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Abstract—This article addresses the Kullback–Leibler (KL)
control problem in Boolean control networks. In the consid-
ered problem, an extended stage cost function depending on the
control inputs is introduced; in contrast to a stage cost of the con-
ventional KL control problems in the Markov decision process
cannot take into consideration the control inputs. An associ-
ated Bellman equation and a matrix-based iteration algorithm
are presented. The theoretical analysis shows that the proposed
KL control results in an approximated form of conventional
dynamic programming (DP). Furthermore, the convergence anal-
ysis is presented, with the weight parameter converging to zero
and diverging to infinity. In practical application examples, a
comparison of the conventional DP and proposed KL control is
illustrated.

Index Terms—Boolean control networks (BCNs), convergence
analysis, gene regulatory networks, Kullback–Leibler (KL) con-
trol, optimal control, semi-tensor product (STP) of matrices.

I. INTRODUCTION

LOGICAL dynamic systems have been employed for
modeling complicated dynamical behavior, such as bio-

logical systems [1], combustion engines [2], and transportation
systems [3]. The mathematically tractable structure of Boolean
control networks (BCNs) [4] has resulted in their widespread
use. After the development of the semi-tensor product (STP)
technique [5], [6], Boolean networks have been analyzed in
terms of their matrix-based expressions. With respect to BCNs,
theoretical concepts similar to those of continuous-valued
systems and related analyses have been developed: stabi-
lization problem [7], estimation problem [8], [9], decoupling
problem [10], robustness analysis [11], [12], conservation
law [13], Lyapunov function [14], [15], and reinforcement
learning [16]. To satisfy various control objectives, sev-
eral control structure types have been reported. A common
closed-loop structure has been frequently used for the sta-
bilization: stabilization under random switching [17] and
pinning control purpose [18], [19]. Event-based [20], [21]
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and sample-value [22], [23] control schemes, which have
been explored in the continuous-valued systems analysis, have
been developed for BCNs. In contrast to these settings, the
time-varying feedback law is exploited in the optimal control
formulation [16], [24], as discussed in this article.

In practical systems, as there exist some preferred and unde-
sired states [25], control schemes that avoid forbidden states
in biological systems [26] or obstacles in robotic systems [27]
have been discussed. In these reports, feedback raw is pro-
vided for making the transition probabilities to the forbidden
state equal zero; this technique is similar to dynamic program-
ming (DP) [28] with a modified stage cost having a value of
the infinity, which is discussed in this article. However, the
aforementioned schemes are specialized to make the transition
probabilities zero, and they cannot quantitatively evaluate the
probabilistic transitions to preferred and undesired states. The
development of a control scheme quantitatively addressing the
transition probabilities while minimizing the given objective
function with optimal control is still an open and challenging
issue.

Based on the background summarized above, in this study,
the Kullback–Leibler (KL) divergence, which evaluates the
similarity of two given probability distributions, is used, and
the KL control problem formulation [29] is applied to BCNs
with an extended stage cost function taking into consideration
the control input.

In the conventional Markov decision process (MDP), it is
assumed that the KL control can control the transition prob-
abilities directly. This assumption holds in various trajectory
planning problems, such as the maze game (see [30]) the tra-
jectory planning of robots (see [27]), wherein the control input
of the problem is the transition of the state itself. In BCNs,
the state transition depends on the system structure, and the
relationship between an applied input and the resulting state
transition probability is complicated; therefore, a theoretical
analysis and a practical code implementation for the BCNs
result in difficult jobs. To the best of the authors’ knowledge,
optimal control problems with an extended stage cost function
taking into consideration the control input and the correspond-
ing Bellman equation have not been explored and is still an
open issue. In addition, although the existing KL control is
successively implemented in a matrix-based form, which is
computationally efficient in recent programming languages, a
matrix-based expression of the aforementioned formulation,
including the extended stage cost function, is required to be
developed.

The contribution of this article is broadly summarized as
follows.

1) The optimal control problem with the KL divergence and
extended stage cost function depending on the control
input is addressed; in contrast, the existing KL control
(see [27], [29]) has a stage cost that is dependent only
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on the state. That is, the considered problem has a high
modeling capacity. This article presents the correspond-
ing Bellman equation and the matrix-based iteration of
the proposed algorithm.

2) The theoretical analysis provides the new insight that
the solution of the aforementioned KL control problem
results in the conventional DP modified by replacing the
max and arg max operations with an extended log-sum-
exp-based approximation function and extended softmax
function, respectively. Furthermore, the theoretical sup-
port for the following two limiting cases is given as
follows.

a) If the weight parameter in the KL control scheme
converges to zero, the value function and optimal
control input obtained using the KL control con-
verge to those of the conventional DP.

b) If the weight parameter in the KL control scheme
diverges to +∞, the value function and optimal
control input obtained using the KL control con-
verge to those of the desired transition probabilities
given for the KL divergence.

II. PRELIMINARIES

The notations used in this article are summarized as follows.
1) For an m × n-valued matrix A ∈ R

m×n, its (i, j) element
is denoted by [A]i,j or Ai,j. The m × n zero matrix is
denoted by Om×n. The n × n identity is denoted by In,
and its ith column vector is denoted by δi

n. Its set is
denoted by �n = {δi

n, i = 1, . . . , n}.
2) A matrix Diag(a) ∈ R

n×n calculated with a vector a ∈
R

n is a diagonal matrix, the (i, i) element of which is ai.
3) A matrix A ∈ R

m×n, with all its column vectors belong-
ing to �m is called a logical matrix. Lm×n is the set of
all m × n-valued logical matrices.

4) The Boolean domain, which comprises T (True) and F
(False), is denoted by D = {T = 1, F = 0}. T and F are
identified with δ1

2 and δ2
2, respectively.

5) The STP [6] of matrices A ∈ R
m×n and B ∈ R

p×q is
defined as A�B = (A ⊗ Is/n)(B ⊗ Is/p), where ⊗ is the
Kronecker product, and s is the least common multiple
of n and p. This article omits the “�” in A � B for
notational simplicity.

6) A logical matrix [δi1
m, . . . , δin

m] ∈ L
m×n is simply denoted

by δm[i1, . . . , in].
7) The n-dimensional unit simplex is denoted by S

n = {x ∈
R

n|∑n
i=1 xi = 1, x1, . . . , xn ≥ 0}.

8) For a vector a ∈ R
n, min(a) and max(a) are the

minimum and maximum elements of a, respectively.
The minimizing and maximizing arguments are defined
as arg min(a) = arg minδ∈Sn δ�a and arg max(a) =
arg maxδ∈Sn δ�a, respectively.

9) The inequality a ≤ b for vectors a ∈ R
n and b ∈ R

n

indicates that ai ≤ bi for each i = 1, . . . , n.
10) In this article, the argument x ∈ R ∪ {−∞} of the exp

operation is considered, and exp(−∞) = 0 is defined.
In addition, 0×+∞ = 0 and 0 log 0 = limx↘0 x log x =
0 are set formally, which makes the function x log x
continuous and convex on [0,+∞).

11) In this article, mathematical operations for matrices
and vectors are defined as elementwise operations, for
example, [exp(A)]i,j = exp(Ai,j).

12) 
 and � are the elementwise product and division of
matrices, respectively.

13) P(A) is the probability of an event A, and P(A|B) is the
conditional probability of A under a condition B. E[X] is
the expectation of the stochastic variable X, and E[X|B]
is the conditional expectation of X under B.

Furthermore, the max operation approximation performed by
the log-sum-exp function is summarized here. The log-sum-
exp function LSE(x, μ) = μ log(1�

n exp(x/μ)) for x ∈ R
n

and μ > 0 (see [31, Example 10.45]) has been used
in various research fields. Based on the definition of the
log-sum-exp function, the extended log-sum-exp function
eLSE(x, μ, p):(R ∪ {−∞})n × R>0 × S

n → R is defined as

eLSE(x, μ, p) = μ log
(

p� exp(x/μ)
)
.

Furthermore, the extended softmax function
esoftmax(x, μ, p) : (R ∪ {−∞})n × R>0 × S

n → S
n

is defined by

esoftmax(x, μ, p) = p 
 exp(x/μ)

p� exp(x/μ)
= ∂eLSE(x, μ, p)

∂x

where a simple calculation provides the second equality, thus
indicating that esoftmax(x, μ, p) is the partial derivative of
eLSE(x, μ, p) with respect to the variable x on R

n.
Theorem 1: The extended log-sum-exp function eLSE sat-

isfies the following inequalities.
1) For an arbitrary x, x′ ∈ R

n

eLSE
(
x′, μ, p

) ≥ eLSE(x, μ, p)

+ ∂eLSE(x, μ, p)

∂x�
(
x′ − x

)
(1)

and

eLSE
(
x′, μ, p

) ≤ eLSE(x, μ, p)

+ ∂eLSE(x, μ, p)

∂x�
(
x′ − x

)

+ 1

2μ
‖x′ − x‖2

2. (2)

2) If min(p) > 0, for an arbitrary x ∈ R
n

eLSE(x, μ, p) ≤ max(x)

≤ eLSE(x, μ, p) + μ log(1/ min(p)).

(3)

3) For an arbitrary x ∈ R
n

eLSE(x, μ, p) − 1

2μ
‖x‖2

2 ≤ p�x ≤ eLSE(x, μ, p).

(4)

Proof: Item 1): The inequalities are obtained by evaluating
the Hessian of eLSE(x, μ, p) with respect to x directly. That is

∂

∂x�
∂eLSE(x, μ, p)

∂x
= ∂esoftmax(x, μ, p)

∂x�
= μ−1[Diag(esoftmax(x, μ, p))

−esoftmax(x, μ, p)esoftmax�

(x, μ, p)
]
. (5)

For the arbitrary vector ξ ∈ R
n, the quadratic form is

calculated as

ξ�[Diag(esoftmax(x, μ, p))

−esoftmax(x, μ, p)esoftmax�(x, μ, p)
]
ξ
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=
∥
∥
∥
∥
[
esoftmax(x, μ, p)

] 1
2 
 ξ

∥
∥
∥
∥

2

2

−|esoftmax�(x, μ, p)ξ |2. (6)

The following Cauchy–Schwarz inequality holds:

|esoftmax�(x, μ, p)ξ |
= |[esoftmax(x, μ, p)

] 1
2 ,�[esoftmax(x, μ, p)

] 1
2 
 ξ |

≤ ‖[esoftmax(x, μ, p)
] 1

2 ‖2 · ‖[esoftmax(x, μ, p)
] 1

2 
 ξ‖2

= ‖[esoftmax(x, μ, p)
] 1

2 
 ξ‖2 (7)

where the equality ‖[esoftmax(x, μ, p)]1/2‖2 =√
1�

n ([esoftmax(x, μ, p)]1/2)2 = 1 is used. On apply-
ing (7) to the quadratic form (6), the quadratic form
becomes non-negative, which indicates that the Hessian
is positive semi-definite. Therefore, the convexity of
eLSE(x, μ, p) is demonstrated, and the resulting convex
inequality (1) follows. As the second term (∗)(∗)� of the
Hessian (5) is positive semi-definite, the largest eigen-
value of the Hessian (5) is upper bounded by the largest
eigenvalue of the first diagonal matrix, which means that
μ−1 max(p
 exp(x/μ)/p� exp(x/μ)) ≤ μ−1; the equivalence
of the largest eigenvalue and Lipschitz smoothness (see [32,
Sec. 2.1]) results in the inequality of (2) of Item 1).

