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Abstract—Various types of social relationships, such as friends
and foes, can be represented as signed social networks (SNs)
that contain both positive and negative links. Although many
community detection (CD) algorithms have been proposed, most
of them were designed primarily for networks containing only
positive links. Thus, it is important to design CD algorithms
which can handle large-scale SNs. To this purpose, we first extend
the original similarity to the signed similarity based on the social
balance theory. Then, based on the signed similarity and the
natural contradiction between positive and negative links, two ob-
jective functions are designed to model the problem of detecting
communities in SNs as a multiobjective problem. Afterward, we
propose a multiobjective evolutionary algorithm, called MEAs-
SN. In MEAs-SN, to overcome the defects of direct and indirect
representations for communities, a direct and indirect combined
representation is designed. Attributing to this representation,
MEAs-SN can switch between different representations during
the evolutionary process. As a result, MEAs-SN can benefit from
both representations. Moreover, owing to this representation,
MEAs-SN can also detect overlapping communities directly.
In the experiments, both benchmark problems and large-scale
synthetic networks generated by various parameter settings are
used to validate the performance of MEAs-SN. The experimental
results show the effectiveness and efficacy of MEAs-SN on
networks with 1000, 5000, and 10 000 nodes and also in various
noisy situations. A thorough comparison is also made between
MEAs-SN and three existing algorithms, and the results show
that MEAs-SN outperforms other algorithms.

Index Terms—Community detection problems, direct repre-
sentation, indirect representation, multiobjective evolutionary
algorithms, signed social networks, similarity.

I. INTRODUCTION

NETWORKS are employed in many fields to represent
various kinds of complex systems [1]–[2], and social

networks have attracted much attention. To understand and
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utilize the information in social networks, research has found
many distinctive network properties like the small-world and
scale-free ones [3]–[5], and developed various methods to
capture the network structure characteristics from different
perspectives. The research on analyzing the community struc-
ture has drawn a great deal of attention during the past decade
[6]–[28]. Although many community detection (CD) methods
have been proposed, most of them can only handle networks
without negative links, namely, unsigned networks. However,
many complex systems in social world can be modeled as
networks with both positive and negative links, namely, signed
networks (SNs).

In fact, SNs have been widely used to represent various
types of social relationships. For example, the technology news
website Slashdot lets its users tag other users as friends and
foes, as well as the product site Epinions that allows users
to trust and distrust each other. Guha et al. [29] addressed
the problem of predicting the trust between any two people
in a social network connected by trust/distrust scores. In
addition to social networks, many biological networks are also
signed. For instance, the interactions between genes in gene
regulatory networks can be enhanced or repressed. Therefore,
SNs can represent more general relationships between indi-
viduals in social or biological networks. Positive links denote
friendship, cooperation, trust, enhancing, etc., while nega-
tive links denote hostility, dislike, distrust, repressing, etc.
Moreover, Kunegis et al. [30] in their recent work showed
that negative links have a measurable added value for social
networks.

Due to the importance of community structure as a topolog-
ical property of social networks, methods that can detect com-
munities from SNs are hardly needed. In unsigned networks,
community structure is defined as a group of nodes or ver-
tices which have dense connections within groups and sparse
connections between groups, whereas for SNs, communities
are defined not only by the density of links but also by the
signs of links. That is, within communities, the links should be
positive and dense, and between communities, the links should
be negative or positive and sparse. But this problem is by no
means straightforward since it is natural to have some negative
links within groups and, at the same time, some positive
links between groups. Also, nodes connected by positive links
do not belong to the same community, either. Thus, more
robust community partitions should properly disregard and
retain some positive and negative links to identify more natural
communities [31].
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Fig. 1. Two partitions over one SN. Solid lines are positive and dashed lines
are negative. (a) Partition which has more positive links within communities.
(b) Partition which has more negative links between communities.

A. Our Contribution

With the intrinsic properties of detecting communities from
SNs in mind, we first model this problem as a multiobject
problem (MOP) considering both link density and signs. Two
objectives are proposed to reflect the contradiction between
positive and negative links. One is target to put all positive
links in communities while the other is target to keep all
negative links between communities. Fig. 1 shows a simple SN
which can be divided into two kinds of community structures.
The partition in Fig. 1(a) has 23 positive links within com-
munities and four negative links between communities while
that in Fig. 1(b) has 22 positive links within communities and
five negative links between communities. So the former has
more positive links within communities and the latter has more
negative links between communities. In fact, both of these two
partitions are of significance and acceptable. Thus, these two
objectives should be optimized together.

Evolutionary algorithms (EAs) are the most popular method
for solving MOPs, which are a kind of stochastic global
optimization methods inspired by the biological mechanism
of evolution and heredity, and have been successfully used to
solve various problems [32]–[37]. Especially, Shi et al. [38]
concluded that multiobjective EAs optimizing over a pair of
negatively correlated objectives usually perform better than
the single-objective EAs optimizing over either of the orig-
inal objectives. Therefore, we propose an MOEA based on
the signed similarity for detecting communities from SNs
(MEAs-SN). The signed similarity is extended from the origi-
nal similarity based on the social balance theory so that it can
deal with the effect of introducing negative links.

Especially, a direct and indirect combined representation
is designed so that MEAs-SN can switch between different
representations during the evolutionary process, and thus ben-
efit from both representations. Also, owing to this represen-
tation, MEAs-SN can detect both separated and overlapping
communities. A set of rigorous experiments are conducted on
both benchmark and large-scale synthetic networks with 1000,
5000, and 10 000 nodes. The results show the effectiveness
and efficacy of MEAs-SN. A thorough comparison is also
made between MEAs-SN and three existing algorithms, and
the results show that MEAs-SN outperforms other algorithms.
Moreover, MEAs-SN requires no prior knowledge on the
community structure, such as the number of communities and
a good initial partition. Thus, MEAs-SN is easy to use.

The rest of this paper is organized as follows. Section II
introduces the objective functions designed for CD problems

in SNs. Section III describes the details of MEAs-SN. The
experiments on benchmark and synthetic networks are given
in Section IV. Section V discusses the related work on social
network analysis and community detection methods. Finally,
the conclusions are given in Section VI.

II. OBJECTIVE FUNCTIONS FOR CD FROM SNS

Given a signed network G = (V , E, w). V = {v1, ν2, ..., νn}
is the set of nodes, E⊆V ×V = {(vi, vj) | νi, νj ∈V and i �=j}
is the set of edges, and w(vi, vj) is the weight of the edge
between nodes vi and vj. The weight can be larger than 0
(positive relationship) or smaller than 0 (negative relationship).
Let C = {C1, C2, ..., Cm} be a set of communities in G; that
is, Ci ⊂V for i = 1, 2, . . . , m. The problem of CD from SNs
can be accurately expressed in (1), shown at the bottom of the
page.

