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Learning Sampling Distributions for Efficient
Object Detection

Yanwei Pang, Senior Member, IEEE, Jiale Cao, and Xuelong Li, Fellow, IEEE

Abstract—Object detection is an important task in computer
vision and machine intelligence systems. Multistage particle
windows (MPW), proposed by Gualdi et al., is an algorithm
of fast and accurate object detection. By sampling particle
windows (PWs) from a proposal distribution (PD), MPW avoids
exhaustively scanning the image. Despite its success, it is unknown
how to determine the number of stages and the number of
PWs in each stage. Moreover, it has to generate too many
PWs in the initialization step and it unnecessarily regenerates
too many PWs around object-like regions. In this paper, we
attempt to solve the problems of MPW. An important fact we
used is that there is a large probability for a randomly gen-
erated PW not to contain the object because the object is a
sparse event relative to the huge number of candidate win-
dows. Therefore, we design a PD so as to efficiently reject the
huge number of nonobject windows. Specifically, we propose
the concepts of rejection, acceptance, and ambiguity windows
and regions. Then, the concepts are used to form and update a
dented uniform distribution and a dented Gaussian distribution.
This contrasts to MPW which utilizes only on region of support.
The PD of MPW is acceptance-oriented whereas the PD of our
method (called iPW) is rejection-oriented. Experimental results
on human and face detection demonstrate the efficiency and the
effectiveness of the iPW algorithm. The source code is publicly
accessible.

Index Terms—Feature extraction, object detection, particle
windows (PWs), random sampling.

I. INTRODUCTION

BJECT detection is a key component of many com-
Oputer vision systems [24], [41], [42], [44]. Generally,
object detection consists of two steps: 1) feature extraction
and 2) classification [43]. In this paper, we divide the task
of object detection into three steps: 1) window generation;
2) feature extraction; and 3) classification. Window genera-
tion outputs windows determined by shape, location, and size.
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Features are extracted from the windows and then are classified
by a classifier. Suppose that N windows are generated and the
time spent in generating the windows is 1,,. Let #r be the time
of extracting a feature vector from a window (i.e., subimage)
and 7. be the time of classifying the feature vector as either
positive or negative class. Then the computation time ¢ of an
object detection algorithm can be expressed as

t=ty+Nxtr+NXI. (1)

Usually, #,, is very small and can be neglected. Obviously,
it is desirable if N is as small as possible on the condition that
the detection rate and false positive rate are acceptable, which
is the goal of our algorithm.

A dominant manner of window generation is sliding win-
dow (SW)-based scanning. Given a pixel stride and a scale
factor, windows are determinately generated from top to bot-
tom, left to right, and small to large. This deterministic
manner requires a very large number of windows in order
to detect objects with high detection rate and low false
positive rate.

Windows can also be generated in a stochastic (random)
manner. The stochastic manner can also be categorized into
active sampling [1]. Recently, Gualdi er al. [13] proposed
to generate the windows [called particle windows (PWs)] by
sampling from a probability density function which is called
proposal distribution (PD). This algorithm is called multistage
PW (MPW). The initial PD is a uniform distribution, meaning
that each candidate window has the same chance to contain
the object. If some windows of the N; sampled PWs (called
PWs in [13]) have large classifier responses, then the PD is
updated by enhancing the positions nearby these windows.
Consequently, when sampling from the updated PD, more win-
dows will be generated near the previous PWs. Therefore, a
smaller number N;(N; < Nj) of PWs is needed to be drawn
from the updated PD, which is why the MPW method can use
a smaller number of windows to get the same detection rate
and false positive rate as the SW method.

Despite the great success of MPW, there is still room to
improve it. Due to the non-negativity of the weights and den-
sity, almost all PWs are sampled from the regions neighboring
to the PWs obtained in the previous stages. Therefore, if the
number of initial PWs is not large enough to contain true
positives, then there is a very large probability that MPW
will not sample the positive windows any more. In addi-
tion, MPW unnecessarily generates too many PWs around
the object and object-like regions. Considering that classifi-
cation of these regions is more time-consuming than obvious
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nonobject regions in the algorithm of cascade AdaBoost, so
generating too many PWs around the object and object-like
regions greatly limits its efficiency. Importantly, it is unknown
to use how many PWs in each stage.

In this paper, we propose to improve MPW with the aim
of sampling a smaller number of PWs without any loss in
detection rate and false positive rate. In addition, we solve the
problem of determining the number of PWs in each stage. We
call the proposed algorithm iPW (see Fig. 2). Compared to
MPW, iPW has the following characteristics and advantages.

1) iPW does not need to generate a large number of PWs
at the initial iteration (stage), which greatly reduces the
detection time. Even if the initial PWs do not contain
any object, iPW can detect the objects at next stages.

2) MPW unnecessarily draws too many PWs around the
positive windows whereas iPW avoids generating the
redundant PWs by using the information of both rejected
and accepted PWs.

3) To use MPW, one has to empirically set the number of
PWs in each stage whereas this is not a problem because
iPW generates a single PW in each iteration (stage).

4) iPW fully makes use of the information of rejected nega-
tive PWs while MPW almost completely depends on the
accepted positive PWs. Rejected negative PWs are used
to directly suppress the PD around these windows and
at the same time indirectly enhance the PD beyond the
windows. In this sense, iPW is rejection-oriented while
MPW is acceptance-oriented.

5) In MPW, the uniform distribution is used in the ini-
tialization stage and plays an unimportant role in the
later stages so that it can be omitted. In iPW, a dented
uniform distribution is used to play an important role
for sampling useful PWs by rejecting background
(i.e., nonobject) regions.

6) iPW utilizes dented Gaussian distribution while MPW
utilizes full Gaussian distribution for sampling PWs. By
using dented Gaussian distribution, iPW avoids drawing
many unnecessary PWs around the object and object-like
regions.

7) To obtain the same detection accuracy, the total number
of PWs in iPW is much smaller than that in MPW.

The remainder of the paper is organized as follows. In
Section II, related work is discussed. Section III reviews the
MPW algorithm. The proposed iPW algorithm is described in
Section IV. Experimental results are given in Section V before
summarizing and concluding in Section VI.

II. RELATED WORK

According to (1), the computation time of an object detec-
tion algorithm is determined by window generation, fea-
ture extraction, classification, and the number of windows.
Accordingly, we can categorize existing efficient object detec-
tion algorithms into feature-reduced, classification-reduced,
and window-reduced types. In addition, combination of the
different types of algorithms should also be considered.

Cascade AdaBoost plus Haar-like features and integral
channel features (ICFs) can be viewed as classical combination
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of feature-reduced and classification-reduced method [8], [38].
In contrast, neural network-based face detection [31], [35]
is time-consuming in feature extraction and classification
though it has comparable detection accuracy. Similarly, his-
togram of oriented gradients (HOGs) plus support vector
machine (SVM) [11] can be improved in efficiency by using
integral image and cascade structure. The trilinear interpo-
lation of HOG can also be approximated by decomposing
gradients into different angle planes followed by a simple
smoothing step [29]. There are many efficient object detection
algorithms using the technique of integral image for extract-
ing simple but rich features. One important type of features
for human detection is ICF [3], [8]. There are also many ICF
variants.

