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Deep Metric Learning With Locality Sensitive
Mining for Self-Correcting Source Separation of
Neural Spiking Signals

Alexander Kenneth Clarke

Abstract—Automated source separation algorithms have
become a central tool in neuroengineering and neuroscience,
where they are used to decompose neurophysiological signal into
its constituent spiking sources. However, in noisy or highly mul-
tivariate recordings these decomposition techniques often make
a large number of errors. Such mistakes degrade online human-
machine interfacing methods and require costly post-hoc manual
cleaning in the offline setting. In this article we propose an auto-
mated error correction methodology using a deep metric learning
(DML) framework, generating embedding spaces in which spik-
ing events can be both identified and assigned to their respective
sources. Furthermore, we investigate the relative ability of differ-
ent DML techniques to preserve the intraclass semantic structure
needed to identify incorrect class labels in neurophysiological
time series. Motivated by this analysis, we propose locality sensi-
tive mining, an easily implemented sampling-based augmentation
to typical DML losses which substantially improves the local
semantic structure of the embedding space. We demonstrate the
utility of this method to generate embedding spaces which can be
used to automatically identify incorrectly labeled spiking events
with high accuracy.

Index Terms—Blind source separation (BSS), deep learning,
deep metric learning (DML), surface electromyography (EMG).

I. INTRODUCTION

EUROPHYSIOLOGICAL signals can generally be char-
N acterized as an additive mixture of repeating events from
different sources, such as the motor unit activation potential
(MUAP) in electromyography (EMG) or the spike potential
in microelectrode cortical recordings [1], [2]. The ensemble
of these activation events constitute neural codes that can
provide direct insights into a neurological system of interest
[31, [4], [5]. Consequently, the extraction of individual sources
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from noisy signal by blind source separation (BSS) algorithms
has long been a major focus in computational neuroscience [4],
[6], [7], [8]. Modern BSS algorithms leverage highly multivari-
ate data, such as the output from high-density electrode arrays
[9], [10], to identify the contributions of many individual spik-
ing sources [4], [11], [12]. These sources also provide an
extremely clean control signal for human-machine interfacing
applications when compared to the original bulk signal [5],
[13], [14].

Despite these successes, BSS algorithms frequently make
mistakes when labeling source activations, which can be dif-
ficult to identify and correct automatically [15], [16]. As
a result, applications that use neurophysiological data still
broadly rely on bulk signal [17], [18], [19]. In offline decom-
position, a degree of manual or semi-automated post-hoc
cleaning is commonly employed, often using additional knowl-
edge about the system of interest, for example the temporal
statistics of the sources [20]. The nature of this manual error
correction generally relates to the mixing system of interest,
for example, intracortical and intramuscular EMG decomposi-
tions generally require post-hoc examination of source classes
[8], [21], whilst surface EMG (sEMG) decompositions also
require further inspection of individual neural activations [22].
However, whilst accurate, manual cleaning is constrained to
offline methods and is an extremely time-consuming pro-
cess [23]. In response, modern source separation pipelines
are increasingly using additional automated post-processing
steps [16], [20], [24]. A contemporary direction is to use
the noisy BSS-derived labels to train a neural network classi-
fier, which can then outperform the noisy label it was trained
on [25], [26], [27]. However, such supervised deep learning
approaches generally suffer from a critical threshold where
the initial label noise overwhelms the ability of the model to
self-correct [28].

A different approach to leveraging deep learning for neuro-
physiological source separation is through deep metric learn-
ing (DML), in which a model is trained to learn the relative
similarity or dissimilarity between data samples rather than to
directly classify them [29], [30]. In this formulation, the neural
network acts as an efficient featurizer, taking high-dimensional
neurophysiological input and extracting a low-dimensional
embedding in which individual spiking events are easily
assigned to their respective sources. In recent years DML
has seen particular success in person reidentification tasks
[31], [32], medical image classification [33], [34] and digital
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pathology [35], [36]. In the theoretical domain, problems
with optimization stability and computational inefficiency have
been largely solved through a combination of sampling strate-
gies [37], [38], [39] and better-distance metrics [29], [40],
[41], [42]. DML is attractive in the context of spiking events,
which are stable over time given fixed conditions. This means
that for a well trained model, each spiking event from the
same source should cluster in the same location in the embed-
ding space, with the DML model theoretically only needing
to remove the distortions caused by noise and superposition
events. DML also has lower-data demands and a better tol-
erance for class-imbalance when compared to typical neural
network-based classifiers [43], both of which are common
issues in neurophysiological time series processing.

