
3018 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 12, DECEMBER 2016

Simulating Kinect Infrared and Depth Images
Michael J. Landau, Member, IEEE, Benjamin Y. Choo, Member, IEEE,

and Peter A. Beling, Member, IEEE

Abstract—With the emergence of the Microsoft Kinect sensor,
many developer communities and research groups have found
countless uses and have already published a wide variety of
papers that utilize the raw depth images for their specific goals.
New methods and applications that use the device generally
require an appropriately large ensemble of data sets with accom-
panying ground truth for testing purposes, as well as accurate
models that account for the various systematic and stochastic
contributors to Kinect errors. Current error models, however,
overlook the intermediate infrared (IR) images that directly con-
tribute to noisy depth estimates. We, therefore, propose a high
fidelity Kinect IR and depth image predictor and simulator that
models the physics of the transmitter/receiver system, unique
IR dot pattern, disparity/depth processing technology, and ran-
dom intensity speckle and IR noise in the detectors. The model
accounts for important characteristics of Kinect’s stereo trian-
gulation system, including depth shadowing, IR dot splitting,
spreading, and occlusions, correlation-based disparity estimation
between windows of measured and reference IR images, and
subpixel refinement. Results show that the simulator accurately
produces axial depth error from imaged flat surfaces with vari-
ous tilt angles, as well as the bias and standard lateral error of
an object’s horizontal and vertical edge.

Index Terms—Computer-aided design (CAD), infrared (IR) dot
pattern, Microsoft Kinect, simulation, speckle noise, structured-
light 3-D scanner.

I. INTRODUCTION

THE MICROSOFT Kinect has become the most popular
and widely used consumer-grade depth sensor for research

purposes, which is apparent in the vast number of publications
with Kinect data, as well as the total sales surpassing 24 mil-
lion units. There are also several well-established developer
communities sharing resources that involve the use of Kinect,
such as the robot operating system and the Microsoft developer
network. And since the sensor has a simple and inexpensive
optical design, the cost of Kinect has been driven down so
much that nearly any research group across many disciplines
can have access to a reliable and fairly accurate depth sensor
for a variety of applications. These applications include, but are

Manuscript received April 7, 2015; revised August 17, 2015; accepted
October 11, 2015. Date of publication November 13, 2015; date of cur-
rent version November 15, 2016. This paper was recommended by Associate
Editor L. Shao.

The authors are with the Department of Systems and Information
Engineering, University of Virginia, Charlottesville, VA 22903 USA (e-mail:
mjl5b@virginia.edu; byc6j@virginia.edu; pb3a@virginia.edu).

This paper has supplementary downloadable material provided by the
author and made available on MATLAB Central’s File Exchange Resource
Center, which is titled 〈Kinect Infrared (IR) and Depth Image Simulator〉.
The material includes code for the Kinect simulator as well as a demo.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2015.2494877

not limited to, using the sequence of human poses for activity
recognition [1], scene classification [2], autonomously navigat-
ing [3] or reconstructing [4] environments with an unknown
layout, and 3-D object [5] and pose estimation [6].

Any application not involving the estimation of human
pose will generally involve inferencing attributes of inani-
mate and rigid objects that can potentially be represented
by computer-aided designs (CADs). Since Microsoft only
provides tracking software for human pose in its software
development kit (SDK), researchers must rely on utilizing the
raw depth images of the objects produced from the Kinect
device [7]. Thus, in order to test the effectiveness of a new
system that processes output depth data streams, an appro-
priately large ensemble of experiments with accompanying
ground truth is required. This is, however, not always fea-
sible, or at least proves to be an arduous task that may
require the assistance of imprecise or expensive tools to gather
the imperfect “truthing” data. There are also extensive data
sets of objects recorded by the Kinect sensor that are made
available online to avoid the tedium of estimating a ground
truth, such as the depth data sets provided by Berkley, New
York University (NYU), Princeton, and the University of
Washington (UW).1 These data sets only cover a few specific
objects and scenes, however, and as such, users are limited to
testing their model on depth images not necessarily related to
their specific goals. Furthermore, the online resources listed as
well as many other available data sets do not include a model
of the recorded object, and the user is left to find a CAD model
of a related object close in shape and size, or use a 3-D object
scanning method [8] to generate a less than perfect model.

These limitations motivate the need for a practical, reli-
able, and extensible Kinect infrared (IR) and depth image
simulator with included built-in speckle and noise models.
Several general depth sensor simulators already exist, such as
the Georgia Tech LADAR simulation developed by Dixon,2

which allows the user to modify the sensor specifications and
construct a scene with CAD models. However, the Kinect
sensor implements specialized Light Coding technology in
accordance with a unique transmit IR dot pattern, and there-
fore estimates noisy depth images atypical to that of any
other structured-light or range imaging sensor. The Microsoft
robotics developer studio (RDS) provides a simulated Kinect
sensor that estimates depth and RGB images within the lim-
ited depth range of the real Kinect. The RDS software focuses

1See: Berkley 〈kinectdata.com〉; NYU 〈cs.nyu.edu/~silberman〉; Princeton
〈vision.princeton.edu〉; and UW 〈rgbd-dataset.cs.washington.edu〉

2J. H. Dixon, LADAR Simulator User Manual, 2007.
〈jdixon@ece.gatech.edu〉

2168-2267 c© 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LANDAU et al.: SIMULATING KINECT IR AND DEPTH IMAGES 3019

mainly on simulating the sensor on a mobile platform, though,
and lacks the granularity of Kinect’s inherent depth image
noise and error characteristics. More specifically, synthetic
sequences are generated by simply rendering ideal images
of 3-D objects and adding homogeneous Gaussian noise.
Therefore, this paper’s focus is on a high fidelity Kinect sim-
ulator that constructs noisy IR and depth images of user sup-
plied CAD models by modeling the physics of the transmit and
receive optics, the unique dot pattern, and by closely following
the actual methods and algorithms that the real Kinect sensor
employs.

Our IR and depth image simulators not only involve newly
constructed models, but also take advantage of methods and
tools previously developed from other projects, and couple
them with well-defined Kinect sensor mechanics and speci-
fications. For instance, we make use of an idealized bitmap
representation of the Kinect dot pattern [9] as well as an opti-
mized ray casting method [10] to simulate line-of-sight vectors
originating from Kinect’s IR laser transmitter. By modifying
these tools, we are able to simulate IR dot splitting and spread-
ing, as well as random intensity variation and IR noise. These
idiosyncrasies distort the measured pattern and contribute to
Kinect’s unique error composition, and are, therefore, a nec-
essary inclusion for a fidelitous simulator. Also, since the IR
image is received by a sensor offset by a known baseline
distance from the transmitter to perform stereo triangulation,
we can in effect emulate dot occlusions in the IR image
and depth image shadowing that results from the surfaces of
objects separated at a distance from its background. Moreover,
since the embedded Light Coding technology implements a
correlation-based method to match local sections of the sensed
dot pattern to templates from a reference image, a match is
not well-defined when part of the IR pattern is occluded or
when segments of the pattern are horizontally offset. This
leads to erratic and inhomogeneous depth estimation errors
that cannot be faithfully modeled by constructed point cloud
covariances that bypass IR imaging and subsequent dispar-
ity/depth processing. More specifically, depth estimation error
of a measured Kinect image is largely dependent on the orien-
tation of the object and surrounding scene, where error tends
to grow larger for pixels that sense near an object edge or
tilted surface.

The rest of this paper is structured as follows. Section II-A
provides a thorough review of the Kinect hardware and soft-
ware specifications, and Section II-B gives an overview of
several attempts to generate empirical models that estimate
axial and lateral error. We then construct a set of empiri-
cal models for random intensity speckle of the dots and IR
noise in the detectors in Section III. Together, the ensem-
ble of information is used to construct the proposed Kinect
simulator in Section IV, which models disparity estimation to
construct depth images from simulated IR images. It should
be noted that the simulator focuses on first principles, and
therefore does not model post-processing filters to improve
depth estimates. Example results of the simulator are then
presented in Section V, which are compared to experimen-
tal data and existing error models to validate the accuracy.
Finally, we suggest possible applications and directions for

Fig. 1. The Kinect transmitter and receiver position and orientation are
displayed, as well as the minimum Zmin and maximum Zmax operational
depths. The sensor coordinate system is collocated with the receiver coordi-
nate system, and the X-axis XS and Z-axis ZS of the sensor coordinate system
are, respectively, collinear and parallel with the corresponding transmitter
coordinate system axes.

future work in Section VI, and summarize our findings in
Section VII.