Designing optimal cascade structure is also an impor-
tant topic for increasing the speed of object detection.
Recent methods include crosstalk cascade [10], CoBE [6],
LACBoost [33], [40], sparse decision directed acyclic
graphs [4], etc.

In addition to the integral-image-based algorithms, coarse-
to-fine feature hierarchy [9], [46], and template matching with
binary representation [14] are also feature-reduced methods.
The coarse-to-fine feature hierarchy is able to reject the major-
ity of negative windows by the lower resolution features and
process a small number of windows with higher resolution fea-
tures [46]. By deep analysis of statistic of multiscale features,
Dollar et al. [9] developed an efficient scheme for computing
feature pyramids. Liu ef al. [22] developed a probability-based
pedestrian mask which can be used as prefilter to filter out
many nonpedestrian regions. Template matching with binary
representation for gradient information is a promising method
for detecting textureless objects in real time [14]. Owing to its
elegant feature representation and the architecture of modern
computers, template matching with binary representation for
gradient information can use thousands of arbitrarily sized and
shaped templates for object detection in very fast speed [14].
By setting proper sliding stride, features can be reused to avoid
computing the features in a window overlapping with its neigh-
bors [28]. The information of spatial overlap can also be used
for image matching and recognition [2]. Deep learning with
rich features hierarchy is also a promising direction [12].

Classifier-reduced method arrives at high efficiency by
designing an efficient classifier. In addition to cascade
AdaBoost which uses a few of classifier to reject a lot of
windows, one can design efficient linear or nonlinear SVM
for classification. Vedaldi and Zisserman [37] proposed to use
explicit, instead of implicit, feature maps to approximate non-
linear SVM. Kung [17] and Mak and Kung [23] developed a
low-power SVM classifier where the scoring function of poly-
nomial SVMs can be written in a matrix-vector-multiplication
form so that the resulting complexity becomes independent
of the number of support vectors. A linear SVM classifies a
feature vector by computing the inner product between the
sum of weighted support vectors and the feature vector. To
reduce the computation complexity of the inner-product-based
classification, Pan er al. [30] proposed a sparse inner-product
algorithm. The idea is that neighboring subimages are also
neighboring to each other in the feature space and have
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similar classifier responses. Pang et al. [24] also developed
a distributed strategy for computing the classifier response.

Window-reduced method is a promising direction devel-
oped in recent several years. This kind of methods aim at
reducing the number of windows where feature extraction and
classification have to be conducted. When an image is repre-
sented by a small number of keypoints and their descriptors
(i.e., visual words), branch&bound (also known as efficient
subwindow search) is very efficient because it hierarchically
splits the parameter spaces into disjoint spaces and uses qual-
ity functions to reject large parts of the parameter space [18].
Branch&bound can also be used in implicit shape model which
adopts hough-style voting [20], [21]. Branch&rank generalizes
the idea of branch&bound by learning a ranking function that
prioritizes hypothesis sets that do contain an object over those
that do not [19]. Acting testing is also a promising method
for rapid object detection [1], [34]. But these visual-word-
based methods are not suitable for detecting textureless objects
because it is not reliable to detect keypoints from the objects.

As a signal can be reconstructed from irregularly sampled
points [25], an object can be detected by randomly sampling
a fraction of all the possible locations and scales. MPW is a
window-reduced object detection method [13] using the ran-
dom sampling technique. Branch&rank and branch&bound are
based on keypoint detection whereas MPW extracts Haar-like
features, HOG, or other features as the same manner of SW
based object detection method. Therefore, MPW is expected
to be suitable for detecting both texture-rich and texture-less
objects. SW-based method investigates all the windows over-
lappingly and uniformly spaced in spatial and scale domains.
In contrast, MPW only checks the windows generated from
an updated PD. As iteration proceeds, the main peaks of the
distribution evolve toward the objects. The open problem in
MPW is how many windows should be generated in each iter-
ation (stage). Existing MPW uses empirical numbers which is
hard to result in an optimal solution. In this paper, we pro-
pose a novel PW-based object detection method that is more
efficient than MPW and is able to avoids choosing particle
numbers in multiple stages.

It is noted that the technique of detection propos-
als (DPs) [47] (sometimes called objectness [7] or selective
search [36]) also generates a number of windows by sampling
from all the possible windows. But the number of generated
windows has to be large (e.g., 103 or 10%) enough if acceptable
detection quality is required. Moreover, the time spent on gen-
erating DP is not satisfying (see [15, Table 2]). Nevertheless,
the DP methods have been successfully employed in deep
leaning-based detection algorithms [35].

I1I. MULTISTAGE PARTICLE WINDOWS
The algorithm of MPW [13] is the basis of our method.

A. Algorithm

MPW investigates a fraction of all candidate windows in an
image by sampling from a PD. Each PW represents a window
w = (x,y, s)T, where x, y, and s are the horizontal position,
the vertical position, and the size of the window, respectively.

(b)

Fig. 1. Process of MPW. (a) Stage 1 samples initial PWs by uniform
distribution. (b) Stage 2 generates PWs around pedestrians.

The window can also be expressed as w(x,y,s). Once a
window w is generated, the feature vector is then extracted
and classified. Let f(w) be the classifier response. The main
issue of MPW is how to design the PD.

At the beginning of the MPW algorithm, no prior knowl-
edge is known about the preference on the candidate windows.
So the PD ¢go(w) = qo(x, y,s) is modeled as a uniform dis-
tribution u(w) = u(x,y, s) = 1/N, where N is number of all
possible windows in the image.

In the first iteration, Ny PWs are sampled from the uniform
PD go(w) = u(w) [see Fig. 1(a)]. The classifier response f(w;)
is normalized by

fwy)

fw) <« ———
Y YL F(w)

(@)

so that Z?Qlf(w,') =1, and 0 < f(w;) < 1. Then the PD
is updated according to the classifier responses f(w) of the
N1 PWs

Ni
a1 (W) = (1 —a)gowW)+ar Y f(W)G(w;. Z). (3

j=1

In (3), G(w;, X) is a Gaussian distribution where the mean is
centered at w; and X is the standard deviation of the Gaussian
distribution. The weight o1 balances the previous PD ¢y and
the mixture of Gaussian distributions. Gualdi et al. [13] found
that oy = 1 is almost the best choice, meaning the unimpor-
tance of previous PD. In Section III-B, we will explain why
o1 = 1 is a reasonable choice.

The sum term in (3) is called measurement density function

p1(w) [13]

piow) = > f(w)G(wj. 3). 4)

If «; = 1, then the PD ¢ (w) is identical to the measurement
density function p(w).