Huang et al. [14] used a structural similarity to denote
the local connectivity density of any two adjacent nodes in
a weighted undirected network. Given a weighted undirected
network, the similarity s(u, v) for u, v∈V is defined as follows
[14]:

s(u, v) =

∑

x∈�(u)∩�(v)
w(u, x) · w(v, x)

√ ∑

x∈�(u)
w2(u, x) ·

√ ∑

x∈�(v)
w2(v, x)

(2)

where �(y), y∈V is defined as the set of node y and y’s
neighbors; that is

�(y) = {v ∈ V| (y, v) ∈ E} ∪ {y} . (3)

However, this structural similarity is designed only for
unsigned networks, which can not handle negative links.
Therefore, based on the social balance theory [39], [40], we
first extend this similarity to a signed similarity. The social
balance theory suggests that people in a social network tend
to form into a balanced network structure, that is, for a triad,
either all three of these users are friends or only one pair of
them is friends. Thus, based on this theory, suppose we already
know the relationship between two pairs of users, we can infer
the relationship between the third pair of users.

Given three users, labeled as a, b, and c, and the relation-
ships between a and c, b and c. Fig. 2 shows the three possible
cases. The links are used to indicate the relationship between
two users. Solid lines mean friends (positive links) and dashed
lines mean foes (negative links). For the case in Fig. 2(a), both
a and c, b and c are friends, to be balanced, a and b should be
friends. For the case in Fig. 2(b), a and c are friends, but b and
c are foes, to be balanced, a and b should be foes. For the case
in Fig. 2(c), both a and c, b and c are foes, to be balanced, a
and b should be friends. But this will be the same to the case
in Fig. 2(b), so we just suppose no relationship between a and
b. Therefore, the signed similarity measure should be larger
than 0 for the case in Fig. 2(a), smaller than 0 for the case in

{
w(vi,vj)>0,

(
vi, vj

) ∈ E ∧ (vi ∈ Cl ) ∧
(
vj ∈ Cl

)

w(vi,vj)<0,
(
vi, vj

) ∈ E ∧ (vi ∈ Cl ) ∧
(
vj ∈ Ck

) ∧ (l �= k)
, l, k = 1, 2, ...,m. (1)
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Fig. 2. Example for three users’ relationships. Solid lines denote friends
and dashed lines denote foes. (a) Both a, c and b, c are friends. (b) a, c are
friends and b, c are foes. (c) Both a, c and b, c are foes.

Fig. 2(b), and equal to 0 for the case in Fig. 2(c). Thus, the
signed similarity is defined as

ssigned(u, v) =

∑

x∈�(u)∩�(v)
ψ(x)

√ ∑

x∈�(u)
w2(u, x) ·

√ ∑

x∈�(v)
w2(v, x)

(4)

where

ψ(x) =

{
0 if w(u, x)<0 and w(v, x)<0
w(u, x) · w(v, x) otherwise. (5)

Effective partitions for SNs tend to have more positive
links within communities and more negative links between
communities. To realize these purposes, the objective functions
should be appropriately designed. Usually, the objective func-
tions for MOPs should contradict to each other [41], which is
also true for multiobjective CD [38]. Shi et al. [38] concluded
that multiobjective EAs optimizing over a pair of negatively
correlated objectives usually perform better than the single-
objective EAs optimizing over either of the original objectives,
and even better than other well-established CD approaches.
Therefore, with the purposes of CD in SNs in mind, the
following two conflict objective functions are designed respec-
tively for maximizing the sum of positive similarities within
communities and maximizing the sum of negative similarities
between communities
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Maximize fpos−in (C = {C1,C2,...,Cm}) =
1

m

m∑

i=1

PCi
in

PCi
in + PCi

out

Maximize fneg−out (C = {C1,C2,...,Cm}) =
1

m

m∑

i=1

NCi
out

NCi
in + NCi

out
(6)

where

PCi
in =

∑

u,v∈Ci∧(u,v)∈E

max
(
ssigned(u, v), 0

)
(7)

PCi
out =

∑

u∈Ci∧v∈Cj∧i�=j∧(u,v)∈E

max
(
ssigned(u, v), 0

)
(8)

NCi
in =

∑

u,v∈Ci∧(u,v)∈E

min
(
ssigned(u, v), 0

)
(9)

NCi
out =

∑

u∈Ci∧v∈Cj∧i�=j∧(u,v)∈E

min
(
ssigned(u, v), 0

)
. (10)

Equations (7) and (8) define the positive internal and external
similarities of a community, while (9) and (10) define the
negative internal and external similarities of a community.
Although f pos−in is only related to positive similarities while
f neg−out is only related to negative similarities, these two
objectives contradict to each other since one node may connect

to both positive and negative links. For example, Fig. 3(a) and
(b) gives two different partitions of a network. Both of them
divide the network into three communities. In Fig. 3(a), node
10 belongs to C1 while in Fig. 3(b), it belongs to C2. Since
f neg−out tries to put all negative links between communities,
it prefers the partition in Fig. 3(b) over that in Fig. 3(a).
However, when node 10 is put in C2, the similarity between
nodes 10 and 12, 10 and 11 will contribute to Pout of C1

instead of Pin of C1. Thus, it leads to a drop in f pos−in.

III. MEAs -SN

A. Direct and Indirect Combined Representation

The representations have a great effect on both the evolu-
tionary operators can be used and the overall efficiency of the
resulting EAs. Usually, in the field of EAs, representations
fall into two broad categories: direct and indirect. A direct
representation is the natural representation, and can be evalu-
ated easily. An indirect representation is not complete in itself,
and a decoder which transforms the solution in the indirect
representation into one in the direct representation is required.

In existing literature for CD based on EAs, the charac-
ter string representation [21] and the locus-based adjacency
representation [22] are usually used. These are two direct
representations and can be evaluated easily. To detect sepa-
rated and overlapping communities simultaneously, an indirect
representation is proposed in our previous work [13]. Since the
decoder implies a heuristic search, this indirect representation
can find better candidate solutions. However, since the decoder
needs to be executed before evaluating each individual, the
computational cost is high. To overcome this defect, we design
a direct and indirect combined representation based on the
character string representation and the indirect representation
proposed in [13]. In this new combined representation, each
individual is defined as follows.

Definition 1: An individual, A, consists of two components.
The first component is a permutation of all nodes in V , labeled
as A〈P〉

A 〈P〉 =
{
vπ1 , vπ2 , ...,vπn

}
(11)

where (π1, π2, . . . , πn) is a permutation of (1, 2, . . . , n).
The second component is a vector with n elements, labeled as
A〈C〉

A 〈C〉 = (c1, c2, ...,cn) (12)

where ci, 1≤ i≤ n denotes that node vi belongs to community
Cci . �

Clearly, A〈P〉 is the indirect representation part and a
decoder is required to transform it to the actual community
structure. A〈C〉 is the character string representation. Nodes
vi and vj are in the same community if ci = cj.