II. BACKGROUND LITERATURE

A. Background of the Microsoft Kinect Sensor Mechanics

In this section, we provide a detailed review of the Microsoft
Kinect sensor’s underlying mechanisms and performance char-
acteristics based on existing literature, which in turn motivates
the design for our constructed simulation models. When the
Kinect was first released on November 2010, it was ini-
tially intended as a human gesture recognition controller in
the gaming context. Since then, because it is small-sized
and commodity-priced, its usefulness as a 3-D depth sensor
was rapidly recognized within many third party applications,
and on February 2012, a version for Windows was released.
Before the initial release, PrimeSense—the company that con-
ceived the hardware design and camera sensor chip used in
the Kinect—first published a patent [11] for the design of a
system allowing for the capability of real-time object recon-
struction by depth mapping with projected dot patterns. Many
additional patents [12]–[16] were then issued and made avail-
able to the public domain that detail several structured light
and projection system designs to triangulate and estimate a
scene’s depth data. However, much of the sensor implemen-
tation details were still left undisclosed. In the past several
years, great lengths have been taken to understand the device3

in order to surmise exactly how depth images are generated
using PrimeSense’s patented Light Coding technology.

The Kinect system makes use of two devices to
construct depth images: 1) a class 1M IR laser and
2) an Aptina MT9M001 complementary metal-oxide-
semiconductor (CMOS) sensor [17], [18], which are coplanar
and aligned to have parallel optical axes, and are offset by

3See: blog sites 〈hackaday.com〉 and 〈futurepicture.org〉 for multiple
examples of Kinect “hacking”

3020 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 12, DECEMBER 2016

Fig. 2. Dot patterns of a Kinect for Windows (a) and two Kinects for Xbox
(b) and (c) are projected on a flat wall from a distance of 1000 mm. Note
that the projection of each pattern is similar, and related by a 3-D rotation
depending on the orientation of the Kinect diffuser installation. The instal-
lation variability can clearly be observed from differences in the bright dot
locations (yellow stars), which differ by an average distance of 10 pixels. Also
displayed in (d) is the idealized binary replication of the Kinect dot pattern
[9], which was used in this project to simulate IR images.

a baseline distance of 75 mm [19]. The laser projector and
monochrome IR image sensor both work in stereo as a matri-
cial active triangulation system where a pseudorandom IR dot
pattern is transmitted and received, respectively. According
to [20] and stated as an assumption in [12], the origin of
the 3-D sensor coordinate system is centered exactly over the
position of the receiver’s image capture assembly with coor-
dinates (0, 0, 0) mm, which places the center of the optical
axes of transmit illumination at coordinates (−75, 0, 0) mm.
In this regard, the terms receiver coordinate system and sen-
sor coordinate system are used interchangeably. The Kinect for
Windows v1 SDK [21] reports the angular field of view (FOV)
of the sensor as 58.5◦ and 45.6◦ along the horizontal and
vertical axes, respectively. The SDK also reports the default
operational depth range between 800 and 4000 mm, though
the hardware can be switched to near mode, which provides
a range of 500 and 3000 mm. For a visual depiction of the
transmitter and receiver position, orientation, and FOV, refer
to Fig. 1.

The laser projection system, referred to as the transmitter,
contains the illumination unit that produces a coherent light
source, and a diffuser unit that generates and propagates a
pseudorandom, uncorrelated dot pattern onto a region in space.
The illumination unit consists of an IR light-emitting diode
which generates a beam in a relatively narrow band of wave-
lengths [14]. The diffuser unit contains two diffractive optical
elements (DOEs) arranged in series, which are comprised
transparencies that act as active optical surfaces to diffract
the input IR beam [15], [16]. A positive image of the dot pat-
tern on the first DOE generates the uncorrelated distribution
of bright and dark spots so that the auto-correlation of local

patterns on the transverse plane is minimal. The second DOE
then tiles the diffracted beam into a 3×3 grid of output beams
with a specified fan-out angle to at least partially cover the
region of space within the FOV of the imaging unit. According
to [15], since the receiver’s FOV is within a certain constraint,
the second DOE is constructed to provide nearly perfect tiling
with minimal overlap and/or gaps of the transmitted dot pat-
tern. The diffraction pattern in the center tile suffers slight
barrel distortion, however, and the outer tiles suffer significant
pincushion distortion [16]. It should be noted that while the
dot pattern is common to all Kinect sensors, small discrepan-
cies in the factory installed diffuser unit result in differences
between the projected patterns of each sensor when placed at
the same position and orientation [Figs. 2(a)–(c)]. The yellow
stars in Fig. 2 represent bright dots on the projected surface,
which result from an excess of IR light that is passed through
and propagated by the system—this is a side effect of the
zero-order beam problem [13].

The laser imaging system, referred to as the receiver,
contains the CMOS active-pixel digital sensor with
1280 (columns) × 1024 (rows) of active pixels and a
10-bit analog-to-digital converter (ADC) on-chip, which
records images at 30 frames/s [22]. A bandpass filter posi-
tioned near the lens on the receiver assembly allows light only
in the IR spectrum to be detected, while filtering out most
of the ambient light that would otherwise reduce the contrast
of the image [15]. Accordingly, each photoconductor in the
sensing array receives different sections of the transmitted
IR dot pattern, where photons are interpreted as a current
or voltage drop [23], and quantized into integer intensity
values between 1 and 210 = 1024 for each pixel on the
imaging platform. Though the size of the dots increases with
an increase in depth, the ratio remains constant, and for ideal
surfaces the average dot size is designed to remain at least
two pixels wide [11]. It is worth noting here that prior to
depth mapping, Kinect uses 2 × 2 binning to downsample
the IR image to 640 × 512 pixels, where a transmit dot
then fills a single pixel on an ideal surface. Also, since the
propagated beam has a relatively large depth of focus, high
contrast IR images are maintained over the operational range
of depths [13]. A predetermined threshold presumably filters
and converts the IR intensity images to binary images to
allow for faster processing.

Since the pseudorandom dot pattern is not time varying and
does not vary along the Z-axis, Reichinger was able to con-
struct a single image of an idealized binary replication by
capturing the IR pattern with a camera [9]. The term idealized
is used to imply a theoretically perfect factory installation of
the diffuser unit that generates and propagates the dot pattern,
and as such does not portray a 3-D rotation when projected
on a flat wall. Moreover, it is assumed that the tiled pattern
forms a perfect 3 × 3 grid of an initially generated 211 × 165
subpattern of bright and dark spots, where nonlinear distor-
tions are removed. Also, for simplicity, the shape and size
of each dot fills a single cell (pixel) of the constructed grid.
The final image [Fig. 2(d)] has a resolution of 633 × 495,
where 3861/34, 815 = 11.09% of the pixels contain a dot.
This is consistent with the low duty cycle requirement enforced

LANDAU et al.: SIMULATING KINECT IR AND DEPTH IMAGES 3021

TABLE I
UNIQUENESS TEST FROM CORRELATION WINDOWS

WITH VARYING ROWS (R) AND COLUMNS (C)

in [15], where the fraction of bright spots should not exceed
the (1/10)th area of the total projected pattern in order to have
good performance in the depth mapping process.

All of the defining properties of Kinect’s spatially fixed dot
pattern allow for reduced optical and computational complex-
ity for object reconstruction [11]. Therefore, with the advent
of PrimeSense’s Light Coding object reconstruction technol-
ogy, all 3-D information of a scene is processed in real time on
the company’s PS1080 system-on-chip (SoC), another device
integrated within the Kinect casing [17]. Object reconstruc-
tion is performed by first estimating the horizontal shift or
disparity of a local window of the dot pattern on the received
image, and then computing the depth z from disparity d using
the standard stereo-triangulation formula [23]

z = fx
b

d
(1)

for each of the 640 × 480 downsampled pixels. Here,
b represents the baseline distance between the transmitter
and receiver, and fx represents the horizontal focal length of
the receiver, measured in pixels. The size of the correlation
window has been determined to be 9 × 9 pixels based on
observation and analysis of various IR image samples [19].
This theory can be further supported by constructing correla-
tion windows of various sizes, centering them on each pixel
within the subpattern of the idealized dot pattern, and compar-
ing them to the remaining pixels within the same row (Table I).
A 9 × 9 window size is the smallest in order to achieve no
pattern overlap and preserve a unique code.