In this article we have two main objectives for a DML-
trained featurizer. First, we want neural events from different
sources to map to different regions of the embedding space
so they can be discriminated, that is, we want good interclass
variance. Second, we want neural events from the same source
to preserve some intraclass structure for the purposes of iden-
tifying label noise. This second objective is complicated by
the fact that maintaining a degree of intraclass variance is
not usually the focus of DML methods, which are generally
more interested in interclass separation [44]. Current losses
tend to incentivize the model to ignore intraclass semantic
differences and collapse the embedding down to a tight clus-
ter [39]. To mitigate this, we propose a simple method of
augmenting DML training to prevent this happening, allow-
ing the embedding to be used for more than just class
separation.

In summary, the main contributions of this article are as
follows.

1) We robustly demonstrate that DML is an effective
method of building a neural network featurizer for
source separation of neurophysiological signals. Using
SEMG signal, we show that the activations from differ-
ent sources clearly cluster, making class discrimination
by simple clustering methods trivial.

2) We implement a number of popular DML methods, such
as N-pair loss and angular loss [40], [42], demonstrat-
ing that they generate embedding spaces with excellent
class discriminability, but poor local semantic struc-
ture. We show that more contemporary methods which
preserve such structure can be used to identify out-
liers within an artificially corrupted neurophysiological
signal.

3) We propose locality sensitive mining (LSM), an eas-
ily implemented sampling-based method of maintaining
intraclass structure that can be implemented in a variety
of different DML paradigms. We go on to show that for
neurophysiological signal LSM outperforms other con-
temporary methods of preserving local semantic struc-
ture, such as multilevel distance regularization (MDR)
[44], whilst having a very simple implementation that
can be added to many different DML losses.

4) For the first time we are aware of in the literature,
we show that DML methods which maintain intra-
class semantic structure have clear practical utility for

IEEE TRANSACTIONS ON CYBERNETICS

identifying incorrectly labeled outliers in the class clus-
ters. As an example, we leverage this to build a self-
correcting source separation pipeline for neural spiking
signals, which we call DeepDecomp.

II. RELATED WORK

DML has classically been employed in discrete high-
dimensional data types, such as images, rather than in the time
series domain. This has not been due to a lack of theoretical
grounding [45], [46], [47], but relates more to the difficulty
of building discrete class pairings for signals when compo-
nents have variable temporal dynamics, which may explain the
lack of DML methods for neurophysiological signal process-
ing in the literature. However, when the independent factors
in the generative process have relatively short and stereotyped
responses, such as spiking neurons, it becomes straightforward
to break the signal into windows centered on each activation.
In this case, the problem becomes similar to face reidentifica-
tion, where the neural network needs to learn an invariance to
confounding factors when bringing images of the same face
closer together in the embedding space [31], [32], [48]. There
has also been some work in face reidentification to make train-
ing robust to label noise, using external models to build metrics
of label quality [49], [50], [51], [52]. Unfortunately, these
methods are generally reliant on an extremely large amount
of data to be effective, which precludes their use in most
neurophysiological datasets.

An alternative solution to the problem of label noise is to
preserve a richer intraclass embedding, such that semantic sim-
ilarity or dissimilarity between samples from the same class is
better preserved, allowing identification of outliers. Early work
on DML losses generally either ignored intraclass variance
or actively sought to reduce it [41], [53]. Some proxy-based
losses, which pull samples towards shared class proxies rather
than other in-class samples [54], [55], have been designed in
part with the intention of reducing overfitting by preventing
intraclass collapse [56], [57]. There has also been some work
in preserving intraclass characteristics using generative mod-
els, such as variational autoencoders [58], [59], with the main
objective of improving generalization performance by exclud-
ing features that are not shared across a class when making
embedding decisions.

