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Abstract—Facial kinship verification refers to automatically
determining whether two people have a kin relation from their
faces. It has become a popular research topic due to potential
practical applications. Over the past decade, many efforts have
been devoted to improving the verification performance from
human faces only while lacking other biometric information, for
example, speaking voice. In this article, to interpret and benefit
from multiple modalities, we propose for the first time to com-
bine human faces and voices to verify kinship, which we refer
it as the audio-visual kinship verification study. We first estab-
lish a comprehensive audio-visual kinship dataset that consists
of familial talking facial videos under various scenarios, called
TALKIN-Family. Based on the dataset, we present the extensive
evaluation of kinship verification from faces and voices. In par-
ticular, we propose a deep-learning-based fusion method, called
unified adaptive adversarial multimodal learning (UAAML). It
consists of the adversarial network and the attention module on
the basis of unified multimodal features. Experiments show that
audio (voice) information is complementary to facial features
and useful for the kinship verification problem. Furthermore,
the proposed fusion method outperforms baseline methods. In
addition, we also evaluate the human verification ability on a
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subset of TALKIN-Family. It indicates that humans have higher
accuracy when they have access to both faces and voices. The
machine-learning methods could effectively and efficiently out-
perform the human ability. Finally, we include the future work
and research opportunities with the TALKIN-Family dataset.

Index Terms—Adversarial learning, audio-visual, benchmark
dataset, kinship verification, multimodal fusion.

I. INTRODUCTION

FACIAL kinship verification (FKV) aims at automatically
determining whether two individuals have a kin relation-

ship or not from their given facial images or videos [1]. Since
the seminar work by Fang et. al [2], recently FKV has gained
increasing attention [1] due to its wide range of potential
applications, including finding missing persons, border con-
trol and customs, criminal investigations [3], family photo
album organization, improving the performance of face recog-
nition systems, and social media analysis [4]. To the best of
our knowledge, although closely related to face verification,
that has been well developed and made into products for real
world [5], the FKV technology has not been, however, capable
of performing at a sufficient level for any practical applications
due to its unique challenges discussed in great detail in [1].

Existing research in kinship verification has been exten-
sively focused on exploring kinship features from the visual
modality of the facial images/videos [3], [6], [7]. Certainly,
facial similarity plays an important role in FKV, as facial simi-
larity and kinship judgments are highly correlated according to
recent psychology research [8]. However, there have been stud-
ies demonstrating that voice similarity is also related to kinship
judgments [9], [10], [11], [12], [13]. For instance, accord-
ing to [9], the vocal tract shape that affects voice properties
are genetically determined, consequently subjects with kinship
have a similar voice. In addition, the study on human percep-
tion of kin voice indicates that humans have the ability to judge
kinship by listening to the speaking voice [14], [15]. Despite
these evidences, voice modality has not yet been explored
for FKV.

In recent years, audio-visual fusion has been shown to be an
effective way of improving performance in various problems,
including emotion recognition [16], speech recognition [17],
event detection [18], and biometrics [19], such as speaker
identification and speaker authentication. Based on the afore-
mentioned discussion, it is natural to ask: in addition to the
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visual modality, is it beneficial to explore other modalities (the
voice channel in specific) for the problem of FKV? Therefore,
in order to answer this question, in this article, we carry out
the first study, and aim to build an audio-visual kinship veri-
fication framework in an attempt to further improve the FKV
performance. To this end, we need to address two main chal-
lenges: 1) collection and publication of a new audio-visual
dataset as there is no such datasets available and 2) devel-
opment of novel approaches specifically for improving the
verification performance.

High-quality datasets enable rapid progress in the FKV
task. In our previous preliminary attempt [20], we have
collected the TALKIN dataset. However, the TALKIN has
some obvious limitations, that is, limited number of training
samples, limited diversity in terms of environmental condi-
tions, kinship categories, and mono-annotation with binary
kinship labels only. To address some of these identified limita-
tions, we aim to establish a new audio-visual kinship dataset,
called TALKIN-Family, that consists of facial videos and syn-
chronous speaking audio with properties that differ from the
existing one. In TALKIN-Family, there are 246 unique fam-
ily trees and 1012 individuals with rich annotations of family
relationships, age, gender, and scene conditions. The size of
family tree ranges from 2 to 14 subjects whose age is between
5 and 81 years old. Each subject has multiple talking facial
videos of about 10-s length under different conditions. Overall,
there are 9.2 h of videos in TALKIN-Family.

