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Terrain Classification From Body-Mounted
Cameras During Human Locomotion
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Abstract—This paper presents a novel algorithm for terrain
type classification based on monocular video captured from the
viewpoint of human locomotion. A texture-based algorithm is
developed to classify the path ahead into multiple groups that
can be used to support terrain classification. Gait is taken into
account in two ways. Firstly, for key frame selection, when regions
with homogeneous texture characteristics are updated, the fre-
quency variations of the textured surface are analyzed and used
to adaptively define filter coefficients. Secondly, it is incorpo-
rated in the parameter estimation process where probabilities
of path consistency are employed to improve terrain-type esti-
mation. When tested with multiple classes that directly affect
mobility—a hard surface, a soft surface, and an unwalkable
area—our proposed method outperforms existing methods by
up to 16%, and also provides improved robustness.

Index Terms—Classification, recursive filter, terrain classifica-
tion, texture.

I. INTRODUCTION

HUMANOID robots have been developed in recent
decades to replicate human movement, and cameras are

frequently employed as primary sensors, to emulate the way
our eyes perceive the navigable environment. Visual informa-
tion can enhance a robot’s capabilities in terms of scene/object
recognition and adaptation according to environment, aspects
that are key for locomotion control and path planning. In this
paper, we propose the use of such information to predict the
type of terrain ahead of the robot via textures presented in
single-view videos. In addition to humanoid robots, this paper
could also benefit robots with multiple legs which are required
to function in dangerous areas where wheeled robots are not
suitable. It is also relevant to the design of aids for the visually
impaired.

Several authors have previously proposed algorithms for
terrain classification. In the main, these provide only binary
classification, such as whether an area is road or vegetation [1].
When more complicated classifications are required, to rec-
ognize multiple classes or to provide probabilities of terrain
prediction, a vision-based method is often combined with other
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sensors to confirm terrain types [2], [3], or a stereo-based
vision system is used to assist geometric analysis of the near
areas [4], [5]. While geometry-based approaches can provide
the shape of the surface and are invariant to lighting conditions,
texture-based visual analysis can focus on areas of interest and
offer better resolution for finer classification tasks. There are
only a few approaches that solely use on monocular video
(color and textural features) for multiclass prediction [6], [7].
Although, both the visually-based and hybrid methods men-
tioned above perform well, most of them have only been
proposed for wheeled vehicles.

A recognition technique using a bag of visual words was
introduced in [8] for small legged robots. However, this paper
employs video captured from a camera facing vertically down-
ward, at a small distance from the ground. An example of a
humanoid robot application is given in [9], where texture fea-
tures are exploited to discriminate between only two classes, in
order to determine whether the path is traversable. Generally
humanoid and legged robots only exploit vision to control their
walking [10], but not vice versa. The use of gait bounce signals
and terrain classification is mentioned in [11] when different
floor materials affect different limb motions. However, this
works only with small and light-weight legged robots and does
not exploit visual information.

To the best of our knowledge, this is the first paper
on texture-based terrain identification for legged robots that
exploits walking behaviors to improve classification perfor-
mance. We present a textured-based terrain classification
method for a legged system using a single camera that offers
the following novel contributions.

1) A recursive temporal filter with adaptive filter coeffi-
cients computed from major uncertainties.

2) A compensation for the perspective foreshortening.
3) A new path consistency estimation.
4) A technique for performance improvement in terms of

classification accuracy and computational cost using the
motion characteristics of a biped humanoid robot.

The system used in this paper is demonstrated in Fig. 1,
showing a camera located at a distance h from the ground and
at an angle θx from the vertical axis. The proposed method
is illustrated in Fig. 2. It employs a recursive filter where
filter coefficients are updated adaptively from frequency pro-
jection and path consistency. The recursive filter ensures that
information from a sequence of frames is weighted appro-
priately. Frequency projection—i.e., the textural change due
to a forward moving camera, and path consistency—i.e., the
possibility of combining different materials across frames, are
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Fig. 1. Human locomotion with a body-mounted camera.

employed to estimate the uncertainty of the information as it
passes between frames. The algorithm begins by segmenting
key frames into nonoverlapping regions. These key frames are
selected from the sharpest frames of the walking cycle, as
determined by the plot of sharpness values measured from the
mean of highpass magnitudes. Only key frames are segmented,
so as to reduce computational time, employing a wavelet-
based watershed segmentation [12]. Many existing methods
divide an image into equal-sized rectangular patches [6], [13].
Although these require less computational time for segmenta-
tion, an increased number of patches can lead to higher overall
complexity in feature extraction and classification. Moreover,
our method achieves better boundary definition for different
textures, an aspect that is important in order to indicate where
robots need to change their motions or directions.