More recently there have been some explicit attempts to
preserve local semantic structure in the embedding space, as
illustrated in Fig. 1. DML with self-supervised ranking uses
an auxiliary term based on self-supervised learning [44], using
a set of transform functions to augment samples to differ-
ent degrees, such that more perturbed samples are embedded
further away from the original image. However, this requires
domain knowledge when sculpting the transform functions,
for example the authors perturb image scale, viewpoint and
color in their task of bird identification. Selecting similar
transformations for neural signals would not be a simple
task. An alternative approach is MDR, which also adds an
auxiliary loss term, albeit one which aims to prevent class
collapse by using proxies set at multiple distances from each
sample [60].
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Fig. 1. Effect of traditional DML losses versus those designed to preserve
local semantic structure. Traditional methods tend to obliterate intraclass vari-
ance in the embedding of samples from the same class (in blue), whilst
recent directions instead preserve this, while maintaining good separation from
samples belonging to different classes (in red).

III. PRELIMINARIES
A. Deep Metric Learning

The basic aim of DML is to train a neural network to map
a sample taken from one of C classes to an embedding vector
X, such that for an arbitrarily selected anchor embedding X,
samples from the same class X, are embedded closer than sam-
ples from a different class x,, as measured by some distance
metric D. D can be a number of different metrics, such as
the Euclidean distance, cosine similarity or Kullback—Leibler
divergence [61]. Commonly the loss function is formulated
in terms of a relative distance between positive pairs (sam-
ples from the same class) and negative pairs (samples from
different classes), such that

D(Xa, Xp) + m < D(Xa, Xn) (1)

where m is a margin term that specifies the objective interclass
separation.

After a small amount of optimization, the bulk of nega-
tive pairs will be further away than positive pairs, making
most training examples in a batch uninformative [37]. This
can be partially mitigated by mining strategies; calculating the
DML loss using only pairings from each batch selected using
some heuristic based on the embedding space [62], for exam-
ple selecting only pairings where X, is further away from xp
than x;. A related approach is to use multiple negative pairings
N for each anchor term, as proposed originally in the N-pair
loss [40]

M N
1
Lnpar = dllog| 1+ > exp(fupn) 2)
X,€B X €B\ (X4, X))

where fu p.n is the DML loss and B is a batch of size M.

B. Locality Sensitive Mining

Whilst current methods of selecting pairings from B are suit-
able if the objective is to maximize interclass distance within
the embedding space, they have the side effect of penalizing
local semantic structure within a class [54]. When positive
pairings are selected randomly, the network will generally
learn to embed all samples from a particular class into a dense
point [57].

To preserve local semantic structure, we instead propose a
new mining procedure, LSM, using a top-k algorithm to select
the k closest X, to X, that belong to a different class and using
only the closest Xxp. GPU implementations of top-k algorithms
have become extremely efficient in recent years, due to their
increasing use within machine learning applications [63]. In
the N-pair formulation this mining approach can be written as

1 M
T
X4€B X, €B\ (Xq,Xp)

> Iycoexpl(fupn) 3)

X €B\ (X4,Xp)

lpsm = Iy, ey log[1+g]

g:

where Y = argmax(Z(x4, X,)) is the argmax set of the pair-
wise cosine similarity Z between x, and its associated set xp in
B and © = topk(Z£(x4, X)) is the top-k values of the ordered
pairwise cosine similarity £ between X, and its associated set
Xp in B. 1 is the indicator function.

Like other mining procedures, LSM can be combined
with many DML losses. As examples, we selected N-pair
loss combined with the popular angular loss as a distance
metric [42].

C. Angular Loss

Angular loss is a stable geometric reformulation of the angu-
lar distance metric, which constructs a right-angled triangle
with X, and the midpoint between X, and x,, with the final
vertex being the point on the semicircle joining X, and xp [42].
By dropping constant terms, this geometric relationship can be
used as the DML loss f; » » in (2), expressed as

fapn = dtan’a (xa + xp)Tx,, — 2(1 + tanza)xgxp 4)

where « is an angle in radians which sets the upper accepted
bounds of the loss, analogous to m in (1).

