
IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 10, OCTOBER 2016 2277

Genetic Learning Particle Swarm Optimization
Yue-Jiao Gong, Member, IEEE, Jing-Jing Li, Yicong Zhou, Senior Member, IEEE, Yun Li, Member, IEEE,

Henry Shu-Hung Chung, Senior Member, IEEE, Yu-Hui Shi, Senior Member, IEEE, and
Jun Zhang, Senior Member, IEEE

Abstract—Social learning in particle swarm optimiza-
tion (PSO) helps collective efficiency, whereas individual repro-
duction in genetic algorithm (GA) facilitates global effectiveness.
This observation recently leads to hybridizing PSO with GA for
performance enhancement. However, existing work uses a mech-
anistic parallel superposition and research has shown that
construction of superior exemplars in PSO is more effective.
Hence, this paper first develops a new framework so as to organ-
ically hybridize PSO with another optimization technique for
“learning.” This leads to a generalized “learning PSO” paradigm,
the *L-PSO. The paradigm is composed of two cascading lay-
ers, the first for exemplar generation and the second for particle
updates as per a normal PSO algorithm. Using genetic evolu-
tion to breed promising exemplars for PSO, a specific novel
*L-PSO algorithm is proposed in the paper, termed genetic learn-
ing PSO (GL-PSO). In particular, genetic operators are used
to generate exemplars from which particles learn and, in turn,
historical search information of particles provides guidance to
the evolution of the exemplars. By performing crossover, muta-
tion, and selection on the historical information of particles, the
constructed exemplars are not only well diversified, but also
high qualified. Under such guidance, the global search ability
and search efficiency of PSO are both enhanced. The proposed
GL-PSO is tested on 42 benchmark functions widely adopted

Manuscript received December 12, 2014; revised June 23, 2015; accepted
August 21, 2015. Date of publication September 17, 2015; date of current
version September 14, 2016. This work was supported in part by the National
High-Technology Research and Development Program (863 Program) of
China under Grant 2013AA01A212, in part by the National Science Fund
for Distinguished Young Scholars under Grant 61125205, and in part by the
National Natural Science Foundation of China under Grant 61332002 and
Grant 61502542. This paper was recommended by Associate Editor L. Zhang.
(Corresponding author: Jing-Jing Li.)

Y.-J. Gong and J. Zhang are with the Department of Computer Science,
Sun Yat-sen University, Guangzhou 510275, China, also with the Key
Laboratory of Machine Intelligence and Advanced Computing, Ministry of
Education, Guangzhou, China, and also with the Engineering Research Center
of Supercomputing Engineering Software, Ministry of Education, Guangzhou
510006, China, (e-mail: junzhang@ieee.org).

J.-J. Li is with the School of Computer Science, South China Normal
University, Guangzhou 510006, China.

Y. Zhou is with the Department of Computer and Information Science,
University of Macau, Macau 999078, China.

Y. Li is with the School of Engineering, University of Glasgow, Glasgow
G12 8QQ, U.K.

H. S.-H. Chung is with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong.

Y.-H. Shi is with the Department of Electrical and Electronic Engineering,
Xi’an Jiaotong-Liverpool University, Suzhou 215123, China.

This paper has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.org provided by the authors. The supplementary file
contains five parts to further elaborate some points in the manuscript: 1) exper-
imental comparisons between GA and PSO; 2) discussion on the crossover
operator; 3) a full list of the benchmark functions; 4) convergence curves
of the compared algorithms; and 5) comparisons between global and local
versions of GLPSO. The total size of the file is 1.02 MB.

Digital Object Identifier 10.1109/TCYB.2015.2475174

in the literature. Experimental results verify the effectiveness,
efficiency, robustness, and scalability of the GL-PSO.

Index Terms—Exemplar construction, genetic algorithm (GA),
hybrid method, learning scheme, particle swarm optimiza-
tion (PSO).

I. INTRODUCTION

PARTICLE swarm optimization (PSO), a nature-inspired
optimization technique, has attracted significant attention

since introduced by Kennedy and Eberhart [1], [2] in 1995.
Simulating the social behavior of birds flocking or fish school-
ing, a population of particles in a PSO algorithm cooperates
and interacts to search for solutions in the problem space.
Owing to its conceptual simplicity and high efficiency, PSO
has been successful in solving a variety of problems in many
areas such as power systems [3], [4], industrial electronics [5],
wireless sensor networks [6], and feature selection [7].

However, in canonical PSO, all particles keep learning from
the personal best experience (pbests) and the global best-so-
far solution (gbest) of the entire swarm, which may lead to
premature convergence. To improve the performance, a num-
ber of PSO variants have been developed during the past two
decades. These variants can be generally divided into four cat-
egories that focus on: 1) population topology and multiswarm
techniques [8]–[10]; 2) parameter control [11]–[14]; 3) hybrid
methods [15]–[25]; and 4) novel learning schemes [26]–[30],
respectively. Although much effort has been made to enhance
the performance of PSO, many of the variants cannot maintain
their improvements over problems of different characteristics.
For example, some PSO variants are able to increase pop-
ulation diversity and avoid premature convergence, but their
search speed and solution accuracy are decreased as a result.
On the other hand, some other algorithms still cannot locate
the global optimum for difficult problems involving many local
optima. So far, it has been a challenging task to improve the
overall performance of PSO for wider applicability.

In nature, it is widely accepted that the behavior of
organisms, such as bee foraging and scouting [31], and bird
migration [32], is influenced by genetic information. A disci-
pline named “behavioral genetics” is dedicated to discussing
how such genetic control is executed [33], [34]. In particu-
lar, Raine et al. [35] discovered that the animals’ foraging
behavior depends primarily on its evolutionary history rather
than the current foraging condition. Alcock [36] put forward
a viewpoint that behavioral variation is partially derived from
genotypic variation, and therefore, it is an evolutionary pro-
cess. On the other hand, the skills acquired by animals in
social activities affect the natural selection force on the animals

2168-2267 c© 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2278 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 10, OCTOBER 2016

(b)(a)

Fig. 1. (a) Parallel and (b) cascade frameworks of GA-PSO hybrid algorithms.

and hereafter alter the genes in the population [37], [38]. As
biological experiments reveal that the behavior and genetic
information of organisms influence each other, it would be
possible and interesting to utilize such interaction between
the behavior and genes to enhance the performance of the
biologically inspired PSO technique.

In the literature, a number of work have been reported
in improving the performance of PSO by adopting genetic
methods, which can be categorized into the following
two types. First, some PSO algorithms embed a spe-
cific genetic operator of genetic algorithm (GA) such as
mutation [39] and crossover [40]. Second, significant efforts
are made in fully hybridization of PSO and GA. For exam-
ple, Shi et al. [15] proposed a PSO-GA-based hybrid algo-
rithm by executing the two algorithms simultaneously. Then,
Kao and Zahara [16] hybridized PSO with GA based on a fit-
ness ranking method. Valdez et al. [17] integrated GA and PSO
by using a fuzzy logic method for decision-making. Three dif-
ferent hybrid mechanisms are proposed in [18], the first being
to run GA and PSO in parallel and exchange their information
via crossover between chromosomes and the gbest particle, the
second being to apply the mutation of GA on stagnated par-
ticles, and the third being to divide the number of iterations
to run GA and PSO in complement. Furthermore, GA-PSO
hybrid algorithms have been developed to tackle some ad hoc
applications, including recurrent network design [19], elec-
tromagnetic structure optimization [20], and conformal array
pattern synthesis [21]. More recently, Jeong et al. [22] pro-
posed an efficient GA-PSO hybrid algorithm for real-world
multiobjective problems.