Item 2): The flow is similar to that of the conventional log-
sum-exp function ([31, Example 10.45]). The first inequality
is given by

eLSE(x, μ, p) = μ log
(

p� exp(x/μ)
)

≤ μ log
(

p� exp(max(x)/μ)1n

)
= max(x)

where the last equality used p�1n = 1 on recalling p ∈ S
n. On

using i∗ ∈ arg maxi=1,...,n xi, the following inequality results
in the second inequality:

max(x) = μ log
(

p−1
i∗ · pi∗ exp(max(x)/μ)

)

≤ μ log
(

p−1
i∗ p� exp(x/μ)

)

= eLSE(x, μ, p) + μ log
(

p−1
i∗
)

≤ eLSE(x, μ, p) + μ log(1/ min(p)).

Item 3): Equation (2) of Item 1) is applied with x = 0n.
The substitution of

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

eLSE(0n, μ, p) = μ log
(
p� exp(0n/μ)

)

= μ log
(
p�1n

) = 0,
∂eLSE(0n,μ,p)

∂x = esoftmax(0n, μ, p)

= p 
 exp(0n/μ)

p� exp(0n/μ)
= p

into (2) results in the first inequality of (4). On recalling p ∈
S

n and the convexity of exp, the Jensen inequality indicates
that p� exp(x/μ) ≥ exp(p�x/μ), which results in the second
inequality of (4).

Remark 1: The conventional log-sum-exp function
LSE(x, μ) = μ log(1�

n exp(x/μ)) is a special case of
the extended log-sum-exp function eLSE(x, μ, p) with
p = 1n/n ∈ S

n, where n is the dimension of x.

III. PROBLEM FORMULATION

This article is focused on BCNs with a dth state update
represented as follows:

xk+1,d = f d(xk, uk), d = 1, . . . , nx. (8)

The state and control variables are expressed in the STPs as
xk = xk,1 � · · · � xk,nx ∈ �2nx and uk = uk,1 � · · · � uk,nu ∈
�2nu , respectively. Although conventional studies on BCNs
have addressed the deterministic control input uk ∈ �2nu , this
study takes into consideration the randomized control input
and the corresponding conditional probabilities of uk under a
given state xk at the kth step as follows:

ck,i,l = P
(

uk = δl
2nx |xk = δi

2nx

)
,

i = 1, . . . , 2nx , l = 1, . . . , 2nu .

An initial state x0 ∈ �2nx is deterministically given, and
the design problem of ck,i,l is addressed. It should be noted
that ck,i = [ck,i,1, . . . , ck,i,2nu ]� ∈ S

2nu , which indicates
that ck,i should be a point on the unit simplex. Herein,
ck,i,l (k = 0, . . . , N − 1, i = 1, . . . , 2nx , l = 1, . . . , 2nu) is
referred to as a selection probability in analogy with the prob-
abilistic BCNs, using a similar concept to that of random state
switching [33]. Then, the structure matrix M ∈ L

2nx×2nu+nx of
the BCNs (8) uniquely exists and satisfies the state equation
xk+1 = Mukxk [6]. Although xk depends on the design and
stochastic behavior of the randomized control, it is simply
denoted by xk for notational simplicity herein. Next, a desired
transition probability P(xk+1|xk, uk) is given, and the differ-
ence between the desired and actual transition probabilities is
introduced as the KL divergence

KL
(
P(·|xk)

∣
∣P(·|xk)

) =
∑

x′∈�2nx
,

P(x′|xk) �=0

P
(
x′|xk

)
log

(
P
(
x′|xk

)

P(x′|xk)

)

.

(9)

An objective function is the sum of the objective function
of the conventional optimal control problem and the KL
divergence

min ck,i∈Ck,i,
k=0,...,N−1,

i=1,...,2nx

E

[
N−1∑

k=0
gk(xk, uk) + h(xN)

+ μ
N−1∑

k=0
KL
(
P(·|xk)

∣
∣P(·|xk)

)
]

subject to the BCNs (8) with x0 = xinit.

(10)

gk and h are bounded, and the KL divergence P(·|xk) depends
on the selection probabilities ck,i (i = 1, . . . , 2nu) of uk, the
feasible sets of which are Ck,i. Compared with the conventional
KL control [29], the KL divergence is introduced with a weight
coefficient μ > 0, and the stage cost function gk(xk, uk) is also
extended to include the cost of the control input uk, instead
of the conventional form gk(xk). In the case of μ = 0 in
Problem (10), which means that Problem (10) ignores the KL
divergence, the problem can be solved using the conventional
DP (see [28]).

As observed in Example 2, the KL divergence quantitatively
evaluates the similarity between P and P, and it has a broader
modeling capability compared with conventional forbidden-
state-based techniques [12], [26]. If it is preferred that the
system be fixed at a target point or in a given set of states
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similar to the stabilization problems (see [15], [18], [22]), the
desired transition probabilities to the target points are set as
large values. Throughout this article, the following simplified
notations of the transition probabilities are used:

⎧
⎨

⎩

pk,i,j = P
(

xk+1 = δ
j
2nx |xk = δi

2nx

)

pk,i,j = P
(

xk+1 = δ
j
2nx |xk = δi

2nx

)
.

Furthermore, the following notations are introduced in this
article:

inv(j|i) =
{

l = 1, . . . , 2nu |δj
2nx = Mδl

2nu δi
2nx

}

inv∗(j|i, k) ∈ arg min
l∈inv(j|i)

gk

(
δi

2nx , δ
l
2nu

)

inv†(j|i, k) = inv(j|i) \inv∗(j|i, k). (11)

In summary, inv(j|i) is the set of all the indices of the con-
trol inputs uk = δl

2nu driving xk = δi
2nx to xk+1 = δ

j
2nx . An

index in inv(j|i) with the minimum stage cost gk(δ
i
2nx , δ

l
2nu )

is selected as inv∗(j|i, k); the trivial nonoptimal inputs are
in inv†(j|i, k) and set as ck,i,l = 0 if l ∈ inv†(j|i, k) for
j satisfying δ

j
2nx = Mδl

2nu δi
2nx . Thus, inv(j|i) �= ∅, which

means xk = δi
2nx can be driven to xk+1 = δ

j
2nx , uk = δl

2nu

where l = inv∗(j|i, k) is used. The optimality of inv∗(j|i, k)
[equivalently, the nonoptimality of inv†(j|i, k)] can be eas-
ily confirmed and omitted herein owing to space limitations.
From the definition of inv(j|i), the union of inv(j|i) with
respect to j = 1, . . . , 2nx is {1, . . . , 2nu}, indicating that

2nx⋃

j=1

inv(j|i) =
2nx⋃

j=1

(
inv∗(j|i, k) ∪ inv†(j|i, k)

)

= {
1, . . . , 2nu

}
(12)

and inv(j|i) ∩ inv(j′|i) = ∅ if j �= j′.
Example 1: The following BCNs with a 2-D state and a

single input are considered:

xk+1,1 = xk,1 ∧ uk, xk+1,2 = xk,2 ∧ ¬uk. (13)

The aforementioned BCNs have a structure matrix M =
δ4[2, 2, 4, 4, 3, 4, 3, 4]. On using the state variable xk =
xk,1xk,2 ∈ �4 and the control input uk ∈ �2, the state equation
is expressed as xk+1 = Mukxk. In the example of xk = δ1

4,
equations Mδ1

2δ
1
4 = δ2

4 and Mδ2
2δ

1
4 = δ3

4 result in inv(2|1) =
inv∗(2|1, k) = 1 and inv(3|1) = inv∗(3|1, k) = 2, respec-
tively, without relation to the stage cost g. In the case of xk =
δ4

4, because Mδ1
2δ

4
4 = Mδ2

2δ
4
4 = δ4

4, there are multiple inputs
resulting in xk+1 = δ4

4. For such cases, inv(4|4) = {1, 2}, and
inv∗(4|4, k) is a control input minimizing the stage cost. An
inequality gk(δ

4
4, δ

1
2) < gk(δ

4
4, δ

2
2) results in inv∗(4|4, k) = 1

and inv†(4|4, k) = 2, as illustrated in Example 3.
In Problem (10), the following assumption is made.
Assumption 1: In Problem (10):
1) The desired transition probability pk,i = [pk,i,1, . . . ,

pk,i,2nx ]� ∈ S2nx
(k = 0, . . . , N − 1, i = 1, . . . , 2nx)

is given as follows:

pk,i,j = P
(

xk+1 = δ
j
2nx |xk = δi

2nx

)

=
{

(constant) ∈ [0, 1], (inv(j|i) �= ∅)
0, (inv(j|i) = ∅)

2) The selection probability ck,i ∈ S
2nu

(k = 0, . . . , N − 1,
i = 1, . . . , 2nx) satisfies

ck,i,l

⎧
⎨

⎩

= 0
(
l ∈ inv†(j|i, k)

)
,

= pk,i,j

(
l = inv∗(j|i, k) with pk,i,j ∈ {0, 1}),

∈ [0, 1]
(
l = inv∗(j|i, k) with pk,i,j ∈ (0, 1)

)

for l = 1, . . . , 2nu , where j is an index satisfying δ
j
2nx =

Mδl
2nu δi

2nx .
Equation (11) indicates that inv∗(j|i, k) and inv†(j|i, k)

are the disjoint separation of inv(j|i), which means that
inv∗(j|i, k) ∪ inv†(j|i, k) = inv(j|i) and inv∗(j|i, k) ∩
inv†(j|i, k) = ∅; therefore, the aforementioned three cases
of ck,i,l are independent.