In response to the second challenge, we consider the design
of a novel framework for the task of audio-visual FKV. It
encompasses two main steps, that is: 1) extracting appropriate
features and 2) integrating modality information. Representing
modalities, that is, audio and video, in an appropriate way
is crucial before fusion. Visual features have been widely
studied for FKV [21]. Comparatively, very few acoustic fea-
tures are designed specially for kinship verification, because
the study has been largely under explored. However, well-
known acoustic representations such as Mel-frequency cepstral
coefficients (MFCCs [22]) and data-driven features [23], [24]
have been commonly applied in speech community. Similar
to the correlation between facial similarity and FKV, we pro-
pose to compute the voice similarity and set new benchmark
methods for FKV by using acoustic features.

When fusing audio-visual features for the problem of FKV,
based on our benchmarks and investigation, we find the
inter modal discrepancy and modal weighting are essential to
exploit informative knowledge. Motivated by the adversarial
learning [25] strategy and the self-attention mechanism [26],
we propose the fusion method, called unified adaptive adver-
sarial multimodal learning (UAAML) based on deep neural
networks (DNNs), which addresses the aforementioned chal-
lenges. The UAAML jointly considers multimodal feature
learning and kinship attention weights with similarity learning.
Particularly, we introduce the L2 norm layer [27] to gener-
ate the unified features before fusion and make the network
training stable and efficient.

We highlight the contributions of this article as follows.
1) We address a new task of audio-visual kinship verifica-

tion and investigate to exploit the human voice as the
complimentary feature to solve the FKV problem. The

largest and most comprehensive audio-visual kinship
dataset, namely, TALKIN-Family is proposed.

2) We propose a multimodal fusion network, that is,
UAAML, which can jointly learn modal invariant and
the attentive features with the unified multimodal fea-
tures for kinship verification.

3) The extensive benchmark evaluations are conducted on
the TALKIN-Family dataset. The experimental results
set the benchmark for the voice-based FKV problem and
demonstrate that the vocal features provide complemen-
tary information over facial features.

4) The proposed method UAAML achieves the overall
competitive performance compared with the baseline
methods. A set of ablation studies and evaluation on
different conditions also indicate our technical contribu-
tions with improvements in kinship verification.1

This is an extended version of our conference paper [20]. We
improve our previous work from aspects of the proposed dataset
and evaluated methods, including benchmarks and the proposed
fusion method. The human performance on kinship verification
from faces and voices is also studied. The structure of this
article is organized as follows. Section II briefly reviews related
work. Section III introduces the details of the TALKIN-Family
dataset. Section IV presents our proposed UAAML approach.
Section V shows extensive experiments and results. Section VI
concludes this article with possible future directions.

II. RELATED WORK

A. Kinship Verification

1) Kinship Datasets: Table I compares the main character-
istics of existing kinship datasets. We categorize those datasets
with data modality. At the early years, kinship datasets are
mainly based on images. Among those, the FIW dataset is the
largest and most comprehensive image kinship dataset. The
facial video kinship datasets are the ones that only the facial
information is available, including UvA-NEMO Smile [32],
KFVW [33], and KIVI [34]. The video and audio kinship
datasets include the TALKIN dataset [20] and FIW MM
dataset [35]. The TALKIN dataset is the first audio-visual
kinship dataset. It was organized with a pairwise structure,
while lacking the family structure. Each subject has only one
video sample under the unconstrained condition. FIW MM is
the recent one and has a larger data volume with 200 fam-
ilies, and multiple samples were collected for some subjects
under wild conditions. Compared with TALKIN and FIW MM
datasets, the dataset proposed in this article, that is, TALKIN-
Family, is superior on the dataset volume and environment
scenarios. More families are included in the dataset. Moreover,
the TALKIN-Family dataset also contains people speaking the
fixed content and different contents.