Most of these hybrid algorithms share conceptual and oper-
ational similarities in that they divide the population into
two parallel subpopulations, each controlled by GA and PSO
separately, and then recombine the subpopulations at set inter-
vals. A general framework of those algorithms is illustrated
in Fig. 1(a), which shows that GA and PSO are hybridized
in a parallel manner. In this hybridization mechanism, GA
and PSO are loosely coupled, and the effect coming from the
interaction of GA and PSO is ambiguous to recognize. For
example, it is hard to identify how the individuals exchanged

from GA affect the PSO population and whether they will
result in updating the pbests and gbest. Inversely, it is also
difficult to characterize how the individuals transferred from
PSO influence the GA population, especially whether the
migrated individuals will survive in the selection. More criti-
cally, the benchmark-testing results of PSO-GA hybrid algo-
rithms reported in the literature are inconclusive [15]–[17]. In
particular, the algorithms are tested on low-dimensional prob-
lems (no more than 10-D in most cases), and their performance
lies between that of PSO and GA in optimizing many bench-
marks. It can be seen that hybridizing PSO with GA to achieve
the perfect goal of “1+1 > 2” still remains a challenging task.

To further improve the performance of PSO, this paper
develops a genetic learning scheme that applies GA for exem-
plar construction. As illustrated in Fig. 1(b), GA and PSO
are hybridized in a cascade manner. The main loop of the
algorithm is composed of two cascading layers, the first for
exemplar generation by GA and the second for particle updates
as per a normal PSO algorithm. In this way, particles in PSO
are no longer simply guided by the gbest and pbests, but are
guided by the exemplars constructed by GA. GA and PSO are
hybridized in a highly cohesive way, which establishes a pos-
itive feedback loop to accelerate the population to locate the
optimum.

1) By learning from the exemplars constructed from GA,
the search of particles is more diversified, thus help-
ing avoid the premature convergence of PSO. Moreover,
owing to the effect of the selection operator in GA, the
survived exemplars are also of high quality. They are
capable of providing effective guidance for particles and
hence improving the search efficiency of PSO.

2) In turn, the search experience (pbests and gbest) of parti-
cles propagates promising genetic materials back to GA
and helps GA reproduce improved exemplars.

Therefore, in this cascade architecture, the effect of the
interaction between PSO and GA is clear and the interaction
enhances PSO and GA alternatively in the optimization pro-
cess. In addition, as the cascade hybrid mechanism is divided
into two layers, a different learning approach can be used in
the upper layer to design a different hybrid PSO algorithm,

GONG et al.: GL-PSO 2279

providing an open opportunity to improve the performance of
PSO in the future.

The rest of this paper is organized as follows. Section II
reviews the technical and biological backgrounds on hybridiz-
ing PSO with GA. Section III presents the GL-PSO algorithm
with implementation details and analysis, followed by a gener-
alized hybrid paradigm in Section IV. Experimental tests are
carried out in Section V. Finally, conclusions are drawn in
Section VI.

II. BACKGROUNDS

A. Technical Background: GA Versus PSO

Currently, GA and PSO are two well-known branches
existing in the field of bio-inspired optimization. A typical
GA consists of three basic operators: 1) selection; 2) crossover;
and 3) mutation. The selection operator duplicates higher-
quality chromosomes to pass on for improving the average
fitness values of the population, also known as evolution.
Crossover and mutation are reproductive operators that provide
the evolving population with alternative but probably higher-
quality genetic materials. In contrast, a PSO algorithm does
not employ the selection operator, but the evolution is repre-
sented by updating particles toward historically best positions.
The flying trajectories of particles in PSO can correspond to
the changing genetic materials in GA.

The differences in the mechanisms of GA and PSO often
result in the differences in their performance. In canonical
GA, two chromosomes are randomly picked to exchange
their component genes through crossover, and some genes
in the chromosomes are randomly varied through mutation.
Therefore, the reproduction process of GA is, to some extent,
omnidirectional. On the other hand, in canonical PSO, as par-
ticles are guided by their previous best positions (pbests) and
the global best position (gbest) found by the swarm, the search
is more directional than that of GA. Hence, it is expected that
GA possesses a better exploration ability than PSO whereas
the latter facilitates faster convergence.

In Section S-I of the supplementary file of this paper, exper-
iments have been carried out on unimodal and multimodal
benchmark functions to compare GA and PSO, the results
of which verify the above analysis. For the unimodal func-
tion, owing to its efficient search mechanism, PSO is seen
to quickly converge to the optimum and to obtain high solu-
tion accuracy. However, for the multimodal function, when
the pbests fall into a local optimum far from the global opti-
mum in the landscape, particles are seen difficult to jump out
of the local optimum. This is why PSO performs poorly in
optimizing the multimodal function in the experiment. On the
contrary, GA owns a much better global search ability that it
is capable of locating the global optimum of the multimodal
function. However, as the crossover and mutation are relatively
directionless, the GA population approaches an optimum more
slowly, which leads to the insufficient performance of GA on
both the two kinds of problems.

To summarize, GA and PSO have their respective merits
and demerits. The issue remaining is how to utilize the mer-
its of both to enhance the overall performance, i.e., how to

improve the global search ability of PSO by incorporating
GA mechanisms without slowing down the search?

B. Biological Background: Gene–Behavior Interaction

From a biological perspective, GA changes the pheno-
types of individuals via changing their genotypes, which is
a long-term process. Unlike GA, PSO adjusts the phenotypes
of particles based on interactive learning activities, which is
short-term. This can also be interpreted as the reason why PSO
converges faster than GA.

However, in nature, the behavioral traits of organisms
are under genetic control. This perspective was firstly pro-
posed by Galton [41] in 1869. After a century of verifi-
cation and development, the branch of science to explore
and formulate the relationships between genes and behav-
ior is recognized as a research discipline termed “behavioral
genetics” by Fuller and Thompson [42] in 1960. Since then,
Galton has been considered as the first behavioral geneticists.
Nowadays, it has become a widely accepted concept that most
behavior of organisms are covary with both genotypes and
environment [33], [34]. For example, Robinson and Page [31]
proposed that genotype distinguishes the nectar foraging,
pollen foraging, and nest-site scouting behavior of honey
bee colonies. The work in [32] shows that the blackcap’s
migratory motivation and direction are under genetic control.
Raine et al. [35] put forward that the animals’ foraging
behavior could be better explained by its evolutionary history,
rather than their present foraging conditions. The book entitled
Animal Behaviour—An Evolutionary Approach presents many
examples showing that a proportion of phenotypic variation in
behavior is derived from genotypic variation.

Inversely, Sterelny [37] developed a perspective that learn-
ing has evolutionary consequences. Although the skills
acquired by animals cannot be directly encoded into their
genes, the variations in animals’ phenotype affect the natu-
ral selection force acting on the animals and hereafter alter
the genes in the animal population generation by generation.
For instance, Jones et al. [38] found that some woodpeckers
learn to use cactus spines to harvest food in tree trunk, and
natural selection is more likely to preserve those individuals
in the population whose beak shape facilitates manipulating
spines. Afterward, more and more birds not only acquire the
feeding skill but also inherit the specific beak shape.

To conclude, in nature, the behavior of organisms, such
as foraging and migration, is under genetic control, and,
inversely, their acquired skills via social activities (such as
learning) would finally play roles in genotypic variations. In
brief, the genes and behavior of organisms interact with each
other. As PSO is a kind of nature-inspired technique, this
motivates us to incorporate some genetic mechanism into the
learning and search process of the algorithm.

III. GENETIC LEARNING PSO

A. Canonical PSO Learning Scheme and its Variants

In canonical PSO, each particle learns from its own pbest
and the gbest found by the entire swarm in order to update
velocity and position. Let Vi = [vi,1, vi,2, . . . , vi,D] and

2280 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 10, OCTOBER 2016

Xi = [xi,1, xi,2, . . . , xi,D] represent the velocity and position
of the ith particle (i = 1, 2, . . . , M, where M is the popula-
tion size), respectively. Let Pi = [pi,1, pi,2, . . . , pi,D] denotes
the pbest of particle i and G = [g1, g2, . . . , gD] denotes the
gbest of the whole swarm. The update equations for the dth
dimension (d = 1, 2, . . . , D) of particle i are defined as

vi,d ← ω · vi,d + c1 · r1,d ·
(
pi,d − xi,d

)

+ c2 · r2,d ·
(
gd − xi,d

)
(1)

xi,d ← xi,d + vi,d (2)

where ω denotes the inertia weight, c1 and c2 are accelerate
coefficients determining the relative importance of Pi and G,
and r1,d and r2,d are random numbers uniformly selected
within [0, 1].