Remark 2: The first line of the definition of ck,i,l,
which means ck,i,l = 0 (l ∈ inv†(j|i, k)), is consid-
ered. The condition implies the exclusion of a trivial
nonoptimal control input, which results in gk(δ

i
2nx , δ

l
2nu ) >

arg minl′=1,...,2nu gk(δ
i
2nx , δ

l′
2nu ) with the same next state

Mδl
2nu δi

2nx = Mδl′
2nu δi

2nx , the meaning of which is clear.
Remark 3: The second and third lines of the definition of

ck,i,l, which indicate that the case of l = inv∗(j|i, k), are
considered. These two cases are classified using the value of
pk,i,j as follows.

1) ck,i,l = pk,i,j (l = inv∗(j|i, k) with pk,i,j ∈ {0, 1}):
a) If pk,i,j = 0, then ck,i,l = pk,i,j = 0; to avoid the

zero-division issue, a transition probability corre-
sponding to pk,i,j = 0, which means that xk+1 =
δ

j
2nx is a forbidden state, is excluded in the defini-

tion of the KL divergence (9). Instead, the feasible
set Ck,i takes into consideration the forbidden state.

b) If pk,i,j = 1, then ck,i,l = pk,i,j = 1, which
is a redundant condition. Here, an index jfixed is
set subject to satisfying pk,i,j = 0 for an arbi-
trary j �= jfixed.

∑
j=1,...,2nx pk,i,j = 1 results in

pk,i,jfixed
= 1. In addition, the index l satisfy-

ing l = inv∗(jfixed|i, k) results in ck,i,l = 1
on using the aforementioned 1-a) case because
ck,i,l = pk,i,j = 0 for arbitrary j �= jfixed and∑

l=1,...,2nu ck,i,l = 1.
2) ck,i,l ∈ [0, 1] (l = inv∗(j|i, k) with pk,i,j ∈ (0, 1)). As

discussed subsequently, if neither (l ∈ inv†(j|i, k)) nor
(l = inv∗(j|i, k) with pk,i,j ∈ {0, 1}) is satisfied, an
optimal solution c∗

k,i,l always lies in c∗
k,i,l ∈ (0, 1).

Example 2: The BCNs having a 2-D state and a single input
of Example 1, the structure matrix of which is given by M =
δ4[2, 2, 4, 4, 3, 4, 3, 4], are considered. Equations Mδ1

2δ
1
4 = δ2

4
and Mδ2

2δ
1
4 = δ3

4 (or equivalently inv(2|1) = inv∗(2|1, k) =
1 and inv(3|1) = inv∗(3|1, k) = 2, respectively) result in
arbitrary design parameters pk,1,2 ∈ [0, 1] and pk,1,3 ∈ [0, 1],
subject to pk,1,2 + pk,1,3 = 1, while pk,1,1 = pk,1,4 = 0 is in
accordance with Assumption 1. That is, the state xk cannot
arrive at either xk+1 = δ1

4 or xk+1 = δ4
4.

Here, Problem (10) with a simple setting of N = 1, g0 =
0, h = 0, μ = 1, and x0 = δ1

4 is considered, that is, the
minimization problem of KL

(
P(·|x0)

∣
∣P(·|x0)

)
is considered.

Case 1): The desired transition probabilities are given by

p0,1,2 = p0,1,3 = 0.5, p0,1,1 = p0,1,4 = 0.
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The case of xk = δ1
4 results in

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ck,1,1 = P
(

uk = δ1
2

∣
∣
∣xk = δ1

4

)

= P
(

xk+1 = δ2
4

∣
∣
∣xk = δ1

4

)
= pk,1,2

ck,1,2 = P
(

uk = δ2
2

∣
∣
∣xk = δ1

4

)

= P
(

xk+1 = δ3
4

∣
∣
∣xk = δ1

4

)
= pk,1,3.

(14)

Because the initial value x0 = δ1
4 is deterministic, the objective

function no longer requires the expectation operation and is
given by

KL
(
P(·|x0)

∣
∣P(·|x0)

) = p0,1,2 log
p0,1,2

p0,1,2
+ p0,1,3 log

p0,1,3

p0,1,3

= c0,1,1 log
c0,1,1

0.5
+ c0,1,2 log

c0,1,2

0.5
.

The optimal solution is c∗
0,1,1 = c∗

0,1,2 = 0.5, and the
optimal objective function value is zero (the detailed deriva-
tion is omitted herein because the problem is a special case of
Problem (26), introduced subsequently). In the conventional
optimal problems, the optimal control is obtained as accord-
ing to a deterministic law, which means that (c0,1,1, c0,1,2) =
(0, 1) or (1, 0). On recalling that 0 log 0 is formally defined
by limx↘0 x log x = 0 in this article, both the aforementioned
deterministic laws result in KL

(
P(·|x0)

∣
∣P(·|x0)

) = log 2. This
example suggests that the randomized control input is required
to be taken into consideration to minimize the objective
function while including the KL divergence.

Case 2): The following desired transition probabilities are
given:

p0,1,2 = 1, p0,1,3 = 0, p0,1,1 = p0,1,4 = 0.

This means that the transition from x0 = δ1
4 to x1 = δ3

4 is
prohibited. The definition of C0,1 in Assumption 1 results in

c0,1,inv∗(2|1,0) = c0,1,1 = 1, c0,1,inv∗(3|1,0) = c0,1,2 = 0.

Eventually, the feasible set C0,1 degenerates to a point
(c0,1,1, c0,1,2) = (1, 0), which is a trivial optimal solution.
The transition probability, which is as desired, results in

KL
(
P(·|x0)

∣
∣P(·|x0)

) = p0,1,2 log
p0,1,2

p0,1,2
= log 1 = 0.

IV. MAIN RESULTS

A. Reformulation as Optimal Trajectory Planning Problem

This section reformulates the optimal control problem
(Problem (10) with Assumption 1) as an optimal trajectory
planning problem because the latter has a more tractable struc-
ture. If inv(j|i) �= ∅ and l = inv∗(j|i, k), which means that
there exists a uk = δl

2nu driving xk = δi
2nx to xk+1 = δ

j
2nx , the

transition probability from xk = δi
2nx to xk+1 = δ

j
2nx is ck,i,l

pk,i,j = P
(

xk+1 = δ
j
2nx |xk = δi

2nx

)

=
{

ck,i,l = P
(

uk = δl
2nu |xk = δi

2nx

)
, (inv(j|i) �= ∅)

0, (inv(j|i) = ∅).

(15)

An optimal selection probability c∗
k,i,l of ck,i,l can be obtained

from an optimal transition probability p∗
k,i,j of pk,i,j. Therefore,

the optimal control Problem (10) is the design problem of
pk,i,j. Here, the consideration of Assumption 1 results in

pk,i,j = P
(

xk+1 = δ
j
2nx |xk = δi

2nx

)

=
{

(constant) ∈ [0, 1], (inv(j|i) �= ∅)
0, (inv(j|i) = ∅).

(16)

There are two settings resulting in pk,i,j = 0: 1) inv(j|i) = ∅,

that is, the state xk = δi
2nx cannot move to xk+1 = δ

j
2nx and

2) inv(j|i) �= ∅ and inv∗(j|i, k) = l. However, a designer
deliberately sets pk,i,j = 0, that is, xk+1 = δ

j
2nx is a forbidden

state. pk,i,j = 0 and Assumption 1 result in pk,i,j = 0; therefore,
the transition probability pk,i,j the desired value of which is
set such that pk,i,j �= 0 is required to be designed, and the
number of such variables is

∣
∣
{
j = 1, . . . , 2nx |pk,i,j �= 0

}∣
∣ ≤ 2nu (17)

because the number of possible next states xk+1, which means
that inv∗(j|i, k) = l in (16), is less than that of uk ∈ �2nu .
The feasible set of the variable pk,i is denoted as follows:

Pk,i =
[

pk,i ∈ S
2nx

, pk,i,j

{= pk,i,j

(
pk,i,j ∈ {0, 1})

∈ [0, 1]
(
pk,i,j ∈ (0, 1)

)
.

]

. (18)

The stage cost function gk(xk, uk) is reformulated in the form
of wk(xk, xk+1) as follows:

wk

(
δi

2nx , δ
j
2nx

)
=
{

gk

(
δi

2nx , δ
inv∗(j|i,k)
2nu

)
,

(
pk,i,j > 0

)

+∞,
(
pk,i,j = 0

)
.

(19)

The equivalence of the expectation of gk(xk, uk) and
wk(xk, xk+1) is presented here. The expectation of gk is
calculated as follows:

E
[
gk(xk, uk)

] =
2nx∑

i=1

2nu∑

l=1

P

(
xk = δi

2nx ,

uk = δl
2nu

)

gk

(
δi

2nx , δ
l
2nu

)
.

P(xk = δi
2nx , uk = δl

2nu ) is expanded as

P

(
xk = δi

2nx ,

uk = δl
2nu

)

= P
(
xk = δi

2nx

)
P
(

uk = δl
2nu |xk = δi

2nx

)

and P(uk = δl
2nu |xk = δi

2nx ) = ck,i,l. Therefore

E
[
gk(xk, uk)

] =
2nx∑

i=1

2nu∑

l=1

P
(
xk = δi

2nx

)
ck,i,lgk

(
δi

2nx , δ
l
2nu

)
.

On recalling (12), which indicates that {1, . . . , 2nu} =⋃2nx

j=1 inv(j|i) and inv(j|i) ∩ inv(j′|i) = ∅ if j �= j′, the
sum with respect to l = 1, . . . , 2nu , as mentioned above, can
be expressed as that with respect to j = 1, . . . , 2nx , as follows:

E
[
gk(xk, uk)

]

=
2nx∑

i=1

2nx∑

j=1

∑

l′∈inv(j|i)
P
(
xk = δi

2nx

)
ck,i,l′gk

(
δi

2nx , δ
l′
2nu

)
.

In the sum with respect to l′ ∈ inv(j|i) = inv∗(j|i, k) ∪
inv†(j|i, k) above, the definition of the feasible set Ck,i in
Assumption 1 indicates that ck,i,l′ = 0 if l′ �= inv∗(j|i, k), or
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l′ ∈ inv†(j|i, k) equivalently. Therefore, the sum is simplified
as follows:

E
[
gk(xk, uk)

]

=
2nx∑

i=1

2nx∑

j=1

P
(
xk = δi

2nx

)
ck,i,inv∗(j|i,k)gk

(
δi

2nx , δ
inv∗(j|i,k)
2nu

)

=
2nx∑

i=1

2nx∑

j=1

P
(
xk = δi

2nx

)
pk,i,jwk

(
δi

2nx , δ
j
2nx

)

=
2nx∑

i=1

2nx∑

j=1

P
(

xk = δi
2nx , xk+1 = δ

j
2nx

)
wk

(
δi

2nx , δ
j
2nx

)

= E
[
wk(xk, xk+1)

]

where the second equality uses the relationship between pk,i,j
and ck,i,l in (15) and the definition of wk in (19).

