) ∈ [−1, 1]n−1.

(7)

JY4, as shown in Eq. (8), is constructed to have a time-
changing number of disconnected POF segments, which is the
case with hydro-thermal power scheduling [7], where the POF
is discontinuous. This problem may pose challenges to some
algorithms to find all the POF components. As illustrated in
Fig. 4, the POF of JY4 is subject to the definition of Eq. (3),
but has a number of disconnected segments. The POS

Fig. 3. POS of JY3 for the first two variables with six time windows varying
from 0 to 0.5. For a better visualization, x1 and x2 + t are shown on the
x- and y-axis, respectively.

Fig. 4. POF of JY4 with 11 time windows varying from 0 to 2. For a better
visualization, f1 + t and f2 + t are shown on the x- and y-axis, respectively.

is xi = G(t), ∀xi ∈ xII.

JY4 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min F(x, t) = ( f1(x, t), f2(x, t))T

f1(x, t) = (1 + g(xII, t))(x1 + At sin(Wtπx1))

f2(x, t) = (1 + g(xII, t))(1 − x1 + At sin(Wtπx1))

g(xII, t) = ∑
xi∈xII

(xi − G(t))2, G(t) = sin(0.5π t)

A(t) = 0.05, W(t) = 101+|G(t)|

xI = (x1) ∈ [0, 1], xII = (x2, . . . , xn) ∈ [−1, 1]n−1.

(8)

Contrary to the above problems, JY5 [as shown in Eq. (9)]
does not have a mixed POF and is a type III problem. Its POF
is very simple and changes from convex geometry to con-
cave geometry. The POF is defined in Eq. (3) and illustrated
in Fig. 5. A similar real-life problem that has changing POF
shapes can be referred to the route guidance system [44].

JY5 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min F(x, t) = ( f1(x, t), f2(x, t))T

f1(x, t) = (1 + g(xII, t))(x1 + At sin(Wtπx1))

f2(x, t) = (1 + g(xII, t))(1 − x1 + At sin(Wtπx1))

g(xII, t) = ∑

xi∈xII

x2
i , At = 0.3 sin(0.5π(t − 1)), Wt = 1

xI = (x1) ∈ [0, 1], xII = (x2, . . . , xn) ∈ [−1, 1]n−1.

(9)

The above-generated instances are all unimodal, and
they are not sufficiently challenging. In contrast, JY6 is a
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Fig. 5. POF of JY5 with 21 time windows varying from 0 to 2.

multimodal problem, where not only the number of local
optima changes over time, but also the POS is dynamically
shifted. The POF of JY6 remains stationary, and its POS is
xi = G(t), ∀xi ∈ xII.

JY6 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min F(x, t) = ( f1(x, t), f2(x, t))T

f1(x, t) = (1 + g(xII, t))(x1 + At sin(Wtπx1))

f2(x, t) = (1 + g(xII, t))(1 − x1 + At sin(Wtπx1))

g(xII, t) = ∑
xi∈xII

(
4y2

i − cos(Ktπyi) + 1
)

At = 0.1, Wt = 3, Kt = 2 ∗ �10 ∗ |G(t)|�
G(t) = sin(0.5π t), yi = xi − G(t), i = 2, . . . , n

xI = (x1) ∈ [0, 1], xII = (x2, . . . , xn) ∈ [−1, 1]n−1.

(10)

JY7 takes into account the shift of POS, multimodality, and
the overall shape of the POF. Different from JY6, the num-
ber of local optima in JY7 remains fixed, and the overall POF
shape can be concave or convex due to environmental changes.
The POS is xi = G(t), ∀xi ∈ xII, and the POF is mathemati-
cally described in Eq. (3) and similarly illustrated in Fig. 1(c).
A multimodal real-world problem similar to JY7 can be the
dynamic speed reducer design [46], [56].