With this canonical learning scheme, a particle learns from
both Pi and G and may hence oscillate if these two exemplars
locate on opposite sides of Xi. On the other hand, if Pi and
G are located in a same local optimum, the particle may be
trapped in this optimum, which causes premature convergence.

In order to overcome the above shortcomings, researchers
have developed variant PSO learning schemes, among which
the following velocity update is widely adopted [26]–[28]:

vi,d ← ω · vi,d + c · rd ·
(
ei,d − xi,d

)
. (3)

Here, replacing two exemplars Pi and G, a single composite
exemplar Ei = [ei,1, ei,2, . . . , ei,D] is constructed in phenotype
combination to attract particle i. In fact, the canonical velocity
update scheme in (1) can be transformed into this condensed
form by regarding ei,d in (3) as a linear combination of pi,d

and gd, as according to [26]

ei,d = c1 · r1,d · pi,d + c2 · r2,d · gd

c1 · r1,d + c2 · r2,d
. (4)

For examples, a fully informed particle swarm (FIPS)
algorithm [26] guilds a particle to learn from all its neigh-
bors with the exemplar vector being the linear combination of
all the pbests in the neighborhood. In comprehensive learn-
ing PSO (CLPSO) [27], ei,d is set to pi,d within a predefined
probability range, or set to the dth dimension of another
particle’s pbest via a tournament selection. In orthogonal learn-
ing PSO (OLPSO) [28], it conducts orthogonal experimental
design on Pi and G in order to construct Ei with orthogonal
combination.

B. Genetic Learning Scheme

Because the exemplar vector Ei determines the search tra-
jectories of particles, it plays a significant role in PSO. In
this paper, aiming for a more promising vector than using lin-
ear or orthogonal combination, a genetic learning scheme that
applies GA to breed exemplars is proposed and developed. The
motivation of this paper is described as follows. First, canon-
ical PSO algorithm simply uses Pi and G to guide search,
which induces premature phenomenon easily. As described in
Section II-A, compared to PSO, GA exhibits a better global
search ability. So that it is expected that the genetic operators
can bring diversity to the exemplar vectors to discourage the
premature convergence of PSO. Moreover, the exemplar built

by GA is not only well diversified but also with high quality,
which is capable of providing a good guidance for particles
and hence improving the efficiency of PSO. Furthermore, from
a biological point of view, the foraging behavior of birds in
nature is under genetic control. It is reasonable to incorporate
such a genetic learning scheme into a PSO algorithm. In the
following, the detailed implementation of the genetic learning
scheme is presented.

1) Crossover: For each particle i, crossover operation is
first conducted on Pi and G to generate an offspring Oi =
[oi,1, oi,2, . . . , oi,D]

oi,d =
{

rd · pi,d + (1− rd) · gd, if f (Pi) < f
(
Pkd

)

pkd,d, otherwise
(5)

where rd is a random number uniformly distributed in [0, 1],
kd ∈ {1, 2, . . . , M} is the index of a random particle, i =
1, 2, . . . , M, and d = 1, 2, . . . , D. Here, without loss of
generality, the considered objective f is for minimization.

This way, a good particle is more likely to perform the
arithmetic crossover between its pbest position Pi and the
gbest position G. By integrating the information of the global
best particle, the performance of Oi has potential to further
improve. On the contrary, if particle i is an inferior one in the
swarm, the offspring will have more dimensions coming from
that of another particle with better fitness. Instead of randomly
picking two individuals in the population to undergo crossover
as in traditional GA, the above crossover utilizes the histori-
cal search experience of particles in PSO to improve the gene
quality. An experimental discussion of the crossover operation
is provided in Section S-II of the supplementary file, which
shows that the operator helps improving search efficiency.

2) Mutation: The bred offspring Oi then undergoes the
mutation operation with a probability bounded by probability
of mutation (pm). This is the same as the classical mutation
operation of GA, which is very simple. For each dimension
d, a random number rd ∈ [0, 1] is generated, and then, if rd

is smaller than pm, this dimension of Oi is reinitialized in the
search space

oi,d = rand(lbd, ubd), if rd < pm (6)

where lbd and ubd stand for the lower and upper bounds of
the dth dimension. The mutation brings in diversity of the
exemplar to reach more exploratory coordinates (theoretically,
any coordinates) in the search space.

3) Selection: After applying crossover and mutation to
create the offspring, selection is performed to determine
whether the offspring or the current exemplar survives in this
generation. The following operation is executed:

Ei ←
{

Oi, if f (Oi) < f (Ei)

Ei, otherwise.
(7)

Note that, the calculation of f (Oi) consumes the number of
function evaluations (FEs) in the new algorithm.

As shown in (7), the exemplar remains unchanged if it is
better than the new offspring. This elitism ensures that the
exemplar evolves in every generation and never deteriorates.
Moreover, if the exemplar of a particle ceases improving for

GONG et al.: GL-PSO 2281

a certain number, a stopping gap sg, of generations, the exem-
plar may be considered trapped in a deep local optimum.
In this case, we employ the 20%M-tournament selection to
update the particle’s exemplar. Here the tournament size is
empirically set to a value proportional to the population size M.
That is, 20%M exemplars are chosen at random to join the
tournament, where the winner with the best fitness replaces the
particle’s current exemplar. By learning from another exem-
plar, the particle is able to change the search direction abruptly
so as to fly out of the local optimum.

For each particle, in summary, it conducts the crossover,
mutation, and selection described above once in every gener-
ation to construct a promising exemplar and hereafter learns
from the exemplar as per the traditional PSO. With the genetic
breeding scheme, a novel genetic learning PSO (GL-PSO)
algorithm is developed. The pseudo code of GL-PSO is shown
in Algorithm 1 and its framework is sketched in Fig. 1(b).
It can be observed that GL-PSO is relatively easy to imple-
ment. For public use, we provide the source code of GL-PSO
online, which can be downloaded at [43].

Note that the proposed GL-PSO algorithm maintains the
canonical framework of PSO, in which particles update their
velocities and positions in the search space by utilizing histor-
ical search experience. The novelty of GL-PSO lies in that
it applies GA to process the pbests and gbest of particles
so as to breed the exemplars, which captures the historical
search experience with a more global prospective. Particles
can hence learn with a good diversity and a high quality, for
potentially improved exploration and exploitation abilities. It
is to be pointed out that the fundamental component of the
proposed algorithm is PSO but rather than GA, and GA is
used as an auxiliary technique.

C. Complexity Analysis of GL-PSO

The computational costs of the canonical PSO algorithm
involve the initialization (Tini), evaluation (Teva), and veloc-
ity and position update (Tupd) for each particle. Assume D
is the dimensionality of the search space and MaxFEs is the
maximum number of FEs allowed for the algorithm. The time
complexity of PSO can be estimated as T(D) = Tini+ (Teva+
Tupd)·MaxFEs = D+(D+2·D)·MaxFEs = D·(1+3·MaxFEs).
Therefore, O (D · MaxFEs) is the time complexity of the
canonical PSO. As the parameter MaxFEs is commonly set
to 10 000 · D in the literature, the canonical PSO algorithm
has a time complexity quadratic to the problem size D.