Consequently, the optimal control problem (Problem (10)
with Assumption 1) is reformulated in the following optimal
trajectory planning problem:

min
pk,i∈P2nx ,

k=0,...,N−1,
i=1,...,2nx

E

[
N−1∑

k=0

w(xk, xk+1) + h(xN)

+μ

N−1∑

k=0

KL
(
P(·|xk)

∣
∣P(·|xk)

)
]

subject to P
(

xk+1 = δ
j
2nx |xk = δi

2nx

)
= pk,i,j

(k = 0, . . . , N − 1, i, j = 1, . . . , 2nx),
x0 = xinit.

(20)

The optimal trajectory planning problem of the state xk is more
tractable because the state variable is directly controlled (see
the maze game in [30, Sec. 8.1]).

Example 3: The BCNs (13) in Example 1 is considered
again. The structure matrix is M = δ4[2, 2, 4, 4, 3, 4, 3, 4].
xk = δ1

4 results in (14) and indicates that the selection
probabilities of the control are equivalent to the transition
probabilities. Because inv(1|1) = inv(4|1) = ∅, which
means that there is no control input uk driving xk = δ1

2nx

to either xk+1 = δ1
2nx or xk+1 = δ4

2nx , the following transition
probabilities are set as zero, based on the definition of Pk,i
in (18)

pk,1,1 = pk,1,1 = pk,1,4 = pk,1,4 = 0.

Similarly, equations
{
inv(1|2) = inv(3|2) = ∅
inv(1|3) = inv(2|3) = ∅
inv(1|4) = inv(2|4) = inv(3|4) = ∅

result in
⎧
⎨

⎩

pk,2,1 = pk,2,1 = pk,2,3 = pk,2,3 = 0
pk,3,1 = pk,3,1 = pk,3,2 = pk,3,2 = 0
pk,4,1 = pk,4,1 = pk,4,2 = pk,4,2 = pk,4,3 = pk,4,3 = 0

respectively. In the case of xk = δ4
4, because inv(4|4) =

{1, 2}, there are multiple inputs resulting in xk+1 = δ4
4.

For such cases, a control input minimizing the stage cost
in Problem (20) is selected as inv∗(4|4, k). A time-invariant
stage cost [Gk]i,l = gk(δ

i
4, δ

l
2) given by

Gk =
[

0.1 0.2 0.4 0.4
0.1 0.3 0.5 0.7

]�

for each k = 0, . . . , N − 1 is considered. An inequality
gk(δ

4
4, δ

1
2) = 0.4 < gk(δ

4
4, δ

2
2) = 0.7 results in inv∗(4|4, k) =

1 and inv†(4|4, k) = 2, and the resulting problem (20) is
addressed. Here, the desired time-invariant transition prob-
ability pk,i,j = [Pk]i,j for k = 0, . . . , N − 1 is set as
follows:

Pk =
⎡

⎢
⎣

0 0.5 0.5 0
0 0.5 0 0.5
0 0 0.5 0.5
0 0 0 1

⎤

⎥
⎦.

It should be noted that the transition probability matrices used
in this article are similar to those used in the conventional
MDP. This means that they are the transposed matrices of the
STP-based transition matrices for the probabilistic BCNs [26].
The control variable pk,i,j = [Pk]i,j is given as follows:

Pk =
⎡

⎢
⎣

0 pk,1,2 pk,1,3 0
0 pk,2,2 0 pk,2,4
0 0 pk,3,3 pk,3,4
0 0 0 1

⎤

⎥
⎦

=
⎡

⎢
⎣

0 ck,1,1 ck,1,2 0
0 ck,2,1 0 ck,2,2
0 0 ck,3,2 ck,3,1
0 0 0 1

⎤

⎥
⎦.

The second equality shown above claims that the original
control variables, which are the selection probabilities of the
control input, are recovered using the control variable Pk.

In addition, the reformulation of the stage cost function
gk(xk, uk) as wk(xk, xk+1) is examined here. The stage cost
[Wk]i,j = wk(δ

i
4, δ

j
4) for each k = 0, . . . , N − 1, is given by

Wk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

+∞ gk

(
δ1

4, δ
1
2

)
gk

(
δ1

4, δ
2
2

)
+∞

+∞ gk

(
δ2

4, δ
1
2

)
+∞ gk

(
δ2

4, δ
2
2

)

+∞ +∞ gk

(
δ3

4, δ
2
2

)
gk

(
δ3

4, δ
1
2

)

+∞ +∞ +∞ gk

(
δ4

4, δ
1
2

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡

⎢
⎣

+∞ 0.1 0.1 +∞
+∞ 0.2 +∞ 0.3
+∞ +∞ 0.5 0.4
+∞ +∞ +∞ 0.4

⎤

⎥
⎦.

In the equation above, the path from xk = δ4
4 to xk+1 = δ4

4 uses
the control input uk = δ1

2 = δ
inv∗(4|4,k)
2 , and the corresponding

cost is [Wk]4,4 = wk(δ
4
4, δ

4
4) = gk(δ

4
4, δ

1
2) = 0.4 instead of

gk(δ
4
4, δ

2
2) = 0.7.

For s = 0, . . . , N − 1, the following optimal trajec-
tory planning subproblem derived from the optimal control
problem (10) with Assumption 1 is considered

vKL,μ
s (xinit) =

min
pk,i∈Pk,i,

k=s,...,N−1,
i=1,...,2nx

E

[
N−1∑

k=s

wk(xk, xk+1) + h(xN)

+ μ

N−1∑

k=s

KL
(
P(·|xk)

∣
∣P(·|xk)

)
∣
∣
∣
∣
∣
xs = xinit

]
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subject to P
(

xk+1 = δ
j
2nx |xk = δi

2nx

)
= pk,i,j

(
k = s, . . . , N − 1, i, j = 1, . . . , 2nx

)

xs = xinit. (21)

At s = N, vKL,μ
N (δi

2nx ) = h(δi
2nx ), i = 1, . . . , 2nx . The fol-

lowing theorem provides the Bellman equation of the optimal
trajectory planning problem (20).

Theorem 2: The optimal trajectory planning problem (20)
derived from the optimal control problem (10) with
Assumption 1 is considered. In Problem (20), the Bellman
equation on the value function vKL,μ

s (s = 0, . . . , N−1) in (21)
is given as

vKL,μ
s

(
δi

2nx

)
= min

ps,i∈Ps,i

⎛

⎝
2nx
∑

j=1

ps,i,j

[
ws

(
δi

2nx , δ
j
2nx

)
+ vKL,μ

s+1

(
δ

j
2nx

)]

+ μ
∑

j=1,...,2nx

ps,i,j �=0

ps,i,j log
ps,i,j

ps,i,j

)

. (22)

Proof: In vKL,μ
s (δi

2nx ), as defined in (21), the sum of the
stage cost from s + 1 and the terminal cost is rearranged as
follows:

E

⎡

⎣
N−1∑

k=s+1

wk(xk, xk+1) + h(xN)

+ μ

N−1∑

k=s+1

KL
(
P(·|xk)

∣
∣P(·|xk)

)
∣
∣
∣
∣
∣
∣
xs = δi

2nx

⎤

⎦

=
2nx∑

j=1

ps,i,jE

⎡

⎣
N−1∑

k=s+1

wk(xk, xk+1) + h(xN)

+μ

N−1∑

k=s+1

KL
(
P(·|xk)

∣
∣P(·|xk)

)
∣
∣
∣
∣
∣
∣
xs+1 = δ

j
2nx

⎤

⎦.

(23)

On the right-hand side of the equation above, the minimum
value and minimizer of the sum of the two expectations
are vKL,μ

s+1 (δ
j
2nx ) and the corresponding optimal pk,i (k = s +

1, . . . , N − 1, i = 1, . . . , 2nx), respectively. The stage cost
function at the sth step is expanded as follows:

E
[
ws(xs, xs+1)

∣
∣xs = δi

2nx

] =
2nx∑

j=1

ps,i,jws

(
δi

2nx , δ
j
2nx

)
,

E
[
KL
(
P(·|xs)

∣
∣P(·|xs)

)∣
∣xs = δi

2nx

] =
∑

j=1,...,2nx

ps,i,j �=0

ps,i,j log
ps,i,j

ps,i,j
.

(24)

Consequently, the combination of (23) and (24) results in the
claim of the theorem.

Remark 4: In Theorem 2, especially at s = 0, the value
of vKL,μ

0 (xinit) is the optimal objective function value of
Problem (20) and the minimizer of vKL,μ

0 (xinit) is an optimal
solution of Problem (20).

The following theorem provides the vectorized expression
of the Bellman equation (22) using the vectorized value and

objective functions

vKL,μ
k =

[
vKL,μ

k,1 , . . . , vKL,μ
k,2nx

]�

=
[
vKL,μ

k

(
δ1

2nx

)
, . . . , vKL,μ

k

(
δ2nx

2nx

)]� ∈ R
2nx

wk,i = [
wk,i,1, . . . , wk,i,2nx

]�

=
[
wk

(
δi

2nx , δ1
2nx

)
, . . . , wk

(
δi

2nx , δ2nx

2nx

)]� ∈ (R ∪ {+∞})2nx
.

(25)

Theorem 3: The optimal trajectory planning problem (20)
derived from the optimal control problem (10) with
Assumption 1 is considered. The value function vKL,μ

k (k =
0, . . . , N − 1, i = 1, . . . , 2nx) satisfies the following iterative
equation:

vKL,μ
k,i = −μ log

(
p�

k,i exp
(
−μ−1

[
wk,i + vKL,μ

k+1

]))
.

The optimal transition probability is given by

p∗,μ
k,i =

pk,i 
 exp
(
−μ−1

[
wk,i + vKL,μ

k+1

])

p�
k,i exp

(
−μ−1

[
wk,i + vKL,μ

k+1

]) .

Proof: The basic flow of the proof is similar to that
presented in the original article of the KL control [29]. For
the variable pk,i,j, a variable transform with dk,i,j ∈ R is intro-
duced as pk,i,j = pk,i,jdk,i,j. The case of pk,i,j = pk,i,j ∈ {0, 1}
formally defines dk,i,j = pk,i,j. For the transformed control
variable vector dk,i = [dk,i,1, . . . , dk,i,2nx ]�, the feasible set is
denoted as

Dk,i =
[

dk,i ∈ R
2nx

,

p�
k,idk,i = 1,

dk,i,j

{= pk,i,j

(
pk,i,j ∈ {0, 1})

∈ [0, 1/pk,i,j

] (
pk,i,j ∈ (0, 1)

)
]

.