D. Cross Entropy Loss

A major difficulty in optimizing a model to detect spiking
events is that spikes are relatively rare, meaning the data has a
strong class imbalance toward windows with no activity [25].
This is particularly problematic in DML as the losses generally
have local optima of mapping all samples to a single location
in the embedding space. We found that the addition of a small
auxiliary cross-entropy (CE) term with temperature was useful
in avoiding this trivial solution

exp| 42|

ZZIY' ClogZ exp[ ]
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where z = (W/||W]||)2x and W is a trainable matrix that com-
presses the embedding vector down to a dimension C vector
for comparison with the one-hot encoded class labels. The
impact of the CE term was weighted by a coefficient such
that

I'=lpyr + tlc. (6)

E. Neurophysiological Signal Decomposition

The timestamps used by DeepDecomp can be generated
using a wide variety of manual and automated processes,
however, for this study the gradient convolution kernel com-
pensation (gCKC) algorithm was selected due to its strong
performance in HD-sEMG signal decomposition [64], [65]. In
the gCKC framework for BSS, the vector of spiking sources
s at time t are first extended with L delayed versions of
themselves, allowing the mixing problem, which is convo-
lutive in most neurophysiological settings, to be written in
instantaneous form

x(t) = H(t — 1) + w(f) 7)

where the signal observation vector x at time ¢ is a linear
mixture parameterized by the operation of the mixing matrix H
on the extended source vector 5 plus noise w. In practice both
the observation and source vectors are additionally extended
with a further R values for reason of numerical stability during
the source separation procedure.

Unlike independent component analysis methods which
seek to directly estimate a separation vector for each source,
gCKC seeks to include the additional statistical information
that the spiking sources generate repetitive events within the
signal. Sources are instead estimated indirectly using a linear
minimum mean square error estimator, with the estimated jth
source §; at time point ¢ given by

~ AT ~—1~
5i(t) = csjiCii x(1) ®)
where ¢L_ is the transposed cross-correlation vector between
SiX

an activation of the Jjth source and extended HD-sEMG matrix
and C;il is the inverted autocorrelation matrix of the extended
HD-sEMG matrix X.
The vector GST} is usually initialized with a time point likely
7

to contain a source activation, which can be estimated by,

for example, the Mahalanobis distance calculated on the sig-

nal [65]. Once selected, ¢’ is then optimized to find the rest of
SiX

the source’s signal contributions. This can be done with either
a fixed-point algorithm as in [16] or in the gCKC formulation
by gradient descent

— Z Mg(;) 9)

where c(ﬁ)ji is the updated cross-correlation vector, o is the
learning rate, and f(-) a contrast function designed to estimate
the nongaussianity of the output source in a similar fashion to
independent component analysis. Optimized sources can then
be converted to timestamps using a linear threshold or a two-
class k means clustering algorithm.
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IV. VALIDATION METHODOLOGY
A. Evaluated Methods

We compared a number of different DML methods, exam-
ining the utility of their respective embedding spaces for
identifying two types of label noise and classifying unseen
neural activations. The methods studied were as follows.

N-Pair Loss (NL) [40]: The original N-pair loss using
Euclidean distance, where each sample in a batch is paired
with one randomly selected in-batch positive and all in-batch
negatives. A small auxiliary CE term, /¢ in (5), was added to
stabilize training, with both y and 7 set to 0.1.

Angular Loss With NL (AL) [42]: The N-pair loss (with the
same auxiliary CE term), but using angular loss instead of
Euclidean distance as the distance metric. « to 0.25 radians in
both the cleaning and refitting stages. It should be noted that
this method also acts as an ablation of the LSM component
of training.

AL With LSM: The same loss as AL (with the same
hyperparameters), but using the proposed mining approach
instead. k was set to 5 throughout, which was selected after a
hyperparameter study also detailed in this article.

MDR [44]: We also compare our approach with the recent
MDR, which also aims to preserve intraclass variance, albeit
mainly from the perspective of improving generalization
performance.

CE: As a baseline we also included a classifier trained using
CE, that is, purely Ic in (5) with both y and t set to 1.
The embedding dimension is simply the output of the layer
before W.