In the second iteration, N PWs are drawn from ¢(w).
Usually, N, is smaller than Nj. Because the classifier response
f(w) is large in the regions nearby the positives, most of the
N, PWs lie around the positives [see Fig. 1(b)].
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Algorithm 1 Algorithm of MPW
Input:
Stage number S;
The number N; of particle windows in stage i, i =
1,...,S;
The number N of all candidate windows.
QOutput:
The set Wp of positive particle windows.
1: Initialization
2: Empty the set of positive particle windows: Wp <« .
3: Initialize the PD g(w) by the uniform distribution u(w) =
1/N, i.e., g(w) < 1/N.
4: for s=1to S do

5. Sample N; particle windows from g(w) and put them
into W, ie.,, W= {wy,...,wy}.

6: If f(w)) =1, j=1,...,N;, then Wp = Wp U w;.

7. Update g(w) using the W, and empty W.

8: end for

9: return Wp.

The iteration continues with the new PD in stage i

Ni
giw) = (1 —a)gio 1 (W)+e; Y f(W)G(w;. ). (5)
j=1
If «; = 1, the PD becomes

N;i
qi(w) = pi(w) = gi(w) = > _f(W)G(W;. =) (6)
j=1

which is in fact the employed PD in the experiments in [13].
Algorithm 1 shows the procedure of MPW.

B. Why a; = 1

In this section, we explain why «; = 1 is a reasonable
choice. To the best of our knowledge, we are the first to explain
why «; = 1.

For the sake of simplicity, we assume that the scale is fixed
and there is only one object in the image. For an & x w image,
the number of candidate windows is M = hxw. Let the size of
support region be m < M. In the initialization step, N1 PWs
are drawn from the uniform distribution go(w) = u(w). Then
the probability p that the Ny PWs contain the object is p =
1—(1 - m/M)Nl. Suppose that M = 640 x 480, m = 50, and
N1 = 1000, then p = 0.15. Obviously, if N; is small, it is a
small probability for the PWs to contain the object.

In the later stage, MPW generates a smaller number of PWs,
where (1 — 1) fraction is from the uniform distribution. The
probability that the (1—c«1) fraction of PWs contains the object
is much smaller. So «; is usually set 1.

C. Merits and Limitations

Compared to SW, MPW is able to obtain similar accuracy
at lower computational load [13]. However, it is not clear that
how to optimally select the number m of stages and the number
N; of PWs in each stage. Gualdi ef al. [13] give an empirical
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TABLE I
REPRESENTATIVE VALUES OF N;

Stage number ¢ 1 2 3 4 5
N; 2000 | 1288 | 829 | 534 | 349

Input Image
Specify the number of particle windows

Initialize a dented uniform distribution and a

dented Gaussian distribution
1

v

| Form the proposal distribution |

| Generate a particle window |

| Ambiguous | | Rejected | Accepted
v v
< I Update the dented uniform distribution |

—I Update the dented Gaussian distribution |

Detected Objects

Fig. 2. Basic flowchart of the proposed iPW algorithm.

rule for parameter selection
Ni=N xe D i=1 ... 'm (7)

where Nj is the initial number of PWs. The empirical values
of m and y are 5 and 0.44, respectively. The exponential rule
of (7) makes the number N; decrease from stage to stage.
Representative values of N; are given in Table I.

There are three problems with the MPW algorithm.

1) N has to be large enough so that the N; PWs to
some extent overlap the objects in the image. Otherwise,
N, ..., N, PWs in later stages are hard to detect the
objects. Extremely, if none of the Ny PWs are posi-
tives, then the subsequent N» new PWs sampled from
q1(w) = 25\21 f(w)G(w;, ¥) will not contain any clue
of the location about the objects because G(w;, X) is
meaningless in this case.

2) MPW generates too many unnecessary PWs around the
object and object-like regions. Considering that classi-
fication of these regions is more time-consuming than
obvious nonobject regions in the algorithm of cascade
AdaBoost, generating too many PWs around the object
and object-like regions greatly limits its efficiency.

3) The rule of parameter selection is not guaranteed to be
optimal, because there is no reason to support that the
values in Table I are the best.

IV. IMPROVED PARTICLE WINDOWS

In this section, we propose to improve MPW in order to
detect the objects in an image with a smaller number of PWs.

Fig. 2 shows the basic flowchart of the proposed algorithm.
The main difference between the proposed iPW and MPW
is that iPW employs both accepted and rejected particles to
update the dented uniform distribution and employs ambiguous
particles to update the dented uniform distribution. The dented
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distributions are more powerful than the common nondented
distributions for excluding nonobjects and attracting attentions
on objects. To clearly describe the iPW algorithm, we define
several concepts: rejection PW, acceptance PW, and ambiguity
PW. Then, the concepts of regions of rejection and acceptance
are introduced. Finally, we will describe iPW algorithm based
on these concepts and explain why iPW is superior to MPW.

A. Rejection, Acceptance, and Ambiguity Windows

As stated in Section III, each PW represents a window w =
(x,y, s)T, where x, y, and s are the horizontal position, the
vertical position, and the size of the window, respectively. The
PW can also be expressed as w(x, y, s). In the following part,
we use wW(x,y) to represent w(x, y, s) when s is fixed.

We employ the classifier response f(w) and its low and high
thresholds (i.e., #; and #;) to define rejection, acceptance, and
ambiguity PWs, respectively.

1) A window w is called rejection PW (RPW) if f(w) < 1;.
Rejection PW is the PW which can be definitely
classified as negative class due to its low classifier
response.

2) A window w is called acceptance PW (APW) if
f(w) > ty. Acceptance PW is the PW which can be
safely classified as positive class (object) because of its
high value of classifier response.

3) A window w is called ambiguity PW (ABPW) if #; <
f(w) < t,. One cannot classify ambiguity PW as pos-
itive class because its classifier response is not large
enough. Meanwhile, one cannot classify it as negative
class because its classifier response is not low enough.
We call the set of the ambiguity PWs Wyp.

The threshold ¢, is just the threshold corresponding to the
employed classifier. For a linear SVM classifier f (x) = w'x+b,
the decision (classification) for a sample x is made accord-
ing to whether or not f(x) is larger than zero. Therefore, we
employ zero as the threshold #, (i.e., ;, = 0). Now, we explain
how to select #;, for a cascade classifier. The classifier response
f(x) of a cascade AdaBoost is defined by f(x) = jx/L, where
Jx is the index j of the last stage which makes a positive
classification for x, and L = 10 is the total number of the
stages of the cascade structure. Obviously, a sample x can be
accepted as positive class only if it passes through all the L
stages. In this case, jx = L holds and the classifier response
is fx = jx/L = L/L = 1. Consequently, #, is set to 1. The
threshold #; is experimentally chosen which is to be described
in Section V-A.

B. Regions of Rejection and Acceptance

The description of regions of rejection and acceptance is
graphically supported by Fig. 3. Let the center of a window
w coincide with the center of an object and the size (scale)
of the windows match that of the object very well [Fig. 3(a)].
Then we compute the classifier responses of the neighboring
windows w;. As shown in Fig. 3(b), it is usual that f(w) is
the largest and f(w;) decreases with the distance ||w; — w||.

1) Region of Rejection: If a PW w is considered as a
rejection PW, it can be used to securely reject a set of

(b) (c)

Fig. 3. (a) Original images.
windows. (c) Profile of (b).