2) Kinship Verification Methods: The kinship verification
has been studied for more than ten years [1]. The research
is mainly carried out from still facial images. Early image-
based works focused on extracting the facial features with
handcrafted descriptors [30], [36] and measuring the similar-
ity by computing common distance metrics such as cosine

1The dataset and benchmark codes will be made available for download
along with this article publication.
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TABLE I
MAIN CHARACTERISTICS OF EXISTING KINSHIP DATASETS. WE SORT THOSE DATASETS BY THE DATA MODALITY. IN THE EARLY YEARS,

MANY IMAGE KINSHIP DATASETS WERE PROPOSED. THEN, SOME VIDEO DATASETS WITH ALIGNED FACIAL INFORMATION WERE

PROPOSED. THE DATASET PROPOSED IN THIS ARTICLE, TALKIN-FAMILY, CONSISTS OF BOTH VISUAL

AND VOCAL INFORMATION AND IS THE MOST COMPREHENSIVE ONE BY FAR

similarity [36]. Then, the metric-learning-based methods [3],
[37] were proposed to separate the kin and nonkin pairs. With
the development of deep learning, many methods with dif-
ferent motivations were raised [1]. The first End-to-End deep
learning architecture for kinship verification is proposed by
Zhang et al. [38] in 2015. The network takes two stacked
facial images as the input and then predicts the kinship at the
top layer. Later, Li et al. [39] proposed a Siamese network
with the similarity metric to learn the discriminative features
for kinship verification. Based on the Siamese CNN architec-
ture, different strategies were explored on how to reason the
relations between two facial features. Dahan and Keller [40]
computed the kinship verification scores by fusing the face
embeddings collected from the last FC layer. Li et al. [41],
[42] introduced the star-shaped graph to model the facial fea-
ture. Then, the relational reasoning is performed on the graph
by the recursive message passing scheme. The kinship dataset
has the intrinsic issue of limited positive samples and far more
negative samples. To exploit all the possible training samples,
Li et al. [43] proposed the meta-mining approach to sample the
unbalanced training batch. Alternatively, Song and Yan [44]
proposed the KinMix method to augment the kinship posi-
tive samples with the linear sampling method from the feature
level. Extensive experiments showed that the refined training
batch could effectively boost the model learning capability.

On the basis of image-based studies, to capture multisource
information, researchers proposed to study the kinship verifi-
cation from facial videos. Compared with image-based stud-
ies [21], the works on facial videos [32], [33], [34] can only
be found with a limited scale [1]. At the beginning, the con-
strained facial video dataset was used. Dibeklioglu et al. [32]
proposed to fuse the facial appearance and dynamic facial fea-
tures that are extracted from a smiling video clip. However,
collecting standard smiling faces under unconstrained con-
ditions is relatively hard. Therefore, researchers raised the
study of kinship verification from unconstrained facial videos.
Kohli et al. [34] extracted the spatiotemporal kin information
in videos. Yan and Hu [33] studied the metric-learning meth-
ods on unconstrained videos for kinship verification. However,
the works above neglect the additional kinship clue that resides
in the human voice.

B. Acoustical Study for Kinship

In our daily lives, people with a kin relation can have simi-
lar voices. For instance, it is sometimes hard to distinguish
between father and son over the phone. This phenomenon
has attracted researchers from many domains into the fields.
Researchers explicitly studied the vocal similarity of kin peo-
ple. The earliest genetics of voice research was found in the
1990s. Sataloff [9] demonstrated that the voice function is
related to the phonatory organ structures. The physical features
are genetically determined, which intuitively indicates that the
human voice is also genetically determined. Later, psycho-
logical studies assessed human perception on recognizing the
kin voice. Studies by Van et al. [14] and Taylor [15] showed
that humans could verify kinship from voice by providing
listeners with the voice of specific sentences. Motivated by
the research above, acoustic studies quantitatively confirmed
voice similarity within kinship by measuring and comparing
various acoustic characteristics [10], [11], [13]. Though many
works have been carried out on studying the vocal similarity
of kinship, the voice has not been directly applied in automatic
kinship verification.