B. Experiments

In experiment 1 we evaluated the ability of the models
to clean a label set corrupted by feature-dependent noise,
where label flipping probability is related to its associated fea-
tures [66]. In the context of source-separated HD-sEMG, this
most commonly occurs as a false-positive, where a separa-
tion vector incorrectly assigns a high probability of an in-class
MUAP being present when it is not, that is, a noise class or
other MU class label is flipped to the MU class of interest. To
simulate this effect, we corrupted the label set by generating
an artificially noisy separation vector for each MU class by
randomly selecting 15 MUAP labels from that class and using
the average of the associated extended HD-sEMG vectors to
generate a linear minimum mean square error prediction on
the extended HD-sEMG matrix. A two-class k-means cluster-
ing algorithm was then used to parameterize a linear threshold
to find activations, creating a label set with a high degree
of feature-dependent noise. Five levels of increasing difficulty
were generated by taking an amount of false positives corre-
sponding to 10%/20%/30%/40%/50% of the number of true
labels, selected at random from the set of false positives.

In experiment 2 the models were instead evaluated on class-
dependent label noise, when the probability of a label flipping
to another class is stable across all labels in the class [66]. As
for most neural spiking signals, in HD-sEMG source separa-
tion this error generally occurs when the separation vectors are
very similar, usually due to similar MUAP waveform shapes
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Fig. 2. (a) DeepDecomp, an example pipeline by which the noisy activation labels found from source—separating the high-density SEMG signal are cleaned.

The model is trained twice—a cleaning phase to find the false positive labels and a refitting phase to find the false negatives. After the refitting phase the
predicted class activity is much cleaner than that of the original source separation algorithm, as seen in (b). (c) Convolutional neural network trained by a
DML loss to find neural activations. Windows of neurophysiological time series are embedded into a low-dimensional space which can be used to source
separate and, if a method that preserves local semantic structure is used, to clean a noisy label set.

between two MU classes. This can be simulated by transferring
a percentage of labels to a similar MU class. This was done by
first averaging the MUAPs of each MU class and then cross-
correlating these averages with the average MUAP of every
other class in the recording, with 10%/20%/30%/40% of the
class labels transferred to the class with the highest value. If
labels had already been transferred to the closest class then
the next closest class was selected until all classes had label
transfers. A maximum label corruption of 40% was used to
preserve the concept of a majority true and minority false class.

After training with the artificially corrupted label sets, meth-
ods which successfully preserved intraclass variance should
have a dense central cluster due to the methods of label corrup-
tion. To avoid bias from manual selection and to demonstrate
a fully automated pipeline, we elected to automatically assign
samples to this cluster using a simple density-estimator. As
the cleaning process could potentially bias the label set by
incorrectly removing in-class outliers, we also retrained the
models with the cleaned sets and used the models to find unla-
beled spiking events. This also allowed demonstration of the
generalization performance of the models trained with the dif-
ferent loss functions. Finally we explored the impact of the k
hyperparameter within LSM by rerunning experiment 1 with
multiple values of k.

As a demonstration of the practical utility of the proposed
method for building a self-correcting source separation
pipeline for neural spiking signals, we give an example
pipeline, DeepDecomp, which automate the cleaning of the
output of a noisy gCKC decomposition of sEMG signal

[Fig. 2(a)]. By preserving local semantic structure, noisy
activation label sets can be accurately cleaned [Fig. 2(b)].

C. Model and Training

To convert the source-separated HD-sEMG signal into
labeled windows, first each channel of the HD-sEMG signal
was standardized by z-scoring and then cut into overlapping
80-sample wide windows at a stride of 1. Each window was
then labeled by reference to the predicted source activity at
the final sample of the window. This meant the bulk of win-
dows were labeled as part of the inactive class due to the
sparse nature of motor neuron spiking. Due to this serious
class imbalance, each minibatch was created from the entirety
of the windows labeled as containing a motor neuron spike,
with an additional 256 samples randomly selected from the
inactive class. Each class assignment was then converted to a
one-hot representation, the bulk of which had only one class
active at any one time, although rarely two activations would
occur simultaneously on the same time-point. As the richness
of the intraclass embedding of the inactive class windows was
not of any great concern, the embeddings of these windows
were not used as anchor samples when calculating the DML
component of the tested methods, although they were used as
negative samples and in the calculation of Ic.