In [13], the concept of community fitness proposed in [15]
was used to design the decoder. Here, since we try to find
communities based on the signed similarity, we designed a new
decoder. In [14], based on the similarity, a quality function of
a local community C, namely the tightness, was defined as
follows:

T(C) =
SC

in

SC
in + SC

out
(13)
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Fig. 3. Two different partitions of a network. f neg−out prefers (b) since it tries to put all negative links between communities, however, this leads to a drop
in f pos−in.

where
SC

in =
∑

u,v∈C∧(u,v)∈E

s(u, v) (14)

is the internal similarity of community C which is equal to
two times of the sum of similarities between any two adjacent
vertices both inside C, and

SC
out =

∑

u∈C∧v∈C′∧C �=C′∧(u,v)∈E

s(u, v) (15)

is the external similarity of community C which is equal to
the sum of similarities between vertices inside C and vertices
outside C. Here, we extend T to the signed situation and
propose the signed tightness, which is labeled as Tsigned

Tsigned(C) =
PC

in − NC
in

PC
in − NC

in + PC
out
. (16)

Obviously, Tsigned is equal to T when the network has
positive links only.

Let C = {C1, C2, ..., Cm} be a set of communities and the
decoder first initializes C to empty. Then, according to the
order of A〈P〉, for each node, check whether this node can
increase Tsigned of communities in current C; that is, whether
(17) can be satisfied

Tsigned(Cj ∪ vi) > Tsigned(Cj) (17)

where Cj is one of existing communities and vi is one node
in A〈P〉. For detecting separated communities, as long as one
community is found to satisfy (17), the process is stopped
and this node is added to this community. For detecting over-
lapping communities, this node is added to all communities
that satisfy (17). If no existing community satisfies (17), this
node itself forms a new community and this new community
is added to C. Further, for detecting overlapping communities,
two communities with more than half identical nodes; that is,
the condition in (18) is satisfied, are merged

∀Ci �= Cj,

∣
∣Ci ∩ Cj

∣
∣

|Ci| >
1

2
or

∣
∣Ci ∩ Cj

∣
∣

∣
∣Cj

∣
∣

>
1

2
. (18)

Algorithm 1 summarizes the details of this decoder.

B. Evolutionary Operators

For individuals represented by the direct and indirect com-
bined coding, evolutionary operators can be conducted on both
A〈P〉 and A〈C〉. For A〈P〉, the partially matched crossover
(PMX) proposed in [42] is employed. This operator was

Algorithm 1 The decoder

Input: A 〈P〉 =
{
vπ1 , vπ2 , ...,vπn

}
;

Output: C = {C1, C2, . . . , Cm};
1: begin
2: C← ∅;
3: for i = 1 to n do
4: begin
5: for j = 1 to |C| do //|C| denotes the number of

communities in C
6: begin
7: if (Cj and vπi satisfy (17)) then

Cj ← Cj ∪ vπi and update Tsigned
(
Cj

)
;

8: if (detect separated communities) then break;
9: end;
10: if (vπi has not been added to any community) then

C← C ∪ {
vπi

}
;

11: end;
12: if (detect overlapping communities) then
13: while (there are two communities in C satisfying

(18)) do
14: Merge these two communities;
15: end.

designed for the representation of array of individuals to solve
traveling salesman problems. In addition, a mutation operator,
which randomly selects two elements in the permutation to
swap, is also used.

For A〈C〉, the one-way crossover operator introduced in
[21] is employed, and a new tightness based mutation operator
is designed as follows. Let A〈C〉=(c1, c2, . . . , cn), then for
each ci, 1≤ i≤ n, if U(0, 1), which is a uniformly distributed
random number in the range of [0, 1], is larger than Tsigned

of community Cci , then select a node vj from the neighbors
with positive similarities of vi based on the roulette wheel
selection according to their similarity, and then assign cj to
ci. If no neighbor has positive similarity, then vj will be the
neighbor with the largest similarity.

C. Implementation of MEAs-SN

In the past few years, many studies have been devoted
to apply EAs to MOPs [43]–[46]. Among existing EAs for
MOPs, MOEA/D [46] showed an excellent performance. Thus,
MEAs-SN is implemented under the framework of MOEA/D,
with the designed representation and evolutionary operators
introduced in Section III-B. Moreover, an improvement is
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also made by making use of the advantages of the designed
representation, which is explained in details as follows.

To make use of the advantages of both A〈P〉 and A〈C〉,
in MEAs-SN, the population is first initialized to A〈P〉; that
is, Popsize permutations are randomly generated. Then, for
detecting separated communities, each permutation is trans-
formed to a set of communities by the decoder. This set of
communities is further transformed to A〈C〉, which can be
realized easily in linear time. In the following evolutionary
process, each individual is represented as A〈C〉, and the
corresponding operators are conducted. In this way, the initial
A〈P〉 population can generate a better population through the
decoder, and the following operations on A〈C〉 can be realized
time efficiently. In this way, the algorithm can benefit from the
advantages of both A〈P〉 and A〈C〉. For detecting overlapping
communities, A〈P〉 is used during the whole evolutionary
process since A〈C〉 can not handle overlapping communities.

Since MOEA/D decomposes an MOP into a number
of scalar optimization subproblems and optimizes them
simultaneously, the decomposition approach is important.
In MEAs-SN, the Tchebycheff approach is employed. Thus,
based on the two objective functions designed in Section II,
the scalar optimization problem is in the following form:

minimize gte
(

C| (λpos−in, λneg−out
)
,
(

f ∗pos−in, f ∗neg−out

))

= max
{
λpos−in ·

∣
∣
∣ fpos−in (C)− f ∗pos−in

∣
∣
∣ , λneg−out·∣

∣
∣ fneg−out (C)− f ∗neg−out

∣
∣
∣
}

(19)
where gte denotes the obtained scalar objective function, C
is a possible set of communities, and (λpos−in, λneg−out) is
a weight vector which satisfies λpos−in≥ 0, λneg−out≥ 0, and

λpos−in + λneg−out = 1.
(

f ∗pos−in, f ∗neg−out

)
is the reference point,

and each element is the maximum value of the corresponding
objective function. For more details of MOEA/D, please refer
to [46]. The details of MEAs-SN are given in Algorithm 2.