Problem (20) results in the equivalent design problem of
dk,i ∈ Dk,i (k = 0, . . . , N − 1, i = 1, . . . , 2nx). If there exists
j such that pk,i,j = pk,i,j = dk,i,j ∈ {0, 1}, this variable degen-
erates to a point, and it need not to be considered (especially
if there exists pk,i,j = pk,i,j = dk,i,j = 1, and Dk,i is a sin-
gle feasible point). The optimal solution is this feasible point
and evidently satisfies the Bellman equation presented subse-
quently; this case is trivial and is excluded from the remainder
of this proof. Thus, Dk,i is convex and has interior feasible
points. On using Theorem 2 and vectorized vKL,μ

k , wk,i in (25),
the Bellman equation of δi

2nx ∈ �2nx at each k = 0, . . . , N−1,
is given by

vKL,μ
k,i = min

dk,i∈Dk,i

2nx∑

j=1

pk,i,jdk,i,j

(
wk,i,j + μ log dk,i,j + vKL,μ

k+1,j

)
.

On vectorizing the equation above, the following subproblem
is obtained:

vKL,μ
k,i = min

dk,i∈Dk,i

(
pk,i 
 dk,i

)�(wk,i + μ log dk,i + vKL,μ
k+1

)
.

(26)

The Hessian of the objective function Jk,i(dk,i) = (pk,i 

dk,i)

�(wk,i + μ log dk,i + vKL,μ
k+1 ) is given as

∂2Jk,i
(
dk,i

)

∂dk,i,j′∂dk,i,j
=
{

μpk,i,j/dk,i,j > 0,
(
j = j′, dk,i,j > 0

)

0,
(
j �= j′

)

which implies that Jk,i(dk,i) is convex. Here, the following
points are introduced:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d∗,μ
k,i =

exp
(
−μ−1

[
wk,i + vKL,μ

k+1

])

p�
k,i exp

(
−μ−1

[
wk,i + vKL,μ

k+1

])

p∗,μ
k,i = pk,i 
 d∗,μ

k,i =
pk,i 
 exp

(
−μ−1

[
wk,i + vKL,μ

k+1

])

p�
k,i exp

(
−μ−1

[
wk,i + vKL,μ

k+1

])

λ
∗,μ
i = μ log

(
p�

k,i exp
(
−μ−1

[
wk,i + vKL,μ

k+1

]))
− μ.

(27)

The point (d∗,μ
k,i , λ

∗,μ
i ) is the Karush–Kuhn–Tucker (KKT)

point associated with a Lagrange function with Lagrange
multipliers λi (i = 1, . . . , 2nx) for the equality constraint,
which is introduced as follows:

Li
(
dk,i, λi

) = (
pk,i 
 dk,i

)�[wk,i + μ log dk,i + vKL,μ
k+1

]

+ λi

(
p�

k,idk,i − 1
)
.

The optimality condition is
{

∂Li(dk,i,λi)
∂dk,i,j

= pk,i,j

(
wk,i,j + μ log dk,i,j + vKL,μ

k+1,j + λi + μ
)

= 0,

p�
k,idk,i = 1.

Then, 1) the objective function and equality constraint set
are both convex and 2) the feasible set has an interior fea-
sible point, indicating that the Slater condition is satisfied.
Therefore, a point satisfying the optimality condition is an
optimal solution (see [34, Sec. 5.5.3]). Because p∗,μ

k,i of the
KKT point (27) indicates 0 < p∗,μ

k,i,j = pk,i,jd
∗,μ
k,i,j < 1 provided

pk,i,j /∈ {0, 1}, the inequality constraint 0 ≤ dk,i,j ≤ 1/pk,i,j is
inactive; therefore, the Lagrange multiplier for the inequality
constraint is omitted here. It should be noted that, on using
wk,i,j = +∞ in (19) and exp(−∞) = 0, a case of a feasible
and trivial optimal point p∗,μ

k,i,j = d∗,μ
k,i,j = pk,i,j ∈ {0, 1} is also

covered with the expressions of d∗,μ
k,i and p∗,μ

k,i at the KKT
point (27).

On using the optimality condition wk,i,j + μ log d∗,μ
k,i,j +

vKL,μ
k+1,j + λ

∗,μ
i + μ = 0 for pk,i,j ∈ (0, 1) and p�

k,id
∗,μ
k,i = 1,

the value function is rearranged as follows:

vKL,μ
k,i = min

dk,i∈Dk,i

(
pk,i 
 dk,i

)�(wk,i + μ log dk,i + vKL,μ
k+1

)

= −λ
∗,μ
i − μ = −μ log

(
p�

k,i exp
(
−μ−1

[
wk,i + vKL,μ

k+1

]))

and all the equations of the theorem have been obtained.
For efficient code implementation using the transformed

variable [29], a variable zμ
k is introduced as follows:

zμ
k = exp

(
−μ−1vKL,μ

k

)
. (28)

The following theorem provides an iterative equation in the
matrix form.

Theorem 4: The same condition of Theorem 3 for the
optimal trajectory planning subproblem (21) derived from the
optimal control problem (10) with Assumption 1 is considered.
The variable zμ

k in (28) satisfies the following matrix equation:

zμ
k = �

μ
k zμ

k+1

P∗,μ
k = (

Diag
(
12nx � zμ

k

)
�

μ
k

)
 [
zμ

k+1 · · · zμ
k+1

]�

where �
μ
k = Pk 
 exp(−μ−1Wk), Pk = [pk,1 · · · pk,2nx ]�,

P∗,μ
k = [p∗,μ

k,1 · · · p∗,μ
k,2nx ]�, and Wk = [wk,1 · · · wk,2nx ]�.

Algorithm 1 DP for Problem (20) With μ = 0
1: vDP

N = h � Initialization
2: for k = N − 1, . . . , 0 do � Backward calculation on k
3: for i = 1, . . . , 2nx do
4: vDP

k,i = min(wk,i + vDP
k+1)

5: pDP
k,i ∈ arg min(wk,i + vDP

k+1)

Proof: The Bellman equation given in Theorem 3 is refor-
mulated as

− μ−1vKL,μ
k,i = log

(
p�

k,i exp
(
−μ−1

[
wk,i + vKL,μ

k+1

]))
.

Taking the exponential of both the sides results in the follow-
ing equation:

zμ
k,i = exp

(
−μ−1vKL,μ

k,i

)
= p�

k,i exp
(
−μ−1

[
wk,i + vKL,μ

k+1

])

=
[
pk,i 
 exp

(
−μ−1wk,i

)]�
exp

(
−μ−1vKL,μ

k+1

)

=
[
pk,i 
 exp

(
−μ−1wk,i

)]�
zμ

k+1.

On vertically stacking the equation above, a vectorized equa-
tion of zμ

k is obtained. In addition, the optimal transition
probability p∗,μ

k,i is rearranged as follows:

p∗,μ
k,i =

pk,i 
 exp
(
−μ−1

[
wk,i + vKL,μ

k+1

])

p�
k,i exp

(
−μ−1

[
wk,i + vKL,μ

k+1

])

=
(

1/zμ
k,i

)
pk,i 
 exp

(
−μ−1wk,i

)

 zμ

k+1.

On transposing and vertically stacking the equation above, the
matrix form of P∗,μ

k,i in the theorem is obtained.
The algorithms of the DP for the optimal trajectory planning

problem (20) with μ = 0 (see [28]) and the matrix-valued KL
control in Theorem 4 are presented as Algorithms 1 and 2,
respectively.

Remark 5: The computation complexity of both the algo-
rithms is given by O(N · 2nx · min(2nu , 2nx)) if appropriate
implementation is considered. More precisely, in the fourth
and fifth lines of Algorithm 1, because wk,i has elements hav-
ing a value of +∞ and the number of the indices j satisfying
wk,i,j < +∞ is not more than 2nu [see (17), (19)], the min
and arg min operations need not take into consideration these
elements. In Algorithm 2, the ith row vector of Pk, which
is pk,i, is a vector with nonzero elements not more than 2nu

[see (17), (18)], that is, Pk is a sparse matrix if 2nu � 2nx (for
further details of sparse implementation, please refer to the
Appendix). If the theoretical computation time is the same for
the two algorithms, a unified comparison of their computation
time cannot be obtained, and the practical computation time
depends on the implementation.

It should be noted that the conventional DP (Algorithm 1)
and KL control (Algorithm 2) can be used to solve
Problem (20) with μ = 0 and μ ∈ (0,+∞), respec-
tively; the target problem formulations of these two algorithms
are independent and not overlapped; however, the obtained
Algorithm 2 is consistent with the conventional Algorithm 1
in terms of computation time.

It should be noted that a very small value of μ causes
exp(−μ−1[wk,i + vKL,μ

k+1 ]) and zμ
k to become almost zero and

causes the overflow of Diag(12nx � zμ
k ).
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TOYODA AND WU: KL CONTROL IN BCNS 9

Algorithm 2 KL Control for Problem (20) With μ ∈ (0,+∞)

1: vKL,μ
N = h, zμN = exp(−μ−1vKL,μ

N ) � Initialization
2: for k = N − 1, . . . , 0 do � Backward calculation on k
3: �

μ
k = Pk 
 exp(−μ−1Wk)

4: zμk = �
μ
k zμk+1

5: P∗,μ
k = (

Diag(12nx � zμk )�
μ
k

)

[

zμk+1 · · · zμk+1

]�

Remark 6: As the value function vKL,μ
k,i and the optimal

transition probability p∗,μ
k,i , given in Theorem 3, are inter-

preted as

vKL,μ
k,i = −eLSE

(
−
[
wk,i + vKL,μ

k+1

]
, μ, pk,i

)

p∗,μ
k,i = esoftmax

(
−
[
wk,i + vKL,μ

k+1

]
, μ, pk,i

)

respectively. In other words, Algorithm 2 is the same as
Algorithm 1 obtained on replacing the min(·) and arg min(·)
operations of the fourth and fifth lines at the kth iteration
step with −eLSE(−(·), μ, pk,i) and esoftmax(−(·), μ, pk,i),
respectively. To the best of the authors’ knowledge, the form
of Algorithm 2 has not been studied in the context of BCNs
and related MDPs. It should be noted that the interpretation
above is naturally derived from the theoretical analysis and not
introduced as a heuristic algorithm. The subsequent analysis
of μ ↘ 0 implies that the KL control is a generalization of
the conventional DP for μ = 0.

Hereafter, the main focus of the remainder of this section
is the convergence behavior of the KL control with respect
to the weight parameter μ. The convergence behavior of the
aforementioned approximation is summarized in the subse-
quent theorems. As observed in the arg min operation in
Algorithm 1, an optimal solution of the conventional problem
formulation, which is the case of μ = 0 of Problem (20),
is not necessarily a point but can be a simplex, which
means that arg min(a) = arg minδ∈Sn δ�a = {δ ∈ Sn|δi =
0 (ai > min(a), i = 1, . . . , n)}. Therefore, the convergence of
a sequence bk ∈ Sn to arg min(a) ⊂ Sn, which is denoted as
bk → arg min(a), is defined by bk,i → 0 for each i such that
ai > min(a).