In GL-PSO, the time complexity is determined by the
computational costs of the PSO operation (TPSO) and the
GA operation (TGA). Here TGA consists of the computa-
tional costs of crossover (Tcro), mutation (Tmut), and selection
(Tsel). In the worst cases, we have Tcro = D, Tmut = D, and
Tsel = 1 + 0.2 · M. Besides, as PSO and GA both consume
evaluation times, the maximum number of iterations for the
update of a particle and an exemplar is both (MaxFEs/2).
Therefore, the worst-case time complexity of GL-PSO can
be calculated as T(D) = Tini + (TPSO + TGA) · (MaxFEs/2)

= Tini + [(Teva + Tupd) + (Teva + Tcro + Tmut + Tsel)] ·
(MaxFEs/2) = D+ (3 ·D+0.1 ·M+0.5) MaxFEs. Therefore,

Algorithm 1 Genetic Learning PSO Algorithm (GL-PSO)
1: /* Initialization */
2: for i = 1 to M do
3: Randomly initialize Vi and Xi;
4: Evaluate f (Xi);
5: Pi = Xi;
6: end for
7: Set G to the current best position of particles;
8:

9: /* Main Loop*/
10: repeat
11: for i = 1 to M do
12: /* Exemplar Update: Crossover */
13: for d = 1 to D do
14: Randomly select a particle k ∈ {1, 2, . . . , M};
15: if f (Pi) < f (Pk) then
16: oi,d = rd · pi,d + (1− rd) · gd;
17: else
18: oi,d = pk,d;
19: end if
20: end for
21: /* Exemplar Update: Mutation */
22: for d = 1 to D do
23: if rand(0, 1) < pm then
24: oi,d = rand(lbd, ubd);
25: end if
26: end for
27: /* Exemplar Update: Selection */
28: Evaluate f (Oi);
29: if f (Oi) < f (Ei) then
30: Ei = Oi

31: end if
32: if f (Ei) ceases improving for sg generations then
33: Select Ej by 20%M tournament;
34: Ei = Ej;
35: end if
36:

37: /* Particle Update */
38: for d = 1 to D do
39: vi,d = ω · vi,d + c · rd · (ei,d − xi,d);
40: xi,d = xi,d + vi,d

41: end for
42: Evaluate f (Xi);
43: Update Pi and G;
44: end for
45: until Terminal Condition

the GL-PSO algorithm has an O[(D+M) ·MaxFEs] time com-
plexity, also linear to MaxFEs. Still, the time complexity is
quadratic to the problem size D.

D. Search Behavior of GL-PSO

The unimodal Sphere function and multimodal Schwefel
function, which have been introduced in Section S-I of the sup-
plementary file, are used in the investigation of GL-PSO per-
formance. Fig. 2 plots the convergence curves of a typical run,

2282 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 10, OCTOBER 2016

(a)

(b)

Fig. 2. Search behavior of GL-PSO and its comparison with that of canoni-
cal PSO. (a) Relationship between exemplar and particle on Sphere problem.
(b) Relationship between exemplar and particle on Schwefel’s problem 2.26.

(a) (b)

Fig. 3. Mean difference of the fitness of exemplars and particles in GL-PSO.
(a) D-value on Sphere problem. (b) D-value on Schwefel’s problem 2.26.

where the solid and dashed lines refer to the average fitness
values of exemplars and particles, respectively. Meanwhile, the
convergence curve of the average fitness value obtained by the
canonical PSO with global topology (GPSO) is represented by
dotted line in Fig. 2 for the purpose of comparison. Moreover,
we define a D-value as the mean difference between the fit-
ness of exemplars and particles in GL-PSO, which is depicted
in Fig. 3.

Generally, the exemplars generated in the genetic learning
scheme are capable of providing good guidance for the parti-
cles, as observed in Figs. 2 and 3. No matter the function is
unimodal or multimodal, the fitness values of exemplars are
better than those of particles during the optimization process.

At an early stage of the swarm search, the randomly initial-
ized population covers a relatively broad range in the solution
space. At this time, the crossover performed on pbests and
gbest has an exploration effect in that it constructs an exemplar
far away from the particle’s current pbest. Fig. 3 shows that the
fitness difference between exemplars and particles increases to
a large value at this stage. Afterward, with the convergence of
the population, pbests and the gbest become geographically
close. The crossover operation of GL-PSO tends to have an
exploitation effect because the constructed exemplars locate in
the vicinity of particles. As seen in Fig. 3, the fitness difference

between exemplars and particles begins to decrease after the
initial time period.

The effect of mutation is more prominent in optimizing mul-
timodal functions. As shown in Fig. 3, the curve of D-value on
Schwefel function is not as smooth as that on Sphere function,
which contains many extreme points. As particles gradually
fly toward their exemplars, the local minimum points on the
D-value curve imply the moment that exemplars are jumping
out of a local optimum. This owes to the mutation operation
embedded in the genetic learning scheme, which injects diver-
sified information into the exemplars even when the population
has converged. In Fig. 2(b), the curve of GPSO slows down
after 2000 FEs and then flattens out to a horizontal course
after 150 000 FEs. On contrast, owing to the effective and
efficient guidance of exemplars, GL-PSO exhibits promising
exploration and exploitation abilities from beginning to end,
as shown in Fig. 2(b).

The enhanced performance of the genetic learning scheme
also benefits from the selection operation. First let us look at
a shortcoming of the canonical learning scheme. As described
in Section III-A, the velocity update rule in canonical PSO
can be transformed into a composite form (3) by defining the
exemplar as a linear combination of pbest and gbest in (4).
Consider a 2-D Sphere function whose optimum is [0, 0]. If
particle i’s pbest is Pi = [6, 5] and the gbest is G = [2, 2],
then the constructed exemplar could be Ei = [3, 3]. In the
next generation, suppose that pbest and gbest are updated
to Pi = [5, 4] and G = [2, 1], respectively, and the newly
calculated exemplar is Ei = [4, 3]. In such a case, although
both pbest and gbest evolve, the exemplar deteriorates. Hence,
particle i learns from the deteriorated exemplar, which is inef-
ficient. In the genetic learning scheme, however, selection is
performed to overcome this problem. It ensures that the exem-
plar evolves generation by generation directionally until gets
trapped in a local optimum. Moreover, once the exemplar gets
trapped, the particle will select another particle’s exemplar to
learn from, hence flying out of the local optimum. It can be
seen in Fig. 2 that GL-PSO is more efficient than GPSO. To
summarize, by adopting the proposed genetic learning scheme
consisting of crossover, mutation, and selection, the global
search ability and search speed of the PSO algorithm are both
improved.

IV. THE *L-PSO HYBRID PARADIGM

In addition to the GL-PSO algorithm, a generalized
paradigm of hybridizing PSO with other optimization tech-
niques for “learning” is proposed in this paper, which we
termed the “*L-PSO” family. The PSO algorithm can be
divided into two cascading layers, in which the upper layer
is used for generating superior exemplars and the lower
layer is applied to update particles as per ordinary PSO.
Information in the upper layer propagates to the lower layer
through (3) and (2), i.e., each particle learns from the superior
exemplar to update velocity and position. On the other hand,
the historical search information of particles in the lower layer
is delivered as materials to the upper layer to breed even bet-
ter exemplar. In this way, the two layers cooperate with each
other and enhance each other.

GONG et al.: GL-PSO 2283

Besides the GL-PSO, the *L-PSO family can embrace some
other members such as DL-PSO that uses a differential learn-
ing scheme as in differential evolution (DE), EL-PSO with an
estimation-of-distribution learning scheme adopting an estima-
tion of distribution algorithm (EDA), etc. All these could lead
to interesting future work. This paper uses the genetic learning
method because of the technical and biological backgrounds
described in Section II. Moreover, the proposed GL-PSO
obtains promising numerical results which will be presented
in Section V.

Besides, embedding some traditional mathematical meth-
ods could be alternative choices of learning. For example,
the existing FIPS, CLPSO, and OLPSO algorithms apply
a weighted-sum method, a simple composition approach, and
an orthogonal experiment design, respectively. It is to be
noticed that FIPS and CLPSO are not commonly identified as
hybrid algorithms since their upper layer do not involve any
evaluation procedure to calculate the fitness of the constructed
exemplars.

V. EXPERIMENTAL VERIFICATION AND COMPARISONS

A. Experimental Setup

To thoroughly evaluate the performance of the proposed
GL-PSO, two popular test suites consisting of 42 benchmark
functions in total [44], [45] are tested in the numerical exper-
iments. A list and description of these functions are presented
in Section S-III of the supplementary file. The first test suite
(f1–f 14) includes all the scalable functions recommended by
Yao et al. [44] and has been widely used in [46]–[48]. In the
test suite, f 1–f 4 are unimodal functions, f 5 is unimodal in
2-D and 3-D space but has multiple optima when D > 3, f 6
is a step function, and f 7 is a noisy quartic function. These
functions are used to investigate the convergence feature of the
algorithm, since many PSO variants improve the global search
ability at the cost of slowing down their convergence rate.
Then, f 8–f 13 are multimodal functions with different land-
scapes, and f 14 is a discontinuous version of the Rastrigin
function f 9. These functions are used to show whether the pro-
posed algorithm improves the exploration ability of previous
PSO algorithms in order to avoid premature convergence.