Next our classification process is applied to each region
and the associated classification probability is stored. These
regions are tracked across successive frames until the next
key frame, when the regions are updated. The outcome of
classification for each region is accomplished using a recur-
rence relation of probability within a temporal sliding window
defined adaptively according to walking cycle. A shorter win-
dow is used when walking fast, because each area and object
disappears sooner than when walking slowly. We compute
the decaying weights based on the major possible uncertain-
ties due to walking and camera settings, which are motion
blur, path consistency, and frequency variation caused by
perspective view. These factors cause a change in texture
characteristics and the information from the affected areas
is weighted accordingly. The model used in the classifier is
updated when new information from the upcoming path is
obtained.

The algorithm is highly effective yet simple, and main-
tains the video processing load within the bounds of what
is likely to be feasible for real-time computation. Moreover,
unlike existing methods where obstacle detection is sep-
arately achieved using geometry-based algorithms (either
with visual information [14], [15] or other sensors [16] or
both [17]), our method is inspired by human vision which
actually exploits monocular vision to perceive information
at a distance. Obstacles, defined as unwalkable areas, are
detected simultaneously with other terrain types using texture
information.

The remainder of this paper is organized as follows. Related
work is reviewed in Section II, and the proposed framework is
overviewed in Section III. The proposed texture-based classifi-
cation method, comprising a recursive probability estimation,

   

 

 

 

 

 
 

 

Fig. 2. Process of terrain classification for tracked regions.

an uncertainty-based combination and a model updating tech-
nique, is explained in Section IV. The influences of locomotion
are described in Section V, and the method performance is
evaluated in Section VI. Finally, Section VII presents the
conclusion of this paper.

II. TEXTURE-BASED TECHNIQUES FOR LOCOMOTION

In locomotion applications, textures extracted from frames
of a video sequence were initially employed for optical
flow calculation. Later, they were widely used for classifica-
tion purposes [18]–[20], including terrain classification [21].
Classification of textures is, however, not straightforward due
to the high variability of the data within and between images,
particularly in natural scenes where effects, such as texture
nonhomogeneity, light variation, and shadows are common.

Texture analysis is generally performed in the spatial
domain and/or the transform domain to measure local vari-
ations in image intensity. In the spatial domain, statisti-
cal models are often applied, including second-order gray
level statistics (e.g., contrast, angular second moment, and
entropy or correlation), gray level run length statistics
and co-occurrence matrices [22]. In the transform domain,
conventional approaches make use of the Fourier power
spectrum. Later, filter banks were employed to perform spatial-
frequency analysis as these can extract more robust frequency
characteristics for spatially and temporally varying natural
images [20], [23]. Features can be extracted at a pixel level,
but generally these perform poorly. Alternatively region-based
techniques can be used that spatially group the pixels of an
object or areas that contain similar characteristics [24] thereby
achieving better performance particularly in the presence of
noise. As locomotion applications generally require real-time
processing, speeded up robust features [25] have also used to
identify key features in texture areas [8], [26].

Extracted texture features can provide descriptions of a
given terrain region, so are suitable for distinguishing nav-
igable paths for autonomous vehicles. Angelova et al. [6]
proposed a fast multiclass prediction algorithm which employs
simple descriptors in different regions and applies more
complicated approaches when more time is available. The
texture-based method in [7] further applies a temporal label
transfer where the results of previous frames are copied to
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corresponding patches in the current frame. Recent reviews
of visual terrain classification and techniques used in terrain
traversability analysis can be found in [27] and [28].

For humanoid robot research, motion planning tech-
niques primarily focus on 3-D geometric reconstruction
using onboard stereo cameras [29]–[31] or laser range
sensors [32]–[34]. Environments may also be simplified using
edge detection to indicate the obstacles [10], [35]. However,
such techniques have only been applied to indoor scenes.
Recently, texture information has become a focus for improv-
ing locomotion. This has been inspired by human vision sys-
tem where texture gradient cues are crucial for obtaining depth
estimation in case of limited field of view (e.g., monocular
vision) or when viewing at ranges beyond 2–3 m [36]. In [9],
texture information in monocular images is employed together
with a laser to identify the traversable areas, for a robot.

III. OVERVIEW OF THE PROPOSED FRAMEWORK

We classify the regions appearing in each frame into
three classes: 1) hard surfaces (e.g., tarmac, bricks, tiles,
deck, rough metal, and cement); 2) soft surfaces (e.g., grass,
soil, sand, gravels, snow, and mud); and 3) unwalkable areas
(e.g., static and moving obstructions). These classes could
influence a robot’s posture and dynamic stability when walk-
ing on the surface. The diagram of the proposed framework is
illustrated in Fig. 3. The process starts by generating the instant
walking pattern, using the sharpness value of each input frame.
This is defined over a sliding window and is employed for
selecting the next key frame and skipped frames. Each frame
is thus processed as either a key frame, a skipped frame or a
normal frame, as described below.

1) In normal frames, the regions of previous frame are
matched to the corresponding areas in the current
frame using a multiscale gradient matching method [37].
To reduce computation time, the regions in the previous
frame that are classified as hard surfaces are warped
together (similarly applied to soft surfaces). These are
generally parts of a uniformly orientated surface from
the one-point perspective which can exploit the same
homograph parameters. Conversely, each unwalkable
region generally contains an individual transformation,
hence they are warped separately.