(b)

©

@ (d

Fig. 4. Illustration of RoR and RoA. (a) Original image. (b) Classifier
response. (¢) Regions of rejection. (d) Regions of acceptance.

nearby windows. The centers of the nearby windows w; and
w itself are called region of rejection (RoR) of w. We denote
the RoR by Rp

Rer(W) = {x, y| [Iw; — W|| < rg} ®
where the radius rg is the maximum radius

rr = max ||w; — wl|, s.t. f(wi) <1 )

rr is a function of the classifier response f(w).

All the windows belonging to Rg(w) are represented
as Wr(w).

Assumption 1 (Rejection Assumption): If a window w is
classified as a rejection window due to f(w) < #; then all
the windows Wg(w) can be directly rejected (i.e., labeled as
negatives) without the necessity of computing the classifier
response f(w;), w; € Wr(w).

This assumption is illustrated in Fig. 4(c), where the red
part in the image consists of regions of rejection.

2) Region of Acceptance: If a PW w is considered as an
acceptance PW, it can be used to securely accept a set of
nearby windows. The centers of the nearby windows w; and
w itself form region of accept (RoA) of w. Mathematically,
ROA can be denoted by Ry

Ra(w) = {x, y| [Ilwi — w|| < ra} (10)
where the radius r4 is the maximum radius
ra = max ||w; — w|[, s.t. f(w;) > 1. (1)
Wi

Note that constraint is f(w;) > t; instead of f(w;) > t,. A win-
dow w merely satisfying #; > f(W) > 1; is called an ambiguity
PW. But if it is close to an acceptance PW, then the exis-
tence of the acceptance PW is able to eliminate the ambiguity.
Therefore, f(w;) > t; is used for defining RoA. Obviously,

ra with f(w;) > 7 is larger than r4 with f(w;) > #;,.
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u(w) A T (W,
(W, (w,) W, (w,)
W, w,
> W > W
o (a) N (b)
i, (Wik a{w),
(W) W, (wy) We(w,) W,(w,)
W.(ws) W, (w,)
> . Ly
(©) (d)

Fig. 5. Uniform distribution and dented uniform distribution. (a) Uniform
distribution. (b) Dented uniform distribution #ig(w) formed by two rejection
PWs w; and w. (c) Dented uniform distribution 14 (w) formed by two accep-
tance PWs w3 and wy. (d) Mixture dented uniform distribution by combing
the rejection and acceptance PWs.

All the windows belonging to Ry(w) are represented
as W (w).

Assumption 2 (Acceptance Assumption): If a window w is
classified as acceptance window due to f(w) > #, then all
the windows W4 (w) should be directly accepted (i.e., labeled
as positives) without the necessity of computing the classifier
response f(w;), w; € Wa(w).

In Fig. 4(d), the blue part in the image consists of the regions
of acceptance.

C. iPW: Rejection-Based Random Sampling

In this section, we describe iPW based on the concepts
of RPW, APW, and ABPW, and their corresponding RoR
and RoA.

1) Proposal Distribution of iPW: We introduce the motiva-
tion of iPW by first analyzing the properties and limitations
of MPW.

a) Rejection particle windows and dented uniform dis-
tribution ug(w): As discussed in Section III-A, the PWs of
MPW are sampled from ) f(w;)G(w;, £). The contribution
of a PWs w; is determined by its weight f(w;). If f(w;) is
very small, then the w; contributes little to object detection
because subsequent stage will not sample windows from the
corresponding distribution f(w;)G(w;, X). However, if only a
small number of PWs is generated, most of them will have
small weights and the regions of objects will be not sampled.
In this paper, we propose how to make use of these PWs with
small weights (i.e., RPWs) for efficient object detection. One
of the main contributions of the paper is to use rejection PWs
w; and the corresponding Wr(w;) [i.e., the set of windows
insides the region Rg(w;)] to form a dented uniform distribu-
tion ug(w). Let the number of RPWs be Ng, then uig(w) can
be expressed as

0, we{Wrw)U---UWg(wyp)}

(W) = (12)

—, otherwise

ar
where ag satisfies [[[ (1/ag)dxdyds = 1. Fig. 5(b) illustrates
an 1-D dented uniform distribution. Obviously, sampling from
the dented uniform distribution is capable of avoiding drawing
windows from the existing regions of rejection.

b) Acceptance particle window and dented uniform dis-

tribution ua(w): In MPW, when a PW w; (i.e., acceptance PW)
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has large weight f(w;), it has large contribution to the distri-
bution ) f(w;)G(w;, £). Sampling from this updated distri-
bution will generate PWs overlapping or even coinciding with
w;. We think that it is redundant to resample the acceptance
window w; and its close neighbors. To avoid the redundancy,
we propose to employ the acceptance PWs to maintain and
update a dented uniform distribution 14 (W)

0, we{Wawp)U---UWy(wy,)}

up(W) = 13)

—, otherwise
aa

where ay satisfies [[[ (1/aa)dxdyds = 1, and Ny is the number
of acceptance PWs. Fig. 5(c) illustrates a 14 (W).

Obviously, both the rejection and acceptance PWs play role
in excluding regions in uniform distribution. Therefore, as
illustrated in Fig. 5(d), we propose to combine ug(w) and
us(w) into a unified dented uniform distribution u(w) =
Ur(W) x its (W)

we {WrpUWy}
. (14)
, otherwise

0,
uw) =91
a
where a satisfies [[[ (1/a)dxdyds = 1.

c) Ambiguity particle windows and dented gaussian
distribution: Suppose that there are Nyp ambiguity PWSs
in Wy p. With the class label being either positive class or neg-
ative class, the region nearby the ambiguity PW exhibits the
largest uncertainty relative to the rejection PWs and the accep-
tance PWs, so it contains potential clue for detecting objects.
One way to exploit the Nyp ambiguity PWs is directly using
them for modeling a mixture of Gaussian distribution g(w)

Nap

gw) =) f(W)G(w;, %).

i=1

15)

However, our experimental results show that sampling from
g(w) may result in PWs overlapping with the existing rejection
or acceptance PWs. Clearly, it is useless to sample such PWs.
Therefore, to remove the redundancy, we propose to model
a mixture of dented Gaussian distribution g(w) by using the
N4p ambiguity PWs with the help of the existing rejection and
acceptance PWs or equivalently the current dented uniform
distribution (w)

Nap
gw) =Y _fw)[G(wi, ) x (@ x i(w))].

i=1

(16)

Because a x u(w) = 0 in the regions of rejection and accep-
tance and a x u(w) = 1 elsewhere, so multiplying G(w;, X)
with a x u(w) results in a dented Gaussian distribution as is
illustrated in Fig. 6. In Fig. 6(a) two ambiguity PWs w; and
wy in Wyp form a mixture of Gaussian distribution g(w). In
Fig. 6(b), a rejection PW wg and an acceptance PW wy form
a dented uniform distribution z(w). Fig. 6(c) shows the final
dented Gaussian distribution g(w).
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Fig. 6. Dented Gaussian distribution. (a) Gaussian distribution. (b) Dented
uniform distribution. (¢) Mixture of dented Gaussian distribution.