JY7 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min F(x, t) = ( f1(x, t), f2(x, t))T

f1(x, t) = (1 + g(xII, t))(x1 + At sin(Wtπx1))
αt

f2(x, t) = (1 + g(xII, t))(1 − x1 + At sin(Wtπx1))
βt

g(xII, t) = ∑
xi∈xII

(
y2

i − 10 cos(2πyi) + 10
)

At = 0.1, Wt = 3, αt = βt = 0.2 + 2.8 ∗ |G(t)|
G(t) = sin(0.5π t), yi = xi − G(t), i = 2, . . . , n

xI = (x1) ∈ [0, 1], xII = (x2, . . . , xn) ∈ [−1, 1]n−1.

(11)

In JY8, the POS remains static, but the POF changes over
time. the dynamism of JY8 lies in the change of its overall POF
shape, in which the geometry and the number of mixed seg-
ments of the POF vary over time. The POF is defined in Eq. (3)

Fig. 6. POF of JY8 with 11 time windows varying from 0 to 1. For a better
visualization, f1 + 2t and f2 + 2t are shown on the x- and y-axis, respectively.

and illustrated in Fig. 6.

JY8 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min F(x, t) = ( f1(x, t), f2(x, t))T

f1(x, t) = (1 + g(xII, t))(x1 + At sin(Wtπx1))
αt

f2(x, t) = (1 + g(xII, t))(1 − x1 + At sin(Wtπx1))
βt

g(xII, t) = ∑
xi∈xII

x2
i , G(t) = sin(0.5π t)

At = 0.05, Wt = 6, αt = 2
βt

, βt = 10 − 9.8 ∗ |G(t)|
xI = (x1) ∈ [0, 1], xII = (x2, . . . , xn) ∈ [−1, 1]n−1.

(12)

The first three types of change can be easily realized when
constructing test functions, and they have been commonly
reported in the literature. However, many real-world optimiza-
tion problems with dynamic characteristics, e.g., the controller
selection for dynamic plants [20], may jump between types.
To the best of our knowledge, none of this kind of test func-
tion has been introduced into the family of DMOPs. In this
paper, we propose such a problem that cyclically switches
from types I to II, then to type III. Technically, this kind
of problem is macroscopically a type II problem from the
perspective of the whole period of changes. Despite that, we
would refer to this kind of change as the mixed type from a
microscopic angle, which can help us to analyze the perfor-
mance of algorithms on a problem with changing types. This
type of problem can be formulated as follows:

JY9 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min F(x, t) = ( f1(x, t), f2(x, t))T

f1(x, t) = (1 + g(xII, t))(x1 + At sin(Wtπx1))

f2(x, t) = (1 + g(xII, t))(1 − x1 + At sin(Wtπx1))

g(xII, t) = ∑

xi∈xII

(xi + σ − G(t))2, G(t) = |sin(0.5π t)|
At = 0.05, Wt = �6 sinσ (0.5π(t − 1))�
σ ≡

⌊
τ

τtρt

⌋
(mod 3)

xI = (x1) ∈ [0, 1], xII = (x2, . . . , xn) ∈ [−1, 1]n−1

(13)

where ρt represents the frequency of type change, and is sug-
gested as ρt = 5, meaning that the current type lasts five
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Fig. 7. POF of JY9 with 12 time windows varying from (a) 0.5 to 1 and
(b) 1 to 1.5. For a better visualization, f1 + 2t and f2 + 2t are shown on the
x- and y-axis, respectively.

time windows. If σ = 0, JY9 is a type I problem, and the
POS is xi = G(t), ∀xi ∈ xII, the POF is referred to Eq. (3)
and similar to Fig. 1(b). If σ = 1, JY9 belongs to type II,
where the POS is xi = G(t) − 1, ∀xi ∈ xII, and the POF is
referred to Eq. (3) and illustrated in Fig. 7(a). If σ = 2, JY9
is a type III problem with the POS being xi = −1, ∀xi ∈ xII,
and the POF not being (3) since g(xII, t) �= 0. In this case,
the minimum of g(xII, t) is g∗(t) = (n − 1)(1 − G(t))2. Thus,
the POF is

f1 + f2 = (
1 + g∗(t)

)

×
(

1 + 2At sin

(

Wtπ

(
f1 − f2

2(1 + g∗(t))
+ 1

2

)))