Disparity estimation is accomplished in two steps. The first
step determines the best match between a spatial multiplexing
window centered on a pixel of the measured IR image and
a window of a reference IR image. Since the transmitter and
receiver are rectified to have corresponding horizontal epipo-
lar lines, the search can be limited to the same row of pixels.
A series of reference images, which represents the pattern pro-
jected on planar surfaces parallel to the optical axis at various
depths, is precaptured and stored on the memory utility of the
system. In order to find the best match between the measured
and reference images, the cross-correlation values of each win-
dow pair is maximized [12]. This step is inherently robust to
a degree of lens and perspective distortion, though the dispar-
ity estimate is limited to an integer pixel shift corresponding
to the correlation peak. Furthermore, cross-correlation works
best on flat surfaces that are parallel to the focal plane, but
suffers error when the dot pattern is significantly distorted for
windows that span significant depth variation. Though it is not

Fig. 3. The disparity values were computed by using (1) with all quantized
Kinect for Windows depth values.

explicitly stated, [11] suggests that a prediction-based region
growing algorithm that interpolates depth values from neigh-
boring pixels provides a good tradeoff between complexity and
performance. Thus, this method is also most likely performed
to disambiguate potential matches and improve the quality of
depth estimates on pixels with correlations below a threshold.

The second step in disparity estimation performs a subpixel
refinement to determine how much the IR dots of the window
are splitting between adjacent receive pixels, which further
improves the estimated disparity accuracy. Based on the obser-
vation of Kinect output disparity values done by [19] and [24],
the Kinect decidedly estimates disparity to a resolution of
(1/8)th of a pixel. Concordantly, by plotting the estimated
disparity from the array of all quantized Kinect depth val-
ues, the data show a linear trend with a slope of roughly
(−1/8) pixels (Fig. 3). This is consistent with the subpixel
refinement interpolation factor, which means Kinect provides
quantized 11-bit depth values contingent on all estimable
subpixel disparity values.

B. Related Work for Kinect Error Models

Several reports have been published that model the 3-D spa-
tial errors exhibited by point clouds extracted from Kinect
depth images. In these reports, various geometric, empirical,
and statistical models are developed for axial and lateral error.
In this context, the axial component refers to the distance along
the depth or Z-axis and the lateral component refers to dis-
tances orthogonal to depth along the X- and Y-axis of the
focal plane. A thorough compilation of independent analyses
that characterize error and noise types in Kinect point clouds
can be found in [25]. Here, Mallick et al. [25] provided a uni-
form nomenclature for different error types and models, which
are used for reference in this paper.

An early investigation of the Kinect for Xbox composed
by Menna et al. [24] reports the sensor’s lateral and depth
error models based on basic geometric constraints of a typical
triangulation system. More specifically, the model assumes a
pinhole camera system specified only by the intrinsic param-
eters of pixel size and focal length of the receiver, and
the baseline distance. Their proposed standard error models
account for predicted quadratic and linear errors that exist
in the axial and lateral components over the range space
of Kinect. However, such geometric models have since been
deemed too simplistic, and more sophisticated models were
proposed that account for other key influential factors.

In contrast, Nguyen et al. [26] developed empirical mod-
els for axial and lateral error, and explored the effects of flat
tilted surfaces on depth estimation. In doing so, they added a

3022 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 12, DECEMBER 2016

Fig. 4. A schematic is provided to explain the cause of IR dot occlusions and
depth shadows. This mechanism also motivates the design for the simulated
IR dot visibility detection, discussed later in Section IV-A2.

hyperbolic term to their quadratic axial and linear lateral mod-
els by fitting parameters to experimental data. This hyperbolic
term accounts for an observed increase in measured variance
with an increase in surface tilt angle and decrease in surface
depth. Nguyen et al. [26] imprecisely related their models to
the sensor’s point spread function, which was characterized
as the distribution of absolute errors from the distance of the
observed edges to fitted lines. Instead, Mutto et al. [27] cor-
rectly explained that IR dots projected on excessively slanted
surfaces are spread over more than two predownsampled pix-
els, where shifted dots characterized by various disparities
within the correlation window can lead to a poor match from
the correspondence algorithm. It should be noted that due to
the nature of empirical models, the estimates of model coeffi-
cients are strongly dependent on the measured data sets, and
errors from any hidden variables not accounted for will be
mixed into the estimated parameter values. In the case of [26],
factors such as surface material properties and ambient ther-
mal conditions are implicitly kept constant since they are not
modeled. Also, since depth data was collected on surfaces near
the center of the optical axis, error due to lens distortion was
not considered.

Choo et al. [28] presented another set of empirical models
for axial and lateral error in recognition of nonlinear pincush-
ion distortion that contributes to an increase in depth error
with an increase in radial distance from the optical center.
Here, the boundary of a grid of blocks was fitted to the
depth data to construct estimates for ground truth images. It
is noted that the observed error in depth images is due not
only to unpredictable IR noise, but also to systematic quanti-
zation and mismatched correlation windows from measured
sections of a distorted dot pattern. Choo et al. [28], how-
ever, did not account for changing environmental and surface
properties, and assumed that varying distances between the
object and background surfaces do not have an effect on the
standard error of estimated object edges. Additionally, both
Nguyen et al. [26] and Choo et al. [28] cannot provided bias
errors since they do not have available ground truth, and are
relegated to using the edge fits to the measured images.

It has been demonstrated by several reports that post-
processing filters can reduce certain causes of error to

improve the accuracy of depth image estimates. For instance,
Tosic and Drewes [29] and Yang et al. [30] provided meth-
ods to inpaint nonmeasured depth values due to certain
causes (e.g., specular and absorptive surfaces) by respectively
utilizing Kinect IR and RGB images. Yu et al. [31] also
provided a depth map repair method to fill in missing val-
ues due to IR image shadows, which are caused by IR dots
obstructed from an object separated at a distance from its
background. Shadowing and occlusion are depicted in Fig. 4,
where the region of a 3-D scene (upper yellow section) imaged
by the receiver (blue line-of-sight vector) cannot be reached
by IR dots emanating from the transmitter (magenta line-of-
sight vector). There may be benefit from predicting the size
and shape of shadows, though, since they produce estimable
systematic errors.

Unfortunately, all reported error models are directly formed
from depth images and overlook the intermediate IR images
that are used to generate them. As many researchers point
out ([25], [27], [28], etc.), various sources of error (e.g., dis-
parity quantization and missing depth due to shadows) are
systemic, many of which are predictable given a CAD model
of the scene. Additionally, it may be possible to formulate dis-
parity mismatch error statistics as a function of the nonuniform
distribution of IR dots and depth variation within correlation
windows. There is also little focus placed on analyzing the
effect of IR intensity variation due to dot splitting, spread-
ing, and random speckle and IR detector noise. These effects
contribute to unpredictable components of random depth error
and are, therefore, an important factor to consider for adequate
error model construction.

III. PROPOSED IR INTENSITY AND NOISE MODELS

In this section, we present a combination of physical and
empirical models for the intensity of the received IR dots,
which includes probability density functions for multiplicative
speckle and IR detector noise. Since Kinect’s subpixel refine-
ment step relies on the intensities of dots splitting neighboring
pixels to determine the best match from a similarity algorithm,
random IR sources directly affect disparity estimation. These
effects are studied later in this report, where we examine depth
data sets of matte-painted planar walls parallel to the optical
axis, i.e., when dot pattern distortion due to spreading is mini-
mal. In order to construct the intensity models, we utilized the
corresponding IR image streams of the flat, diffuse surfaces,
which were recorded by a Kinect for Windows sensor posi-
tioned at various distances. A total of 17 distinct 100 frame
data sets consist of surface depths between 800 and 4000 mm,
separated by 200 mm. Since the ADC resolution is 10-bit
on-chip [22], these receiver images consist of 1024 levels of
quantized integers representing the detected IR intensities.