d) Proposal distribution: The PD g(w) of iPW is a
weighted average of the dented uniform distribution #(w) and
mixture of dented Gaussian distribution g(w)

q(w) = Py x u(w) + Pg x g(W)
= P, x u(w)
Nap
+ P Y fW)[Gwi, £) x (a x ii(w)]. (17)
i=1

More generally, the PD g;(w) in stage i is expressed as

qi(W) = Py(i) x itj(w)
Nap
+ Py() Y _f(W)[G(W. =) x (@ x w(w))]. (18)

J=1

The weights P, and P, can be regarded as the posterior
probabilities for w; to be generated from u(w) and g(w),
respectively. That is p(u(w)|w;) = P, and p(g(wW)|w;) = P,
which can be respectively defined by

N +N,
Puzax(l—$>, and P, =1—P,. (19)

In (19), @ € [0, 1] is used for performance adjusting, Ng =
|[Wg| and Ny = |Wy| are the numbers of rejection and
acceptance PWs in Wgr and Wy, respectively.

e) Hypothesis 1: Suppose there are two stages and the
number of PWs in stage 1 and stage 2 are Ny and N,, respec-
tively. In both MPW and iPW, the Ny PWs are generated from
the same uniform distribution. But the Ny PWs in stage 2 of
MPW are sampled from g(w) whereas they are sampled from
g(w) in iPW. Then the probability for N PWs in iPW to
contain the object is larger than that in MPW.

It is trivial to prove Hypothesis 1. If there are a nonzero
number of rejection and/or acceptance PWs, then the search
region is reduced by these PWs [equivalently, the dented uni-
form distribution #;(w)]. Consequently, sampling the same
number of PWs from reduced search domain is better than
from the original large domain in the sense of detecting the
objects. Generally, if both iPW and MPW use the same num-
ber of PWs in each stage, then the probability for iPW to
detect the objects is larger than that of MPW.

f) Each stage consists of one particle window: So far,
we have designed the new PD of iPW. The question is that
how many PWs are to be generated in each stage. In MPW,

Algorithm 2 Basic Algorithm of iPW
Input:
The number N of all candidate windows;
The number N;pw of total particle windows;
High and low classifier thresholds #, and #;, respectively;
Output:
The set Wp of positive particle windows.
Initialization
Empty the sets of rejection, acceptance, and ambiguity par-
ticle windows: Wi <« @&, Wy <« @, and Wyp <« O,
respectively. Let the numbers of rejection, acceptance, and
ambiguity particle windows be Ng = 0, N4 = 0, and
Nyapg = 0.
Initialize the dented uniform and dented Gaussian distribu-
tions by t(w) <— 1/N and g(w) < 0.
Iteration:
for i =1 to N;py do
Py=ax (1- %8y po=1-p,
Sample a particle window w from either u(w) or g(w).
The probabilities for w to be generated from u(w) and
g(w) are P, and P,, respectively.
Put w into Wg, W4, or Wy according to the classifier
response:
If f(w) < t;, then Wr = Wi U Wp(w), Ng < |Wg|;
If f(w) > t,, then Wy = W4 UW4 (W), Ny < |Wy|, and
Wp=WpUw;
If; <f(w) < t, then Wyp = Wyp UWw, Nap < |Wyp|.
Update u(w) and g(w) using the updated Wg, Wy, and
Wyp.
end for
return Wp.

the exponential rule of (7) is used for setting the window num-
ber. But this is far from optimal. Intuitively, we think that it
is optimal if each stage contains one PW. However, it fails
completely for MPW. Throughout the paper, iPW means the
one where each stage has a single new PW. The number of
generated PWs incrementally increases one by one. The first

letter “1i” of “iPW” is named after “incremental.”

2) Basic Algorithm of iPW: The core of iPW is iteratively
sampling PWs from the PD g(w) and updating the sets of
rejection, acceptance, and ambiguity PWs. Because the PD
g(w) is a weighted average of the dented distributions u(w)
and g(w), drawing a PW from g(w) is equivalent to drawing
from either u(w) or g(w) with the probabilities P, and P,,
respectively.

The basic algorithm of iPW is given in Algorithm 2.
The output is Wp (the final set of positive PWs), where
nonmaximum-suppression is applied for final object detection.

In the initialization step, the sets of rejection, acceptance,
and ambiguity PWs are emptied (line 2). The dented uni-
form distribution #(w) is initialized by the uniform distribution
u(w) = 1/N because currently there are no rejection and
acceptance PWs (line 3). The mixture of dented Gaussian dis-
tribution g(w) is initialized to be O because so far there are
no ambiguity PWs to really construct it (line 3).
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(b)

Fig. 7. Characteristics of iPW. Curves of (a) Nipw (i), N{gpw(i), and Nipy, (),
(b) Py (i) and Pg(i), and (c) Ny (i), NR(i), and N (D).

In each iteration, a PW is generated from either u(w) or
g(w) until the predefined number Nipw of PWs are obtained.
According to the value f(w) of classifier response, the gener-
ated PW w is classified as rejection, acceptance, or ambiguity
PW. If w is classified as rejection PW, then all the win-
dows Wgr(w) in the Rg(w) (RoR PW of w) will be remerged
into Wg. If w is classified as acceptance PW, then all the win-
dows Wy (w) in the R4 (W) (RoA PW of w) will be remerged
into Wy4. Otherwise it will be put into the window set Wyp
(see line 9-11).

Finally, based on the updated Wg, Wy, and Wyp, the
dented distributions u(w) and g(w) are updated according
to (14) and (16), respectively.

a) Characteristics of the iPW algorithm: Fig. 7 demon-
strates the characteristics of the proposed iPW algorithm.
Because each stage (iteration) generates a single PW, the
cumulative number Njpw (i) of generated PWs at stage i
is Nipw(i)) = i. Among the Njpw(i) PWs, P,(i) fraction
is sampled from u(w) whereas P,(i) fraction is sampled
from g(w). That is, the number of windows coming from z(w)
is Nipw (i) = Py(i) x Nipw(i), and the number of windows
coming from g(w) is Nﬁ,w(i) ~ Pg(i) x Nipw(i). Fig. 7(a)
shows that most of the generated PWs are from u(w) in
the first several stages. But its fraction [i.e., P,(i)] decreases
as iteration proceeds meanwhile the fraction P, (i) increases
[see Fig. 7(b)].

The above phenomenon is explained as follows. Because the
number of windows that contains objects is very small relative
to the total number of windows in the image, sampling a PW
from the initial distribution u#(w) and the distribution i;(Ww)
in first few stages (e.g., i = 10) will result in rejection PWs
in a very large probability. Consequently, the number Ng(i)
of rejection PWs increases very fast with i, but the number
Na (i) of acceptance PWs increases very slowly [see Fig. 7(c)],
which makes the number N, (i) = N—Ng(i)—N4 (i) of unvis-
ited windows be very large for small i. According to (19),
P,(i) > Pg(i). But as iteration proceeds, Ng(i) and N (i)
increase monotonically making P, decrease.