(14)

where the POF is illustrated in Fig. 7(b).
To increase the flexibility of type changes, that is, the prob-

lem can be any type after a type change, we introduce a more
challenging problem as follows:

JY10 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min F(x, t) = ( f1(x, t), f2(x, t))T

f1(x, t) = (1 + g(xII, t))(x1 + At sin(Wtπx1))
αt

f2(x, t) = (1 + g(xII, t))(1 − x1 + At sin(Wtπx1))
βt

g(xII, t) = ∑

xi∈xII

(xi + σ − G(t))2, G(t) = |sin(0.5π t)|
A(t) = 0.05, W(t) = 6

αt = βt = 1 + σG(t), σ ≡
(⌊

τ
τtρt

⌋
+ R

)
(mod 3)

xI = (x1) ∈ [0, 1], xII = (x2, . . . , xn) ∈ [−1, 1]n−1

(15)

where JY10 is almost defined the same as JY9, however, in
addition to two time-dependent parameters αt and βt that con-
trol the simple overall POF shape, JY10 introduces a random
integer R ∈ [1, 3] to switch the problem into a random type
of change every ρt time windows. This randomness makes
the test problem hard to optimize. The POS of JY10 is the
same as that of JY9, but the POF is a little different, which is
defined as

f
1
αt

1 + f
1
βt

2 = (
1 + g∗(t)

)

×
⎛

⎜
⎝1 + 2At sin

⎛

⎜
⎝Wtπ

⎛

⎜
⎝

f
1
αt

1 − f
1
βt

2

2(1 + g∗(t))
+ 1

2

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

(16)

where g∗(t) is defined the same as in JY9, and the POF is
similar to that of JY9 [as illustrated in Eq. (14)] except that
there are two more time-varying parameters, i.e., αt and βt,
in Eq. (16). When JY10 is in type III (σ = 2), the POF not
only has a time-varying overall shape, but also shifts over
time because of the time-changing value of g∗(t). Due to the
stochastic nature of change, it is not possible to draw the actual
time-changing POFs of JY10.

In total, ten test instances are developed in this paper.
In practice, more complicated benchmark problems can be
generated by further varying parameters At, Wt, αt, or βt

over time.

C. Comparison With Other Benchmarks

Table I presents a comparison between some existing test
suites and our proposed one, where the main characteristics
of each test suite are briefly tabulated. On the basis of the
comparison, we would like to highlight the following features
of the JY test suite.

1) The JY test suite introduces a new type of
change, i.e., mixed type, to help classify DMOPs.
Correspondingly, two mixed type instances are included
in this test suite.

2) In addition to sharing some common POF properties,
most of the JY instances have mixed convex/concave
components on the POF, and the number of mixed
components is controllable and can be time-changing.

3) There is a JY problem with nonlinear, time-varying, and
nonmonotonic variable linkages, while variable linkages
in other test suites, e.g., UDF and ZJZ, are monotonic,
which may be easy to crack by hill-climbing methods.

4) JY develops a problem with random changes on the
problem type, that is, the problem can be any type when
a change occurs.

5) JY includes a problem with time-varying multimodality.
This means the difficulty of the problem changes over
time due to the changing number of local optima.

6) JY problems are newly developed whereas many existing
DMOPs are adapted from their static counterparts or
from the FDA test suite.

D. Discussion

Changing factors in real-world applications vary from prob-
lem to problem. Generally speaking, changing factors can
be objective functions, decision variables, time-linkage, con-
straints, switch-mode changes, as revealed by the survey
in [38]. As a consequence, real-life problems present various
dynamic characteristics, such as time-changing POS and/or
POF, disconnectivity, multimodality, undetectability, periodic-
ity, and predictability. On the other hand, it is often hard or
even impossible to use only a few artificial benchmarks to sim-
ulate all dynamic real-life problems as problems have a variety
of mathematical definitions. Therefore, in this paper, the JY
test problems are mainly aimed to imitate several representa-
tive dynamics of real-world applications instead of defining
similar mathematical formulations, and these test problems
have some dynamic properties in common with the referenced
real-world examples.
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TABLE I
COMPARISON OF CHARACTERISTICS INVOLVED IN SOME EXISTING TEST SUITES FOR DMO