In the analysis of the data sets, we model the detector out-
puts Z as the expected dot intensity I corrupted by random
speckle n∼I and additive noise n∼

Z = I + n∼I + n∼ (2)

where n∼I is proportional to I. The random speckle is assumed

to vary for the different surface depths, but remain constant

LANDAU et al.: SIMULATING KINECT IR AND DEPTH IMAGES 3023

Fig. 5. The filtered intensity samples generated from unsaturated IR
dots (blue dots) were used to fit the intensity model (red line), which fol-
lows an inverse square model for the distance between the sensor and the
surface point.

during the 30 Hz time samples. Therefore, detectors containing
dots are modeled by

Zi,j,k,t = γ
∼ i,j,k · Ii,j,k + n∼i,j,k,t (3)

where i and j are the pixel column and row ID, k is the depth,
and t is the time sample. Here, γ

∼ i,j,k is the unitless, random

intensity multiplicative term providing the random speckle,
and n∼i,j,k,t represents random detector noise that does vary

with time. Note, it is assumed that the speckle and detector
noise variables are independent n∼ |= γ∼ .

The IR intensity samples Zi,j,k,t from the aggregate collec-
tion of all 17 data sets are scatter plotted in Fig. 5 as a function
of range, i.e., the distance between the sensor and surface
point. For each given depth trial, range varies by pixel angu-
lar values, therefore the bands in the figure represent intensities
from different depth sets. Following Reichinger’s binary dot
pattern model, we filtered out the lower 88.9% of IR image
intensities (green dots), separately for each depth. This is under
the assumption that these pixels contained only ambient inten-
sity and are not directly contributed by the dot pattern. We also
filtered out the top 1% of the highest intensities (yellow dots),
again separately for each depth, to avoid overfitting saturated
values resulting from very bright IR dots.

As Zelevsky et al. [11] explained, the brightness of a
detected dot depends on the range r between the illumina-
tor and surface point, where the IR intensity I falloff rate
follows the inverse square law, i.e., I ∝ 1/r2. Many addi-
tional factors influence the detected intensity [32]; however,
Choe et al. [33] argued that the Kinect intensity model can
be simplified to the albedo of the surface, global bright-
ness, surface normal, and transmitter lighting direction by
following the Lambertian bidirectional reflectance distribution
function (BRDF) model. They also include an additional offset
value Ia in their model, which accounts for a constant ambi-
ent intensity. This model was adopted by assuming constant
surface reflectance and global brightness from the environ-
ment, and finding the least-squares fit of IR intensities to range,

Fig. 6. (a) Multiplicative speckle distribution is unitless, and can be rep-
resented as a gamma distribution �(4.54, 0.196). (b) Additive detector noise
distribution can be represented as a normal distribution N (−0.126, 10.4), and
has units of 10-bit intensity.

surface normal n, and lighting direction l. Thus

I = Ia + α

r2 (n • l) (4)

where Ia = 62.3 units of intensity and α = 5.90 × 108

unit-mm2 from the fitted model, which resulted in a 0.814 R2

value. This high coefficient of determination implies that the
variance in over 80% of the intensity data can be explained
by (4). The remaining variance in data can be attributed to ran-
dom speckle n∼I and detector noise n∼, which are assumed zero

mean and independent for the fit. As Chow et al. [34] point
out, indoor lighting conditions and object surface color have
little effect on the detected IR intensity. Therefore, the constant
ambient intensity can be attributed to thermal radiation in our
experimental setup. Note, in order to provide highly accurate
range estimates of the transmitted dots, a least-squares solution
to the best-fit plane was performed over the 100 frame depth
data sets for each IR stream. Dot ranges were then computed
as the distance from the sensor to the refined plane estimate.

In order to retrieve relatively noise-free samples of the ran-
dom speckle variable γ

∼
, time-averaged IR images were first

determined. The speckle samples were subsequently generated
by normalizing the average IR values by the corresponding
predicted intensities, which were estimated using the fitted
model in (4). Fig. 6(a) depicts a histogram of the resulting
random speckle deviates that remain after we filtered out pix-
els that generally contain either no dots or saturated intensities,
i.e., the lower 88.9% and upper 1% of pixels.

Laser power detected by a pixel is generally modeled as
the sum of several exponentially distributed power (Rayleigh
voltage) random variables [32], which results as a gamma dis-
tribution. We, therefore, fit a doubly truncated gamma to the
deviates to recover the gamma distribution given by

fγ
∼
(x; k, θ) = 1

�(k)θ k
xk−1e− x

θ (5)

3024 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 12, DECEMBER 2016

where the shape k and scale θ parameters were estimated to
be 4.54 and 0.196, which produces a mean and standard devi-
ation of kθ = 0.892 and

√
kθ = 0.418. The recovered gamma

distribution is overlaid with the red line fit in Fig. 6(a). Note
that these fitted parameters support the previous assumption
that the mean value for n∼I is nearly zero.

Lastly, random IR detector noise deviates were generated
by removing the average IR image separately from each depth
data stream. A histogram of the resulting additive deviates n∼
is shown in Fig. 6(b), which follows a Gaussian distribution:

fn∼
(x; μ, σ) = 1

σ
√

2π
e
− (x−μ)2

2σ2 (6)

where the fitted mean μ and standard deviation σ are −0.126
and 10.4 intensity units, respectively. The mean is less than
one intensity unit and the standard deviation is expectedly
small, which accounts for residual thermal noise present in
the detector.

IV. PUTTING IT ALL TOGETHER:
KINECT IR AND DEPTH IMAGE SIMULATOR

With the technical background and IR modeling presented
in Sections II-A and III, we are now able to simulate Kinect IR
and depth images of any scene by closely emulating the system
and processes that construct the respective real images. In the
following sections, we outline our models for the constructed
Kinect simulator, which was coded and tested in MATLAB.
We have also made our code publicly available on MATLAB
Central’s File Exchange Resource Center with an included
demo, which takes in as input a transformed CAD model that
defines the 3-D scene, and outputs the corresponding noisy IR
and depth images. The sensor specifications are also tunable
input arguments, though the default parameters such as the
IR intensity and noise model values are taken from the liter-
ature. It should be understood that this simulation generates
single image data of 3-D scenes, which closely resembles the
invention presented in [11].

A. Simulating IR Images

The IR image simulator incorporates many key characteris-
tics of the real IR transmitter/receiver system, such as the laser
projection system specified by [17] and [18], and the CMOS
sensor specified in the Aptina data sheet [22]. As mentioned
earlier, the Kinect dot pattern uncovered by Reichinger [9]
is also incorporated and is key to our implementation. This
implies that the model represents an idealized Kinect system
with a perfect factory construction. Therefore, there is no rota-
tion in the projected IR dots, the epipolar lines are rectified,
and there are no gaps nor overlap in the tiled pattern. For now,
the effects of lens distortion deviating the rectilinear projec-
tion of dots are excluded, though this could be accounted for
in a future iteration of the simulator software. Note, since
Kinect’s downsampled raw IR images are 640 × 480 pixel
grids, the simulation pads/crops from the 633 × 495 FOV that
the idealized dot pattern spans in order to preserve the final
depth image resolution. Here, padding is achieved by adding

a repeated portion of the simulated pattern to the leftmost and
rightmost columns of the original dot pattern.

1) Transmitted IR Dot Pattern: In order to emulate the dif-
fuser unit, line-of-sight vectors, or rays, are constructed from
each pixel of the pattern that contains a dot [i.e., the white
pixels in Fig. 2(d)]. These rays in effect represent the IR laser
system that transmits the pattern onto a given scene. Since the
transmitted dots have a physical cross-sectional area, the rays
are divided into a grid of subrays with csub columns and rsub
rows. Note, it is necessary to construct at least eight columns
of subrays to accommodate Kinect’s subpixel disparity accu-
racy of (1/8)th of a pixel. For this report, the subray grid was
set to csub = 17 columns and rsub = 7 rows. Though these tun-
ing parameters can be altered at the discretion of the user, we
have determined from rigorous experiments that a lower sub-
ray column resolution adversely affects disparity refinement
accuracy, whereas a higher row resolution is unnecessary and
does not affect accuracy.