Because Ng(i) and N4 (i) increase monotonically with i,
so it can pay more attention to the other unvisited potential
areas. This characteristic makes iPW not to generate too many
unnecessary PWs around the object and object-like regions.
It is known that classification of these regions is very time-
consuming if cascade AdaBoost is adopted. This is one of the
advantages of iPW over MPW.

3) Semi-Incremental Version of iPW: The purely incremen-
tal Algorithm 2 has some problems. First, in the first few
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Algorithm 3 Semi-Incremental Version of iPW
Input:
The number N of all candidate windows;
The number N;pwy of total particle windows;
High and low classifier thresholds 7, and #;, respectively;
The threshold number N{. for the number of ambiguity
particle windows
Output:
The set Wp of positive particle windows.
Initialization
Empty the sets of rejection, acceptance, and ambiguity par-
ticle windows: Wi <« @&, Wy <« &, and Wy <« O,
respectively. Let the numbers of rejection, acceptance, and
ambiguity particle windows be N = 0, Ny = 0, and
Nypg = 0.
Initialize the dented uniform and dented Gaussian distribu-
tions by t(w) <— 1/N and g(w) < 0.
Initialize the binary indicator b = 0 and the number of
cumulative particle windows N¢c = 0.
Iteration:
for i =1 to N;pw do
If b=0, then P, <~ 1 and P, <- 0, else P, =a x (1 —
Natlk) and Py = 1 — P,
Sample a particle window w from either u(w) or g(w)
with P, and P,, respectively. Nc = N¢ + 1.
Put w into Wg, W4, or Wyp according to the classifier
response:
If f(w) < t;, then Wr = Wi U Wg(wW), Ng < |Wg|;
If f(w) > 1, then Wy = W4 UW4(W), Ny < |Wy|, and
Wp=WpUw,
Ify <f(w) < t, then Wyp = Wap Uw, Nap < |Wypl.
Update u(w) using the updated Wg and Wy4.
If Nc = N}, then b = 1, update g(w), Wyp <« @,
Nz = Né x eV, and Nc = 0.
end for
return Wp.

iterations the number of PWs is very small, so Nap(i) in it
is very small. In this case, g(w) cannot reflect the probabil-
ity distribution of the whole image. In order to have enough
ambiguity particles to represent the probability distribution, the
variables N{. and b are introduced in Algorithm 3. Through
them, the PWs are forcibly sampled from u(w) in first sev-
eral stages until a certain number N{. of PWs, especially the
ambiguity PWs, is available. By this way, it can reflect the
probability of the whole image very well. Second, if a PW is
sampled from g(w) and then g(w) is immediately updated, the
latter sampled PWs will be heavily centered at regions hav-
ing strongest classifier responses. Namely, the regions with
strongest responses will be enhanced more and more, but the
regions with the relative low responses where object exists
will be ignored. So instead of updating g(w) per PW, it is
wise to update g(w) until there is a certain number of PWs
(line 14). To overcome the above problems, a semi-incremental
version of iPW (i.e., Algorithm 3) is proposed. The main
differences from Algorithm 2 are written in italic. We call
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Algorithm 4 Draw a PW w From u(w) [or g(w)]
Input:
The sets of rejection and acceptance particle windows: Wgr
and Wy, respectively;
The maximum iteration number Npax;
Qutput:
a particle window w.
for n = 1 to Npyax do
Draw a window w,, from the uniform distribution u(w)
(or g(w)).
If w¢ Wg and w ¢ Wy, then w = w,, and break.
end for
return w.

it semi-incremental algorithm because g(w) is updated once
there is a certain number N of PWs, though each stage has
one PW and the rejection regions are updated in a purely
incremental manner.

4) Efficiently Sampling From Dented Uniform and
Gaussian Distributions: As can be seen from (1), the com-
putation time of an object detection algorithm is composed
of the time of window generation, feature extraction, and
classification. So it is important for iPW to efficiently
generating PWs from u(w) and g(w).

To efficiently draw a PW from u(w), we, in Algorithm 4,
propose to iteratively draw a window from standard uniform
distribution u#(w) until it does not belong to Wg or Wy.
Similarly, to efficiently draw a PW from g(w), in Algorithm 4
we propose to iteratively draw a window from standard mix-
ture of Gaussian distribution g(w) until it does not coincide
with the elements of Wr and Wy. As one can design algo-
rithm for checking w € Wgr and w € W4 in an extremely
efficient manner, the computation time of window generation
in iPW is negligible. The maximum iterations number Npax
is used for avoiding infinite loops.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

Experiments are carried out on the National de Recherche
en Informatique et en Automatique (INRIA) pedestrian dataset
and the MIT-CMU face dataset to compare the proposed
iPW with MPW and SW. To detect pedestrians in INRIA
dataset, HOG and SVM [11] are used for features and clas-
sifier, respectively. Haar-like features and cascade AdaBoost
classifier are employed for detecting faces in the MIT-CMU
dataset [38]. Note that the proposed algorithm is very gen-
eral and hence can be used for other types of features
and classifiers. The source code is publicly accessible at
http://yanweipang.com/papers.

Intermediate results are also given to show the rationality
of the assumptions mentioned above.

B. Results on the INRIA Pedestrian Database

In the INRIA dataset, the positive training set consists of
1208 normalized pedestrian windows, and the negative training
set contains a mass of windows sampled from 1218 big and

45 40 35 30 25 20 15 10 00 o1 0z 03
The threshold t; The thestold £,

(a) (b)

Fig. 8. Detection rate varies with #;. (a) SVM classifier on the INRIA dataset.
(b) AdaBoost classifier on the MIT-CMU dataset.

nonpedestrian images. The image size of the training window
is 128 x 64 pixels, from which a 3780-dimensioned HOG
feature vector is extracted. A linear SVM classifier f(w) is
obtained from the training sets.

As can be seen from Algorithms 2 and 3, the explicit param-
eters of iPW are 1, 1, N(”}, o, and y. In our experiments,
tj) = —2.0 and 7, = O are used. The optimal value of #; is
chosen according to Fig. 8(a) which shows how the detection
rate varies with #; when the FPPI = 0.1. The optimal # is the
one with the largest detection rate. If # is too small, then the
rejection ability of the algorithm becomes weak resulting in
too large area of unvisited regions. It’s difficult for the lim-
ited number of particles to efficiently detect the objects from
the large unvisited regions. If # is too large, then the regions
containing objects may be mistakenly rejected, because rejec-
tion and acceptance PWs are defined by not only # and 13,
but also rg and r4. So the parameters also include rg and r4.
In (8) and (10), the regions of rejection and acceptance are cir-
cular and isotropic whose size are determined by rg and r4,
respectively. However, because the height £ of the pedestrian
is larger than its width w, it is more reasonable that the RoR
and acceptance is rectangle. The size of the rectangle is rep-
resented as ri x rg. Likewise, the size of RoA is represented
as rj x ry. As stated in Section IV-B, rj and ry, depend on
the classifier response f(w). In our experiments, 5, and r%
are quantized to nine intervals according to the value of f(w).
re and r’,ye also depend on the object width w and height &
in question. Solid experiments are conducted to find rule for
setting 1, and r“,ve according to f(w), h, and w. Table II shows
how to choose r, and r}é. Note that 7 = 128 and w = 64. In
Algorithm 3, we only use 5 and r’Ive when f(w) belongs to the
first four intervals. ry/w and rj/h are set to 0.16 and 0.16,
respectively. N = 0.5Njpw is employed in the initialization
step of Algorithm 3. The parameters « and y are set 0.2 and
0.7, respectively.