Although there is a lack of clear link that to what extent
test problems reflect real-world scenarios, it is not trivial to
use these test problems to test and improve the performance
of DMOAs. After all, what if these test problems appear
in real-world applications and algorithms struggle to handle
them? In this sense, the test problems can serve as a use-
ful tool to identify strengths and weaknesses of algorithms
before these algorithms can be applied to real-world DMOPs.
Nevertheless, the test problems are far from being realistic, and
it is necessary to further investigate their relation to real-world
applications.

IV. PERFORMANCE METRICS

In this section, we present four performance metrics for
DMO, which are spacing (S) [42], maximum spread (MS) [42],
inverted generational distance (IGD) [24], [54], and our pro-
posed robustness (R). The S and MS metrics are used to
analyze algorithms’ distribution and coverage, respectively.
The IGD metric measures both distribution and proximity
of an obtained approximation POF, thus a good IGD value
implies that an algorithm performs well on spacing, coverage,
and convergence simultaneously. To this end, we can use S,
MS, and IGD to reveal algorithms’ specific performance on
different indicators. Besides, the robustness metric R is intro-
duced to express the variability of an algorithm’s performance
over a number of changes in dynamic environments.

A. Schott’s Spacing Metric

Schott [42] developed a metric with regard to the distri-
bution of the discovered Pareto front, called the S metric.
It measures how evenly the members in an approximated
POF (denoted POF∗) obtained by an algorithm are distributed,

and is computed as

S =
√
√
√
√ 1

nPOF∗ − 1

nPOF∗∑

i=1

(Di − D)2

D = 1

nPOF∗

nPOF∗∑

i=1

Di (17)

where Di is the Euclidean distance between the ith member
in POF∗ and its nearest member in POF∗.

A method of extending the spacing metric to examine the
performance of algorithms for DMOPs is to define the average
time steps in a run, as follows:

S = 1

Ts

Ts∑

t=1

S(t) (18)

where S(t) refers to the Schott’s spacing metric at time
instance t and is calculated just before the next change occurs,
and Ts is the number of time steps.

B. Maximum Spread

The MS, first introduced by Zitzler et al. [50], measures to
what extent the extreme members in POF∗ has been reached.
Goh and Tan [12] proposed a modified version of MS by
taking into account the proximity of POF∗ toward POF, as
follows:

MS′ =

√
√
√
√
√

1

M

M∑

k=1

⎡

⎣
min[POFk, POF∗

k ] − max[POFk, POF∗
k ]

POF∗
k − POF∗

k

⎤

⎦

2

(19)

where POFk and POFk is the maximum and minimum of the
kth objective in POF, respectively. Similarly, POF∗

k and POF∗
k
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Fig. 8. Example of the obtained POF∗ far from the POF.

is the maximum and minimum of the kth objective in POF∗,
respectively.

A large value of MS′ indicates a good spread of POF∗, and
MS′ will have a value of one when POF∗ covers the whole
POF. Sometimes, however, a high MS′ value can be decep-
tive. Fig. 8 gives such an example, where POF∗ is far from
POF, and MS′ equals one since min[POFk, POF∗

k ] is smaller
than max[POFk, POF∗

k ], k = 1, 2. In this case, the MS is not
justifiable and may cause a misleading understanding of the
approximated POF∗. For this reason, we propose a revised
MS (RMS) as follows:

RMS =

√
√
√
√
√
√

1

M

M∑

k=1

⎡

⎣
μL

([
POF∗

k , POF∗
k

]⋂[
POFk, POFk

])

μL

([
POF∗

k , POF∗
k

])

⎤

⎦

2

(20)

where μL(A) represents the Lebesgue measure [27] of the
set A. Let us consider again the example illustrated in Fig. 8,
by computing RMS, we can get RMS = 0. This is reasonable
since the approximated POF∗ does not converge well, not to
mention spread widely over the POF.