2) Key frames are segmented into nonoverlapping regions
for which the texture characteristics of adjacent areas
are different. We employ a wavelet-based water-
shed segmentation [12] where the gradient map
is generated using the dual-tree complex wavelet
transform (DT-CWT) [38]. The newly formed regions
are used in the initial classification process. Next, the
regions that are not classified as unwalkable areas are
matched to the corresponding regions in the previous
frames, while the unwalkable regions are processed
using a refreshment scheme (described in Section IV-B).
This is because detecting obstacles is considered to
be very important; and thus, any results from previ-
ous frames should not affect the decision of these being
obstacles in the current frame.

Fig. 3. Proposed terrain classification framework.

3) For skipped frames, a warping process is performed only
under conditions of fast movement (e.g., running, rapid
camera panning, etc.), since the associated large dis-
placements can cause tracking difficulty. Here we use
a simple threshold applied to the walking speed. If the
current walking speed is faster than 5 km/h, the region
tracking process will be applied. Possible improvements,
such as using global displacements, will be developed in
future work. None of the skipped frames are used in the
classification process because the texture features from
blurred frames could deteriorate the overall performance.

Next, for normal and key frames, the texture features are
extracted for each region. These are employed in the clas-
sification process and stored for model updating when the
classes of such regions are predicted at a sufficient confi-
dence level. In the classification process, a support vector
machine (SVM) [39] is employed to compute the probability
of each region, and then the recursive probability estimation
process is applied for the final decision. Further details of each
stage in the algorithm are provided in the following sections.

IV. PROPOSED TEXTURE-BASED

TERRAIN CLASSIFICATION

A. Texture Features

Texture is an efficient tool for characterizing various
material properties, such as structure, orientation, roughness,
smoothness, or regularity differences within an image. The
texture features used in this paper are given in Table I and
these include intensity level distribution, wavelet features, and
the local binary pattern, extracted from each region. Only
the intensity (Y) channel, extracted from the YCbCr color
transformation, is used here.

For the intensity level distribution, five parameters are
extracted, including mean, variance, skewness, kurtosis, and
entropy. As one of the most important aspects of texture is
scale, which provides both spatial and frequency information, a
multiresolution approach is utilized based on wavelet features.
We employ the DT-CWT [38] which employs two different
real discrete wavelet transforms (DWT) to provide the real
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TABLE I
LIST OF FEATURES USED IN CLASSIFICATION

and imaginary parts of the CWT. This increases directional
selectivity over the DWT and is able to distinguish between
positive and negative orientations giving six distinct sub-bands
at each level, corresponding to ±15◦, ±45◦, and ±75◦. This
provides near shift-invariance and good directional selectiv-
ity. With four decomposition levels, the mean and variance of
magnitudes across all subbands in each region produce eight
features and those of each subband produce further 48 features
(2 × 4 levels ×6 subband/level).

The local binary pattern labels the pixels in an image by
thresholding the neighborhood of each pixel, considering the
result as a binary number [40]. Uniform patterns are gener-
ated using eight sampling points on a circle of radius 1 pixel.
There are a total of 256 patterns, 58 of which are uniform,
which produces 59 output labels. A histogram with 59 bins is
obtained, and the frequency of each bin is used as one feature.

Other textural features were also investigated, including run-
length measures [41], the gray-level co-occurrence matrix [22],
and Gabor filter parameters [42]. However, the features in
Table I were found to give the best terrain classification per-
formance for body-mounted cameras. A SVM was employed
to exploit these texture features to compute the probability of
each terrain class.

B. Recursive Probability Estimation

One of advantages of continuous video is the large amount
of information provided in both the spatial and temporal
dimensions. In addition, it also provides a basis for temporal
noise filtering. The simplest way to exploit temporal informa-
tion is to use averaging across a group of frames. Provided
that successive frames are accurately registered, the average is
generally better than any of the individual frames. A recursive
averaging process is employed here using exponentially decay-
ing weighting of previous frames (wk), in order to address the
issue of error integration.

A multipass algorithm could be used to produce a clas-
sification result for a single frame, with a fresh sliding
(N+1)-frame window comprising current, backward and for-
ward frames. Unfortunately this would be computationally
demanding because the registration process would need to
be repeated for all N frames for each time shift. Also,
buffering the forward frames is not ideal for a real time appli-
cation. Therefore, we apply a recursive strategy to tracked
regions. Equation (1) describes data processing for class
c, c ∈ {1, 2, 3}, of region r in the current frame n with previous

N frames. This probability combination is similar to applying
an Nth-order recursive filter with adaptive filter coefficients wk

Pr,c
n =

N∑

k=0

wr
kPr,c

n−k. (1)

1) Refreshment Scheme: In each key frame, the segmen-
tation process is performed. This will either generate new
regions corresponding to the first appearance of objects at
distance or will update the existing regions to reduce track-
ing error. The regions that are classified as walkable regions
(classes 1 and 2), are applied to the recursive probability esti-
mation process with the best matched regions of the previous
frames. In contrast, the Pr,3

0 of the region that is classified as
unwalkable regions (class 3), is not combined with that of any
regions of the previous frames, but acts as the refresh point
and will be used in the recursive process for the next frame.
This means, at the key frame: N = 0, Pr,3

n = Pr,3
n−0, and at

the next frame: N = 1, Pr,3
n = wr

0Pr,3
n−0 + wr

1Pr,3
n−1, and so on.