A convolutional neural network implemented using the ten-
sorflow machine learning library in python was used as the
embedding model [Fig. 2(c)]. Grid search optimization was
used to select specific model architecture hyperparameters.
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TABLE I
CLEANING RESULTS FOR DIFFERENT LEVELS OF FEATURE-DEPENDENT LABEL NOISE

Level of Added Label Noise

H 10% 20% 30% 40% 50%

Method True and False Labels after Cleaning (% of Original Set)
True False | True False | True False ‘ True  False ‘ True  False
CE 90.2 79 88.8 16.2 89.3 25.1 90.9 32.6 79.7 35.6
NL[40] 92.8 7.2 90.3 14.8 87.8 20.0 86.9 24.4 77.6 25.8
AL[42] 66.7 2.2 58.4 5.7 54.6 8.0 45.1 8.0 42.0 10.8
MDR[44] 72.1 1.4 68.6 1.6 65.7 2.3 62.0 1.9 59.9 3.2
LSM 84.1 1.0 78.3 1.0 80.3 1.5 76.6 14 74.1 2.3

Convolution steps used a 1-D 3-sample wide kernel, with
32 filters and a drop-out of 0.2. 1-D max-pooling was com-
pleted with 2-sample wide kernels. Each densely connected
layers had 64 neurons and a drop-out percentage of 0.5 during
training. Both the convolution and densely connected layers
used ReLU activation functions. Finally the output of the last
densely connected layer was densely connected to a bias and
activation-free embedding layer of 8 neurons wide, which was
then divided by its L2 norm. This was an intentionally low-
dimension embedding compared to standard DML due to the
desire to avoid dimensionality issues during the clustering
steps in the refitting phase. The additional matrix W used
in the categorical CE was initialized with truncated normal
noise, whilst the weights of the neural network layers was ini-
tialized by glorot uniform. The Adam optimization algorithm
at a learning rate of 0.001 was then used to train the model
over 500 epochs for both cleaning and refitting stages.

When the model was used to find neural activations, the
cosine similarity of each sample to the average embedding
vectors of classes was calculated, with the spiking activations
assigned to MUs by way of a two-class k-means clustering
algorithm. These activation labels could then be compared to
the precorrupted data using the rate of agreement (RoA) met-
ric [1], a percentage defined as the number of true positive
matches divided by the total number of true positives, false
positives and false negatives. When the model was instead used
to clean the corrupted label set, a simple density estimator was
used. First a local scale value v was estimated by finding the
mean cosine similarity of the each embedding vector to its
20 nearest neighbors and taking a median of this value across
all vectors. For each label the number of other labels with a
cosine similarity more than v was found and the label with the
highest number of neighbors was selected as the center of the
cluster. All labels within a cosine similarity higher than v were
then added to the refitting training set. This simple approach
was generally adequate for quickly finding the densest region
of the embedding space, which was usually the cluster of true
labels.

D. Experimental Dataset

The HD-sEMG dataset consisted of 20-s recordings taken
from the dominant tibialis anterior muscle of 10 men per-
forming an isometric contraction at 15% of maximal force,
previously used to validate source separation techniques [67].
Maximal contraction was defined as the mean force of three
5-s maximal contractions separated by 3 min of rest, with force

sampled at 2048 Hz by load cells mounted on an isometric
brace. Force feedback was provided to the participants by an
oscilloscope. The signal from a monopolar 12 x 5 electrode
array placed over the main muscle innervation zone was sam-
pled at 2048 Hz having been band-pass filtered at 10-500 Hz.
gCKC with an additional k-means source refinement step was
implemented using the tensorflow machine learning package
[16], [65]. As the label set was to be artificially corrupted
it was important that the original be as noise free as pos-
sible, so additional post hoc steps were taken to maximize
the likelihood that the timestamps were correct. Sources were
manually cleaned by examining interspike intervals and the
source-to-noise ratio of each activation. An additional step
of validating decomposition accuracy was implemented by
comparing the sources to those found using the DEMUSE
source-separation software package [64], [65], with source
cleaning completed by a different trained operator.

V. RESULTS
A. Feature-Dependent Label Noise

In experiment 1, which tested the effect of feature-
dependent label noise by simulating noisy separation vectors,
the LSM-trained network generated an embedding space with
dense clusters for each class corresponding to the true labels.
Surrounding each cluster is a large sparse periphery of false
labels with no apparent structure, the expected result as these
false samples shared fewer features. In contrast, the embed-
ding spaces generated by training with CE, NL and AL gave
a more uniform single cluster for each class (with some dis-
tant outliers for CE). The utility of these different embedding
spaces for identifying false labels is particularly clear when
LSM is compared to AL using a 2-D principal component
space (Fig. 3).