In order to apply the RMS metric to evaluate the perfor-
mance of algorithms for DMOPs, an alternative method is to
calculate the average of the RMS values over Ts time steps,
as follows:

RMS = 1

Ts

Ts∑

t=1

RMS(t) (21)

where RMS(t) represents the RMS value at time instance t.

C. Inverted Generational Distance

The IGD metric in [49] and [54] measures both convergence
and diversity of found solutions by an algorithm. Let POF be a
set of uniformly distributed points in the true POF, and POF∗
be an approximation of the POF. The IGD is calculated as
follows:

IGD =
∑nPOF

i=1 di

nPOF
(22)

where nPOF = ‖POF‖, di is the Euclidean distance between
the ith member in POF and its nearest member in POF∗.

Fig. 9. Illustration of performance measure against time.

To have a low IGD value, POF∗ must be very close to POF
and cannot miss any part of the whole POF.

Zhou et al. [57] modified the IGD metric and adopted the
average of the IGD values in some time steps over a run as a
performance indicator for DMO, which is computed as

IGD = 1

Ts

Ts∑

t=1

IGD(t) (23)

where IGD(t) refers to the IGD metric at time instance t and
is calculated just before the next change occurs.

D. Robustness

In dynamic environments, it is desirable to make algorithms
as robust as possible. In other words, algorithms must be able
to resist changes and be immune to an amount of uncertainty
and perturbation. There have been some studies on robustness
performance for dynamic optimization [11], [26], showing
that robustness is a quite important goal in dynamic envi-
ronments. Besides, many existing performance measures are
adapted from their static counterparts and may not be suit-
able for dynamic environments. For example, suppose that
PMt (the smaller, the better) is a performance measure of
population Pt at time t, the average value of PMt over some
time steps in a run is commonly used in dynamic optimiza-
tion [13], [36], [57], [58]. As a compact form of assessment,
average values are helpful for measuring algorithms’ perfor-
mance, but it cannot reflect the robustness performance. As
illustrated in Fig. 9, the dashed and solid curves, respectively,
represent the performance of two algorithms. Both algorithms
have the same or similar average values in terms of PMt, but
the dashed is more robust than the other one, thus it is clear
that the dashed achieves better performance on PMt.

In this paper, the robustness of an algorithm on PMt can be
defined as

R(PM) =
√
√
√
√ 1

Ts − 1

Ts∑

t=1

(
PMt − PM

)2
(24)

where R(PM) denotes the robustness of the metric PM over Ts

time steps and PM is the average of PM values over Ts time
steps, i.e., PM = ∑Ts

t=1 PMt/Ts. A smaller value of R(PM)

indicates a better robustness performance on the PM metric.
Note that, PM can be any unary performance metric perti-
nent to the multiobjective optimization goals of proximity,
diversity and distribution. With this definition of robustness,
in Fig. 9, the dashed algorithm will achieve better performance
than the solid one in terms of robustness on the performance
measure PMt.



206 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 1, JANUARY 2017

V. EXPERIMENTAL STUDY

A. Compared Algorithms and Parameter Settings

We consider six multiobjective optimization algo-
rithms (MOEAs) from the literature and compare their
performance on our proposed test suite to assess the prop-
erty and difficulty of these benchmark functions. These
algorithms are classified into two groups. The first group
includes four well-known dynamic MOEAs: 1) dynamic
multiobjective particle swarm optimization (DMOPSO)
algorithm [31]; 2) dynamic nondominated sorting genetic
algorithm II (DNSGA-II) [7]; 3) dynamic competitive-
cooperative coevolutionary algorithm (dCOEA) [13]; and
4) population prediction strategy (PPS) [57]. Each algorithm
in this group has a mechanism of dealing with dynamism for
dynamic optimization. Note that, there are two versions of
DNSGA-II and DNSGA-II with randomly created solutions
whenever a change occurs is adopted here. The second group
includes two classic MOEAs: 1) strength Pareto evolutionary
algorithm II (SPEA2) [51] and 2) MOEA based on decom-
position (MOEA/D) [53], and they are high-performance
algorithms for static multiobjective optimization. To handle
dynamic environments, the algorithms of this group adopt the
following strategy in our experiments: 10% randomly selected
population members is re-evaluated for change detection, and
the restart scheme is employed for change response. The
parameter settings for all the tested algorithms are inherited
from the referenced papers.