C. Multimodal Learning

Multimodal fusion methods can exploit complementary
sources of information. Different sources of information are
typically integrated through early fusion (feature level) or late
fusion (score or decision levels) [45]. Feature-level fusion
using concatenation or aggregation is often considered to
provide a high level of accuracy. However, feature patterns
may also be in compatible and increase system complexity.
Techniques for score-level fusion using deterministic (e.g.,
average fusion) or learned functions are commonly employed
but are sensitive to the impact of score normalization methods
on the overall decision boundaries.

When considering multimodal fusion, one main challenge
is eliminating the modal discrepancy and learning a joint
feature space that can better fuse the features. Recent gener-
ative adversarial networks (GANs) [25], [46] have achieved
the significant success that can map the data distribution
into the desired one by adversarial training. Inspired by this,
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Fig. 1. Overall collection pipeline for the TALKIN-Family dataset. The data in TALKIN-family is collected offline by recruiting a number of families.
Subjects participate the data collection with their family. Each subject has four facial talking videos under two background and two speech conditions.
The TALKIN-Family is organized with family structure, and in each family, people are labeled according to our kinship labeling rules. Then, we do data
preprocessing with audio and facial video separately. To study the audio-visual kinship verification, we define the problem with different kin relation types.

Mai et al. [47] built the encoder–decoder networks for dif-
ferent modal inputs to learn the latent feature embeddings.
The adversarial learning was introduced on the encoder to
learn the joint feature space for different modalities. Zhou and
Shen [48] studied the multimodal clustering problem. They
developed the end-to-end adversarial attention multimodal
clustering (EAMC) method that consisted of the adversarial
learning module and modal attention module to align the fea-
ture distribution and quantify the important modal weights. A
proposed clustering objective was added to guide the network
training on the top of the network.

III. TALKIN-FAMILY DATASET

A. Motivations

Benchmark datasets serve as the common ground for
performance measurement and comparison of various algo-
rithms, and help the field progress toward challenging prob-
lems. On the other hand, dataset biases could bring unwanted
information, which the system takes as class clues and show
high confidence in prediction [49], [50]. To ensure our kin-
ship dataset applicable, the possible familial biases, such as
recording devices, recording conditions, and speech contents
are considered during the data collection procedure. We found
that video-sharing websites such as YouTube2 usually con-
tain free-style speaking videos while lacking fixed-text speech.

2YouTube is a popular U.S.-based video-sharing website.

To fill the blank, we choose to collect the TALKIN-Family
offline. The video recording task is distributed to the participat-
ing families, and family members record the qualified videos
by following the provided instructions. We will introduce the
collection steps in details in the following section.

B. Collection Pipeline

The overall collection pipeline is shown in Fig. 1. The
participants were asked to record the frontal talking facial
videos of themselves and biologically related family mem-
bers. Considering eliminating the family-related biases (e.g.,
recording conditions, recording devices, and speech contents),
we set up several recording protocols.

Participants: The subjects involved in the recording mission
within one family should be biologically related. The number
of subjects within one family should be at least two, including
collateral relatives and direct relatives across the generations.
This means that collateral relatives cannot be considered an
isolated family. Subjects across different families should have
no biological connection.

Environment Conditions: The background is quiet without
noise or voices from other people. There is only one sub-
ject that appears in the video. To further ensure that videos
within one family do not only have one background, we ask
the subject to record videos against both the white background
and the nonwhite one. We refer to the white background as
“white” and the nonwhite background as “wild,” as shown in
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Fig. 1. This could eliminate the familial background bias [50]
by generating kin pairs across different backgrounds.

Speech Content: In the speaker verification study, it is
distinguished as text-dependent speaker verification and text-
independent speaker verification. When the speaking content
is fixed, it refers to text-dependent speaker verification [51]. In
text-independent speaker verification, subjects talk freely with-
out the explicit cooperation [52]. In our dataset, we consider
both scenarios for the sake of extensive usage of TALKIN-
Family and meanwhile avoiding familywise spoken utterances.
The participants were provided with the specific content (that
is the Mandarin new year greeting). Other than that, they
could speak freely while differently from the provided content.
The abbreviations for text-dependent and text-independent
are TD and TI. Therefore, for each subject, there are four
talking videos, referred as BACKGROUND_CONTENT (i.e.,
White_TD, White_TI, Wild_TD and Wild_TI), as shown in
Fig. 1.