We set this rule because the detected unwalkable regions in
the key frame often correspond to new objects that appear on
the walking path and require attention, whereas other regions
are the continuous paths that are already visible in previous
frames. Experiments show that the refreshment scheme can
improve the classification accuracy by approximately 5% for
general outdoor paths and by up to 10% for other complicated
routes that have many obstacles.

C. Uncertainty-Based Combination

Leading on from Section IV-B, an important step in our
algorithm is the probability combination. In this section, we
explain the proposed scheme to compute wk in (1). Generally
the shape of the probability density distribution conveys the
amount of certainty of information, i.e., a narrow distribu-
tion implies that most probability is concentrated in a narrow
band, while a wide shape means the probability is spread
over a wider range. This indicates confidence in a value.
Therefore, the variance σ 2 of the probability distribution is
used to compute the weight as shown

wr
k =

(
1

σ 2
k,r

)/ (
N∑

k=0

1

σ 2
k,r

)
. (2)

The uncertainty occurring due to walking and environmen-
tal conditions is considered when estimating each σ 2

k,r. The
variance of the probability distribution of the frame that is fur-
ther from the current frame is generally larger since uncertain
conditions increase. Firstly, the change of texture frequency
distribution on the image plane along the direction of fore-
shortening is analyzed. Secondly, the consistency of the path
ahead is exploited to adapt the weights used for probabil-
ity combination. Later in Section V, we describe a technique
which uses the walking cycle for key frame selection, adaptive
sliding window calculation, and blur frame suppression.

1) Projective Frequency Compensation: Since the walking
path appears from a one-point perspective, the corresponding
areas in the different frames may contain different frequency
characteristics depending on the position on the image where
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Fig. 4. Graphical representation used for estimating frequency on image
plane. Top: projective geometry. Middle: geometry when θy = 0◦ and θz = 0◦
for f H

y estimation. Bottom: 2-D geometry of y-z plane for f V
y estimation.

the ground surface projects to. We therefore analyze the fre-
quency change on an image plane due to a camera under
forward motion. Fig. 4 shows the geometric system we use.
Frequencies projected on the image plane in horizontal and
vertical directions are estimated from the local frequency fS
on a ridge surface S of the terrain at an incident angle θx with
the image plane. We assume θy = 0◦ and θz = 0◦ regardless of
whether the head (camera) turns left-right or moves side-side
during walking.1 The horizontal projective frequency f H

y in the
image plane at y comes from the projection tH of T = 1/fS as
shown in Fig. 4 (Middle). Using the property of similar trian-
gles, f H

y = 1/tH can be estimated as 3, where F and Z0 are
focal length and surface distance from the camera, respectively

tH = T

Z0
(F − y tan(θx)) (3a)

f H
y = Z0fS

F − y tan(θx)
. (3b)

We estimate the vertical projective frequency f V
y at posi-

tion y from an average between the local projective fre-
quency at just above and below point y, f V

y1 = 1/(�y1) and
f V
y2 = 1/(�y2), respectively. The estimation starts with the pro-

jection tV of T on the plane that is parallel to S and intersects

1The impact of camera panning on the overall performance of the system
is described in Section VI-B1.

Fig. 5. Comparison of estimated frequency and actually frequency of texture
slant surfaces. Top: horizontal frequency f̃ H

y . Bottom: vertical frequency f̃ V
y .

the image plane at y as shown in Fig. 4 (Bottom), which is
computed as tV = (T/Z0)(F − y tan(θx)). Again, using the
property of similar triangles, �y1 and �y2 are computed

�y1 tan(θx)

F − y tan(θx)
= tV cos(θx)−�y1

tV cos(θx)+ y
(4a)

�y1 = tV cos(θx)(F − y tan(θx))

F + tV sin(θx)
(4b)

F − tV sin(θx)

F
= y − tV cos(θx)

y −�y2
(5a)

�y2 = tV cos(θx)(F − y tan(θx))

F − tV sin(θx)
. (5b)

Replacing tV , f V
y is estimated as shown

f V
y = f V

y1 + f V
y2

2
= FZ0fS

cos(θx)(F − y tan(θx))2
. (6)

It can be seen that an inverse f V
y is a parabolic function

of y which agrees with the estimation in [43] where the
nonlinear spatial frequency in the image plane caused from
the perspective projection is approximated as the gradient of
phases.