The second test suite (f101–f 128) consists of 28 shifted
and rotated functions from the CEC 2013 test suit for real-
parameter optimization, where f 1–f 5 are unimodal functions,
f 6–f 20 are multimodal functions, and f 21–f 28 are hybrid com-
position functions [45], [49]. These shifted and rotated func-
tions are used to test the performance of different algorithms
in more complex and difficult cases.

The effectiveness and efficiency of the proposed GL-PSO
are then compared with those of seven peer algorithms.
GPSO [11] is the global PSO algorithm with inertia weight
ω linearly decreasing from 0.9 to 0.4. Hierarchical PSO with
Time-Varying Accelerating Coefficients (HPSO-TVAC) [13]
makes improvements by adjusting accelerating coefficients
and integrating auxiliary procedure. FIPS [26], CLPSO [27],
and OLPSO [28], as described in Section III-A, focus on
developing novel learning schemes and constructing effective
exemplars. Besides, GAPSO [18] is a GA and PSO hybrid

TABLE I
PARAMETER CONFIGURATIONS

algorithm in which the GA and PSO run in parallel and
exchange information by crossover. DEPSO [23] adopts a DE
update strategy, a PSO update strategy, and a random update
strategy alternately to improve particles.

The parameter configurations of these algorithms are
according to the corresponding references, which are shown in
Table I. An exception is that, for GAPSO, we have conducted
experiment to find out a promising parameter configuration
because the parameter settings of pc (probability of crossover),
pm, and ds (designated step) are not provided in the reference.
For the proposed GL-PSO, parameters ω and c are empirically
set to 0.7298 and 1.49618, respectively; the mutation probabil-
ity is set as pm = 0.01; and the stopping gap is set as sg = 7.
The population size is fixed at 50 for all the algorithms.

These algorithms are tested on 30-D functions with the same
MaxFEs = 10 000 · D. For each benchmark, each algorithm
is repeated 30 times independently to obtain statistical results.
All the algorithms are coded in C, executed on a PC with
the Intel Core2 Quad CPU Q6600 at 2.40 GHz with 2 GB of
RAM (note that only a single processor is used).

In addition, because PSO belongs to nondeterministic algo-
rithms, the differences of results are influenced by both
intrinsic errors (determined by the algorithms’ optimization
performance) and random errors (caused by random number
generation in the algorithm). To determine whether the dif-
ferences of results are caused by intrinsic errors, a statistical
hypothesis test is applied to evaluate whether the differences
between the results are significant. In statistics, the Wilcoxon
rank-sum test is one of the most well-known nonparamet-
ric statistical hypothesis tests [50]. In this paper, the one-tail
Wilcoxon test at a significance level α = 0.05 is applied to
compare the results of algorithm pairs.

B. Experimental Results and Comparisons on First
Test Suite (f1–f14)

1) Results on Unimodal Functions: In Table II, the mean,
best, and standard deviations of the error values obtained
by the eight algorithms on functions f 1–f 7 are presented,
where the best results are marked in bold. For these uni-
modal functions without local optimum, solution accuracy is
the paramount criterion to compare the performance of differ-
ent algorithms. However, as shown in Table II, although FIPS,
CLPSO, GAPSO, and DEPSO reported improved results in
the literature, their solution accuracy on unimodal functions
is lower than the canonical PSO. On contrast, HPSO-TVAC,

2284 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 10, OCTOBER 2016

TABLE II
STATISTICAL RESULTS ON UNIMODAL FUNCTIONS OF THE FIRST TEST SUITE

TABLE III
SEARCH SPEED AND RELIABILITY ON UNIMODAL FUNCTIONS OF THE FIRST TEST SUITE

OLPSO, and GL-PSO successfully overcome this deficiency
and achieve high solution accuracy. Moreover, the proposed
GL-PSO algorithm performs the best in optimizing four out
of the seven functions.

The p-value obtained in the hypothesis test is also reported
in Table II. If the p-value is less than the significance level
α = 0.05, the difference of results is statistically significant. It
can be seen that GL-PSO significantly outperforms seven other
algorithms on most benchmarks except f 7. This is because f 7 is
a noise function with random walk that distracts the selection
of good exemplars and lowers the performance of GL-PSO.

The search speed of different algorithms is compared in
Table III, where the average number of FEs and comput-
ing time (in s) used to reach the error bound are presented.
Besides, Table III also reports the percentage of the runs

successfully reaching the error bound in all the 30 runs, which
reflects the reliability of the corresponding algorithms. The
best value in each row is marked in bold. It can be observed
from Table III that GL-PSO generally possesses the highest
search speed as well as the highest reliability.

2) Results on Multimodal Functions: Comparisons of the
algorithms on multimodal functions f 8–f 14 are reported in
Table IV. These functions contain a number of local optima,
which may lead to premature convergence of PSO algorithms.
Traditionally, PSO has seen difficulties in locating the global
optimum of the Schwefel function f 8, because this problem
has many deep local optima being far away from the global
optimum. If a particle enters into a deep local optimum, it
can hardly fly out of it. As shown in Table IV, five peer
algorithms generate relatively poor results in optimizing f 8.

GONG et al.: GL-PSO 2285

TABLE IV
STATISTICAL RESULTS ON MULTIMODAL FUNCTIONS OF THE FIRST TEST SUITE

TABLE V
SEARCH SPEED AND RELIABILITY ON MULTIMODAL FUNCTIONS OF THE FIRST TEST SUITE

On the contrary, the other three algorithms, GAPSO, CLPSO,
and GL-PSO, are not trapped into poor local optima. The pro-
posed GL-PSO is the only algorithm that can reach a low error
of 3.82 × 10−4 in all the runs with standard deviation 0 on
this function.

Consider the Rastrigin function f 9. It is a complex multi-
modal problem with a significant number of local optima. For
this problem, an algorithm maintaining larger diversity is more
likely to yield good results. It can be observed in Table IV
that GL-PSO performs the best on this function, which means
that the proposed genetic learning effectively maintains the
population diversity. This success owes much to the mutation
operation, which diversifies the exemplars and hence diver-
sifies the search of particles most. In general, in terms of
solution accuracy, the GL-PSO algorithm performs the best in

five out of the seven multimodal functions. Moreover, accord-
ing to the Wilcoxon test results (WTRs), GL-PSO significantly
outperforms the other PSO variants on more benchmarks.

Furthermore, from the comparison of search speed and relia-
bility shown in Table V, it can be observed that GL-PSO is also
efficient in solving problems with a number of local optima.
Generally, the proposed GL-PSO algorithm possesses both
a strong global search ability and a high convergence speed,
which are very promising for tackling multimodal problems.

It is to be noticed that, compared with the experimental
results of GA and PSO reported in Section S-I of the sup-
plementary file, the proposed GL-PSO algorithm improves
performance over both GA and PSO on the unimodal Sphere
function f 1 and the multimodal Schwefel function f 8. GL-PSO
is not a passive combination of GA and PSO algorithms, but

2286 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 10, OCTOBER 2016

TABLE VI
STATISTICAL RESULTS ON THE SECOND TEST SUITE (MEAN ERROR ± STANDARD DEVIATION)

organically embeds GA to benefit the swarm search of PSO,
resulting in a “1+ 1 > 2” effect for both the GA and PSO.