The experiments were conducted at different combinations
of change severity levels and frequencies, i.e., (nt, τt) =
(5, 10), (10, 10), and (10, 5). To guarantee the fairness for all
the tested algorithms, the total number of changes for prob-
lems JY1–JY10 was set to 20 during the evolution. Besides,
100 more generations were given to each algorithm before
the first change to minimize the potential effect of static opti-
mization. Thus, the total number of generations for running
an algorithm was 100 + 20τt. For each problem, the number
of decision variables was set to 10, and each tested algorithm,
with a population size of 100, was executed 30 runs, and the
experimental results were recorded. The experimental com-
parison employs the four performance metrics mentioned in
Section IV, and the IGD metric is selected as the indicator PM
for the robustness metric. That is, we use R(IGD) to reflect the
robustness performance of MOEAs for DMO. Furthermore, for
the computation of the IGD metric, 500 uniformly-distributed
points (using the kth nearest neighbor truncation method [51])
were sampled from the true POF at each time step.

B. Experimental Results

For each combination (nt, τt) of a test problem, we con-
ducted the Wilcoxon rank-sum test [19] at the 0.05 significance
level to judge whether the results of an algorithm are sig-
nificantly different from those of another algorithm on each
considered performance metric. An algorithm that outperforms
most of the competitors will rank the first, and the one that
outperforms the least will be assigned the worst rank. In case
that several algorithms have the same number of outperformed
algorithms, they share the same rank. After that, the average

TABLE II
PERFORMANCE RANKINGS ON FOUR METRICS

FOR BENCHMARKS JY1–JY10

rank of an algorithm on the three combinations of a problem is
calculated. As a result, for each problem, the algorithm with
the smallest average rank value is further considered as the
best, and the one with the second smallest average rank value
takes the second place, and so on. Using this ranking method,
the final rank of each algorithm under each performance metric
for every test problem is indicated in Table II, where ordering
in the rank column is purely alphabetical. For a close inspec-
tion of differences between the compared algorithms on each
metric, readers are referred to our supplementary material.

It can be observed from the table that, on most of the test
problems, dCOEA and MOEA/D obtain the best population
distribution in their approximations. This performance might
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Fig. 10. Tracking of the IGD values obtained by six algorithms for time t from 0 to 2.

be attributed to the fact that, dCOEA employs a multipopula-
tion strategy to keep diversity during the search and MOEA/D
always keeps a set of well-diversified subproblems regard-
less of environmental changes. However, due to the use of
the niche-sharing method to preserve diversity, dCOEA faces
difficulties in distributing the population uniformly along the
discontinuous POF components of JY4, and for the same rea-
son, DMOPSO also faces this problem. MOEA/D has poor
distribution performance on JY10 as it may require a long
time to adapt to the change of problem type. It is not surpris-
ing that DNSGA-II achieves good distribution performance
for JY5 and JY8 because their POS remains stationary, and
when the POS is static, the optimization task is to adjust the
distribution of solutions on the time-varying POFs, which is
easy for crowding-distance [8] based DNSGA-II. It is under-
standable that DMOPSO and SPEA2 perform poorly on the
majority of the test problems regarding the S metric due to the
lack of diversity maintenance or diversity increase methods in
the event of change.

Considering the RMS metric, we can see that dCOEA and
MOEA/D are outperformed by the other algorithms for almost
all the problems although they can achieve good distribution

mentioned above. This can be explained by the fact that all the
algorithms except dCOEA and MOEA/D explicitly or implic-
itly tend to reward boundary solutions, which may favor the
coverage of an approximation. Notably, DMOPSO is always
the top-performing algorithm because it prefers to choose
boundary solutions as leaders since they are located at less
crowded areas, thus naturally driving more solutions toward
boundary regions.