Clearly, Algorithm 2 shows that MEAs-SN has two parts:
the preprocessing part (Lines 2–7) and the evolutionary part
(Lines 8–25). Thus, the time complexity of MEAs-SN is
determined by these two parts. Suppose there are m edges
and n nodes in a network. The operation in Line 2 is related
to the number of edges, so its time complexity is O(m). The
operation in Line 3 is related to the number of individuals,
so its time complexity is O (Popsize). The operation in Line
4 is related to the number of individuals and the number of
nodes, so its time complexity is O(max {Popsize, n}). The
time complexity of Line 6 is determined by the decoder. To
decode one permutation to a community structure, the time
complexity is bounded by O(n2). Thus, the time complexity
of Line 6 is O(Popsize× n2). The operation in Line 7 can be
finished in constant time. Therefore, the time complexity of
the preprocessing part is O(Popsize× n2).

As for the evolutionary part, the time complexity of
crossover and mutation operators is related to the number
of nodes, and can be realized in linear time, namely, O(n).
Therefore, the time complexity of the evolutionary part is
bounded by O(Gen×Popsize× n). As can be seen, the general
time complexity of MEAs-SN is determined by three factors,
namely Gen, Popsize, and n. Since Gen and Popsize are normal
parameters in EAs, in the experiments, we will further analyze

Algorithm 2 MEAs-SN

Input: G = (V , E, w);
Popsize: the size of population;
A uniform spread of Popsize weight vectors:(
λ1

pos−in, λ
1
neg−out

)
,
(
λ2

pos−in, λ
2
neg−out

)
, . . . ,

(
λ

Popsize
pos−in , λ

Popsize
neg−out

)
;

T: the number of weight vectors in the neighborhood
of each weight vector;
Gen: the number of generations;

Output: The final population.
1: begin
2: Calculate the signed similarity of any two connected

nodes;
3: Calculate the Euclidean distances between any two

weight vectors and then calculate the T closest weight
vectors to each weight vector. For each i = 1, 2, . . . ,
Popsize, set B(i) = {i1,i2, 2, . . . , iT}, where(
λ

i1
pos−in, λ

i1
neg−out

)
,
(
λ

i2
pos−in, λ

i2
neg−out

)
, . . .

,
(
λ

iT
pos−in, λ

iT
neg−out

)
are the T closest weight vectors

to
(
λi

pos−in, λ
i
neg−out

)
;

4: Initialize the population in the form A〈P〉: randomly
generate Popsize permutations of n nodes, labeled
as A

〈
P1

1

〉
, A

〈
P1

2

〉
, ...,A

〈
P1

Popsize

〉
, where the supe-

rscript denotes the current generation;
5: If (Detecting separated communities)
6: Decode A

〈
P1

1

〉
, A

〈
P1

2

〉
, ...,A

〈
P1

Popsize

〉
to

A
〈
C1

1

〉
, A

〈
C1

2

〉
, ...,A

〈
C1

Popsize

〉
;

7: Initialize the reference idea point
(

f ∗pos−in, f ∗neg−out

)
;

8: for i = 1 to Gen do
9: begin
10: for j = 1 to Popsize do
11: begin
12: if (Detecting separate communities)
13: begin
14: Randomly select another individual, and conduct

the one-way crossover operator on this individual
and A

〈
Ci

j

〉
;

15: Conduct the tightness based mutation operator on
A

〈
Ci

j

〉
;

16: end;
17: if (Detecting overlapping communities)
18: begin
19: Randomly select another individual, and conduct

the PMX crossover operator on this individual and
A

〈
Pi

j

〉
;

20: Conduct the swap mutation operator on A
〈
Pi

j

〉
;

21: end;
22: Update the reference idea point

(
f ∗pos−in, f ∗neg−out

)
;

23: Update the neighborhood solutions based on
B(i) = {i1, i2, . . . , iT};

24: end;
25: end;
26: end.
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Fig. 4. Original topological structure of the two illustrative SNs from [31]. Solid edges denote positive links and dashed edges denote negative links.
(a) Illustrative SN 1. (b) Illustrative SN 2.

Fig. 5. Partitions of the two illustrative SNs obtained by MEAs -SN. Nodes with the same color and shape belong to the same community. (a) Illustrative
SN 1. (b) Illustrative SN 2.

how the time complexity of MEAs-SN increases with the
number of nodes.

IV. EXPERIMENTS

In this section, the performance of MEAs-SN is validated
on both benchmark and synthetic networks, and compared
with those of the three existing algorithms, namely, FEC
[31], Louvain method [47], [48], and CSAHC-SN [49]. In the
following experiments, Popsize and Gen of MEAs-SN are set
to 100. The original literature showed that MOEA/D performs
well if the neighborhood size T is greater than 3, thus T is set
to 20.1 Next, the measures used to evaluate the performance
of different algorithms and a synthetic network generator
are first introduced. Then, three groups of experiments are
conducted, which are respectively on: 1) benchmark networks;
2) separated; and 3) overlapping CD from synthetic SNs.

A. Evaluation Measures and Synthetic Network Generator

In general, each nondominated solution in the final gen-
eration is valuable for MOPs, which will be illustrated in
Section IV-C. However, for the CD problem here, we need
to select one suitable individual. Thus, Qsigned [16], which is

1The source codes of MEAs -SN can be downloaded at
http://see.xidian.edu.cn/faculty/liujing/.

extended from the popular measure Q [10] for the signed case,
is employed for separated communities
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where wij is the weight of the adjacency matrix, w+
i (w+

j )
denotes the sum of all positive weights of node vi(vj), and
w−i (w−j ) denotes the sum of all negative weights of node vi(vj).
w+(w−) represents the total positive(negative) strength of the
SN, and Ci(Cj) represents the community which node vi(vj)
belongs to, and δ(Ci, Cj) is 1 if nodes vi and vj are in same
community; otherwise 0.

For the overlapping case, we propose a new function Qos to
evaluate the final results. Shen et al. [17] extended the popular
Q [10] to the overlapping situation
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network. Oi is the number of communities which vertex vi

belongs to. In order to evaluate signed overlapping community
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Fig. 6. (a) Topological structure of the Slovene parliamentary party network. (b) Community structure obtained by MEAs -SN.

Fig. 7. (a) Topological structure of the Gahuku-Gama subtribes network. (b) and (c) Two community structures obtained by MEAs -SN.

structures, combining the above Qsigned and Qov, we propose
Qos as follows:
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Therefore, in the final generation, the individual with
maximum Qsigned or Qos is selected as the final community
structure found. Further, to measure the partitioning quality,
the normalized mutual information (NMI) [18] is adopted to
estimate the similarity between true partitions and detected
ones for separated cases, and the generalize NMI (GNMI) [15]
is used for the overlapping case.