The values f H
y and f V

y are scaled in the range 0–1 across
the image height, f̃ ϕy = ( f ϕy − f ϕ(−Mh/2)

)/( f ϕ(Mh/2)
− f ϕ(−Mh/2)

),
ϕ ∈ {H,V}, where Mh is an image height. Thus, knowledge
of Z0 and fS is not required. Fig. 5 compares the estimated
frequency with the actual local frequency on the image plane
when the surface is inclined at various θx. The surface is gen-
erated by projecting the rectangular image of a bi-directional
sinusoid to each θx. The position in the y direction is also
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Fig. 6. Classification accuracy comparison of 1000 frames of a video.

normalized so that the results of different surface angles can
be plotted on the same graph.

The variance of the probability at the frame which is at
distance k from the current frame is estimated as shown
in (7), where (∂ f̃ H

y )/(∂y) and (∂ f̃ V
y )/(∂y) are the differential

frequencies between corresponding position y (centroid of
region r) on frame k − 1 and k in the horizontal and vertical,
respectively. σ 2

0,r is the variance obtained from the probability
distribution of the training dataset. We use a library for
support vector machines to compute the probability of each
training data (further details about probability estimation can
be found in [39, Ch. 8])

σ 2
k,r = σ 2

k−1,r + ∂ f̃ H
y

∂y

∂ f̃ V
y

∂y
. (7)

We compared the performance of our method using
defined weights based on estimated projective frequency, with
approaches using a uniform weight and several common
decayed weight methods. The most similar weight distribution
to ours is a Gaussian with variance equal to filter length, N.
However, these weights are constant across the whole image,
whereas ours are adaptive according to the position of the
region being processed. A performance comparison is pre-
sented in Fig. 6. The accuracies (%) in this plot and the rest
of this paper were computed from the number of pixels classi-
fied correctly (three classes) over the total number of pixels in
each frame. It can be seen that the wider weight distributions
benefit the prediction for the near areas, while the narrower
shapes give better prediction for the far areas. Our method can
clearly be seen to outperform the other approaches considered.

2) Path Consistency: A path that contains several different
materials or obstructions makes tracking the corresponding
areas between frames less reliable and adds more uncer-
tainty to the probability estimation. In this case, more weight
should be given to the current frame and the weights should
decay faster than in the case of a consistent path. To esti-
mate the probability of path consistency, a row-wise sum of
highpass magnitudes of the DT-CWT is employed, before
applying polynomial curve fitting with degree of 2 to con-
struct error histograms (12 bins for each decomposition level).
A degree of 2 is used because the projective frequency
exhibits a near parabolic characteristic as shown in Fig. 5.
Fig. 7 shows examples of both type of paths and their error
histograms. With three decomposition levels, the values of

Fig. 7. Comparison of histograms of consistent and inconsistent paths.

Fig. 8. Weight at different probability of path consistency when window
size is 20 frames.

the row-wise sums and the error histograms of levels 1–3
are shown in columns 1–3 of Fig. 7, respectively. The plots
also show estimations using polynomial curve fitting, with
degrees 2, 3, and 4. The error histograms reveal that the best
discrimination between consistent and inconsistent paths is
achieved using degree 2 fitting.

The value of each bin of the error histogram is used as a
feature for computing probability Pp by SVM classification.
Pp is employed to adjust the weight as shown in (8) and an
example of weights used for the sliding window of 20 frames
with various Pp values is shown in Fig. 8. A small Pp indi-
cates that the path ahead could be inconsistent, so the weight
decays quickly for older previous frames. Pp can also be sent
to the control system to assist awareness of obstructions or
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Fig. 9. Classification accuracy improvement when the path consistency
approach is employed.

Fig. 10. Histogram of decision values shows improvement when applying
model update (k is the number of new samples).

changes in terrain type. The boundaries between regions that
are classified as different types can also be used to indicate
locations which the robot should be made aware of. Operating
adaptively on the instant video content, the classification per-
formance is improved as shown in Fig. 9, particularly between
frames 550 and 650 where the video contains movement from
bricks to grass

σ 2
k,r = σ 2

k−1,r + 1

Pp

∂ f̃ H
y

∂y

∂ f̃ V
y

∂y
. (8)

D. Classification Framework With Model Update

Areas that have been tracked from a distance generally
show clearer frequency characteristics when they get closer
to the observer, since the near areas appear sharper and
different terrain types are easier to distinguish. The terrain
classification framework therefore includes a parallel pro-
cess in which the labels of all tracked features from far
to middle ranges (row 1 − row (3/4)Mh) are updated with
more accurate results from the classification of near areas
(row (3/4)Mh + 1 − row Mh). The new model is used to clas-
sify previously unseen appearing areas in the next frame. The
system is tested by initially modeling 500 samples of soft sur-
faces and 500 samples of hard surfaces, and then 100 new
samples of each type are included to recompute the model.
By using 400 samples of each type for testing, the histogram
of decision values is generated as shown in Fig. 10. The plot

Fig. 11. Sharpness shows walking step (Cw ≈18).

clearly reveals an improvement as there are fewer misclassi-
fied samples (showing smaller areas above and below decision
value of 0 for hard and soft surfaces, respectively). As the
quantity of training data can become very large, an ensem-
ble classifier, along with a feature selection method, may be
used to improve predictive performance and to reduce memory
requirement [44].