The IGD metric reveals both diversity and convergence per-
formance of an algorithm. It can be clearly seen that, dCOEA
and MOEA/D are high-performing algorithms on the major-
ity of the problems although their RMS values are not very
competitive. S and IGD jointly indicate that dCOEA and
MOEA/D track changing environments better than the other
algorithms on these problems. Despite the fast convergence,
MOEA/D seems ineffective for handling the time-varying non-
monotonic variable linkages of JY3, on which DNSGA-II
performs the best. Besides, DNSGA-II also wins on JY5 and
JY8 as both problems have static POS. JY2 and JY9 have
very similar definitions except that JY9 involves a mixed type
of change. On JY2, SPEA2 is the bottom performer, as indi-
cated by its IGD rank. However, for the harder problem JY9,
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Fig. 11. POFs of JY2 with the lowest IGD values obtained by six algorithms for time t from 0 to 4.

SPEA2 outperforms PPS, DMOPSO and DNSGA-II, and
dCEOA and MOEA/D swap their ranks. This means, the
increase of difficulty caused by the mixed type of change sig-
nificantly influences those algorithms’ performance. On the
other hand, by comparing the IGD ranks between JY9 and
JY10, randomness brings about great challenges to MOEA/D
and PPS. Besides, the S, RMS, and IGD metrics together help
compare the convergence ability of algorithms. For example,
PPS is better than MOEA/D on JY3, and dCOEA is better
than DNSGA-II on JY4.

The last indicator, i.e., R(IGD), illustrates the variability
of the performance of the six algorithms under a number
of changes. Generally, the R(IGD) rank of each algorithm is
roughly consistent with the IGD rank. This is understandable
because the computation of the robustness metric is based on
the IGD metric. Despite that, robustness provides a way to
break ties between algorithms when they perform similarly
in terms of a metric, e.g., MOEA/D and dCOEA for JY1,
DNSGA-II and SPEA2 for JY4, PPS and SPEA2 for JY6,
and PPS and MOEA/D for JY8. In addition, R(IGD) gives an
insight to the stability of response to environmental changes
during the evolution. For example, for JY2, JY3, and JY6,
although DNSGA-II on average tracks their changing POFs
better than SPEA2, as indicated by IGD, R(IGD) shows that
SPEA2 responses to changes more stably than DNSGA-II.
Other examples of inconsistency between IGD and R(IGD) are
MOEA/D and PPS for JY3 and JY8, DMOPSO and SPEA2 for
JY4, DNSGA-II and dCOEA for JY6, MOEA/D and SPEA2
for JY7, and DMOPSO, PPS, and MOEA/D for JY5 and JY8.

Fig. 10 shows the tracking of IGD values obtained by the
six algorithms over the period from t = 0 to t = 2 for the first
nine test problems. The IGD curve of JY10 is not plotted here
because of its stochastic nature of change. The figure gives
a close inspection of algorithms’ tracking ability and robust-
ness. More specifically, DNSGA-II tracks the environmental

changes stably for JY3, JY5, and JY8, dCOEA shows fairly
robust performance for JY1–JY4 and JY7, while MOEA/D
performs well in terms of robustness for JY1, JY4, and JY9.
This is consistent with the results of the R(IGD) ranking list
shown in Table II.

To have a better understanding of the tracking ability of
these algorithms, we also plot the approximated POFs of JY2
and JY5 over a number of time steps in Figs. 11 and 12,
respectively. In Fig. 11, dCOEA can approximate the POFs
of JY2 very well, and at the beginning time steps PPS does
not track the changing POFs well because the quality of his-
tory information stored by PPS is not high. Fig. 12 further
shows the good tracking performance of several algorithms
(i.e., DNSGA-II, PPS, and dCOEA for JY5).

Due to the page limit, we only list the impacts of time-
changing multimodality, nonmonotonic variable-linkage, and
frequency τt and severity nt of change, which can be found in
the supplementary material, in the following.

1) Generally, the performance of algorithms deteriorates
when environments become tough (i.e., nt and/or τt

become smaller), and the effect of τt is more obvious
and severe than that of nt in this paper.

2) The time-varying multimodality significantly aggravates
the performance of algorithms, resulting in a notable
degradation in their tracking ability.