Shooting Device: The videos were recorded by the camera
of the smartphone. The phone should be held still during the
recording, and the retouching function was turned off. Within
one family, multiple (more than one) phones were asked to
be used for recording the videos (to avoid device bias). Each
video lasts for about 10 s.

Data Packing: We set the principle subject as ROOT (“me”),
who is one of the young generations. Family members are
backtracked based on the root, and the family tree is gener-
ated and labeled as in Fig. 1. Every involved single-family has
a family folder as FXXX (i.e., F001-F246). In addition, the
gender and age labels were also collected. Under the family
folder, each subject has a subfolder called ID_GENDER_AGE
(e.g., P1_female_6), where ID refers to the subject’s fam-
ily role defined by the family tree. GENDER is male or
female, and AGE is an integer referring to the subject’s
age. Then, under the subject’s folder, four facial videos are
stored.

C. Data Preparation

In the TALKIN-Family dataset, each video clip was
recorded with the cooperation of the participants, and only
one subject appears in each video. Therefore, Speaker
Diarization [53] is not required to determine “who spoke
when” before data preprocessing. We do the preprocessing
from visual data and audio data separately, as described below.

Visual Data: We first extract facial frames from each video,
and faces are automatically detected, cropped, and aligned as
done in [54]. Note that some recorded videos are shot in land-
scape mode or upside down. Therefore, in such cases, face
orientation and image rotation are needed during face detec-
tion. Then, facial frames are resized to 224×224 and encoded
by face-image descriptors. Section V details the face descrip-
tors we employed in the experiments, including traditional
descriptors and deep encoders.

Audio Data: Since the subject starts to talk and ends right
after the subject stops, we extract the audio directly from
videos and save them as WAV files. The signal is converted
and normalized to the single channel at a 44.1-kHz sample

Fig. 2. Proposed UAAML method.

rate. Standard methods in the speech field, MFCCs [22] and
DNNs, are used to embed the audio features.

D. Dataset Statistics

1) Familial Information: TALKIN-Family is organized
with family structure, and it contains 246 families. Each fam-
ily has 2–14 family members. There are total of 1012 subjects
and 4048 clips of videos in the dataset. The age of the subjects
varies between 5 years and 81 years old.

2) Data Details: The length of each video clip is about
10 s. In total, TALKIN-Family has 9.2 h of videos. There are
about 1 million facial frames in TALKIN-Family. All the sub-
jects are from China and speak Mandarin Chinese (some of
those have accents).

E. Problem Establishment

We address the audio-visual kinship verification as a binary
classification problem: given a pair of signals [a pair of video
sequences with speech utterances, for example, (X, Y)], the
objective is to automatically determine whether they have a kin
relation. In practice, we represent X and Y using recording-
level representations. The kinship score, a numerical indicator
associated with higher values for kin relation pairs, is obtained
by computing similarity score between the feature representa-
tions. Three levels of generation (Siblings, Parent–Child, and
Grandparent–Grandchild) are considered in our experiments.

IV. PROPOSED METHOD

The overall framework of the proposed method is shown
in Fig. 2. It consists of modality-specific feature generators,
modal fusion, and kinship assignment. The modality-specific
networks are encouraged to exploit the distinct modal property.
Then, the modal fusion is trained to eliminate the cross-modal
discrepancy to parse the better fusion of multiple feature
vectors from different modalities. When obtaining the fused
features, the contrastive loss is added to enforce the network to
learn the compactness within kinship and separation between
nonkinship.

A. Preliminaries

Let D = {(Xi, Yi, li)|i = 1, 2, . . . , N} be the training set
of N sample pairs, where Xi = {Xa

i , Xv
i }, Yi = {Ya

i , Yv
i }. Xi

and Yi represent the ith sample pair that comes with both
audio and visual modalities denoted by Xa

i , Xv
i and Ya

i , Yv
i ,
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respectively. The pairwise label li denotes whether the ith the
sample pair has a kin relation, that is, li = 1 represents that
Xi and Yi have a kin relation, and li = 0 denotes that Xi and
Yi have the nonkin relation.