C. Experimental Results and Comparisons on Second Test
Suite (f101–f128)

To further validate the performance of GL-PSO, compar-
isons are made on shifted and rotated functions f 101–f 128,
which are very complex and difficult to solve. The mean and
standard deviations of the error values obtained by the eight
algorithms are listed in Table VI, where the performance rank
of GL-PSO among the eight algorithms is also presented. It
can be observed that the proposed algorithm is a competi-
tive PSO variant for the second test suite. In optimizing the
28 functions, GL-PSO is ranked the first for 14 times, the
second for six times, and ranked the third and fourth for four
and three times respectively. Compared with the peer algo-
rithms, the proposed algorithm can produce competitive results

TABLE VII
WTRS BETWEEN GL-PSO AND OTHER PSO ALGORITHMS

ON THE SECOND TEST SUITE

on most functions except f 104. Considering the fitness land-
scape of function f 104, it can be seen in [45] that the local
regularities are smoothed. The proposed algorithm is not the
best in dealing with this kind of problems.

The WTRs on f 101–f 128 are tabulated in Table VII, which
shows that the proposed GL-PSO algorithm produces sig-
nificantly better results than the other algorithms on more
functions.

Moreover, the convergence curves of the eight algorithms
are plotted in Section S-IV of the supplementary file. In most

GONG et al.: GL-PSO 2287

(a) (b)

Fig. 4. Effect of the mutation probability pm on the performance of GL-PSO.
(a) Unimodal functions. (b) Multimodal functions.

cases, GL-PSO exhibits the fastest convergence among the
compared algorithms, and meanwhile, it is not easy to be
trapped in local optima. To conclude, the above results have
verified the effectiveness and powerfulness of using the pro-
posed genetic learning scheme for performance enhancement
of PSO.

D. Investigation of Parameters

This section investigates the sensitivity of GL-PSO to the
mutation probability pm and the stopping gap sg. First, we
conduct GL-PSO with pm = 0, 0.001, 0.005, 0.01, 0.05, 0.1,
and 0.2, respectively, and fix the other parameters as those
presented in Section V-A. Unimodal functions f 1 and f 2 and
multimodal functions f 8–f 12 are tested in the experiments.
The effect of different settings of pm on the performance of
GL-PSO is plotted in Fig. 4, where the horizontal axis is the
pm value and the vertical axis is the mean error for each func-
tion. It can be observed that the proper range of pm is [0.005,
0.05]. A larger pm will perturb a smooth search of particles and
result in poor convergence, whereas a smaller pm cannot pre-
vent premature convergence in solving multimodal problems.
With a pm ∈ [0.005, 0.05], the algorithm can exhibit favorable
performance on both unimodal and multimodal problems.

In addition, GL-PSO is tested with sg = 1, 2, . . . , 10, respec-
tively, with the other parameters being fixed. Fig. 5(a) shows
that the solution accuracy obtained by GL-PSO is insensitive
to the stopping gap, and all the ten sg values can provide good
performance for the algorithm. Besides, in Fig. 5(b), the search
speed of using different sg values is depicted and compared,
where the vertical axis is the average number of FEs required
to reach the predefined error bound for each function. It can be
observed that setting sg in the range of [4, 7] can help improving
the search efficiency of GL-PSO. This parameter determines
the condition of the jumping-like behavior of exemplars in the
algorithm. A small sg value will lead to a particle sensitively
changing its exemplar (search guidance), which would result in
population oscillation and hence reduce the efficiency of PSO.
On the other hand, when using a large sg, a particle can be
trapped in a local optimum for a long time, which is also not
efficient. To summarize, pm ∈ [0.005, 0.05] and sg ∈ [4, 7]
are recommended in this paper.

In addition, in the crossover of the exemplar construction in
GL-PSO, gbest of the entire swarm is utilized to generate new
exemplars. If the local best information (lbest) of a neighbor-
hood structure is used instead, GL-PSO can be implemented
on different PSO topologies. Comparisons between global and

(a) (b)

Fig. 5. Effect of the stopping gap sg on the performance of GL-PSO.
(a) Solution accuracy. (b) Search efficiency.

local versions of GL-PSO are made in Section S-V of the sup-
plementary file. Results show that GL-PSO with the global
topology performs the best.

E. Scalability Analysis

In the literature, the performance of many PSO algorithms
decreases drastically with the increase in the problem scale.
In this section, we conduct scalability analysis for the above
eight PSO algorithms to test their performance on 50-D and
100-D functions. Experimental settings are the same as those
described in Section V-A, among which the MaxFEs is set to
10 000 · D.

Table VIII reports the mean results obtained by the eight
PSO variants, where the best results are marked in bold. It
can be seen that the proposed algorithm maintains good per-
formance when the problem dimension increases. Compared
with the other algorithms, GL-PSO obtains the best results on
most of the 50-D and 100-D problems being tested and it also
achieves competitive results on the remaining a few problems.

Particularly, for the multimodal functions, the number of
local optima increases drastically with the problem dimension,
which makes PSO vulnerable to premature convergence. As
shown in Table VIII, GL-PSO is the only algorithm that can
maintain a good global search ability in such cases, whereas
the performance of the other algorithms deteriorates severely.
For example, in optimizing f 8, f 9, and f 14, GL-PSO obtains
highly accurate results when the dimensionality increases to
50 and 100, whereas all the other seven algorithms get trapped
in poor local optima.

F. Comparisons With Other Evolutionary and Swarm
Intelligence Algorithms

In this section, we further compare GL-PSO with other evo-
lutionary and swarm intelligence algorithms, including a con-
tinuous ant colony optimization (ACOR) [51], self-adaptive
DE (SaDE) [52], EDA [53], artificial bee colony (ABC) [54],
and evolution strategy with covariance matrix adaptation
(CMA-ES) [55]. 30-D problems are tested in the experiments,
with parameter configurations according to the corresponding
references. As the procedures and time complexity of these
algorithms differ substantially, for a fair comparison, we use
a maximum running time (MaxRT) instead of the MaxFEs
as the stopping criterion. All algorithms are coded and exe-
cuted in the same environment, with MaxRT being 1 s for all
functions.

Table IX reports the rankings of the results obtained by the
six algorithms as well as the pairwise WTRs (where “+” and

2288 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 10, OCTOBER 2016

TABLE VIII
RESULTS OF SCALABILITY TEST ON 50-D AND 100-D PROBLEMS

TABLE IX
COMPARISONS BETWEEN GL-PSO AND OTHER ALGORITHMS FOR

FUNCTION OPTIMIZATION (RUN TIME = 1 S)

“−” denote that the compared algorithm is significantly bet-
ter and worse than GL-PSO, respectively, and “≈/=” stands
for that the differences between the results are not signifi-
cant). Consider the rankings in Table IX. GL-PSO performs
the best among the six algorithms, followed by SaDE, ABC,

and CMA-ES. The proposed algorithm exhibits consistent per-
formance and ranks the first or second in optimizing most
of the benchmark functions. Moreover, the WTRs show that
GL-PSO produces significantly better results than the other
algorithms on more functions.

VI. CONCLUSION

In this paper, a genetic learning scheme for PSO algo-
rithm has been proposed, which adopts genetic operators,
specifically, crossover, mutation, and selection, to construct
exemplars. The crossover utilizes the particles’ historical infor-
mation pbests and gbest to generate high-quality offspring,
whereas the mutation injects diverse information into the off-
spring to enhance global exploration. Moreover, the selection
operation ensures that each exemplar evolves directionally
generation by generation. This way, the bred exemplars are
well diversified and highly qualified, which are capable of
providing improved guidance for the evolving particles. By
adopting such a genetic learning scheme, a GL-PSO has
been developed. In the experiments to verify the perfor-
mance of GL-PSO, a group of numerical benchmarks with
different characteristics are used, and the proposed algo-
rithm is compared with several representative PSO algorithms.
Experimental results show that the proposed GL-PSO outper-
forms the other algorithms on a majority of benchmarks in
terms of the global search ability, solution accuracy, search
speed, reliability, and scalability. Furthermore, this paper also
proposes a generalized hybrid paradigm of PSO with generic
learning techniques, the *L-PSO. Differing from the mecha-
nistic parallel combination, *L-PSO presents a cascade hybrid
paradigm that auxiliary learning techniques such as any evolu-
tionary algorithm are used to generate improved exemplars to
guide the search of particles. As a specific example belonging
to this hybrid paradigm, the success of GL-PSO can encourage

GONG et al.: GL-PSO 2289

future research into the cascade hybridization of PSO with
other and emerging techniques. Moreover, this would also
lead to interesting future development of PSO algorithms for
dynamic and multiobjective optimization, as well as real-world
applications [56], [57].