Real-world networks often have some limitations on their
sizes or community structures. To systematically test the per-
formance of the new algorithm, a synthetic network generator
is needed. However, very few studies are available for generat-
ing SNs. Yang et al. [31] designed a generator for SNs, but this
generator has two defects: 1) each node has the same degree
and 2) cannot generate overlapping networks. One popular
generator to generate networks with community structures is
the Lancichinetti–Fortunato–Radicchi (LFR) benchmark [19],
[20], which is suitable for both separated and overlapping
situations.

Therefore, combining the LFR benchmark with the one
proposed in [31], we design a new SNs generator, which is
labeled as SRN(n, k, maxk, t1, t2, minc, maxc, on, om, μ,
P−, P+). Here, n is the number of nodes, and k and maxk
are the average and maximum degree of each node. t1 and t2

are the minus exponents for the degree and community size
distributions, both of which are power laws. minc and maxc are
the minimum and maximum community size. on and om are
respectively the number of overlapping nodes and the number
of memberships of overlapping nodes.

The last three parameters are important. μ is the fraction of
links that each node shares with nodes in other communities,

which controls the cohesiveness of the communities inside the
generated SNs. Thus, the higher the value of μ is, the more
ambiguous the community structure is. P− is the fraction of
negative links within communities, while P+ is the fraction
of positive links between communities. Ideally, negative links
should be between communities and positive links should be
within communities. Thus, P− and P+ are two parameters used
to adjust the noise level. Being the same with μ, the larger the
values of P− and P+ are, the more ambiguous the community
structure is. As can be seen, this benchmark poses severe and
flexible tests to algorithms. Given a fixed μ, we can control
the noise level by adjusting P− and P+. In general, it will
be more difficult to extract communities correctly when the
values of P− and P+ are large. In the following experiments,
the capability of MEAs-SN in handling different μ, P−, and
P+ are systematically tested.

B. Experiments on Benchmark Networks

In this subsection, four benchmark SNs widely used, in-
cluding two illustrative SNs and two real social SNs, are
employed to validate the performance of MEAs-SN. Moreover,
although MEAs-SN is designed for SNs, it can also be used to
unsigned networks. Therefore, three popular unsigned bench-
mark networks, namely, the Zachary karate club network,
the bottlenose dolphin network, and the American football
network, are tested.

The two illustrative SNs came from [31] and each has
28 nodes. Their topological structures are shown in Fig. 4.
The community structures obtained by MEAs-SN are given
in Fig. 5. As can be seen, they can be divided into three
communities. The links within communities are positive and
those between communities are negative. MEAs-SN found the
correct partitions successfully for both networks, and NMI = 1.

The first real social network is the Slovene Parliamentary
Party Network, which is the relation network of ten parties of
the Slovene Parliamentary in 1994 [50]. Positive links mean
the two parties’ Parliament activities are similar, while nega-
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tive links mean their activities are dissimilar. Fig. 6(a) shows
the original topological structure, and the community structure
obtained by MEAs-SN is shown in Fig. 6(b). As can be seen,
all parties are separated into two opponent communities. This
result is the same as that given by Kropivnik and Mrvar [50].

The second real social network is the Gahuku-Gama Sub-
tribes network, which was generated by Read on the cultures of
highland New Guinea proposed in [51]. It regards the political
alliances and oppositions among 16 Gahuku-Gama subtribes,
which were distributed in a particular area and were involved
in warfare with each other in 1954. Positive and negative links
represent the political arrangements with positive and negative
ties, respectively. Fig. 7(a) shows the original topological
structure, and the community structures obtained by MEAs-SN
are shown in Fig. 7(b) and (c). As can be seen, two meaningful
partitions were found. Fig. 7(b) has a higher value of f pos−in

while Fig. 7(c) has a higher value of f neg−out, and these results
are identical to that reported in [51] and [52].

To further evaluate the effectiveness of MEAs-SN on un-
signed networks, Fig. 8 presents the community structures
found by MEAs-SN for the Zachary karate club network,
the bottlenose dolphin network, and the American football
network. As can be seen, for the Zachary karate club network,
the nodes are divided into two groups. For the bottlenose
dolphin network, the nodes are divided into four groups. For
the American football network, the nodes are divided into
11 groups. The obtained values of Q are 0.372, 0.521, and
0.600, respectively, and the community structures found are
meaningful.

C. Experiments on Separated Community Detection from
Synthetic SNs

In this subsection, synthetic SNs are used to test the
performance of MEAs-SN in detecting separated communities.
Parameters on and om in the generator are not needed. We first
give the comprehensive results of MEAs-SN over SNs with
1000, 5000, and 10 000 nodes, and then make a comparison
between MEAs-SN and three existing algorithms. At last, an
experiment is also conducted to illustrate the advantage of
using the multiobjective framework.

1) Experimental Results of MEAs-SN: In this experiment,
the number of nodes is set to 1000, 5000, and 10 000, respec-
tively. k and maxk are set to 20 and 50 for networks with 1000
nodes, 40 and 100 for networks with 5000 and 10 000 nodes.
t1, t2, minc, maxc are set to 2, 1, 20, and 50, respectively.
Then, the effect of μ, P+, and P− is systematically tested.
μ increases from 0.1 to 0.5 in the step of 0.1, P+ increases
from 0 to 1 in the step of 0.2, and P− increases from 0 to
0.8 in the step of 0.2. For each combination of these three
parameters, 30 independent runs of MEAs-SN were conducted,
and the averaged NMI and Qsigned are reported in Figs. 9 and
10.

As can be seen, for different combinations of μ, P+, and P−,
the performance of MEAs-SN on networks with 1000, 5000,
or 10 000 nodes is similar, and MEAs-SN works well on these
networks. For example, for networks with 10 000 nodes, even
when μ increases from 0.1 to 0.5, the NMI is almost always
higher than 0.8 when P− is in the range of [0, 0.2]. Even
at high level of noise when P− is in the range of [0.2, 0.6],
the NMI is still almost higher than 0.5. The obtained Qsigned

TABLE I

COMPUTATIONAL TIME OF MEAs -SN

decreases with μ naturally, since the larger the value of μ is,
the more ambiguous the community structure is.

The results also indicate that when P+ and P− increase, the
values of NMI and Qsigned decrease, and P− has a larger impact
on the performance than P+. In fact, as P− and P+ increase, the
noise level within and between communities increases. Thus,
the community structure becomes more ambiguous, and the
clustering accuracy decreases accordingly. Actually, when P+

increases from 0 to 1, the positive links between communities
become denser. In such cases, the community structure will be
decided not only by the signs of links but also by the density
of links. Since MEAs-SN takes into account both the signs
and density of links, it deals very well with positive networks.
Therefore, MEAs-SN is insensitive to the noise level of P+. In
fact, Yang et al. [31] stated that FEC also showed a similar
performance, which is sensitive to P−, but insensitive to P+.