Theorem 5: Algorithms 1 and 2 for the optimal trajec-
tory planning problem (20) derived from the optimal control
problem (10) with Assumption 1 are considered. In the limit
of μ ↘ 0,

1) vKL,μ
k → vDP

k (k = 0, . . . , N).
2) p∗,μ

k,i (k = 0, . . . , N, i = 1, . . . , 2nx) → arg min(wk,i +
vDP

k+1).
The proof of the theorem above can be referred to in the

Appendix.
In contrast to the limit of μ ↘ 0, the diverging μ →

+∞ emphasizes the minimization of the KL divergence.
The objective function value obtained with the desired tran-
sition probabilities pk,i (k = 0, . . . , N, i = 1, . . . , 2nx) is
introduced as

vk,i =
{

p�
k,i

(
wk,i + vk+1

)
, (k = 0, . . . , N − 1)

hi, (k = N).

The limiting behavior of μ → +∞ is summarized in the
following theorem.

Theorem 6: Algorithm 2 for for the optimal trajectory
planning problem (20) derived from the optimal control
problem (10) with Assumption 1 is considered. In the limit
of μ → +∞.

1) vKL,μ
k → vk (k = 0, . . . , N).

2) p∗,μ
k,i → pk,i (k = 0, . . . , N, i = 1, . . . , 2nx).

The proof of the theorem above can be referred to in the
Appendix.

Example 4: Here, the control problem of Example 3 for
the BCNs (8) is considered again. The control period is set as
N = 3, and the terminal cost h is set as

h =
[
h
(
δ1

4

)
, h
(
δ2

4

)
, h
(
δ3

4

)
, h
(
δ4

4

)]� = [0.4, 0.7, 0, 0.3]�.

The value function and the optimal solution obtained using the
conventional DP for μ = 0 (Algorithm 1) and the KL control
for μ ∈ (0,+∞) (Algorithm 2) are compared. The matrix-
valued value function and the control variable of the DP are
defined as VDP = [vDP

0 , . . . , vDP
N ]� ∈ R

(N+1)×2nx and PDP
k =

[pDP
k,1, . . . , pDP

k,2nx ]� ∈ R
2nx×2nx , respectively; those of the KL

control, which are denoted as VKL,μ and P∗,μ
k , respectively,

are similarly defined. As shown in the proof of Theorem 5 in
the Appendix, the difference between vDP

k and vKL,μ
k increases

backwards in k; therefore, this example provides the values of
Pk at k = 0 because of the space limitations. In the case of
N = 3, VDP and PDP

0 are given as follows:

(
VDP, PDP

0

) =

⎡

⎢
⎢
⎢
⎣

0.9 1 1.5 1.5
0.6 0.8 1 1.1
0.1 0.6 0.5 0.7
0.4 0.7 0 0.3

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0
0 1 0 0

0 0 DP,�
p0,3,[3,4]

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

where pDP
0,3,[3,4] is an arbitrary vector in S

2. The value function
and optimal transition probabilities of the KL control in the
cases of μ = 0.01 and μ = 1 are presented as follows:
(

VKL,0.01, P∗,0.01
0

)

=

⎡

⎢
⎢
⎣

0.921 1.021 1.505 1.5
0.614 0.814 1.014 1.1
0.107 0.607 0.507 0.7

0.4 0.7 0 0.3

⎤

⎥
⎥
⎦,

⎡

⎢
⎢
⎣

0 1 0 0
0 1 0 0
0 0 0.2 0.8
0 0 0 1

⎤

⎥
⎥
⎦

(
VKL,1, P∗,1

0

)

=

⎡

⎢
⎢
⎣

1.131 1.278 1.548 1.5
0.764 0.969 1.098 1.1
0.390 0.739 0.595 0.7

0.4 0.7 0 0.3

⎤

⎥
⎥
⎦,

⎡

⎢
⎢
⎣

0 0.532 0.468 0
0 0.558 0 0.442
0 0 0.476 0.524
0 0 0 1

⎤

⎥
⎥
⎦.

Furthermore, the differences vKL,μ
0 − vDP

0 and v0 − vKL,μ
0

are depicted in Fig. 1. From the value above and Fig. 1,
convergence is observed.

For varying the weight parameter μ, the optimal values
without the KL divergence and the values of the KL divergence
are illustrated in Fig. 2. The selected value of μ can balance
the stage cost and KL divergence, which are indicated as x-axis
and y-axis of Fig. 1, respectively.

V. APPLICATION EXAMPLES

A. Lac Operon Model

First, the lac operon model proposed in [35] (see [35] for
further details of the model) is presented. The lac operon
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Fig. 1. Differences vKL,μ
0,i − vDP

0,i and v0,i − vKL,μ
0,i (i = 1, 2, 3, and 4) with

respect to the weight parameter μ > 0.

Fig. 2. Optimal values with varying weight parameter μ > 0 (vKL,μ
k,4 =

vDP
k,4 = vk,4 = 1.5 with the zero value of the KL divergence degenerating to a

point (1.5, 0), as indicated in the plot above, because δ1
4 cannot move to any

other state).

Fig. 3. Differences vKL,μ
0,i − vDP

0,i and v0,i − vKL,μ
0,i (i = 1, . . . , 210) with

respect to the weight parameter μ > 0.

model has the variables M (lac mRNA), B (β-galactosidase,
LacZ), R (repressor protein, LacI), A (allolactose), L (lac-
tose), P (transport protein, LacY, “lac permease”), and C
(cAMP-CAP protein complex). A variable with a subscript
“e” or “m” represents the extracellular and least medium
concentrations, respectively; the other variables represent the
intracellular concentrations. If a variable takes the values
True or False, it indicates that its concentration is high
or low, respectively. The state and control variables are
given by (x1, . . . , x10) = (M, B, R, A, L, P, C, Rm, Am, Lm)
and (u1, u2, u3) = (Le, Lem, Ge), respectively. The Boolean
update functions for the states are given as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fM = C ∧ ¬R ∧ ¬Rm, fP = M
fB = M, fC = ¬Ge
fR = ¬A ∧ ¬Am, fRm = (¬A ∧ ¬Am) ∨ R
fA = L ∧ B, fAm = L ∨ Lm
fL = P ∧ Le ∧ ¬Ge, fLm = ((Lem ∧ P) ∨ Le) ∧ ¬Ge

In this numerical example, as in Example 3, the desired
transition probabilities pk,i,j were uniformly set to the reach-
able states of the next state for each k = 0, . . . , N − 1, with
N = 100, and the stage and terminal cost were randomly
given. The differences vKL,μ

0 −vDP
0 and v0 −vKL,μ

0 are depicted
in Fig. 3, and the values of the cost and KL divergence are
illustrated in Fig. 4.

Fig. 4. Optimal values with varying weight parameter μ > 0.

Fig. 5. Map of the frozen lake and associated desired transition probabilities
and stage cost function. The values ∗/∗ on the right-hand side of an edge
represents the value of the time-invariant desired transition probability and
the cost, respectively, indicating that pi,j/wi,j.

B. Frozen Lake

As an example of a middle-scaled problem, a frozen
lake [36] in Gymnasium is illustrated here. The detailed game
setting is omitted here owing to space limitations but can be
found in the Web documentation [36]. The frozen lake is not a
Boolean model but a trajectory planning problem in the MDPs,
and the proposed framework can be easily applied by setting
the state space �16 rather than �2nx . Because deterministic
systems are discussed in this article, the probabilistic slipping
is ignored here.

In the map of the frozen lake (Fig. 5), a player starts at Start
(S) and arrives at Goal (G) by moving on Frozen (F) ways.
Because the player cannot move anymore after falling into
Hall (H), the desired transition probabilities to the Halls are
set as zero, which means that pk,i,05 = pk,i,07 = pk,i,11 =
pk,i,12 = 0 for any k and i. In addition, an evidently time-
consuming route, such as 04 → 00, is excluded by setting
their desired transition probabilities to zero. The time-invariant
desired transition probabilities and cost are given and indicated
in a map (Fig. 5).

A situation with multiple people, such as an evacuation in
the case of a disaster, is considered. A single optimal route,
which the conventional DP provides, can result in congestion;
therefore, the desired transition probabilities are selected to
separate the flow of people, such as p00,01 = p00,04 = 0.5,
although route 00 → 04 with cost w00,04 = 1.0 is more rea-
sonable than 00 → 01 with w00,01 = 2.0. In addition, the
buffer area 03 is utilized.

A long control period N = 10 is considered such that
the player can reach the goal. The transition probabilities
obtained are summarized in Table I. For a small value of μ,
the minimization of the cost is emphasized, and the transition
probability obtained of a nonoptimal route, such as p00,01,
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TABLE I
OBTAINED OPTIMAL TRANSITION PROBABILITIES

takes a small value. In contrast, a large value of μ results in a
small value of the KL divergence, indicating that the optimal
transition probabilities are closed to the desired value.

Remark 7: The aforementioned numerical examples illus-
trate the advantages of the extended KL cost: 1) the extended
KL cost can take into consideration the cost of the control
(e.g., the transition costs indicated near the edges in Fig. 5),
whereas the existing KL cost (e.g., [27] and [29]) does not
take it into consideration and 2) using the weight parame-
ter μ, the similarity to the desired transition probabilities and
the transition costs can be balanced. Furthermore, the limiting
cases μ ↘ 0 and μ → +∞ are theoretically supported by
Theorems 5 and 6.

VI. CONCLUSION

This article addressed the optimal control problem with the
stage cost function depending on the control input and the KL
divergence. The introduced KL divergence can balance the
objective function value and desired state transition probabili-
ties. Furthermore, the convergence behavior of the KL control
with respect to the weight parameter was presented.

In this work, the target system is a deterministic Boolean
network, and thus, probabilistic Boolean networks (PBCNs)
are not considered. The KL control problem for the PBCNs
requires the consideration of innate stochastic behavior in the
PBCNs and results in a more complicated discussion. It can
be further investigated in future studies.