V. INFLUENCE OF WALKING

When the shutter speed of a camera is not fast enough
to capture stop motion, such as in low light conditions or
with fast camera motion, some frames will exhibit high levels
of motion blur which may alter measured frequency prop-
erties. Fig. 11 shows the sharpness value � of each frame
which is computed from the mean of highpass magnitudes
� = (

∑4
l=1

∑6
s=1 |ψl,s|)/nall, where ψl,s is a DT-CWT coef-

ficient of subband s at decomposition level l, and nall is the
total number of DT-CWT coefficients).

Fig. 11 clearly shows the points where the camera is mov-
ing faster. This indicates when the body vaults over the leg at
each step during normal walking. Several motion blur removal
methods have been proposed previously [45]; unfortunately
deblurring often involves blur estimation or blind deconvo-
lution which increases complexity and is not feasible for
real time applications. In [46], a motion deblurring technique
which does not rely on an iterative process was proposed for
video stabilization. This technique replaces blurred pixels with
the sharp pixels from the neighboring frames. A transform-
based image fusion can also be employed for deblurring. The
large highpass magnitudes of wavelet coefficients are selected
amongst successive aligned frames to produce a sharp fused
image in [47]. Here, we make use of blur information to reduce
processing time and simultaneously improve overall classi-
fication accuracy via key- and skipped-frame selection. The
performance of our terrain classification is tested with the pro-
posed blur compensation and the deblurring methods presented
in [46] and [47]. These results are presented in Section VI-A.

A. Key Frame Selection and Adaptive Window

A walking cycle, Cw (unit: frame/step), is employed to pre-
dict the next key frame in which the segmented regions are
updated. It is also employed to adapt window size in our
recursive method, i.e., N = Cw. If the walking cycle is short
(e.g., walk fast or run), a shorter window is used.
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Fig. 12. Sharpness value plot with key frames and skipped frames.

We estimate Cw using the sharpness values, as shown in
Fig. 11. The values obtained from the last 5 Kw frames (the
number of frames just needs to be large enough to capture the
walking behavior at that time), where Kw is a number of frames
in one walking step. The initial Kw is 20 frames/step,2 which
is also reasonable to use if the walking speed is unknown.

The fast Fourier transform is employed to perform dominant
frequency estimation. Consequently, the next key frame will be
Cw frames from the previous key frame which is detected as a
local maximum. Adaptively selecting key frames will prevent
using blurred frames for segmentation. The maximum value of
Cw is limited to the framerate for the case of missing the next
local maximum (sharpest frame of the next step). If Cw reaches
the maximal limit, the earliest frame that is sharper than the
average sharpness value is selected as the key frame. Setting
Cw equal to framerate ensures that the system is guaranteed
to receive at least one key frame per second. Fig. 12 shows
positions of key frames with sharpness value of each frame in
the sequence.

B. Skipping of Blurred Frames

When an image is excessively blurred, it should not be
employed in the classification process. This is because motion
blur causes textural characteristics to change which could dete-
riorate the classification performance. It also influences the
results for following frames when a recursive technique is
employed. A frame skipping strategy improves overall system
performance—not only is classification accuracy increased, but
computational time is also reduced.

To identify the skipped frames, the estimated Cw is also
employed. The local minima of the sharpness values are
detected, and then the next Cw ± �Kw/8� frames from the
previous minimal point are checked (the maximum number
of skipped frames in one walking step is limited to Kw/4).
There are two cases for computing the threshold used for defin-
ing the skipped frames, which are when walking on: 1) the
consistent path and 2) the inconsistent path. This can simply

2Based on the average step length of 90 cm and walking speed of
5 km/h [48], one step takes approximately 20 frames when a 30 frames/s
camera is used (Kw = (framerate[frames/s] · step length[cm/step])/
(walking speed[cm/s]) = (30 × 90)/((5 × 105/(60 × 60))) = 19.44
frames/step).

employ the result of the path consistent prediction (described
in Section IV-C2) of the previous frame.

1) Case I—Consistent Path: If the sharpness value of the
current frame is less than the maximum of the local
minima of previous 5 Kw frames, they are defined as
skipped frames.

2) Case II—Inconsistent Path: If the sharpness value of
the current frame is less than the average of the local
minima of previous 5 Kw frames, they are defined as
skipped frames.

This adaptive threshold ensures that the change of terrain
characteristics from high detail texture, such as grass and
bricks, to low detail texture, such as tarmac, will not cause
over skipping. An example sequence showing skipped frames
based on sharpness values and path consistency is shown in
Fig. 12 (skipped frames are indicated by red cross). Frames
#1050–1400 correspond to a tarmac road, so they have aver-
age sharpness values much lower than those of the previous
frames where the path is made of bricks and grass. If the path
consistency constraint is not employed, the sharpest frames
around these frames might be defined as the skipped frames.