Our method has two feature encoders: 1) the audio encoder
Ea(·; θa) and 2) visual encoder Ev(·; θv) that are parameterized
by θa and θv. The audio and visual data are fed into the modal-
specific encoder, and the feature representation is expected to
be modal invariant. This is achieved by the adversarial learn-
ing associated with the discriminator D(·; θd), where θd is
the network parameter. Besides, to let the feature pay more
attention to effective kinship traits and emphasize them, the
attention mechanism is proposed to learn the weights for the
feature-level fusion. The weight vector w is computed by
the multiple layer perceptron (MLP). The entire network is
designed with Siamese fashion that shares weights for two
different inputs Xi and Yi. To preserve the kin discrimina-
tion of the network, we employ the contrastive loss Lkin to
let the modal learn the closeness of kinship and separation of
nonkinship.

B. Modality-Specific Networks

Different sources of data are difficult to be combined at the
raw data level. Therefore, we first adopt the modality-specific
networks to transform the face and voice data into the latent
feature space. Following the work in [20], the network inputs
are the facial image and spectrogram computed from a particu-
lar speech. The residual network (ResNet) architecture [55] is
adopted for both face and voice backbone network described
as follows. We take sample Xi for an example, which goes the
same to the input Yi.

1) Visual Subnet: The visual backbone directly adopts the
InsightFace with ResNet-34 architecture [56], [57]. Given an
input facial image Xv

i ∈ R
D×H×W , we extract the correspond-

ing feature embedding as xv
i = Ev(Xv

i ). The W and H indicate
the spatial size, and D is the number of channels. As the facial
image is cropped and resized into 112 × 112, the generated
facial features fall into 512-D.

2) Audio Subnet: The audio backbone employs the ResNet-
50 pretrained on Voxceleb2 [23], [58] to extract the vocal
features from the spectrogram inputs. We extract a 3-s utter-
ance clip and convert it into the single channel with a 16-kHz
sampling rate. The spectrogram is generated by a sliding ham-
ming window of width 25 ms and step 10 ms. Therefore,
the audio network input Xa

i has the size of 512 × 300, and
the corresponding output xa

i = Ea(Xa
i ) is a 2048-D feature

embedding.
Similarly, we can have the audio and visual embedding for

Yi as ya
i = Ea(Ya

i ), yv
i = Ev(Yv

i ).

C. Model Fusion

The modal fusion module fuses audio and visual features
for comprehensive estimation. It consists of the unified fea-
ture operation, modal alignment, and feature fusion attention
learning.

1) Multimodal Adversarial Learning: When merging fea-
tures generated from different modalities, they generally have

different scales and norms. Directly combining these features
leads to poor fusion performance since the larger features can
overwhelm the smaller ones. Rather than carefully tuning the
network parameters with efforts, Liu [27] found that normal-
izing the features before fusion improves the model stability.
Therefore, before learning the modal-invariant features, we
add a L2 normalization layer to transform the feature as a uni-
fied one. Formally, for the audio feature xa

i and visual feature
xv

i , we normalize them differently as x̂a
i , x̂v

i using L2-norm

F(x) = x̂ = x
‖x‖2

s.t. x = {x1, x2, . . . , xd}, ‖x‖2 =
(

d∑
i=1

|xi|2
) 1

2

. (1)

The audio and visual encoders learn multimodal representa-
tions that may have a large gap between different modalities.
Inspired by the recent GANs [25], we introduce the discrim-
inator D(·; θd) to distinguish the audio and visual features.
Since the audio and visual features have different dimen-
sions, we first feed them into one fully connected layer that is
FCa(·) and FCv(·) to map them into a common length. Then,
the two-class classification is performed. The discriminator is
optimized by the following objective function:

min
θd

Ld = −EX,Y∈D
N∑

i=1

log
(
D

(
x̂a

i

))+ log
(
1− D

(
x̂v

i

))
+ log

(
D

(
ŷa

i

))+ log
(
1− D

(
ŷv

i

))
. (2)