It is noted that regions of rejection and acceptance are
cubic when scale factor is considered. The testing image is
zoomed out by a factor 1/1.05. If a window is rejected at
current scale s, which belongs to the interval Niperval, then
the windows in adjacent scales s from s x 1.053Nneral
to 5/1.053 Mmeral  with the size 0.8%r x 0.8%r; (A =
| logi{ 8; |) are also rejected. If a window is accepted at current
scale s, then the windows in adjacent scales s" from s X 1.053
to 5/1.05% with the size 0.8%7% x 0.847) (A = |log}/ss |) are
also accepted.
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~ TABLEII
SET r}% AND rlye ACCORDING TO f(W), h, AND w

Ninterval 0 1 2 3 4 5 6 7 8
f(w) [inf, -4.0] | [-4.0, -3.5] | [-3.5,-3.0] | [-3.0,-2.5] | [-2.5, 2.0] | [-2.0, -1.5] | [-1.5, -1.0] | [-1.0, -0.5] | [-0.5, 0.0]
2w 0.22 0.18 0.16 0.12 0.10 0.06 0.06 0.02 0.02
% /h 0.22 0.18 0.16 0.12 0.10 0.06 0.06 0.02 0.02

TABLE III

DETECTION RATES VARY WITH THE NUMBER N
OF PWs WHEN FPPI = 0.1

N 2367 | 7100 | 11833 | 16567 | 21300 | 26033
MPW | 0.469 | 0.594 | 0.614 | 0.623 0.625 0.627
iPW | 0561 | 0.620 | 0.625 0.627 0.628 | 0.630

(b) (d)

Fig. 9. Detection results of iPW and MPW under 500 PWs. PWs of the
last stage in (a) MPW and (c) iPW. Final detection result of (b) MPW and
(d) iPW.

Table III compares iPW with MPW in terms of detec-
tion rate when they generate and examine the same number
N of PWs. When N = 2367, the detection rate of iPW is
0.561 whereas the detection rate of MPW is 0.469, meaning
that the detection rate of iPW is 9.2% higher than that of
MPW. As N decreases, the advantage of iPW becomes more
remarkable.

To further see the advantage of iPW, we show in Fig. 9 a
specific detection result of iPW and MPW when N is as small
as 500. The red dots in Fig. 9(a) indicate the centers of PWs in
the last stage of MPW. Fig. 9(b) gives the final detection result
by a nonmaximum suppression algorithm, where the man is
detected whereas the woman is missing. The ambiguity PWs
of the last stage of iPW are shown in Fig. 9(c) and the final
detection result is shown in Fig. 9(d). On the one hand, Fig. 9
demonstrates that MPW fails to detect the woman when a
small number of PWs is sampled whereas iPW is capable to
localize both the woman and man. iPW generates the PWs one
by one. If the generated PW has a lower classifier response,
then the PW (i.e., rejection PW) will tell the next PW not
to sample from it and its neighboring region (i.e., RoR). As
a result, other regions including the object will have larger
possibility to be investigated. By contrast, MPW does not have
the rejection mechanism. When the current PWs do not contain
clues of the objects, it is almost impossible for the latter PWs
to capture the location information of the objects.

On the other hand, comparing Fig. 9(a) and (c), one can
observe that MPW generates too many unnecessary PWs
around the man, whereas iPW can properly assign the lim-
ited number of PWs to both the man region and the woman
region. This phenomenon can be more clearly seen from

(@ (b) (© (d)

© ® (2 (h)

Fig. 10. MPW generates too many unnecessary PWs around the pedestrian
regions. Updating process of PWs in (a)-(c) MPW and (e)—(g) iPW. Final
detection result of (d) MPW and (h) iPW.
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Fig. 11. Variations of NMPW, NMPW NPW ang NiPW,

Fig. 10. Fig. 10(a)—(c) gives the updating process of PWs
in MPW, Fig. 10(d) shows that MPW is able to detect two
persons if there is enough number of PWs in the initialization.
Fig. 10(e)—(g) gives the updating process of PWs in iPW,
Fig. 10(h) shows that iPW detect even four pedestrians,
including a false positive.

Fig. 11 shows how NPV (i) = [Wg| + [W,4| and NPV (i) =
N — |Wg| —|Wy| vary with the number i of generated PWs of
iPW algorithm and how NMPW (i) =i and NMPW (i) = N — i
vary with i of MPW algorithm. One can see that the number
NPW (i) of visited windows of iPW grows much faster than
that of MPW. Equivalently, the number N;PW(i) of unvisited
windows of iPW drops much faster than that of MPW. So
generating the same number of PWs, iPW can classify (reject
or accept) more windows (regions) than MPW. This explains
why iPW obtains better detection accuracy than MPW when
they use the same number of PWs.

If a smaller number of PWs is generated, can iPW achieve
the same detection accuracy as MPW? If it is true, then one
can conclude that iPW is more efficient than MPW. To answer
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TABLE IV
EFFICIENCY OF SW, MPW, AND IPW ON INRIA

Nsw | Nupw | Nipw | Nipw /Nupw | Tvupw/Tirw | Tsw/Tupw | Tsw/Tipw
47335 | 14200 7099 0.49 1.80 2.19 3.94
TABLE V
SET rg ACCORDING TO f(W) AND h
f(w) | 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
rr/h | 0.100 | 0.090 | 0.060 | 0.050 | 0.050 | 0.040 | 0.040 | 0.030 | 0.040 | 0.030
. ‘ TABLE VI
g:g: —_—sw [] DETECTION RATES VARY WITH THE NUMBER N
ol o OF PWs WHEN FPPI = 0.1
0.5F
£ N | 25066 | 75200 | 125333 | 175466 | 225600 | 275733
A MPW | 0583 | 0758 | 0.788 | 0806 | 0.811 0.812
o2 iPW | 0676 | 0792 | 0806 | 0813 | 0816 | 0819

0.1 .
10~ 10° 10
FPPI (False Positives Per Image)

Fig. 12. DET curves comparing iPW with MPW and SW on INRIA.

this question, SW is used as a baseline. It scans the image with
the pixel stride 8 and scaling factor 1.05, and the number of
scanned windows is denoted by Nsw. Nsw varies with the size
of testing image. For a 480 x 640 image, Nsw is 47 335. Let
MPW generate Nyipw = 0.3 X Nsw PWs and iPW generate
Nipw = 0.15 x Nsw PWs. The resulting curves of miss rate
versus false positive per image (FPPI) are plotted in Fig. 12. It
is seen that these different window generation algorithms have
very close operating points. For example, the miss rates of SW,
MPW, and iPW are 23.4%, 22.8%, and 23.4%, respectively
when FPPI = 1. At these operating points, the average values
of Nsw, Nmpw, and Njpw in INRIA are shown in Table IV.
Table IV shows that to achieve the same operating point SW
has to investigate 47335 windows whereas it is enough for
iPW to generate and check 7099 windows. The detection time
Tsw of SW is 3.94 times of that (i.e., Tipw) of iPW. Moreover,
Nipw /Nvpw = 0.499 means that using half of PWs iPW can
obtain the same detection rate as MPW. The ratio of detection
time Typw of MPW and detection time Tipw of iPW is 1.8,
implying much higher efficiency of iPW than MPW.