REFERENCES

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., vol. 4. Perth, WA, Australia, 1995,
pp. 1942–1948.

[2] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. 6th Int. Symp. Micro Mach. Human Sci., Nagoya, Japan,
1995, pp. 39–43.

[3] Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez,
and R. G. Harley, “Particle swarm optimization: Basic concepts, variants
and applications in power systems,” IEEE Trans. Evol. Comput., vol. 12,
no. 2, pp. 171–195, Apr. 2008.

[4] M. R. AlRashidi and M. E. El-Hawary, “A survey of particle swarm
optimization applications in electric power systems,” IEEE Trans. Evol.
Comput., vol. 13, no. 4, pp. 913–918, Aug. 2009.

[5] R. Ruiz-Cruz, E. N. Sanchez, F. Ornelas-Tellez, A. G. Loukianov, and
R. G. Harley, “Particle swarm optimization for discrete-time inverse opti-
mal control of a doubly fed induction generator,” IEEE Trans. Cybern.,
vol. 43, no. 6, pp. 1698–1709, Dec. 2013.

[6] R. V. Kulkarni and G. K. Venayagamoorthy, “Particle swarm optimiza-
tion in wireless-sensor networks: A brief survey,” IEEE Trans. Syst.,
Man, Cybern. C, Appl. Rev., vol. 41, no. 2, pp. 262–267, Mar. 2011.

[7] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimization
for feature selection in classification: A multi-objective approach,” IEEE
Trans. Cybern., vol. 43, no. 6, pp. 1656–1671, Dec. 2013.

[8] S. Janson and M. Middendorf, “A hierarchical particle swarm optimizer
and its adaptive variant,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 35, no. 6, pp. 1272–1282, Dec. 2005.

[9] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, Jun. 2004.

[10] J. J. Liang and P. N. Suganthan, “Dynamic multi-swarm particle swarm
optimizer,” in Proc. IEEE Swarm Intell. Symp., Pasadena, CA, USA,
2005, pp. 124–129.

[11] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc.
IEEE Int. Conf. Evol. Comput., Anchorage, AK, USA, 1998, pp. 69–73.

[12] M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability,
and convergence in a multidimensional complex space,” IEEE Trans.
Evol. Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002.

[13] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration
coefficients,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 240–255,
Jun. 2004.

[14] Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive parti-
cle swarm optimization,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 39, no. 6, pp. 1362–1381, Dec. 2009.

[15] X.-H. Shi, Y.-C. Liang, H.-P. Lee, C. Liu, and L. M. Wang,
“An improved GA and a novel PSO-GA-based hybrid algorithm,”
Inf. Process. Lett., vol. 93, no. 5, pp. 255–261, Mar. 2005.

[16] Y.-T. Kao and E. Zahara, “A hybrid genetic algorithm and particle swarm
optimization for multimodal functions,” Appl. Soft Comput., vol. 8, no. 2,
pp. 849–857, Mar. 2008.

[17] F. Valdez, P. Melin, O. Castillo, and O. Montiel, “A new evolutionary
method with a hybrid approach combining particle swarm optimization
and genetic algorithms using fuzzy logic for decision making,” in Proc.
IEEE Congr. Evol. Comput., Hong Kong, 2008, pp. 1333–1339.

[18] K. Premalatha and A. M. Natarajan, “Hybrid PSO and GA for
global maximization,” Int. J. Open Prob. Compt. Math., vol. 2, no. 4,
pp. 597–608, Dec. 2009.

[19] C.-F. Juang, “A hybrid of genetic algorithm and particle swarm optimiza-
tion for recurrent network design,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 34, no. 2, pp. 997–1006, Apr. 2004.

[20] F. Grimaccia, M. Mussetta, and R. E. Zich, “Genetical swarm optimiza-
tion: Self-adaptive hybrid evolutionary algorithm for electromagnetics,”
IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 781–785, Mar. 2007.

[21] W.-T. Li, X.-W. Shi, Y.-Q. Hei, S.-F. Liu, and J. Zhu, “A hybrid opti-
mization algorithm and its application for conformal array pattern syn-
thesis,” IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3401–3406,
Oct. 2010.

[22] S. Jeong, S. Hasegawa, K. Shimoyama, and S. Obayashi, “Development
and investigation of efficient GA/PSO-HYBRID algorithm applicable
to real-world design optimization,” IEEE Comput. Intell. Mag., vol. 4,
no. 3, pp. 36–44, Aug. 2009.

[23] C.-S. Zhang, J.-X. Ning, S. Lu, D.-T. Ouyang, and T.-N. Ding, “A novel
hybrid differential evolution and particle swarm optimization algo-
rithm for unconstrained optimization,” Oper. Res. Lett., vol. 37, no. 2,
pp. 117–122, Mar. 2009.

[24] S. Li, M. Tan, I. W. Tsang, and J. T.-Y. Kwok, “A hybrid PSO-BFGS
strategy for global optimization of multimodal functions,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 41, no. 4, pp. 1003–1014,
Aug. 2011.

[25] Z.-H. Liu, J. Zhang, S.-W. Zhou, X.-H. Li, and K. Liu, “Coevolutionary
particle swarm optimization using AIS and its application in multipa-
rameter estimation of PMSM,” IEEE Trans. Cybern., vol. 43, no. 6,
pp. 1921–1935, Dec. 2013.

[26] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle
swarm: Simpler, maybe better,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 204–210, Jun. 2004.

[27] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281–295,
Jun. 2006.

[28] Z.-H. Zhan, J. Zhang, Y. Li, and Y.-H. Shi, “Orthogonal learning par-
ticle swarm optimization,” IEEE Trans. Evol. Comput., vol. 15, no. 6,
pp. 832–847, Dec. 2011.

[29] C.-H. Li, S.-X. Yang, and T. T. Nguyen, “A self-learning particle swarm
optimizer for global optimization problems,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 42, no. 3, pp. 627–646, Jun. 2012.

[30] Z.-H. Ren, A.-M. Zhang, C.-Y. Wen, and Z.-R. Feng, “A scatter learning
particle swarm optimization algorithm for multimodal problems,” IEEE
Trans. Cybern., vol. 44, no. 7, pp. 1127–1140, Jul. 2014.

[31] G. E. Robinson and R. E. Page, “Genetic determination of nectar for-
aging, pollen foraging, and nest-site scouting in honey bee colonies,”
Behav. Ecol. Sociobiol., vol. 24, no. 5, pp. 317–323, May 1989.

[32] P. Berthold and F. Pulido, “Heritability of migratory activity in a natu-
ral bird population,” Proc. Biol. Sci., vol. 257, no. 1350, pp. 311–315,
Sep. 1994.

[33] S. M. Stigler, “Darwin, Galton and the statistical enlightenment,”
J. Roy. Stat. Soc. A., vol. 173, no. 3, pp. 469–482, Jul. 2010.

[34] T. J. Bazzett, An Introduction to Behavior Genetics. Sunderland, MA,
USA: Sinauer Assoc., 2008.

[35] N. E. Raine, T. C. Ings, A. Dornhaus, N. Saleh, and L. Chittka,
“Adaptation, genetic drift, pleiotropy, and history in the evolution of bee
foraging behavior,” in Advances in the Study of Behavior. New York,
NY, USA: Academic Press, 2006, pp. 305–354.

[36] J. Alcock, Animal Behavior: An Evolutionary Approach, 5th ed.
Sunderland, MA, USA: Sinauer Assoc., 1993.

[37] K. Sterelny, “Made by each other: Organisms and their environment,”
Biol. Philos., vol. 20, no. 1, pp. 21–36, Jan. 2005.

[38] C. G. Jones, J. H. Lawton, and M. Shachak, “Positive and negative
effects of organisms as physical ecosystem engineers,” Ecology, vol. 78,
no. 7, pp. 1946–1957, 1997.