APPENDIX

A. Proof of Theorem 5

For notational simplicity, using a set Jk,i = {j =
1, . . . , 2nx , pk,i,j �= 0} = {jk,i,1, . . . , jk,i,|Jk,i|}, Dk,i =
(δ2nx [jk,i,1, . . . , jk,i,|Jk,i|])� ∈ R

|Jk,i|×2nx is used. It should be
noted that Dk,iwk,i comprises wk,i,j such that pk,i,j > 0, which
means that wk,i,j = +∞ associated with pk,i,j = 0 is excluded.
Similarly, Dk,ipk,i comprises pk,i,j > 0. On recalling that a
term exp(−∞) = 0 in eLSE and the +∞/ − ∞ value in the
max / min operations can be ignored, the following equations
hold for an arbitrary vector a ∈ R

2nx :
⎧
⎪⎪⎨

⎪⎪⎩

eLSE
(−[wk,i + a

]
, μ, pk,i

)

= eLSE
(−Dk,i

[
wk,i + a

]
, μ, Dk,ipk,i

)
,

min
(
wk,i + a

) = min
(
Dk,i

[
wk,i + a

])

= − max
(−[wk,i + a

]) = − max
(−Dk,i

[
wk,i + a

])
.

The modification using Dk,i above is introduced to exclude
computations, including ∞ in fundamental inequalities given
by Theorem 1.

1) Proof of Item 1): The difference vKL,μ
k,i −vDP

k,i is separated
into two parts using the equalities above

vKL,μ
k,i − vDP

k,i

= −eLSE
(
−
[
wk,i + vKL,μ

k+1

]
, μ, pk,i

)
− min

(
wk,i + vDP

k+1

)

= γ
(1)
k,i + γ

(2)
k,i

where

γ
(1)
k,i = −eLSE

(
−Dk,i

[
wk,i + vKL,μ

k+1

]
, μ, Dk,ipk,i

)

+ eLSE
(−Dk,i

[
wk,i + vDP

k+1

]
, μ, Dk,ipk,i

)
,

γ
(2)
k,i = −eLSE(−Dk,i

[
wk,i + vDP

k+1

]
, μ, Dk,ipk,i

)

+ max
(−Dk,i

[
wk,i + vDP

k+1

])
.

In this proof, the two terms γ
(1)
k,i and γ

(2)
k,i are lower- and upper-

bounded using Theorem 1. More precisely, γ
(1)
k,i is lower- and

upper-bounded using (1) and (2), respectively, and γ
(2)
k,i is

lower- and upper-bounded using (3).
An inequality vKL,μ

k ≥ vDP
k (k = 0, . . . , N − 1) is obtained

by induction. First, at k = N − 1, vKL,μ
N = vDP

N = h =
[h(δ1

2nx ), . . . , h(δ2nx

2nx )]� and (3) result in

γ
(1)
N−1,i = 0, 0 ≤ γ

(2)
N−1,i ≤ μ log

(
1/ min

(
DN−1,ipN−1,i

))

respectively. Therefore, vKL,μ
N−1,i − vDP

N−1,i = γ
(1)
N−1,i + γ

(2)
N−1,i

satisfies the following inequalities:

0 ≤ vKL,μ
N−1,i − vDP

N−1,i ≤ μ log
(
1/ min

(
DN−1,ipN−1,i

))
.

Second, vKL,μ
k+1 ≥ vDP

k+1 is assumed. Equations (1) and (2) with
the substitution x′ = −Dk,i[wk,i + vDP

k+1], x = −Dk,i[wk,i +
vKL,μ

k+1 ], and p = Dk,ipk,i bounds γ
(1)
k,i are obtained as follows:

esoftmax�(−Dk,i

[
wk,i + vKL,μ

k+1

]
, μ, Dk,ipk,i

)

·Dk,i

[
vKL,μ

k+1 − vDP
k+1

]

≤ γ
(1)
k,i

≤ esoftmax�(−Dk,i

[
wk,i + vKL,μ

k+1

]
, μ, Dk,ipk,i

)

·Dk,i

[
vKL,μ

k+1 − vDP
k+1

]
+ 1

2μ

∥
∥
∥Dk,i

[
vKL,μ

k+1 − vDP
k+1

]∥
∥
∥

2

2
. (29)

The bound of an inner product esoftmax�(−Dk,i[wk,i +
vKL,μ

k+1 ], μ, Dk,ipk,i)Dk,i[v
KL,μ
k+1 − vDP

k+1] is considered. The
esoftmax term always takes a value in S |Jk,i|, indicating
that it is a non-negative vector, and the induction hypothesis
vKL,μ

k+1 ≥ vDP
k+1 indicates that vKL,μ

k+1 − vDP
k+1 ≥ 02nx

0 ≤ esoftmax�(−Dk,i

[
wk,i + vKL,μ

k+1

]
, μ, Dk,ipk,i

)

·Dk,i

[
vKL,μ

k+1 − vDP
k+1

]
.

For the upper bound, on using the Hölder inequality a�b ≤
‖a‖1‖b‖∞ = (1�a) max(b) for non-negative vectors a and b
(see [37, Appendix B]), the following upper bound is given:

esoftmax�(−Dk,i

[
wk,i + vKL,μ

k+1

]
, μ, Dk,ipk,i

)

·Dk,i

[
vKL,μ

k+1 − vDP
k+1

]

≤
(

1�
2nxesoftmax

(
−Dk,i

[
wk,i + vKL,μ

k+1

]
, μ, Dk,ipk,i

))

· max
(

Dk,i

[
vKL,μ

k+1 − vDP
k+1

])

= max
(

Dk,i

[
vKL,μ

k+1 − vDP
k+1

])
.
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On applying the aforementioned upper and lower bounds
of esoftmax�(−Dk,i[wk,i + vKL,μ

k+1 ], μ, Dk,ipk,i)Dk,i[v
KL,μ
k+1 −

vDP
k+1], the bound of γ

(1)
k,i in (29) is simplified as follows:

0 ≤ γ
(1)
k,i

≤ max
(

Dk,i

[
vKL,μ

k+1 − vDP
k+1

])
+ 1

2μ

∥
∥
∥Dk,i

[
vKL,μ

k+1 − vDP
k+1

]∥
∥
∥

2

2
.

(30)

For γ
(2)
k,i , (3) results in the following inequality:

0 ≤ γ
(2)
k,i ≤ μ log

(
1/ min

(
Dk,ipk,i

))
. (31)

Equations (30) and (31) show that vKL,μ
k,i − vDP

k,i = γ
(1)
k,i + γ

(2)
k,i

satisfies the following inequalities:

0 ≤ vKL,μ
k,i − vDP

k,i ≤ max
(

Dk,i

[
vKL,μ

k+1 − vDP
k+1

])

+ 1

2μ

∥
∥
∥Dk,i

[
vKL,μ

k+1 − vDP
k+1

]∥
∥
∥

2

2
+ μ log

(
1/ min

(
Dk,ipk,i

))
.

Therefore, the induction concludes that vKL,μ
k ≥ vDP

k (k =
0, . . . , N −1). On taking the maximum value of both the sides
and using C1 = maxi=1,...,2nx , k=0,...,N−1 [1/ min(Dk,ipk,i)], the
following equation is obtained:

max
(

vKL,μ
k − vDP

k

)

≤ max
(

vKL,μ
k+1 − vDP

k+1

)
+ 1

2μ

∥
∥
∥vKL,μ

k+1 − vDP
k+1

∥
∥
∥

2

2
+ μC1.

(32)

The obtained inequality is a recursive equation of max(vKL,μ
k −

vDP
k ); however, an explicit expression of the solution is dif-

ficult to obtain. Instead, using a sequence ck that does not
depend on μ, the remaining part is the proof for an inequality
max(vKL,μ

k − vDP
k ) ≤ ckμ. At N, the definition of vKL,μ

N = h
indicates vKL,μ

N = vDP
N and max(vKL,μ

N −vDP
N ) = 0 = cNμ with

cN = 0. At k + 1, the inequality max(vKL,μ
k+1 − vDP

k+1) ≤ ck+1μ
is assumed. Then, the �2 squared norm in (32) is bounded as

‖vKL,μ
k+1 − vDP

k+1‖2
2 ≤

[
max

(
vKL,μ

k+1 − vDP
k+1

)]2‖12nx ‖2
2

≤ 2nx
[
max

(
vKL,μ

k+1 − vDP
k+1

)]2 ≤ 2nx c2
k+1μ

2

and (32) results in the following bound:

max
(

vKL,μ
k − vDP

k

)
≤
(

ck+1 + 2nx−1c2
k+1 + C1

)
μ

and the inequality max(vKL,μ
k − vDP

k ) ≤ ckμ is obtained
by letting ck = ck+1 + 2nx−1c2

k+1 + C1. The inequalities

max(vKL,μ
k − vDP

k ) ≤ ckμ and vKL,μ
k ≥ vDP

k means that
vKL,μ

k → vDP
k as μ ↘ 0.

2) Proof of Item 2): The jth element of the optimal p∗,μ
k,i ∈

S
2nx is given as follows:

p∗,μ
k,i,j =

[
esoftmax

(
−
(

wk,i + vKL,μ
k+1

)
, μ, pk,i

)]

j

=
pk,i,j exp

(
−μ−1

[
wk,i,j + vKL,μ

k+1,j

])

∑2nx

j′=1 pk,i,j′ exp
(
−μ−1

[
wk,i,j′ + vKL,μ

k+1,j′
])

= pk,i,j
∑2nx

j′=1 pk,i,j′ exp
(
μ−1

([
wk,i,j + vKL,μ

k+1,j

]
−
[
wk,i,j′ + vKL,μ

k+1,j′
])) .

The convergence of pk,i,j′ exp(μ−1([wk,i,j + vKL,μ
k+1,j] − [wk,i,j′ +

vKL,μ

k+1,j′ ])) is summarized as follows.
1) wk,i,j + vDP

k+1,j > wk,i,j′ + vDP
k+1,j′ : There exists ε > 0 and

μ > 0 such that [wk,i,j + vKL,μ
k+1,j] − [wk,i,j′ + vKL,μ

k+1,j′ ] >

ε > 0 provided 0 < μ ≤ μ because of the convergence

of vKL,μ
k+1 → vDP

k+1. Therefore, pk,i,j′ exp(μ−1([wk,i,j +
vKL,μ

k+1,j] − [wk,i,j′ + vKL,μ

k+1,j′ ])) ≥ pk,i,j′ exp(μ−1ε) if 0 <

μ ≤ μ and diverges to +∞ as μ ↘ 0.
2) wk,i,j +vDP

k+1,j < wk,i,j′ +vDP
k+1,j′ : Similar to the discussion

above, there exists −ε < 0 and μ > 0 such that [wk,i,j +
vKL,μ

k+1,j] − [wk,i,j′ + vKL,μ

k+1,j′ ] < −ε < 0 for 0 < μ ≤ μ

because of the convergence of vKL,μ
k+1 → vDP

k+1. Therefore,

0 ≤ pk,i,j′ exp(μ−1([wk,i,j+vKL,μ
k+1,j]−[wk,i,j′ +vKL,μ

k+1,j′ ])) ≤
pk,i,j′ exp(−μ−1ε) if 0 < μ ≤ μ and converges to zero
as μ ↘ 0.