It is well known that EAs have a high computational
cost than heuristic algorithms since they need to maintain
a population during the evolutionary process. To show the
computational cost of MEAs-SN, we have recorded the actual
computational time for analyzing the above networks. All the
experiments were run on a computer with a 3.2 GHz CPU
and 4GB memory. The operating system was Windows 7, and
the simulation was implemented and tested using Microsoft
Visual Studio 2009. The averaged actual computational time of
MEAs-SN is reported in Table I. As can be seen, although the
time taken by MEAs-SN increases quickly with the network
size, it only used 9.9 s for networks with 1000 nodes. For
networks with 10 000 nodes, it used 328.1 s, which is also
acceptable.

2) Comparison between MEAs-SN and existing algorithms:
In this experiment, MEAs-SN is compared with three existing
algorithms, namely, FEC [31], Louvain method [47], [48], and
CSAHC-SN [49]. FEC is an algorithm recently proposed for
SNs and obtained a good performance. Louvain method is
a special version for SNs of the algorithm in [48], and is
implemented in Pajek [47]. CSAHC-SN is a memetic algorithm
for SNs proposed in our previous work [49], which can
optimize both Qsigned and the improved modularity density
D. In the following experiment, FEC and CSAHC-SN run
under the same experimental environment with MEAs-SN.
Both Qsigned and D are optimized by CSAHC-SN, labeled
as CSAHC-SN(Q) and CSAHC-SN(D), respectively. Louvain
method runs under Pajek.

All these four algorithms are tested on the synthetic SNs
with μ=0.1∼0.5 and P+ = 0∼1 systematically. Since previous
results showed that MEAs-SN and FEC are sensitive to P−,
and the performance drops when P− is larger, we only com-
pare the performances of different algorithms when P− is in
the range of [0, 0.4]. Since the computational cost of CSAHC-
SN is too high for large networks, the network size for CSAHC-
SN is set to 1000 and 10 000 for three other algorithms. For
each network, ten independent runs are conducted for each
algorithm and the results are shown in Fig. 11.
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Fig. 8. Community structures found by MEAs -SN for the three popular unsigned benchmark networks. (a) Zachary karate club network, Q = 0.372.
(b) Bottlenose dolphin network, Q = 0.521. (c) American football network, Q = 0.600.

As can be seen, first, MEAs-SN outperforms CSAHC-SN(Q)
and CSAHC-SN(D) obviously almost in all parameter combina-
tions. Some results for P+ = 1.0 of CSAHC-SN(Q) and CSAHC-
SN(D) are missing due to the high computational cost.

For the Louvain method, when P− = 0, the NMI is always
higher than 0.8 when μ increases from 0.1 to 0.5 and P+

increases from 0 to 1. The NMI of MEAs-SN is also always
higher than 0.8 in these parameter combinations, and better
than that of Louvain method in most cases. When P− in-
creases, the performance of Louvain method drops dramat-
ically, which is also very sensitive to P+; that is, when P+

increases, the performance drops dramatically, too. Although
the performance of MEAs-SN also drops, it is clearly better
than that of Louvain method, which illustrates that MEAs-SN
is more robust to noises.

For FEC, when P− = 0, the NMI is always higher than
0.8 except when μ=0.5, and MEAs-SN performs similar or
better than FEC for these parameter combinations. When
P− ≥ 0.2, the performance of FEC also drops, but is not
so sensitive to the increase of P+ like Louvain method. To
compare with our method, FEC is outperformed by MEAs-SN
for all parameter combinations when P− = 0.2. When P− = 0.4,
MEAs-SN always outperforms FEC when μ ≥0.3.

3) Advantage of the Multiobjective Framework: Our algo-
rithm is based on a multiobjective framework, and generally
speaking, each nondominated solution in the final generation
is valuable for MOPs. Therefore, in this experiment, we use
a hierarchical network to show the different properties of the
obtained solutions, which demonstrates the advantage of the
multiobjective framework. The hierarchical network used is a
revised version of the H13-4 network [53], [54], which is also
used to demonstrate the advantage of multiobject techniques
in CD in [22]. The original H13-4 has 256 nodes, and all
nodes can be divided into four communities (each with 64
nodes). Further, each community can be divided into four
small communities (each with 16 nodes).

Fig. 9. Obtained NMI of MEAs -SN for synthetic SNs. (a) μ=0.1, 1000
nodes. (b) μ=0.1, 5000 nodes. (c) μ=0.1, 10 000 nodes. (d) μ=0.2, 1000 nodes.
(e) μ=0.2, 5000 nodes. (f) μ=0.2, 10 000 nodes. (g) μ=0.3, 1000 nodes.
(h) μ=0.3, 5000 nodes. (i) μ=0.3, 10 000 nodes. (j) μ=0.4, 1000 nodes.
(k) μ=0.4, 5000 nodes. (l) μ=0.4, 10 000 nodes. (m) μ=0.5, 1000 nodes.
(n) μ=0.5, 5000 nodes. (o) μ=0.5, 10 000 nodes.
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Fig. 10. Obtained Qsigned of MEAs -SN for synthetic SNs. (a) μ=0.1, 1000
nodes. (b) μ=0.1, 5000 nodes. (c) μ=0.1, 10 000 nodes. (d) μ=0.2, 1000
nodes. (e) μ=0.2, 5000 nodes. (f) μ=0.2, 10 000 nodes. (g) μ=0.3, 1000 nodes.
(h) μ=0.3, 5000 nodes. (i) μ=0.3, 10 000 nodes. (j) μ=0.4, 1000 nodes.
(k) μ=0.4, 5000 nodes. (l) μ=0.4, 10 000 nodes. (m) μ=0.5, 1000 nodes.
(n) μ=0.5, 5000 nodes. (o) μ=0.5, 10 000 nodes.

We change H13-4 to an SN by flipping all links between
large communities to negative and the links between small
communities to negative with probability 0.4. All final solu-
tions obtained by MEAs-SN are illustrated in Fig. 12(a), and
the community structures corresponding to solutions Pa and Pb

are shown in Fig. 12(b) and (c), respectively. As can be seen,
Pa divides the network into four large communities while Pb

divides the network into 16 small communities. It is clear that
both partitions are meaningful. Thus, MEAs-SN can provide
different partitions in one run, which gives more choices for
decision makers.

D. Experiments on Overlapping Community Detection From
Synthetic SNs

In this experiment, synthetic SNs are used to test the per-
formance of MEAs-SN in detecting overlapping communities.
Parameters on and om are set to 100 and 2, respectively,
and the number of nodes is set to 1000. Other parameters
of the generator are the same with those in Section IV-C.
We also systematically test the effect of μ, P+, and P−.
μ increases from 0.1 to 0.5, P+ increases from 0 to 1, and P−
increases from 0 to 0.8. For each combination of these three
parameters, 30 independent runs of MEAs-SN are conducted,
and the averaged NMI and Qsigned are reported in Fig. 13.