[39] S. H. Ling et al., “Hybrid particle swarm optimization with wavelet
mutation and its industrial applications,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 38, no. 3, pp. 743–763, Jun. 2008.

[40] M. S. Arumugam and M. V. C. Rao, “On the improved performances
of the particle swarm optimization algorithms with adaptive parameters,
crossover operators and root mean square (RMS) variants for computing
optimal control of a class of hybrid systems,” Appl. Soft Comput., vol. 8,
no. 1, pp. 324–336, 2008.

[41] F. Galton, Hereditary Genius. London, U.K.: Macmillan, 1869.
[42] J. L. Fuller and W. R. Thompson, Behavior Genetics. New York, NY,

USA: Wiley, 1960.
[43] (Sep. 10, 2015). GLPSO Source Code. [Online]. Available:

http://www.ai.sysu.edu.cn/GYJ/glpso/c_code/
[44] X. Yao, Y. Liu, and G.-M. Lin, “Evolutionary programming made faster,”

IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, Jul. 1999.
[45] J. J. Liang, B. Y. Qu, P. N. Suganthan, and A. G. Hernández-Díaz,

“Problem definitions and evaluation criteria for the CEC 2013 spe-
cial session on real-parameter optimization,” Comput. Intell. Lab.,
Zhengzhou Univ., Zhengzhou, China, Tech. Rep. 201212, 2013.

[46] H. Gao and W.-B. Xu, “A new particle swarm algorithm and its globally
convergent modifications,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 41, no. 5, pp. 1334–1350, Oct. 2011.

2290 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 10, OCTOBER 2016

[47] T. Blackwell, “A study of collapse in bare bones particle swarm opti-
mization,” IEEE Trans. Evol. Comput., vol. 16, no. 3, pp. 354–372,
Jun. 2012.

[48] W.-J. Yu et al., “Differential evolution with two-level parameter adap-
tation,” IEEE Trans. Cybern., vol. 44, no. 7, pp. 1080–1099, Jul. 2014.

[49] M. Ergezer and D. Simon, “Mathematical and experimental analyses
of oppositional algorithms,” IEEE Trans. Cybern., vol. 44, no. 11,
pp. 2178–2189, Nov. 2014.

[50] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,” Swarm Evol. Comput.,
vol. 1, no. 1, pp. 3–18, Mar. 2011.

[51] K. Socha and M. Dorigo, “Ant colony optimization for continuous
domains,” Eur. J. Oper. Res., vol. 185, no. 3, pp. 1155–1173, Mar. 2008.

[52] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, Apr. 2009.

[53] P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Peña, “Optimization
in continuous domains by learning and simulation of Gaussian net-
works,” in Proc. Genet. Evol. Comput. Conf., Las Vegas, NV, USA,
2000, pp. 201–204.

[54] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC) algo-
rithm,” J. Glob. Optim., vol. 39, no. 3, pp. 459–471, Nov. 2007.

[55] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time com-
plexity of the derandomized evolution strategy with covariance matrix
adaptation (CMA-ES),” Evol. Comput., vol. 11, no. 1, pp. 1–18, 2003.

[56] X.-L. Hu and J. Wang, “An improved dual neural network for solving
a class of quadratic programming problems and its k-winners-take-all
application,” IEEE Trans. Neural Netw., vol. 19, no. 12, pp. 2022–2031,
Dec. 2008.

[57] L. Shao, R.-M. Yan, X.-L. Li, and Y. Liu, “From heuristic optimiza-
tion to dictionary learning: A review and comprehensive comparison
of image denoising algorithms,” IEEE Trans. Cybern., vol. 44, no. 7,
pp. 1001–1013, Jul. 2014.

Yue-Jiao Gong (S’10–M’15) received the Ph.D.
degree in computer science from Sun Yat-sen
University, Guangzhou, China, in 2014.

She is currently a Post-Doctoral Research Fellow
with the Department of Computer and Information
Science, University of Macau, Macau, China. Her
current research interests include evolutionary com-
putation and swarm intelligence. She has published
over 30 papers, including nine IEEE Transaction
papers, in her research area.

Jing-Jing Li received the Ph.D. degree in computer
science from Hong Kong Polytechnic University,
Hong Kong, in 2012.

She is currently a Lecturer with the School of
Computer Science, South China Normal University,
Guangzhou, China. Her current research interests
include evolutionary algorithm, energy efficient rout-
ing, and object tracking for wireless sensor net-
works.

Yicong Zhou (M’07–SM’14) received the Ph.D.
degree in electronic engineering from Tufts
University, Medford, MA, USA, in 2010.

He is currently an Assistant Professor with
the Department of Computer and Information
Science, University of Macau, Macau, China. He
has authored/co-authored over 80 papers, including
13 IEEE Transaction papers, six most down-
loaded/popular papers in corresponded journals,
and one “highly cited paper” within the top 1% of
published papers in the ISI database up to 2015. His

current research interests include chaotic system design, multimedia security,
image processing and understanding, and machine learning.

Dr. Zhou was a recipient of the third price of Macau Natural Science
Award in 2014. He is a member of the International Society for Optical
Engineers and the Association for Computing Machinery.

Yun Li (S’87–M’90) received the Ph.D. degree
in computing and control from the University of
Strathclyde, Glasgow, U.K., in 1990.

He was a Visiting Professor with Kumamoto
University, Kumamoto, Japan, in 2002. He has
served as the Founding Director of the University
of Glasgow Singapore, Singapore, from 2011 to
2013, and acted as the Founding Director of the
University’s international joint program with the
University of Electronic Science and Technology of
China (UESTC), Chengdu, China, in 2013. He is

currently a Professor with the Department of Systems Engineering, University
of Glasgow, Glasgow, U.K., and a Visiting Professor with the UESTC and
Sun Yat-sen University, Guangzhou, China, researching into smart design with
market informatics via the cloud to complete the value chain for Industry 4.0.
He has 200 publications and he is a Chartered Engineer.

Dr. Li is an Associate Editor of the IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION and the SM Journal of Engineering
Sciences.

Henry Shu-Hung Chung (M’95–SM’03) received
the Ph.D. degree in electrical engineering from
Hong Kong Polytechnic University, Hong Kong,
in 1994.

He is currently a Professor with the Department
of Electronic Engineering, City University of
Hong Kong, Hong Kong. He has authored six
research book chapters and over 320 technical
papers including 150 refereed journal papers in his
research areas and holds 26 patents. His current
research interests include time- and frequency-

domain analysis of power electronic circuits, switched-capacitor-based
converters, random-switching techniques, and control methods.

Dr. Chung is currently the Editor-in-Chief of the IEEE POWER

ELECTRONICS LETTERS, and an Associate Editor of the IEEE
TRANSACTIONS ON POWER ELECTRONICS, the IEEE Journal of Emerging
and Selected Topics in Power Electronics, and the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS, PART I.

Yu-Hui Shi (SM’98) received the Ph.D. degree in
electronic engineering from Southeast University,
Nanjing, China, in 1992.

He is currently a Professor with the Department
of Electrical and Electronic Engineering, Xi’an
Jiaotong–Liverpool University, Suzhou, China. His
current research interests include computational
intelligence techniques (including swarm intelli-
gence) and their applications.

Dr. Shi is the Editor-in-Chief of the International
Journal of Swarm Intelligence Research and an

Associate Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION. He is the Chair of the IEEE Chief Information Officer Task
Force on Swarm Intelligence.

Jun Zhang (M’02–SM’08) received the Ph.D.
degree in electronic engineering from the City
University of Hong Kong, Hong Kong, in 2002.

He is currently a Changjiang Chair Professor with
the Department of Computer Science, Sun Yat-sen
University, Guangzhou, China. His current research
interests include computational intelligence, cloud
computing, data mining, and power electronic cir-
cuits. He has published over 200 technical papers in
his research area.

Dr. Zhang was a recipient of the China National
Funds for Distinguished Young Scientists Award from the National Natural
Science Foundation of China in 2011 and the First-Grade Award in Natural
Science Research from the Ministry of Education, China, in 2009. He is cur-
rently an Associate Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,
and the IEEE TRANSACTIONS ON CYBERNETICS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