One the other side, the modality-specific networks are
trained to confuse the discriminator with the opposite modal
label by minimizing the adversarial loss

min
θa,θv

Ladv = −λadvEX,Y∈D
N∑

i=1

log
(
D

(
x̂v

i

))+ log
(
1− D

(
x̂a

i

))
+ log

(
D

(
ŷv

i

))+ log
(
1− D

(
ŷa

i

))
(3)

where λadv is the weight coefficient. The discriminator guides
the modal encoders to learn the same distribution representa-
tions through min–max adversarial learning.

2) Feature Fusion Attention: After we obtain the modality-
invariant representations, we concatenate the audio and visual
features for two inputs as xf = [x̂a

i , x̂v
i ] and yf = [ŷa

i , ŷv
i ], [ · ]

denotes the concatenation operator. In particular, we design
a fusion attention module to emphasize the efficient vector
values. It consists of an MLP with the Sigmoid function and
the output is the weight vector w with the same dimension of
xf and yf , which can be calculated by

wx = σ
(
FCs

(
xf

))
, wy = σ

(
FCs

(
yf

))
(4)

x = xf wx, y = yf wy (5)

where σ(·) is the Sigmoid function and FCs(·) is the stacked
two fully connected layers. The original concatenated feature
xf and yf has the dimension of 2560. The first FC layer reduces
the feature dimension to 1024, and then the last FC layer
increases the dimension to the original 2560-D. After passing
the Sigmoid activation, the weight vector could be obtained
and we can obtain the adaptive feature fusion by using (5).
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TABLE II
DATA STATISTICS FOR STUDYING THE AUDIO-VISUAL KINSHIP VERIFICATION IN THE WILD ON THE TALKIN-FAMILY DATASET. THE # folds MEANS

THE NUMBER OF FOLD VALIDATIONS FOR EACH KIN RELATION. THE # families and # subjects REPRESENT HOW MANY FAMILIES AND INDIVIDUALS

ARE INVOLVED WHEN STUDYING THE SPECIFIC KIN RELATION. THE # kin pairs MEANS THE NUMBER OF KIN PAIRS AT THE SUBJECT LEVEL. THE

# videos IS THE TOTAL NUMBER OF VIDEOS USED, WHICH IS USUALLY FOUR TIMES THE NUMBER OF SUBJECTS, SINCE EACH SUBJECT HAS FOUR

FACIAL VIDEOS. THE # sample pairs IS THE NUMBER OF FRAME-LEVEL SAMPLE PAIRS IN EACH KIN RELATION. APPLICABLE ALSO TO TABLE VIII

x and y are the fused representations to obtain the kinship
analysis. We denote attention parameters as θatt.

D. Learning Kinship Awareness Embedding

To perceive the kinship traits, that is, similarity between
kinship and difference between nonkinship, we adopt the con-
trastive learning to train the network in a supervised way. By
integrating the kinship label li, the network objective can be
expressed as

min
θa,θv,θatt

Lkin = 1

2N

N∑
i=1

(
lid

2 + (1− li) max(M − d, 0)2
)

(6)

where threshold M is the margin, d = ‖x− y‖2.
The training procedure is summarized in Algorithm 1.

During each training step, two multimodal encoders are first
trained alternatively in an adversarial way together with dis-
criminator without kin label evolved. Then, the entire network
is jointly trained using the kin labels.

During the testing process, we collect the fused fea-
ture from the network. The cosine similarity sim(x, y) =
((x · y)/(‖x‖ · ‖y‖)) is calculated to represent the distance
between two subjects. A threshold applied to sim determines
whether two inputs have a kin relation as has been done
in [21].