C. Results on the MIT-CMU Face Database

In Section V-B, the feature and classifier are HOG and
SVM, respectively. In this section, we evaluate iPW by using
Haar-like features and cascade AdaBoost classifier for detect-
ing faces in the standard MIT-CMU face database. The testing
set consists of 125 images with 483 frontal faces. A ten lay-
ers cascade model is learned from 20 000 normalized 20 x 20
small face images and 5000 nonface large negative images.

Because the range of response of cascade AdaBoost is quite
different from SVM, the low and high classifier thresholds
t; and 1, are also different from those in Section V-B. The
classifier response f(w) of a cascade AdaBoost is defined
by f(w) = jw/L, where jy is the index j of the last stage
which provides a positive classification for w, and L =

10 is total number of the stages of the cascade structure.
The optimal value of #; is chosen according to Fig. 8(b).
Specifically, #; = 0.2 and 1, = 1.0 are adopted. Consequently,
the length rg and r4 of regions of rejection and acceptance
should be tuned. rg and r4 are related to f(w), h, and w. But
the detection window is square, so i = w. The relationship
between rg, f(w), and h is given in Table V, where rg/h
monotonously decreases with f(w). In Algorithm 3, we only
use the rg when f(w) belongs to the first two values. rj/w
and rz/h are set to 0.1 and 0.1, respectively. NZ‘ = 0.5Njpw
is employed in the initialization step of Algorithm 3. The
parameters « and y are set 0.2 and 0.7, respectively.

Similar to Section V-B, regions of rejection and acceptance
are cubic. The testing image is zoomed out by a factor 1/1.15.
If a window is rejected at current scale s, the windows in
neighboring scales s” from s X 1.15 to s/1.15 with the size
0547 x 0.547 (A = |log}/¥5|) form the W of rejection
PWs. If a window is accepted at current scale s, then the
windows in adjacent scales s’ from 5% 1.15 to s/1.15 with the
size 0.5%rF x 0.5%r) (A = |logi/i5 ) are also accepted.

With the above parameters, iPW is applied to 125 testing
images and detection rates corresponding to different number
N of PWs are shown in Table VI. Table VI also gives the
detection rates of MPW. It is observed that iPW has almost
higher detection rate in each case. When the number of PWs is
small, the advantage of iPW is more remarkable. For example,
when N = 25066, the detection rate of iPW is 9.3% higher
than that of MPW.

Fig. 13(b) and (d) respectively shows the detection results
of MPW and iPW when the number of PWs is limited to
5000. Clearly, iPW is capable of detecting the two faces in
the testing image whereas MPW does not detect any face at
all. Fig. 13(a) and (c) shows the centers of the PWs generated
in the last stage of MPW and iPW, respectively.

Fig. 14(a)~(d) shows that when the number of PWs of
MPW is upto 20000, MPW can detect the two faces in
the testing image. But MPW assigns too many PWs around
object and object-like regions. The iterations of iPW are
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TABLE VII
EFFICIENCY OF SW, MPW, AND IPW ON MIT-CMU

Nsw | Nupw | Nipw | Nipw /Nyupw

Typw/Tipw | Tsw/Tvupw | Tsw/Tipw

501334 125333 65173 0.520

1.50 1.15 1.73

(2) (b) (©) (d)
Fig. 13. Detection results of iPW and MPW under 5000 PWs. PWs of the

last stage in (a) MPW and (c) iPW. Final detection result of (b) MPW and
(d) iPW.

© 0 @ (h)

Fig. 14. MPW generates too many unnecessary PWs around the face regions.
(a)—(c) Show the updating process of PWs. (e)—(g) Show the updating process
of iPW. (d) and (h) are the final detection result of MPW and iPW, respectively.

shown in Fig. 14(e)-(h) which assign proper number of
PWs around object regions. The intuition is that if there
are a few acceptance PWs around the object, then it is no
longer necessary to generate additional PWs around the object.
Instead, the opportunity should be given to check other region.

Finally, experiments are conducted to see whether iPW
can achieve comparable face detection results as MPW if
a smaller number of PWs is used. As in pedestrian detec-
tion experiments, SW is also used as baseline. It slides the
testing image with pixel stride 2 and scale factor 1.25. As
a result, SW generates 621816 and 3941097 windows for
454 x 628 and 1024 x 1280 images, respectively. Limit the
numbers of PWs in MPW and iPW to Nypw = 0.25 x Ngw
and Njpw = 0.13 x Ngsw, respectively. The resulting ROC
curves of SW, MPW, and iPW are shown in Fig. 15. It is seen
from Fig. 15 that SW is almost consistently inferior to both
MPW and iPW. Even only 0.13 fraction of windows are used,
iPW can obtain higher detection rates than SW. Moreover, one
can see (Fig. 15) that the miss rates of iPW are almost identical
to that of MPW.

Table VII shows the testing time Tsw of SW is 1.15 times and
1.73 times of MPW and iPW, respectively, when the number of
generated windows of SW, MPW, and iPW are 501 334, 125 333,
and 65 173. The miss rates of the three algorithms correspond
to the point in Fig. 15 with FPPI = 1. The speedup effect in

Miss Rate

01

FPPI (False Positives Per Image)

Fig. 15. DET curves comparing iPW with MPW and SW on MIT-CMU.

face detection is not significant as pedestrian detection. The
reason is that the number of HOG features is fixed in pedestrian
detection but the number of Haar-like features varies with the
response of cascade classifier.

VI. CONCLUSION

In this paper, we have proposed a method to signifi-
cantly improve MPW. The PD of MPW mainly relies on the
regions of support. In contrast, the proposed iPW and semi-
incremental version of iPW algorithms construct the PD based
on the proposed concepts of rejection, acceptance, and ambi-
guity PWs which are defined by low and high thresholds
of the classifier response. Both the rejection and acceptance
PWs are used for reducing the search space. The existence
of the objects is reflected by the acceptance PWs and the
main clue of object locations is contained in ambiguity PWs.
Specifically, the proposed PD is a weighted average of a dented
uniform distribution and a dented Gaussian distribution which
are dented by the rejection and acceptance PWs. An important
characteristic of the proposed algorithms is that single PW is
generated in each stage, which makes iPW to run in an incre-
mental or semi-incremental manner. Experimental results have
shown that iPW is about two times more efficient than MPW.
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