Compared with detecting separated communities, detecting
overlapping communities is more difficult, which is demon-
strated by the obtained Qos. We can see that Qos decreases

Fig. 11. Comparison between MEAs -SN and existing algorithms. (a) μ=0.1,
P− = 0.0. (b) μ=0.1, P− = 0.2. (c) μ=0.1, P− = 0.4. (d) μ=0.2, P− = 0.0.
(e) μ=0.2, P− = 0.2. (f) μ=0.2, P− = 0.4. (g) μ=0.3, P− = 0.0. (h) μ=0.3,
P− = 0.2. (i) μ=0.3, P− = 0.4. (j) μ=0.4, P− = 0.0. (k) μ=0.4, P− = 0.2.
(l) μ=0.4, P− = 0.4. (m) μ=0.5, P− = 0.0. (n) μ=0.5, P− = 0.2. (o) μ=0.5,
P− = 0.4.

dramatically when μ, P+, and P− increase; that is to say,
the community structure is getting more and more ambiguous
quickly. However, Fig. 13 shows that MEAs-SN still obtains
a good performance when μ, P−, and P+ are not too large.
For example, when μ ≤0.3, P+≤ 0.4, and P− ≤ 0.2, the NMI
is always larger than 0.8. In fact, even when 0.4≤P+≤ 0.8,
the NMI is still larger than 0.5. For μ ≥0.4, the community
structure gets very ambiguous, and the NMI decreases quickly
accordingly. However, when the noise levels are not too large,
that is, when both P+ and P− are smaller than 0.2, the obtained
NMI is still larger than 0.5.

V. RELATED WORK

To understand and utilize the information in social networks,
various methods to capture the network structure characteris-
tics have been proposed from different perspectives. Next, we
first introduce the related work on social network analysis,
and then introduce the related work on community detection
methods.

A. Related Work on Social Network Analysis
Due to the complexity of social networks, analyses from

various aspects have been conducted, which can be roughly
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Fig. 12. Community structures obtained by MEAs -SN for a hierarchical network. (a) Final population. (b) Community structure of the solution Pa in
(a). (c) Community structure of the solution Pb in (a).

divided into two main categories, namely the micro level and
the macro level. From the micro level, a great deal of work
focused on the properties of individual nodes or links, such
as triadic closure prediction [55], homophily analysis [55],
[56], social ties inference [39], link prediction [30], trust
evaluation, and propagation [29], [57], which are related to
SNs to some extent.

Lou et al. [55] investigated how a reciprocal link was de-
veloped from parasocial relationship and how the relationship
further developed into triadic closure, one of the fundamental
processes of link formation. They also studied how homophily,
the principle suggests that users with similar characteristics
tend to associate with each other, is satisfied over networks
with parasocial and reciprocal relationships.

Tang et al. [39] developed a framework for classifying
the type of social relationships (both positive and negative
relationships) by learning across multiple heterogeneous net-
works, while a bulk of similar research has focused on
inferring particular types of relationships in a specific social
network. The framework incorporates social theories into a
factor graph model, which effectively improves the accuracy
of inferring the types of social relationships in a target network
by borrowing knowledge from a different source network.

Kunegis et al. [30] investigated the negative link feature
of social networks that allows users to tag other users as
foes or distrusted in addition to the usually friend and trusted
links. To answer the question whether negative links have an
added value for an online social network, they investigated
the machine learning problem of predicting negative links of
such a network using only positive links as a basis, with the
idea that if this problem can be solved with high accuracy,
when the negative links feature is redundant. The experimental
results showed that the negative link feature has a small
but measurable added value of these social networks, while
illustrated the importance of negative links.

The trust evaluation and propagation in a distributed
environment is an important topic related to social-network-
based interrelationship analysis. Kamvar et al. [57] studied a
peer-to-peer file-sharing network, in which a peer assigns a
trust value to those peers who have provided it with authentic
files. They proposed an EigenTrust algorithm that considers
the entire history of uploading with individual peers by
aggregating the normalized local trust values of all users.
Based on a general framework of trust propagation scheme,
Guha et al. [29] addressed the problem of predicting the
trust between any two people in a social network connected
by ratings or trust/distrust scores. The scheme is formulated
based on a weighted chaining of four well-defined atomic

propagations to a set of belief that users hold about each
other. Based on this chaining, a final matrix that contains
the trust or distrust of any two people can be derived after a
number of propagations.

From the macro level, community detection, which focuses
on the relationship between groups of nodes, has attracted
increasing attention. CD from SNs, which is the focus of this
paper, is also known as correlation clustering [16], [58], [59] in
the field of social network analysis. Positive and negative links
correspond to agreements and disagreements between nodes,
respectively.

Bansal and Chawla [58] introduced correlation clustering
motivated by document clustering and agnostic learning and
showed that it is an NP-hard problem to make a partition to
a complete signed graph. They provided a constant factor ap-
proximation for minimizing the number of disagreements and
a polynomial-time approximation scheme for maximizing the
total number of agreements that can achieve any constant error
gap in polynomial time. Their algorithm can be extended to
the case of minimizing weighted disagreements or maximizing
weighted agreements.

Demaine and Immorlica [59] studied the problem of corre-
lation clustering with partial information, and gave an approxi-
mation algorithm based on a linear-programming rounding and
the region-growing technique and showed that the problem is
APX-hard, i.e., any approximation would require improving
the best approximation algorithms known for minimum mul-
ticut.

Gómez et al. [16] presented a reformulation of modularity
that allows the analysis of the community structure in net-
works of correlated data. The new modularity preserves the
probabilistic semantics of the original definition even when
the network is directed, weighted, signed, and has self-loops.
This is the most general condition one can find in the study of
any network, in particular those defined from correlated data.

B. Related Work on Community Detection Methods

During the past decade, the research on analyzing the
community structure in complex networks has drawn a great
deal of attention, and various kinds of algorithms have been
proposed. We first reviewed some classic and recent proposed
algorithms for unsigned networks, and then those for SNs.

Girvan and Newman [6] proposed the Girvan–Newman
(GN) algorithm which is one of the most known algorithms
proposed so far. Newman [10] proposed the well known
measure modularity Q to evaluate the quality of obtained
communities, which is widely used. There have been other
studies on community identification from complex networks
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Fig. 13. Results of MEAs -SN for detecting overlapping communities.
(a) μ=0.1, GNMI. (b) μ=0.1, Qos. (c) μ=0.2, GNMI. (d) μ=0.2, Qos. (e)
μ=0.3, GNMI. (f) μ=0.3, Qos. (g) μ=0.4, GNMI. (h) μ=0.4, Qos. (i) μ=0.5,
GNMI. (j) μ=0.5, Qos.

that utilize physics-based method. For example, Palla et al.
[23] introduced the concept of clique percolation to the prob-
lem of identifying overlapping communities, and one node can
belong to more than one community.