C. Blur Frame Suppression

The sharpness value is also employed to adjust the weight
applied to each frame (1) as shown in (9), where gk is the
mean of the highpass magnitudes of frame k in the sliding
window. The simple rule employed here is that information
from the blurred frames is exploited less than for the case of
sharp frames

w̃r
k = gk

max
({gi}N

i=0

)wr
k. (9)

VI. RESULTS AND DISCUSSION

The sequences used for testing were in 1920 × 1080
(Mw × Mh) format with 24-bit RGB color acquired at
30 frames/s, using a Canon EOS 5D with a fixed 28 mm lens.
Automatic mode was used so the camera selected the aper-
ture, ISO and white balance values best suited to the general
shooting conditions. The camera was positioned approxi-
mately 160 cm from the ground and at 60◦ from the vertical
axis. Example frames are shown in Fig. 13, where walk-
ing speed was 4–6 km/h, measured using GPS on a mobile
phone. We reduced the processing time by segmenting only
part of the far area in the key frame (row 1 − row Mh/3,
col Mw/5 − col 4Mw/5), and performing principal component
analysis to reduce feature dimensions to 12—accounted for
99.9% of the variance. The radial basis function (RBF) kernel
was employed in the SVM classification. The parameters used
in the RBF were selected by grid search using cross validation
(initially the penalty parameter C was 7 and kernel parameter
γ was 7.8).

A. Multiclass Classification

We tested our framework with the three classes of terrain
described in Section III. Image size was reduced by a scale
factor of 4 to speed up the segmentation process, but fea-
tures were extracted at full resolution. For training purposes,
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Fig. 13. Example frames from walking videos.

Fig. 14. Comparison of classification performance when using average and
recursive methods.

Fig. 15. Comparison of classification performance when motion blur is
employed.

only sharp frames from a range of videos including all mate-
rial types were used. These were segmented into various region
sizes to generate 1000 training samples for each class.3 These
videos are independent of the testing videos.

Fig. 14 shows the classification performance using: 1) indi-
vidual frames; 2) a weighted average of features of each
frame to compute probability; 3) a weighted average of
individual probability of each frame; and 4) the proposed
recursive method. All methods using temporal information
improved classification accuracy (by 100% in these plots).
The average-based features in general show the best probabil-
ity (Pn close to 1). However, in the difficult scenes (Fig. 15),
where incorrect classifications occurred because of high move-
ment or consecutive motion blur, the recursive probability
approach outperformed the others. That is, our method offers
better robustness. Fig. 15 shows a further improvement when
updating weights to compensate for motion blur. Examples
of the subjective results are shown in Fig. 16. The right col-
umn of the figure shows the results of the high motion-blur

3Dataset is available at http://seis.bris.ac.uk/∼eexna/download.html

Fig. 16. Subjective results. Label 1 (green), label 2 (red), and label 3 (blue)
correspond to the areas classified as hard surfaces, soft surfaces, and unwalk-
able areas, respectively. The size of the circle indicates probabilities—bigger
implies higher confidence of classification. The left and right columns are from
sharp and blurred frames, respectively. Classification accuracy (top to bottom)
of left column: 87.07%, 89.96%, and 86.79%; right column: 79.75%, 67.32%,
and 75.17%.

TABLE II
AVERAGE CLASSIFICATION ACCURACY (%) WHEN

WALKING EFFECTS ARE CONCERNED

frames which can cause incorrect region warping and incorrect
prediction. Our method is, however, robust to these influences.

We compared our method with the approaches presented
in [6]–[8]. These methods partitioned each frame into near
and far patches which exhibited different textural characteris-
tics and which were processed independently. Table II shows
the average classification accuracies for 15 test videos con-
taining all types of terrains over a walk of duration 40 s.
Ground-truth videos were manually labeled. The accuracy of
our method was significantly better, improving classification
from 66.7% using the method from [7] to a value of 82%
with walking compensation. Our system increased computa-
tional time slightly compared to the methods in [6] and [8]
by approximately 8%, but was lower than the method in [7]
by 5%. The increase over the method in [6] and [8] is primarily
due to the region warping process.

We also compared the performance of terrain classifica-
tion, using the proposed walking compensation, with the video
deblurring approaches proposed in [46] and [47]. These two
techniques sharpen the blurred pixels using information in the
spatial and frequency domains of neighboring frames, respec-
tively. For fair comparisons, all systems update the segmented
regions at the same key frames. Table III shows the per-
formance comparison. The complexity was measured as the
computational cost compared to that of when using the walk-
ing compensation. We tested three window sizes used in the
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TABLE III
PERFORMANCE COMPARISON BETWEEN WALKING

COMPENSATION AND DEBLURRING METHODS

Fig. 17. Camera panning scenes (moving from right to left). Left: slow pan.
Right: quick pan showing missing area in the left part.

deblurring process, namely 12 frames—similar to that used
in [46]; six frames—for lower computational cost; and Cw

frames—adaptive according to walking cycle of which the
average was 18 frames. It is obvious that using more neighbor-
ing frames achieves better classification, but results in a higher
computational time. The shorter the window, the more likely
it does not contain a nonblurred frame, i.e., there are more
consecutive blurred frames than the window length. Based on
both classification accuracy and complexity, our walking com-
pensation outperforms the spatial deblurring method in [46].
This is because a slight misalignment amongst frames used for
deblurring may result in a large change in the texture in the
sharpened frames. The fusion method in [47] does not produce
a misalignment, since it includes nonrigid frame registration.
However, it requires significantly higher computational cost,
whilst offering an accuracy improvement of less than 0.1%.