Next, let pT = [uT, vT]	 represent the coordinate of
a subray measured in pixels, and referenced to the trans-
mitter coordinate system. The end point of each subray
XT = [

xT , yT , zT
]	

is then constructed to intersect a flat wall
at Kinect’s maximum range Zmax. These are computed by uti-
lizing the lens equation and the horizontal fx and vertical fy
focal lengths of the sensor

XT = Zmax ·
[

uT

fx
,

vT

fy
, 1

]	
+ [−b, 0, 0]	. (7)

The horizontal and vertical focal lengths are determined to
be fx = 571.4 and fy = 570.9 pixels, respectively, using the
known image size and FOVs. Since it is assumed that the sen-
sor and receiver coordinate systems are collocated, the X-axis
coordinates of each transmitted subray are shifted by the base-
line distance b. A ray casting method [10] is then used to
determine the 3-D location where each subray intersects the
inputted CAD models. For each subray that does in fact inter-
sects the CADs before reaching Zmax, the algorithm returns
an output fractional distance δT less than 1, whereas a δT

of 1 represents a nonintersecting subray.
2) Received IR Dot Pattern: The locations of CAD model

intersections are used to determine which parts of the simu-
lated IR dots would be visible to the receiver. Here, receive
subrays are constructed that emanate from the origin of the
receiver coordinate system (0, 0, 0) and end at the CAD model
intersections, i.e., XR = δT · XT . The ray casting algorithm
is redeployed and if the intersection with the CAD models
is closer than expected, the returned fractional distance δR is
less than 1, indicating occlusion. For a visual depiction of this,
refer to the lower transmitter ray (solid magenta line) and the
intersecting receiver ray (dashed blue line) in Fig. 4. Only
transmitted subrays that both intersect the CAD models and
are not occluded contribute to the IR image. For each inter-
secting and unoccluded subdot, the 3-D end point is finally
projected into the receiver pixel coordinate system via the lens
equation to provide pR. It should be noted that the transmit
and receive subrays require shifting to provide row and column
indices with respect to the origin of the corresponding grids,
which are both ordered from top to bottom and left to right.

LANDAU et al.: SIMULATING KINECT IR AND DEPTH IMAGES 3025

Also, we assume that transmit dot sizes are equal to the receive
pixel spacing, which is roughly true according to [11].

3) IR Detector Integration and Intensity: We assume the
Kinect sensor follows the linear property of optical imaging
systems, where each dot is imaged simultaneously and inte-
grated independently to create the simulated IR image. As
follows, each dot’s subray is summed directly into the final
grid, thereby circumventing the accessory 2 × 2 binning step.
Again, each row of the transmitted dots line up with its coin-
ciding row in the received image, therefore the subrays within
an IR dot can only spread horizontally, and cannot spread ver-
tically. Similarly, the depth of dots intersecting a flat surface
orthogonal to the Z-axis determines the disparity shift, and
thus the amount of horizontal pixel splitting. To illustrate this
point, let an IR dot with a subray grid size of 17 × 7 inter-
sect a flat, orthogonal wall. If the first five columns of subrays
fall within one pixel, and the remaining 12 columns of sub-
rays fall within the neighboring pixel, the two pixels would
receive 5/17 = 29.4% and 12/17 = 70.6% of the full IR dot
intensity [rightmost window of Fig. 7(a)]. This design permits
faithful predictions of subpixel refinement performance, which
is employed in Section IV-B2. In the case of a tilted surface,
however, dots can be spread over more than two pixels, such
as the rightmost window in Fig. 7(b). Here, a single dot is
spread to three pixels when a surface is rotated −80◦ about
the Y-axis. Unlike the estimable flat wall projections, these
imperfections and distortions in the measured dot pattern lead
to systematically larger depth errors.

The analysis and generation of the empirical models pre-
sented in Section III are then used to simulate the IR intensity,
speckle, and noise that effect the receive IR detectors. More
specifically, a modified version of (3) and (4) is used to sim-
ulate 10-bit intensity values for each pixel Z that contains the
sum of subrays (i, j) representing a dot’s partial energy falling
within it

Z = γ
∼

α

csub · rsub

∑

i,j

�i,j(n • l)i,j

r2
i,j

+ n∼. (8)

Thus, the indicator function �i,j takes on a value of 1 when
subray (i, j) is visible within the pixel, and a value of 0 when
it is occluded. Random speckle γ

∼
is drawn from the gamma

distribution in (5) and applied to each simulated dot, sepa-
rately, whereas random detector noise n∼ is drawn from the

Gaussian distribution in (6) and applied to each pixel, sepa-
rately. Note that the constant ambient offset Ia from (4) is left
out since it depends on the experimental setup. Also, (n • l)i,j
and r2

i,j depend on XR of the subray and the unit normal of the
intersected CAD facet. Since Kinect quantizes the received IR
images, intensity values Z are finally rounded to the nearest
integer value.

The resulting IR image of a simulated block grid, similar to
the experimental setup implemented in [28] to estimate edge
error, is displayed in Fig. 8. Note the existence of shadows
along the left edge of some blocks that obstruct sections of the
background wall. The known pattern of “wavy” edges is also
apparent due to the projection of the nonuniform distribution
of dots on the surface of the scene. From this paper, this is

Fig. 7. The leftmost window in (a) depicts IR dots intersecting only one
pixel from a flat wall projection, whereas the other windows depict IR dots
splitting two pixels. The rightmost window of (b) shows an example of the
dot pattern spread over multiple pixels from an 80◦ tilted wall projection.

believed to be the direct cause of the standard lateral error
observed in many reports (including [26] and [28]), which is
further explored in Section V.

B. Simulating Depth Images

In this section, the methods for processing simulated IR
images to generate depth images are provided. As mentioned
previously, it is believed that Kinect employs a thresholding
scheme that converts noisy IR images to binary images prior
to the first disparity estimation step. Since the specifics of
Kinect’s filter is unknown, for practical purposes, we assume
the filter implemented on the device’s SoC works sufficiently
well, and contributes little to no error in the initial disparity
estimates. Therefore, our model utilizes postfiltered IR images
for the correlation-based algorithm, where knowledge of pixels
with unoccluded dots is given. It should be noted that while
correlation-based disparity estimation utilizes filtered IR images,
the subpixel refinement step processes the prefiltered, noisy IR
images in both the real and the simulated Kinect systems.

1) Estimate Disparity With Correlation Window: As estab-
lished in Section II-A, a local, pixel-based correlation algo-
rithm is used to compare windows of the measured binary
image to a series of reference binary images. The shift that
provides the best match is determined by the reference win-
dow that maximizes the cross-covariance C among the set of N
windows tested. Given the default operational range of depths
falling between 800 and 4000 mm, the minimum and maxi-
mum allowed disparities are computed to be 53.57 and 10.71
pixels via (1). Therefore, the maximum disparity shift from
any reference image is determined as N = 45 pixels.

Since the epipolar lines are coincident, the search for the
best match between measured and reference image windows
centered at (uZ, vZ) and (uref, vref) is constrained to be within
the same row of pixels. This lateral shift translates to a change
in disparity 	d0, where uZ = uref + 	d0 and vZ = vref. As
follows, the initial disparity is estimated by:

	d0 = arg max
n∈N

Cn (9)

where 	d0 is restricted to an integer value of pixels, and the
cross-covariance score Cn of a reference window centered at

3026 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 12, DECEMBER 2016

Fig. 8. (a) Simulated IR image of block grid. (b) Magnified section of the IR image. The simulated IR image of a block grid emulates distinctive shadowing
and “wavy” edges observed in real Kinect IR images. Note that IR dots projected on the surfaces of the blocks are brighter due to the inverse square law
included in (8), and the bright dots (yellow stars) projected on the surfaces of the blocks and background represent different disparity shifts.

(uref,n, vref,n) is computed via

Cn =
∑

(u,v)∈WZ

[
WZ − W̄Z

] ◦ [
Wref,n − W̄ref,n

]
. (10)

Here, WZ and Wref,n represent measured and reference binary
image windows, and W̄ denotes the average over the window.
Due to the strong evidence supported by [19] and Table I, the
correlation window is set to a default size of 9 × 9 pixels.

2) Subpixel Refinement: After the initial integer disparity
is computed, the estimate is refined to provide higher depth
image accuracy. Subpixel refinement estimates an interwin-
dow fractional disparity 	ds by determining where the IR dots
split pixels within the window of an assumed constant depth,
i.e., an orthogonal and flat surface segment. Unfortunately, the
refinement method is not provided in the PrimeSense docu-
mentation, so it is unclear what matching metric is employed.
Though there are many ways to measure the matching cost, the
sum of absolute differences (SAD) is generally considered the
most common pixel-based method due to its computational
simplicity [23]. Therefore, the SAD cost between the mea-
sured and predicted image is utilized in our simulated model.
And due to the analysis supported by [19], [24], and Fig. 3,
the default interpolation factor is set to eight subpixel levels.