Rosvall and Bergstrom [24] introduced an information the-
oretic approach that reveals community structure in weighted
and directed networks. The probability flow of random walks
on a network as a proxy for information flows in the real sys-
tem and decompose the network into modules by compressing
a description of the probability flow. The result is a map that
both simplifies and highlights the regularities in the structure
and their relationship.

Lancichinetti et al. [25] presented the order statistics local
optimization method, the first method capable to detect clusters
in network accounting for edge directions, edge weights, over-
lapping communities, hierarchies, and community dynamics.
It is based on the local optimization of a fitness function
expressing the statistical significance of clusters with respect to
random fluctuations, which is estimated with tools of Extreme
and Order Statistics. OSLOM can be used alone or as a

refinement procedure of partitions/covers delivered by other
techniques.

Meo et al. [26] proposed a strategy to enhance existing
CD algorithms by adding a preprocessing step in which edges
are weighted according to their centrality, with respect to the
network topology. In this approach, the centrality of an edge
reflects its contribute to make arbitrary graph transversals, i.e.,
spreading messages over the network, as short as possible. The
strategy is able to effectively complement information about
network topology and it can be used as an additional tool
to enhance community detection. The computation of edge
centralities is carried out by performing multiple random walks
of bounded length on the network.

Given the increasing popularity of algorithms for over-
lapping communities, quantitative measures are needed to
measure the accuracy of a method. McDaid et al. [27] and
Lancichinetti et al. [15] extended the popular measure nor-
malized mutual information [18] to evaluate overlapping com-
munities. Lázár et al. [28] also introduce a nonfuzzy measure
which has been designed to rank the partitions for a network’s
nodes into overlapping communities. Shen et al. [17] extended
the popular measure Q [10] to the overlapping situation.

Multiobjective evolutionary algorithms have also been used
to solve CD. Pizzuti [11] proposed a multiobjective genetic
algorithm to uncover community structure, which optimized
two objective functions respectively for maximizing connec-
tions within the same community and minimizing connections
between different communities. Shi et al. [22] formulated a
multiobjective framework for CD and proposed a MOEA for
finding efficient solutions under the framework. Shi et al. [38]
also analyzed the correlations of 11 objective functions that
have been used or can potentially be used for CD, and
the results showed that MOEAs optimizing over a pair of
negatively correlated objectives usually performed better than
the single-objective algorithm optimizing over either of the
original objectives. Liu et al. [13] proposed a MOEA to detect
separated and overlapping communities simultaneously.

Although the above algorithms and measures for CD ob-
tained a good performance in the type of networks they were
target to, they all designed for unsigned networks. The studies
for SNs are much less. Yang et al. [31] proposed the algorithm
FEC for mining SNs, and both positive within-group relations
and negative between-group relations are dense. FEC adopts an
agent-based heuristic, and can be used to detect communities
from both signed and unsigned networks.

Based on the structural balance theories [60], [61] and the
blockmodel, Doreian and Mrvar [52] presented an approach
to partition an SN by using the local search method, which
divided a graph into several parts so as to minimize a prede-
fined error function. One limitation of this algorithm is that it
needs to know the number of groups beforehand, and also
sensitive to the initial partition. In addition, this algorithm
takes into account only the signs of links for partitioning
signed networks, neglecting the density of links, which, in
many cases, is a salient feature in partitioning. In [31], the
experimental results showed that the performance of FEC is
much better than that of this algorithm.

Doreian [62] stated that the generalized blockmodeling
faces a pair of vulnerabilities. One is sensitivity to poor
quality of the relational data and the other is a risk of over
fitting blockmodels to the details of specific networks. Thus,
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Doreian [62] presented a method of tackling these problems by
viewing (when possible) observed social relations as multiple
indicators of an underlying affect dimension. Quadratic assign-
ment methods using matching coefficients, product moment
correlations and Goodman and Kruskal’s gamma are used
to assess the appropriateness of using the sum of observed
relations as input for applying generalized blockmodeling.

Further, Doreian and Mrvar [63] showed that even those
methods based on blockmodel have been useful, the block-
model structure discerned may not be appropriate for all SNs.
The provided some illustrative examples and then broaden the
types of blockmodel that can be specified and identified for
SNs within the generalized blockmodeling framework.

Wu et al. [64] investigated the impacts of negative links
and examined the patterns in the spectral space of the graph’s
adjacency matrix. Their results showed that communities in
a k-balanced SN are greatly different in the spectral space
of its signed adjacency matrix despite connections among
communities are dense.

Traag and Brugggeman [65] adapted the concept of mod-
ularity to detect communities in networks, in which both
positive and negative links are present, and also evaluated the
social network of international disputes and alliances.

All the above algorithms for CD from SNs are based on
heuristic methods, but not on EAs. Thus, in our previous
work [49], two EAs and two memetic algorithms were pro-
posed to detect communities from SNs, and a comprehensive
comparison was made to compare the performance of these
four algorithms. The results show that the memetic algorithms
outperform EAs in solving this problem. But all these four
EAs were based on a single-objective framework, but not the
multiobjective framework.

VI. CONCLUSION

In this paper, we propose a novel multiobjective algorithm,
called MEAs-SN, based on a new similarity to detect both
separated and overlapping communities from signed social net-
works. In MEAs-SN, positive similarities within communities
and negative similarities between communities are modeled
as two contradictory objective functions. Especially, a direct
and indirect combined representation is designed so that
MEAs-SN can switch between different representations during
the evolutionary process and benefit from both representations.

MEAs-SN requires no prior knowledge on the community
structure, such as the number of communities and a good
initial partition. Thus, it is easy to be applied to different
networks. Rigorous experiments on both benchmark networks
and large-scale synthetic networks with 1000, 5000, and
10 000 nodes show the effectiveness and efficacy of MEAs-SN,
even in noisy situations. The thorough comparison between
MEAs-SN and three existing algorithms also demonstrate the
better performance of MEAs-SN over other algorithms.

MEAs-SN has three parameters, namely the population size,
the number generation allowed, and the neighborhood size.
The former two are normal parameters in EAs, while the last
one is a parameter in MOEA/D. The values of these parameters
can be easily set, and no other parameters need to be tuned
in MEAs-SN. MEAs-SN also requires no prior knowledge on
hidden community structures. However, MEAs-SN currently

can only handle undirected networks, and in our future work,
we will consider handling direct networks.
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