Table I shows the cleaning results when selecting only sam-
ples from the highest-density region of a class embedding. The
LSM-trained network generated an embedding space with util-
ity for removing false labels even at the maximum tested value
of 50% of total correct values, with a median post-cleaning
false label retention of 2.3% of the total correct labels in the
class. The number of true labels lost during the cleaning pro-
cess fell as the precleaning percentage of false labels increased,
but even at the highest-false label percentage tested, a median
of 74.1% of the true values were still retained.

MDR also performed well at preserving some local seman-
tic structure and so the embedding space had some utility for
identifying noisy labels, although is was slightly outperformed
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TABLE I

CLEANING RESULTS FOR DIFFERENT LEVELS OF
CLASS-DEPENDENT LABEL NOISE

10%

Level of Added Label Noise

20%

30%

40%

Method True and False Labels after Cleaning (% of Original Set)
True False | True False ‘ True  False ‘ True  False
CE 79.8 7.9 64.5 17.7 58.1 25.4 54.5 335
NL[40] 82.5 7.1 64.0 13.5 57.9 20.9 49.7 30.1
AL[42] 61.7 3.0 455 9.3 41.8 13.0 33.5 20.0
MDR[44] 63.1 0.8 48.1 1.6 43.9 1.8 36.4 22
LSM 86.4 0.8 75.4 0.9 60.9 0.9 53.1 1.0
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Fig. 3. Effect of two different DML losses on the embedding space for

two units as shown by the first and second principle components for 40%
corruption with feature-dependent label noise. (a) Effect of using the original
random sampling method of angular loss, leading to all intraclass embeddings
contracting down to a point. In (b) the same optimization was run again using
a DML loss that preserves local structure, creating an embedding space in
which the true labels cluster away from the false labels.

by LSM. In contrast, the networks trained with CE, AL and NL
did not generate embedding spaces suitable for label cleaning.
AL and MDR generally produced much more distributed clus-
ters, meaning less samples in total, true or false, were selected
by the density estimator.

B. Class-Dependent Label Noise

In experiment 2, when labels were randomly flipped to the
MU class with the closes average MUAP shape, LSM again
generated embedding spaces with clear separation between
true and false separation. However, unlike in the first experi-
ment, the false labels formed a second distinct cluster within
the embedding space (Fig. 4). As the true label cluster always
had more values, it was still clearly identified by the density
estimator.

Table II gives the cleaning results for class-dependent label
noise across the different tested methods. As in experiment 1,
the LSM-trained model generated an embedding space that
allowed the density estimator to identify almost all false labels.
Even at a 40% transfer the median post-cleaning false label
retention was only 1.0% of the total correct labels in the class.
MDR also performed quite well, albeit with a slightly higher-
false label burden than LSM.

As true labels were lost both to the initial transfer to other
classes and to the cleaning phase, far fewer were retained in
the post-cleaning dataset than in experiment 1 and would need
to be recovered in the refitting stage. Once again, the CE,
NL and AL trained models generated embedding spaces that
were not useful for cleaning, and AL and MDR again generat-
ing a looser embedding with the consequence of less samples
selected.

C. Rediscovering Unlabeled Activations

An important requirement if the cleaned label set is to be
useful is that the cleaning process does not overly bias against
true labels that are lost at this stage, making them difficult to
recover. Lost labels tend to be more peripheral in the cluster,
meaning their MUAP shapes are likely to be less similar to
the MU class average, potentially due to superposition with
a MUAP from a different class or due to a noise artefact.
False negatives are also still used for training, but are labeled
inappropriately, with a possibly detrimental effect of the model
to generalize. To demonstrate that neither of these potential
problems actually impacted training, after the cleaning stage
of both experiments 1 and 2, the model was refitted with the
LSM-cleaned label set. As an additional comparison, we also
refitted using the same label set, but with the other methods
compared in this study.