In contrast to Section IV-B1, which employs binary ref-
erence images, a series of non-noisy IR intensity reference
images are utilized as a lookup table for the sub-pixel refine-
ment step. More explicitly, reference images of a flat wall
at various depths are preprocessed, which are determined
using (1) and all integer disparity values between the min-
imum and maximum disparities. Given the IR intensities
and dot pattern projection from the reference image corre-
sponding to the initial integer disparity estimate 	d0, an
approximate prediction of all interwindow pixel split possi-
bilities can then be supplied [see Fig. 7(a)]. The total pixel
displacement is ultimately computed as the aggregate of the

two disparity estimates, that is

	d = 	d0 + 	ds. (11)

It is worth noting that the nonlinear spacing of reference
images generated for the depth image simulator does in fact
agree with the increase in spacing mentioned in [12].

3) Estimate Depth From Disparity: In order to compute
depth from the total disparity estimate 	d, (1) was derived to
estimate the change in depth with respect to a given reference
image. Thus, a pixel’s depth estimate is computed as

z = fx
b

doff + 	d
(12)

where doff represents the offset disparity of a reference image.
Since the transmitter is physically positioned to the right of
the receiver (Fig. 1), a positive 	d implies a pattern shift to
the right, which translates to an object mapped closer to the
sensor when compared to the reference depth. Alternatively, a
negative 	d implies a shift to the left and an object mapped
further away. It should be noted that by limiting total disparity
estimation to an (1/8)th of a pixel with equal intervals, we are
in essence quantizing allowable output disparity similar to the
way Kinect quantizes depth images into 11-bit values (Fig. 3).
The simulated depth error due to disparity quantization is,
therefore, comparable to the real-valued depth errors from the
Kinect system.

The resulting depth image of the simulated block grid is dis-
played in Fig. 9, which portrays key qualitative features seen
in real depth images. For instance, edges of the blocks with
straight and flat sides are imaged as the distinctly wavy edges.
Artificial bridges and gaps are also introduced where block
corners meet, which should otherwise intersect at a single
point. These characteristics exist in Kinect because of imper-
fect matching estimates due to noise and significant depth

LANDAU et al.: SIMULATING KINECT IR AND DEPTH IMAGES 3027

Fig. 9. (a) Simulated depth image of block grid. (b) Magnified section of the depth image. The simulated depth image of a block grid propagates the shadows
and wavy edges by processing the noisy IR image. Other distinctive characteristics of real Kinect depth images are also present, such as artificially induced
bridges and gaps near the corners of each block.

variation within a processing window. Moreover, depth shad-
ows are observed when there are not any intersecting dots
within a tested 9 × 9 correlation window, and as such, the
algorithm cannot infer depth.

V. RESULTS AND MODEL VALIDATION

In addition to a decisive qualitative comparison between
simulated and real IR and depth images, quantitative compar-
isons of axial and lateral error are provided on three different
simulated and experimental data sets. These data sets con-
sist of 100 frame depth image streams from: 1) a series
of flat walls parallel to the focal plane at various depths;
2) a series of flat walls with varying tilt angles; and 3) a
flat-edged, square object placed at two distances from the
background wall and at varying distances from the sensor.
Errors obtained from the simulated scenes are also compared
to the three models discussed in Section II-B to further support
validation. Since their experimental results are highly depen-
dent on the properties of the actual environment and sensor
deployed, the resulting empirical models are not expected to
perfectly align with our simulated results. However, the envi-
ronment present in our experiments does coincide with the
setup utilized to determine our speckle and detector noise dis-
tribution statistics in Section III. It is also important to note
that while some experimental results may align with previously
constructed error models, these models incorrectly assume
homogeneity and only predict the average error statistics.
Our model, on the other hand, captures these error statis-
tics by replicating salient and inhomogeneous features of the
system.

We first examined the standard deviation of depth error for
the series of flat walls parallel to the focal plane. This metric is
referred to as the standard depth error. The same best-fit planes
constructed for the IR models in Section III were again used

as the basis for depth ground truth. In Fig. 10, the standard
depth errors are plotted separately for each pixel, which were
computed using the 100 frame data sets. As seen here, the
standard depth error as a function of radial distance increases
at a faster rate in the experimental data. Since pincushion dis-
tortion stretches the dot pattern at further distances, it follows
that Kinect’s correspondence algorithm suffers when matching
templates to the reference IR images. We, therefore, focus on
the standard depth error for the collection of pixels closer to
the optical center (closest 10%) for the subsequent quantitative
comparisons to avoid having to account for lens distortion.

The standard depth error of the center pixels is plotted for
each data set in Fig. 11 along with the Menna, Nguyen, and
Choo models for flat wall depths between 800 and 4000 mm

Fig. 10. The standard error in depth estimation (mm) as a function of radial
distance (pix) is plotted for the (a) experimental and (b) simulated data sets
of flat walls at various depths (mm). The experimental standard depth error
increases faster with an increase in radial distance due to lens distortion.

3028 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 12, DECEMBER 2016

Fig. 11. The standard depth error (mm) as a function of flat wall depth (mm)
is plotted for the experimental and simulated data sets. Three models are also
plotted, where the Nguyen model complies most with both data sets.

at intervals of 200 mm. As seen in this figure, our sim-
ulated results closely comply with the experimental results
for the range of depths tested, though standard error is per-
haps slightly underestimated for closer flat walls. Additionally,
the Nguyen model appears to fit most closely with the
measured standard errors, whereas the Menna and Choo mod-
els noticeably overestimate and underestimate, respectively.
Nonetheless, the overall quadratic axial error trend is present
in each curve of the figure, which can certainly be attributed
to the stereo system. Flat surfaces do not exhibit dot occlusion
or dot spreading, however, so depth errors arise mainly when
noisy IR intensities lead to imperfect matches from the SAD
algorithm in the simulation. And since Chow and Lichti [35]
demonstrate that error due to disparity quantization is mini-
mal, the experimental standard errors near the center of the
focal plane are decidedly attributed to subpixel refinement.

Next, the experimental and simulated standard depth errors
of close pixels for each tilted wall data set are plotted in
Fig. 12(a). Two data setups were constructed to fix the dis-
tance between the sensor and the center of the wall at 1000 and
1400 mm, and consist of the plane’s normal varying between
nearly orthogonal to nearly parallel to the optical axis. Ground
truth was again acquired by finding the RMSE solution of
the best-fit plane to the experimental depth streams. Since
only the model provided by Nguyen et al. [26] accounts for
surface tilt, their model is also plotted for comparison and
validation. The figure shows that our experimental and sim-
ulated errors follow closely together along with the Nguyen
model at tilt angles below 50◦. The Nguyen model under-
estimates the experimental results at steeper angles, though,
which is likely attributed to the difference in actual reflec-
tive properties (albedo) between their tested surface and ours.
The simulated results, on the other hand, tend to overestimate
standard depth errors at steep angles. The discrepancy can be
explained with Figs. 12(b) and (c), which depicts errors plot-
ted as a focal plane heat map collected for a surface at 80◦ and
1400 mm. Outlier values (yellow and blue pixels) peppered in
the simulated images tend to skew the standard error, whereas

the experimental depth errors tend to stay more consistent but
contain significant regions with no result. As explained earlier,
depth error becomes more appreciable for closer surfaces with
steeper angles because dots are horizontally spread. We postu-
late that a region growing algorithm, believed to be employed
in the Kinect system, is able to smooth poor matches from
the correlation-based disparity estimation step (though not in
all cases). Our simulator also occasionally finds poor matches

Fig. 12. The standard depth error (mm) as a function of tilted wall angle
(deg) is plotted in (a) and compared to the Nguyen model. (b) and (c) show
the simulated and experimental depth error heat maps of pixels close to the
optical center (within the dashed magenta circles) for an 80◦ tilted wall, 1400
mm from the sensor. Tukey box plots are plotted in (d) for 50◦–80◦ tilted
walls, 1400 mm from the sensor.

LANDAU et al.: SIMULATING KINECT IR AND DEPTH IMAGES 3029

Fig. 13. (a) A novel method to fit the edges of a block is presented, which
utilizes the IR shadow caused by the surface of the block obstructing a sec-
tion of the background wall. (b) The resulting fit clearly shows a bias in
the estimated edges when overlaid on the corresponding experimental depth
image.

when the correlation peak is broad, but does not smooth pixels
nor set them to a missing depth value. Upon examination of
the Tukey box plots for the experimental and simulated depth
errors from the 1400 mm tilted wall data sets in Fig. 12(d),
it is clear that the histograms are similar, and primarily differ
in the tails of the distributions represented by outlier values.
Here, the tails in the experimental distributions are truncated
due to smoothed or “no result” pixels that produced correlation
peaks below a threshold.