B. Robust Framework

1) Horizontal Camera Motion: We investigated the perfor-
mance of the proposed framework when the video content
included horizontal movement caused by turning or camera
panning. Examples of difficult cases are shown in Fig. 17,
including the results from a slow pan containing high motion
blur (left) and a fast pan with obstacles (right). The result for
the slow pan achieved correct prediction in the areas with low
motion blur, whilst suffering where high motion blur occurred;
the wall on the right of the image exhibited an incorrect predic-
tion. The system, however, soon restored its performance when
the video returned to normal walking in a forward direction.
For the fast pan case, the system achieved correct results for all
areas on the right of the image, including the fence. However,
there were missing areas (on the left of the image) where
the system did not perform correct classification. This prob-
lem occurred because the fast-moving camera caused many

Fig. 18. Comparison of classification accuracy when the errors in θx present.

TABLE IV
AVERAGE CLASSIFICATION ACCURACY (%) WHEN

MODEL UPDATE IS EMPLOYED

successive frames to be blurred. These frames were conse-
quently skipped and the newly appearing regions were not
updated. The system, however, recovered when the next key
frame arrived (at least every 1 s), and the segmentation process
updated these new areas.

2) Sloped Ground: When walking on sloped ground, the
performance of the system is possibly lower because the actual
θx is different from the predefined value. After the ground
returns to being level, the system will soon recover back to
a performance level similar to that of the case of horizon-
tal camera motion. A long slope might, however, affect the
performance more severely. Hence, we have developed a par-
allel process to estimate ground orientation [49], which will
be included in the system in the future.

In this section, the effect of θx was tested. Fig. 18 shows the
performance when errors in θx are present. Positive �θx and
negative �θx imply ascending and descending slopes, respec-
tively. Interestingly, walking uphill affects system performance
more than walking downhill. This is because the weight dis-
tribution used in the recursive probability estimation is wider
than it should be, which raises a problem of error integration.

3) Camera Type: We tested the robustness of our method
by using test sequences from a different camera to that used
for the training dataset. A GoPro Hero3 was used to capture
similar scenes to those in the test videos in Section VI-A. The
videos were acquired at 30 frames/s with 1920 × 1080 spa-
tial resolution using a medium wide angle lens. These videos
also exhibited lens distortions which affected the projective
frequency analysis in Section IV-C1.

Results are shown in Table IV, where our method, with and
without model update, is compared to the methods in [6]–[8].
We updated the model using the result from: 1) the near area
and 2) the groundtruth, referred to here as the “sensor” (since
a mechanical sensor could be used to confirm the existence
of a hard or soft surface when the robot steps on it). Our
method showed improved results, even when the update model
is not employed. The model updating process further improves
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Fig. 19. Classification accuracy per frame of a GoPro video.

Fig. 20. Subjective results of GoPro videos (same labels as Fig. 16).
Classification accuracy: (left) 78.99% and (right) 82.23%.

the classification accuracy. With near area information (semi-
supervised system) the accuracy was improved by 4.5%, while
using groundtruth improved the system performance by up to
6%. The classification accuracy of each frame is shown in
Fig. 19, which reveals that our method can deal better with dif-
ficult scenes. Subjective results are shown in Fig. 20. The dips
in the graph of Fig. 19 correspond either to motion blur or to
changes in surface types. For example, when a new terrain type
appears in the far distance, the classifier reverts to the model
from the training camera which is based on different frequency
characteristics. This leads to poorer results. However, as the
system continues to receive texture information, the classifi-
cation performance improves if walking consistently on the
same surface type.

VII. CONCLUSION

We have presented a novel framework for terrain type clas-
sification based on video acquired when walking. This can
be used by autonomous robots to make locomotion decisions
when traversing difficult and varied terrain. It also has poten-
tial application to guidance aids for the visually impaired. The
proposed scheme employs texture parameters along with infor-
mation about walking behavior to compute the terrain class
probability. Using our recursive filtering method with model
updating, our framework outperforms existing methods by up
to 16% in terms of classification performance. It also provides
a robust solution, exhibiting resilience to horizontal camera
motion and changes in camera type.

We believe that our method outperforms previous
approaches because it exploits information in both temporal
and spatial dimensions. It also, for the first time, takes account
of blur information during the walking cycle. Finally, our

classifier is updated intelligently as new information appears
in the scene.

A possible area for future research is how to deal with
classification uncertainty. In cases when the probability of the
selected class is low (or the probabilities of several classes are
similar) a means of further validating surface type is likely to
be needed to ensure stability and safety of locomotion.
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