For both experiments the predicted activity after running the
DeepDecomp pipeline was generally both sparse and clean,
with MUAPs easily identifiable using all methods tested.
These labels were compared to the original data using the RoA
metric, with results given in Table III. LSM and MDR tended
to outperform the other methods tested, most likely due to a
better ability to generalize that has been noted in DML losses
that preserve semantic information [44]. Most striking was the
ability of the DeepDecomp pipeline to recover the original
label sets in extreme degrees of label noise, as demonstrated
visually in Fig. 5.

D. Impact of the k Hyperparameter

Two main trends emerged when the cleaning component
of experiment 1 was repeated using different values of the k
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Fig. 4.

Principal component plot of the embedded samples from four classes with added class-dependent label noise. The samples selected automatically

for the refitting phase have been circled. The false labels have shared features as they come from the same class. This results in two tight clusters for both

true and false labels, however, they are still clearly separable.

TABLE III
REFITTING RESULTS FOR DIFFERENT LEVELS OF LABEL NOISE

Level of Added Label Noise

Label Noise Type Method 10% 20% 30% 40% 0%
Rate of Agreement (%)
CE 92.1 | 923 | 90.8 | 90.6 | 89.1
NL[40] 94.1 | 943 | 91.0 | 923 | 923
Feature Dependent AL[42] 93.7 93.7 89.4 89.2 91.5
MDR[44] 94.6 | 940 | 934 | 93.6 | 91.7
LSM 94.5 | 945 | 93.5 | 93.8 | 92.0
CE 953 | 928 | 91.0 | 89.3
NL[40] 97.7 | 954 | 91.5 | 89.7
Class Dependent AL[42] 953 | 934 | 91.2 | 90.2
MDR[44] 98.0 | 96.8 | 945 | 93.8
LSM 98.2 | 96.8 | 95.7 | 94.0

hyperparameter in the LSM method, which controls the num-
ber of top-k negatives which are used to build the loss (Fig. 6).
As k increases the intraclass embedding becomes increasingly
dense, resulting in the density estimator selecting a greater
number of samples. At the same time, the embedding begins
to lose its intraclass variance, resulting in increasing num-
bers of false negatives being incorrectly assigned as true. This
leads to an optimal value of k being 5 if the main objective
is to maximize the likelihood of identifying false negatives.
Its worth noting that a k of 1 is functionally similar to an

easy-negative loss [39], although this is quite inefficient with
respect to losing true positives to the cleaning process.

VI. CONCLUSION

In this study we demonstrate that a DML pipeline which
preserves local semantic structure can embed high-dimensional
neurophysiological signal into a low-dimensional space that
allows accurate identification of incorrectly labeled activa-
tion events. Furthermore, we present LSM, a sampling-based
augmentation to DML losses which preserves such semantic
structure. By using artificially corrupted SEMG data, we show
that this simple change can outperform other contemporary
methods of preserving intraclass variance, making possible a
practical pipeline for cleaning noisy source separated time
series data. As an example, we created DeepDecomp, a
pipeline which utilizes LSM-augmented DML to clean heav-
ily corrupted sSEMG decomposition data over two passes.
Importantly the model was still able to perform even when the
source of label corruption is class or even feature dependent,
an important consideration in neurophysiological signal where
mistakes often occur due correlated effects such as source
superposition.

Although this study focused on source-separated HD-sEMG
signal, it is important to emphasize the broader applicability
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Fig. 6. Impact of the number of top-k negative samples used in LSM during

the cleaning phase, after the data labels were corrupted with feature-dependent
label noise. As k rises, more true positives are densely clustered in the embed-
ding space, but the network begins to lose its intraclass variance, causing the
density estimator to fail. A k of 5 was found to be optimal for maximizing
the number of true positives whilst preventing class collapse.

of this approach to any imperfectly labeled neurophysiological
time series data characterized by repeating events. Whilst the
study focused specifically on action potentials, the proposed

methodology could also be used for pattern recognition in
bulk neurophysiological signal, for example by supplement-
ing contemporary prosthetics and exoskeletons [68], [69].
Additionally, the labeling process need not be by a BSS algo-
rithm. For example, a DeepDecomp-like pipeline could be
applied to a dataset for which only a small component of
the data has been manually labeled by an expert operator,
recovering the rest of the labels accurately. In this way, the
proposed approach can be viewed as a minimally supervised
method for decomposing neurophysiological time series into
individual cell activities.
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