3) wk,i,j +vDP
k+1,j = wk,i,j′ +vDP

k+1,j′ : Inequalities vKL,μ
k ≥ vDP

k

and max(vKL,μ
k − vDP

k ) ≤ ckμ implies that [wk,i,j +
vKL,μ

k+1,j] − [wk,i,j′ + vKL,μ

k+1,j′ ] = [vKL,μ
k+1,j − vDP

k+1,j] −
[vKL,μ

k+1,j′ − vDP
k+1,j′ ] ∈ [ − ck+1μ, ck+1μ]. Therefore,

pk,i,j′ exp(μ−1([wk,i,j + vKL,μ
k+1,j] − [wk,i,j′ + vKL,μ

k+1,j′ ])) is
bounded.

Item 1) concludes that p∗,μ
k,i,j → 0 if wk,i,j + vDP

k+1,j+1 >

min(wk,i + vDP
k+1). The discussion above does not specify

the convergence point, but the convergence of p∗,μ
k,i →

arg min(wk,i + vDP
k+1) is established.

B. Proof of Theorem 6

1) Proof of Item 1): The flow of the proof is similar to that
of Theorem 5, that is, the difference vKL,μ

k − vk is lower- and
upper-bounded. The difference vKL,μ

k,i − vk,i is separated into
two parts

vKL,μ
k,i − vk,i = −eLSE

(
−
[
wk,i + vKL,μ

k+1

]
, μ, pk,i

)

−p�
k,i

(
wk,i + vk+1

) = η
(1)
k,i + η

(2)
k,i

where

η
(1)
k,i = −eLSE

(
−Dk,i

[
wk,i + vKL,μ

k+1

]
, μ, Dk,ipk,i

)

+eLSE(−Dk,i
[
wk,i + vk+1

]
, μ, Dk,ipk,i

)

η
(2)
k,i = −eLSE(−Dk,i

[
wk,i + vk+1

]
, μ, Dk,ipk,i

)

+(Dk,ipk,i

)�(−Dk,i
[
wk,i + vk+1

])
.

In the equation above, −p�
k,i(wk,i + vk+1) =

(Dk,ipk,i)
�(−Dk,i[wk,i + vk+1]) is used. An inequality

vk ≥ vKL,μ
k (k = 0, . . . , N − 1) is obtained by induction. First,

at k = N − 1, vKL,μ
N = vN = h = [h(δ1

2nx ), . . . , h(δ2nx

2nx )]�,
and (4) results in

η
(1)
N−1,i = 0, − 1

2μ

∥
∥DN−1,i

[
wN−1,i + h

]∥
∥2

2 ≤ η
(2)
N−1,i ≤ 0

respectively. Therefore, vKL,μ
N−1,i − vN−1,i = η

(1)
N−1,i + η

(2)
N−1,i

satisfies the following inequalities:

− 1

2μ

∥
∥DN−1,i

[
wN−1,i + h

]∥
∥2

2 ≤ vKL,μ
N−1,i − vN−1,i ≤ 0.
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Second, vk+1 ≥ vKL,μ
k+1 is assumed, and (1) and (2) with the

substitutions x′ = −Dk,i[wk,i +vKL,μ
k+1 ], x = −Dk,i[wk,i +vk+1],

and p = Dk,ipk,i provide the following lower and upper bounds
of −η

(1)
k,i :

esoftmax�(−Dk,i
[
wk,i + vk+1

]
, μ, Dk,ipk,i

)

·Dk,i

[
vk+1 − vKL,μ

k+1

]

≤ −η
(1)
k,i

= eLSE
(
−Dk,i

[
wk,i + vKL,μ

k+1

]
, μ, Dk,ipk,i

)

−eLSE(−Dk,i
[
wk,i + vk+1

]
, μ, Dk,ipk,i

)

≤ esoftmax�(−Dk,i
[
wk,i + vk+1

]
, μ, Dk,ipk,i

)

·Dk,i

[
vk+1 − vKL,μ

k+1

]
+ 1

2μ

∥
∥
∥Dk,i

[
vk+1 − vKL,μ

k+1

]∥
∥
∥

2

2
.

(33)

The bound of an inner product term
esoftmax�(−Dk,i[wk,i+vk+1], μ, Dk,ipk,i)Dk,i[vk+1−vKL,μ

k+1 ]
is given using the Hölder inequality as follows:

0 ≤ esoftmax�(−Dk,i
[
wk,i + vk+1

]
, μ, Dk,ipk,i

)

·Dk,i

[
vk+1 − vKL,μ

k+1

]

≤
(

1�
2nxesoftmax

(−Dk,i
[
wk,i + vk+1

]
, μ, Dk,ipk,i

))

· max
(

Dk,i

[
vk+1 − vKL,μ

k+1

])

= max
(

Dk,i

[
vk+1 − vKL,μ

k+1

])
.

On using the inequalities above, the bound of −η
(1)
k,i in (33) is

simplified as follows:

0 ≤ −η
(1)
k,i

≤ max
(

Dk,i

[
vk+1 − vKL,μ

k+1

])
+ 1

2μ

∥
∥
∥Dk,i

[
vk+1 − vKL,μ

k+1

]∥
∥
∥

2

2
.

(34)

Furthermore, (4) results in the following inequalities:

− 1

2μ

∥
∥Dk,i

[
wk,i + vk+1

]∥
∥2

2 ≤ η
(2)
k,i ≤ 0. (35)

On combining (34) and (35), the following bounds of vKL,μ
k,i −

vk,i = η
(1)
k,i + η

(2)
k,i is obtained:

0 ≥ vKL,μ
k,i − vk,i

≥ − max
(

Dk,i

[
vk+1 − vKL,μ

k+1

])
− 1

2μ
‖Dk,i

[
vk+1 − vKL,μ

k+1

]
‖2

2

− 1

2μ

∥
∥Dk,i

[
wk,i + vk+1

]∥
∥2

2. (36)

By induction, an inequality vk ≥ vKL,μ
k is obtained. By using

C2 = maxi=1,...,2nx , k=0,...,N−1(1/2)‖Dk,i[wk,i + vk+1]‖2
2, (36)

results in

max
(

vk − vKL,μ
k

)
≤ max

(
vk+1 − vKL,μ

k+1

)

+ 1

2μ

∥
∥
∥vk+1 − vKL,μ

k+1

∥
∥
∥

2

2
+ μ−1C2.

(37)

Now, an inequality max(vk −vKL,μ
k ) ≤ ekμ

−1 with a sequence
ek ≥ 0 (k = 0, . . . , N − 1) is derived here. At k + 1, the
inequality max(vk+1 − vKL,μ

k+1 ) ≤ ek+1μ
−1 with ek+1 ≥ 0 is

assumed. The �2 squared norm is bounded as
∥
∥
∥
∥vk+1 − vKL,μ

k+1 ‖2
2 ≤

[
max

(
vk+1 − vKL,μ

k+1

)]2
∥
∥
∥
∥12nx ‖2

2

≤ 2nx
[
max

(
vk+1 − vKL,μ

k+1

)]2 ≤ 2nx e2
k+1μ

−2.

The equation above applies to (37) and shows that

max
(

vk − vKL,μ
k

)
≤ ek+1μ

−1 + 2nx−1e2
k+1μ

−3 + μ−1C2.

Because the limit of μ → +∞ is now considered, μ−3 ≤ μ−1

is assumed without a loss of generality. Therefore, max(vk −
vKL,μ

k ) ≤ ekμ
−1 with ek = ek+1+2nx−1e2

k+1+C2. The inequal-

ities vk ≥ vKL,μ
k and max(vk − vKL,μ

k ) ≤ ekμ
−1 result in

vKL,μ
k → vk as μ → +∞.

2) Proof of Item 2): The jth element of p∗,μ
k,i is given as

follows:

p∗,μ
k,i,j =

[
esoftmax

(
−
(

wk,i + vKL,μ
k+1

)
, μ, pk,i

)]

j

=
pk,i,j exp

(
−μ−1

[
wk,i,j + vKL,μ

k+1,j

])

p�
k,i exp

(
−μ−1

[
wk,i + vKL,μ

k+1

]) .

In the exponential terms above

exp
(
−μ−1

[
wk,i,j + vKL,μ

k+1,j

])

= exp
(
−μ−1[wk,i,j + vk+1,j

]) · exp
(
μ−1

[
vk+1,j − vKL,μ

k+1,j

])
.

(38)

The first term of the right side of (38), exp(−μ−1[wk,i,j +
vk+1,j]), converges to 1 as μ → +∞. The inequalities 0 ≤
vk+1,j − vKL,μ

k+1,j ≤ ek+1μ
−1 result in upper and lower bounds

of the second term of the right side of (38) given by

exp(0) ≤ exp
(
μ−1

[
vk+1,j − vKL,μ

k+1,j

])
≤ exp

(
ek+1μ

−2
)

that is, exp(μ−1[vk+1,j − vKL,μ
k+1,j]) also converges to 1.

Therefore, p∗,μ
k,i,j → pk,i,j/(p

�
k,i12nx ) = pk,i,j as μ → +∞,

which means that p∗,μ
k,i → pk,i.

C. Sparse Implementation of Algorithm 2

For practical implementation, the third line �
μ
k = Pk 


exp(−μ−1Wk) can consume a significant amount of time
because naive implementation results in a dense matrix
exp(−μ−1Wk). In particular, Wk, defined in (19), has many
+∞ elements, and exp(−μ−1Wk) is computed in the manner
of the dense matrix computation. Instead, the following sparse
matrix W′

k can be used:

W ′
k,i,j =

{
gk

(
δi

2nx , δ
inv∗(j|i,k)
2nu

) (
pk,i,j > 0

)
,

0
(
pk,i,j = 0

)
.

Because pk,i,j exp(−μ−1W ′
k,i,j) = pk,i,j exp(−μ−1Wk,i,j) = 0

if pk,i,j = 0, the modified matrix W′
k of Wk does not affect

the value of �
μ
k , which means that Pk 
 exp(−μ−1W′

k) =
Pk
exp(−μ−1Wk) = �

μ
k . However, exp(−μ−1W′

k) has many
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elements with the value of 1 and is still dense. Therefore,
a common implementation named expm1, which computes
expm1(x) = exp(x) − 1, can be used as �

μ
k = Pk + Pk 


expm1(−μ−1W′
k); both Pk and expm1(−μ−1W′

k) are sparse,
and �

μ
k is efficiently computed.
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