Lastly, the lateral error component of Kinect is examined
by determining the distances between the true and estimated

Fig. 14. (a) Bias of error (mm) for horizontal edges. (b) Standard error (mm)
for horizontal edges.

edges of a square object placed at different distances from
the wall and the sensor. We provide two metrics, bias of
edge error and standard edge error, which respectively refer
to the constant offset and standard deviation of the edge loca-
tion errors. Here, the experimental IR data in Fig. 13(a) is
used to obtain ground truth by first fitting planes to the block
object and wall surfaces, and then by fitting a boundary to
the object. To compute the box boundary, a thin boarder is
first fit around the shadow (dashed yellow line) caused by the
left edge of the object, and the right edge of the shadow box
then initializes the left edge of the object box. The left cor-
ners of the object box combined with the knowledge of the
object width and RMSE-fitted plane depth finally determine
the remainder of the box boundary (dashed magenta line). This
fitted boundary is overlaid on the corresponding depth image
in Fig. 13(b).

Upon visual inspection of Fig. 13(b), it is clear that there is
a shift between the boundary determined from the IR image
(used as truth) and the estimated edges derived from the exper-
imental depth image. Konolige et al. [19] suggested that this
shift is the result of an IR camera to depth offset. After
removing this offset from the experimental data sets, there
remains a bias of error, as supported by the solid line plots in
Figs. 14(a) and 15(a). More precisely, each experimental edge
generally falls outside of the ground truth border (represented
as a positive bias), which is consistent with the simulated data

Fig. 15. (a) Bias of error (mm) for vertical edges. (b) Standard error (mm)
for vertical edges.

3030 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 12, DECEMBER 2016

Fig. 16. The normalized and averaged correlation functions for (a) horizontal
and (b) vertical simulated object edges are displayed. Note the two peaks for
the top, bottom, and right edges, which cause depth ambiguity that result in
the bias of edge error.

sets (dashed lines) in the respective figures. We, therefore, pro-
pose that the bias is the result of an imperfect stereo matching
algorithm. This is easily explained at the left edge of the box
when the correlation window operates in the shadow of the IR
image and interpolates depth estimates. The top, bottom, and
right edges have alternatively been determined to produce two
correlation peaks corresponding to dot pattern segments on the
object versus wall surfaces. This is demonstrated by the cor-
relation functions displayed in Fig. 16. Here, the correlation
values computed separately for each edge pixel were normal-
ized and averaged for the simulated edges of the 800 mm
sensor-to-object, 177 mm object-to-wall data set. The higher
peak manifests semi-randomly, which results in a mix of dis-
parity estimates that are biased toward either the object or wall
surface at these boundaries.

Imperfect matches also contribute to the standard errors of
the estimated horizontal [Fig. 14(b)] and vertical [Fig. 15(b)]
edges. These standard edge errors give a quantitative measure
of the wavy edges observed in Figs. 8 and 9. The Menna (not
displayed) and Nguyen models tend to underestimate lateral
error for closer objects, and the Choo model appears to overes-
timate lateral error for further objects. More importantly, these
models do not account for varying object to background sur-
face distances, which is a clear influence on edge estimation
and lateral error.

VI. APPLICATIONS AND FUTURE WORK

The main intended application is for a useful Kinect IR
and depth image simulation tool, but it can be further used to
develop new Kinect error models from stochastic and system-
atic factors, as well as to refine and test object recognition,
reconstruction, and pose estimation methods. The proposed
system is also constructed to easily adopt other structured light
systems with a known, spatially fixed pattern. For example,
Intel’s newly released RealSense 3-D camera transmits a ran-
dom IR stripe pattern onto a scene, and appears to process
depth maps similarly to Kinect. Additionally, the Asus Xtion
3-D sensor is based on the PrimeSense IR technology, which
can be similarly deconstructed and applied to our developed
model. The simulation may also be extended to other light
projection systems, as long as the system parameters can be
obtained or estimated.

Ideally, for any system, a faithful prediction model can
be incorporated into an “optimal” estimator. As follows,

the noise-free mode of our model can be used as part of
a new class of estimators for object recognition and pose
estimation. One could, for example, simulate a noise-free
(i.e., expected) depth image of an object’s CAD, and trans-
form the depth image into a “predicted model point cloud”
to align with a measurement point cloud derived from a real
depth image. Point cloud methods, however, generally assume
that the 3-D measurement errors of point pairs are independent
and homogeneous, and are, therefore, suboptimal. Alternately,
independence and homogeneity is a valid assumption for the
speckle and detector noise in the intermediate and unprocessed
IR images. Therefore, we plan to build an algorithm that pre-
dicts the raw IR images of an object’s CAD model given a
3-D pose transformation, which should provide more optimal
shape-matching results.

Since our model represents the ideal IR dot projection, a
system needs to be devised that would calibrate the repli-
cated dot pattern to any given real Kinect sensor. The most
important addition would be to include a model for lens dis-
tortion in order to faithfully predict the IR dot pattern over the
entire focal plane. This could possibly be done by implement-
ing Brown’s model [36] to estimate radial parameters, which
has been previously adopted in [34] and [35]. Additionally,
we can incorporate a treatment of the bright center dots as
anchor points to determine the 3-D rotation required to align
the 3×3 grids. The lens distortion and rotation parameters can
then all be jointly estimated by optimizing the alignment of
the center dots. The IR intensity and noise model can also be
extended if external environmental properties and the albedo
of each facet of the CAD model are provided. And finally, the
initial disparity estimation step can be improved by incorporat-
ing the suggested local smoothing/region growing algorithm,
which would account for the observed smaller depth errors on
tilted surfaces and object edges.

VII. CONCLUSION

The widely used Microsoft Kinect sensor portrays depth
error characteristics that are difficult to predict. Accordingly,
numerous attempts to construct geometric, empirical, and sta-
tistical error models are largely too simplistic, ad-hoc, and
imprecise. A main reason for the inadequacies is due to the
fact that these models ignore the intermediate noisy IR images,
which are processed by the way of Kinect’s undisclosed Light
Coding technology. We, therefore, provide a detailed model to
produce noisy IR and depth images, which was motivated by
an extensive study of the sensor’s underlying mechanisms and
performance characteristics, as well as our newly constructed
empirical models for the intensity, speckle, and detector noise
of the received IR dot pattern. Since our simulator accu-
rately recreates salient image artifacts and has validated error
statistics, researchers may use it as a tool to provide ground
truthed data sets of any object/scene with accompanying
CAD models. The proposed model can also be applied to
a wide set of other applications that include constructing
richer axial and lateral Kinect error models, improved object
recognition and pose estimation methods, and developing a
simulator for other depth sensors that employ a structured light
system.

LANDAU et al.: SIMULATING KINECT IR AND DEPTH IMAGES 3031

REFERENCES

[1] B. Ni, Y. Pei, P. Moulin, and S. Yan, “Multilevel depth and image
fusion for human activity detection,” IEEE Trans. Cybern., vol. 43, no. 5,
pp. 1383–1394, Oct. 2013.

[2] D. Tao, L. Jin, Z. Yang, and X. Li, “Rank preserving sparse learning for
Kinect based scene classification,” IEEE Trans. Cybern., vol. 43, no. 5,
pp. 1406–1417, Oct. 2013.

[3] N. A. Zainuddin, Y. M. Mustafah, Y. A. M. Shawgi, and
N. K. A. M. Rashid, “Autonomous navigation of mobile robot using
Kinect sensor,” in Proc. 5th IEEE Int. Conf. Comput. Commun.
Eng. (ICCCE), Kuala Lumpur, Malaysia, Sep. 2014, pp. 28–31.

[4] S. Kim and J. Kim, “Occupancy mapping and surface reconstruc-
tion using local Gaussian processes with Kinect sensors,” IEEE Trans.
Cybern., vol. 43, no. 5, pp. 1335–1346, Oct. 2013.

[5] O. Lopes, M. Reyes, S. Escalera, and J. Gonzalez, “Spherical blurred
shape model for 3-D object and pose recognition: Quantitative analy-
sis and HCI applications in smart environments,” IEEE Trans. Cybern.,
vol. 44, no. 12, pp. 2379–2390, Dec. 2014.