3) A comparison between JY3 and the ZJZ problem [58]
reveals that nonmonotonic variable linkages pose great
challenges to some algorithms so that the population
coverage and convergence are negatively influenced.

C. Limitations

In the DMO community, the mean of performance measure
over particular time steps is widely adopted as it can present
the performance of algorithms in a compact form. Despite its
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Fig. 12. POFs of JY5 with the lowest IGD values obtained by six algorithms for time t from 0 to 2.

significance and success, the mean value for experimental
analysis might have limitations if the considered performance
measure contains outliers at a time step [16]. For this reason,
our used performance measures, i.e., S, RMS, and IGD, may
be inaccurate, and other approaches, if exist, are needed to
further verify conclusions based on these measures. However,
besides measuring algorithms’ stability over a number of
changes, our proposed robustness can be also used as a tool
to embody the impact of outliers on a performance measure,
because it takes into account the variability of the perfor-
mance measure values over different time steps. If there are
outliers at a specific time step influencing the performance
measure, the robust value will be large. This way, robustness
provides additional information to justify the performance of
algorithms, increasing the reliability of performance analysis.
On the other hand, no performance measure is perfect, and
standard performance metrics are urgently needed in the field
of DMO.

VI. CONCLUSION

An extensive study of the current DMOPs used to assess
the performance of algorithms showed that there is a lack
of standard test functions that could occur in real-world life
for the DMO domain. The commonly used DMOPs are so
simple that some characteristics are excluded, such as mixed
convex/concave POF components, a more powerful diversity-
resistant structure in the problem, a nonmonotonic correlation
between variables, and a mixed type of problem that can jump
between different types in a regular or random pattern.

To address the above shortcomings, this paper presents
a generic scheme to generate desired benchmark functions
that can compare the performance of different DMOAs.
Furthermore, six representative MOEAs were tested on ten

test instances generated by the benchmark generator and the
results were evaluated by several performance metrics, includ-
ing two new performance metrics proposed in this paper. The
comparison among these algorithms shows that the proposed
test instances are effective and can help to clearly distinguish
the performance of each algorithm through proper statistical
testing.

The key findings from the empirical study are summarized
as follows.

1) Fast converging algorithms, i.e., MOEA/D and dCOEA,
can adapt quickly to changing environments, thus they
may have advantages in dealing with DMOPs.

2) The lack of diversity maintenance brings about severe
consequences to algorithms like DMOPSO and SPEA2
in dynamic environments. DNSGA-II, dCOEA, and
MOEA/D performs very well regarding the spacing met-
ric because they successfully maintain good population
diversity during the evolution.

3) The modified MS helps assess algorithms’ coverage over
the POF. Niche sharing (DMOPSO) and crowding dis-
tance (DNSGA-II) tend to reward boundary solutions,
thus the MS of algorithms with those schemes is roughly
good.

4) Nonmonotonic variable linkages are significantly harder
than monotonic ones. Time-changing multimodality
(JY6) is more challenging than static multimodality.
Besides, the mixed type of change (JY9) complicates
dynamic environments and randomness (JY10) in type
of change further challenges algorithms’ performance.

5) Robustness is another important performance indica-
tor for DMO, which helps to have a comprehensive
assessment of algorithms’ performance. The experimen-
tal results have shown that, when several algorithms
achieve similar values on a performance metric and there
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is no statistically significant difference among them, the
proposed robustness performance measure can provide
additional information to distinguish their performance.
This is really helpful for a better understanding and com-
parison of algorithms’ performance. The significance of
this new indicator can be even clearer when a stable and
high-performance transient response to an environmental
change is pursued.

Despite that our proposed benchmark generator can produce
a series of features that are rarely tested in the literature, fur-
ther research is needed regarding how to extend the generator
to many-objective problems where the number of objectives is
easy to scale up. Besides, this paper focuses mainly on com-
paring the performance of existing different metaheuristics for
DMO. It is greatly needed to design new and robust MOEAs
that can handle various environmental changes. These issues
will be left for further discussions in our future work.
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