[6] M. J. Landau, P. A. Beling, and M. D. DeVore, “Efficacy of statistical
model-based pose estimation of rigid objects with corresponding CAD
models using commodity depth sensors,” in Proc. 40th IEEE Conf. Ind.
Electron. Soc. (IECON), Dallas, TX, USA, Oct. 2014, pp. 3445–3451.

[7] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer vision
with microsoft Kinect sensor: A review,” IEEE Trans. Cybern., vol. 43,
no. 5, pp. 1318–1334, Oct. 2013.

[8] R. A. Newcombe et al., “KinectFusion: Real-time dense surface map-
ping and tracking,” in Proc. 10th IEEE Int. Symp. Mixed Augmented
Reality (ISMAR), Basel, Switzerland, Oct. 2011, pp. 127–136.

[9] A. Reichinger. (Mar. 2011). Kinect Pattern Uncovered. [Online].
Available: https://azttm.wordpress.com/2011/04/03/kinect-pattern-
uncovered/

[10] P. Terdiman. (Aug. 2002). OPCODE. [Online]. Available:
http://www.codercorner.com/Opcode.htm

[11] Z. Zalevsky, A. Shpunt, A. Maizels, and J. Garcia, “Method and system
for object reconstruction,” Patent WO2 007 043 036 A1, Apr. 2007.

[12] J. Garcia and Z. Zalevsky, “Range mapping using speckle decorrelation,”
U.S. Patent US7 433 024 B2, Oct. 2008.

[13] A. Shpunt, “Optical designs for zero order reduction,” U.S. Patent
US20 090 185 274 A1, Jul. 2009.

[14] A. Shpunt, “Depth mapping using multi-beam illumination,” U.S. Patent
US20 100 020 078 A1, Jan. 2010.

[15] B. Freedman, A. Shpunt, M. Machline, and Y. Arieli, “Depth mapping
using projected patterns,” U.S. Patent US20 100 118 123 A1, May 2010.

[16] A. Shpunt and B. Pesach, “Optical pattern projection,” U.S. Patent
US20 100 284 082 A1, Nov. 2010.

[17] Teardown of the Microsoft Kinect. (Dec. 2010). [Online]. Available:
www.chipworks.com/en/technical-competitive-analysis/resources/blog/
teardown-of-the-microsoft-kinect-focused-on-motion-capture

[18] Hardware Info—OpenKinect. (Feb. 2011). [Online]. Available:
http://openkinect.org/wiki/Hardware_info

[19] K. Konolige, P. Mihelich, and A. Tsuda. (Dec. 2012).
Technical Description of Kinect Calibration. [Online]. Available:
http://wiki.ros.org/kinect_calibration/technical

[20] J. Smisek, M. Jancosek, and T. Pajdla, “3D with Kinect,” in Proc. 13th
IEEE Int. Conf. Comput. Vis. Workshops (ICCVW), Barcelona, Spain,
Nov. 2011, pp. 1154–1160.

[21] Kinect for Windows SDK 1.8. (Feb. 2012). [Online]. Available: http://
msdn.microsoft.com/en-us/library/hh855347.aspx, accessed Dec. 2014.

[22] Image Sensors—MT 9m001c12stm Data Sheet—Aptina Imaging.
(Jan. 2013). [Online]. Available: http://www.aptina.com/products/
image_sensors/mt9m001c12stm/

[23] R. Szeliski, Computer Vision: Algorithms and Applications. London,
U.K.: Springer, Sep. 2010.

[24] F. Menna, F. Remondino, R. Battisti, and E. Nocerino, “Geometric
investigation of a gaming active device,” in Proc. SPIE Videometr.
Range Imag. Appl. XI, vol. 8085. Munich, Germany, Jun. 2011,
pp. 80 850G–80 850G–15.

[25] T. Mallick, P. P. Das, and A. K. Majumdar, “Characterizations of noise
in Kinect depth images: A review,” IEEE Sensors J., vol. 14, no. 6,
pp. 1731–1740, Jun. 2014.

[26] C. V. Nguyen, S. Izadi, and D. Lovell, “Modeling Kinect sensor
noise for improved 3D reconstruction and tracking,” in Proc. 2nd Int.
Conf. 3D Imaging Model. Process. Visual. Transm. (3DIMPVT), Zürich,
Switzerland, Oct. 2012, pp. 524–530.

[27] C. D. Mutto, P. Zanuttigh, and G. M. Cortelazzo, Time-of-Flight
Cameras and Microsoft Kinect. New York, NY, USA: Springer,
Mar. 2012.

[28] B. Choo, M. Landau, M. DeVore, and P. A. Beling, “Statistical analysis-
based error models for the Microsoft Kinect depth sensor,” Sensors,
vol. 14, no. 9, pp. 17430–17450, Sep. 2014.

[29] I. Tosic and S. Drewes, “Learning joint intensity-depth sparse represen-
tations,” IEEE Trans. Image Process., vol. 23, no. 5, pp. 2122–2132,
May 2014.

[30] J. Yang, X. Ye, K. Li, C. Hou, and Y. Wang, “Color-guided depth recov-
ery from RGB-D data using an adaptive autoregressive model,” IEEE
Trans. Image Process., vol. 23, no. 8, pp. 3443–3458, Aug. 2014.

[31] Y. Yu, Y. Song, Y. Zhang, and S. Wen, “A shadow repair approach for
Kinect depth maps,” in Proc. 11th Asian Conf. Comput. Vis. (ACCV),
Daejeon, Korea, 2013, pp. 615–626.

[32] J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications.
Englewood, CO, USA: Roberts and Company, Nov. 2010.

[33] G. Choe, J. Park, Y.-W. Tai, and I. S. Kweon, “Exploiting shading cues
in Kinect IR images for geometry refinement,” in Proc. 27th IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Columbus, OH, USA,
Jun. 2014, pp. 3922–3929.

[34] J. C. Chow, K. D. Ang, D. D. Lichti, and W. F. Teskey, “Performance
analysis of a low-cost triangulation-based 3D camera: Microsoft Kinect
system,” in Proc. Int. Archives Photogramm. Remote Sensing Spatial
Inf. Sci., vol. 39B5. Melbourne, VIC, Australia, Jul. 2012, pp. 175–180.

[35] J. C. K. Chow and D. D. Lichti, “Photogrammetric bundle adjustment
with self-calibration of the primesense 3D camera technology: Microsoft
Kinect,” IEEE Access, vol. 1, pp. 465–474, Jul. 2013.

[36] D. C. Brown, “Close-range camera calibration,” Photogramm. Eng.,
vol. 37, no. 8, pp. 855–866, Jan. 1971.

Michael J. Landau (M’09) received the B.E. degree
from the Department of Biomedical Engineering,
Vanderbilt University, Nashville, TN, USA, in 2008,
and the M.S. degree from the Department of
Electrical and Computer Engineering, University
of Virginia (UVa), Charlottesville, VA, USA, in
2011, with an emphasis on 2-D/3-D detection and
tracking of cells with multiphoton microscopy, as
well as ground targets with electro-optical/infrared
(EO/IR) sensors. He is currently a Ph.D. candi-
date in the Department of Systems and Information

Engineering, UVa. His current research interests include 3-D object recogni-
tion and pose estimation using depth sensors for manufacturing and military
applications.

Benjamin Y. Choo (M’06) received the B.S. and
M.S. degrees from the Department of Electrical
Engineering, Yonsei University, Seoul, Korea,
in 2005 and 2007, respectively, and the M.E.
degree from the Department of Electrical and
Computer Engineering, University of Virginia
(UVa), Charlottesville, VA, USA, in 2012. He is cur-
rently in the Ph.D. program in the Department of
Systems and Information Engineering, UVa.

Peter A. Beling (M’01) received the Ph.D. degree in
operations research from the University of California
at Berkeley, Berkeley, CA, USA, in 1991.

He is an Associate Professor with the Department
of Systems and Information Engineering, University
of Virginia (UVa), Charlottesville, VA, USA. He has
held positions at the Center for Naval Analyses,
Arlington, VA, USA, and the IBM Almaden
Research Center, San Jose, CA, USA. He is active in
the UVa site of the Broadband Wireless Applications
Center, which is an Industry-University Cooperative

Research Center sponsored by the National Science Foundation. His cur-
rent research interests include decision-making in complex systems, with
an emphasis on adaptive decision support systems and on model-based
approaches to system-of-systems design and assessment. His research has
found applications in a variety of domains, including mission-focused cyber-
security, reconnaissance and surveillance, prognostics and diagnostics systems
in manufacturing, education and training, and financial decision-making.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