V. EXPERIMENTS

A. Implementation Detail

1) Data Preparation: We first generate kin pairs with 11
relationship types described in Section III, where the sample
pairs have different backgrounds and speak content. After we
obtain the kinship pairs (positive pairs), we split them into
maximum of five folds to conduct the K-fold validation [21].
Within each fold, we randomly generate the nonkinship pairs
as negative samples, where nonkinship subjects are from
different families and biologically unrelated. The negative
samples have the same size as positive samples. Note that
there is no family overlap between folds. The experimental
data statistics distribution of audio-visual kinship verification
in the wild is shown in Table II. The reason why it cannot
be divided into five folds for relations, such as SS and BS,
is that the negative samples suffer from insufficient families.
We perform data preprocessing on all videos for visual and
audio data as introduced in Section III. Since the video length

Algorithm 1: Training Procedure of Our UAAML
Input: Training set D, initialize modality-specific encodes Ea, Ev,

hyper-parameter λadv
Output: The parameters θa, θv, θatt

1: while not converged do
2: for t-steps do
3: update parameters θd of the discriminator by ascending

their stochastic gradients:
4: θd ← θd − η · �θdLd
5: θa ← θa − η · �θaLadv
6: θv ← θv − η · �θvLadv
7: end for
8: for d-steps do
9: update parameters θa, θv, θatt of the discriminator by

ascending their stochastic gradients:
10: θa ← θa − η · �θaLkin
11: θv ← θv − η · �θvLkin
12: θatt ← θatt − η · �θattLkin
13: end for
14: end while
15: return θa, θv, θatt

varies from video to video and the neighbor video frames have
a slight difference, we extract and align 60 facial frames and
audio frames for each video. Due to the head variations and
orientations, some frames are lost for a few subjects.

B. Compared Methods

To verify the effectiveness of our proposed method on
the TALKIN-Family dataset and compare the performance
between the unimodality and multimodalities, we perform
baseline methods on vocal and FKV and four fusion methods.

1) Voice Features: We employ two methods: 1) GMM-
UBM [59] and 2) I-vector [60], for audio analysis. We extract
MFCCs with 12 cepstral coefficients from the audio samples.
The UBM with 128 mixture components of GMM is trained
with the training set. For the GMM-UBM [59] method, the
kin pair model is created from UBM using the maximum
a posteriori (MAP) estimation. The verification likelihood is
the log-likelihood ratio between speaker models and regis-
tered speakers’ GMM. In the I-vector [60] method, UBM is
trained using expectation–maximization (EM) with MFCCs.
The I-vector is obtained by MAP point estimation. Then, the
dimension of the I-vector is reduced by linear discriminant
analysis (LDA). We compute similarity between two speakers
with the cosine similarity of I-vectors.
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Besides, we also evaluate the pretrained deep models as
feature encoders.

pyannote-S: The pyannote.audio [61], [62] is an End-
to-End generic PyanNet that is trained on Voxceleb [24]
and Voxceleb2 [23] datasets. The trained model takes the
utterance and samples it with a sliding window to gener-
ate overlapping 512-D features. The pyannote-S means that
we evaluate the performance using only the single vocal
feature.

pyannote-A: For the utterance clip, we average all audio
features for the sequence as its final feature representation.

VGG_M: The model architecture is based on VGG_M [24],
and takes the audio spectrogram as input. The spectrogram
is computed with the same method described in Section IV.
VGG_M is trained on the Voxceleb dataset [24] with the task
of speaker verification. The final audio feature has a length of
1024 dimensions.

ResNet-50: The model is trained on the Voxceleb2
dataset [23] and the audio embedding is collected from the
FC layer with the length of 2048.

2) Facial Features: We consider four traditional facial
descriptors: 1) BSIF [65]; 2) LPQ [64]; 3) LBP [63]; and
4) LBP-TOP [66], as has been done in [20]. We also imple-
ment the MNRML [3] metric-learning method that combines
multiple feature descriptors, LBP, LPQ, and BSIF features, to
learn the multiview data metric.

Furthermore, the deep CNN models pretrained on large-
scale face datasets are also widely used in kinship verification
to encode the facial image with output embedding.

SphereFace [67], [70] is a CNN model trained with the
angular softmax (A-Softmax) to learn more discriminative
features. The SphereFace is trained on the face dataset CASIA-
WebFace [71]. Then, the deep features can be collected from
the FC1 layer with 512 dimensions.

VGG-Face network [68] is trained on a large face dataset
with 2.6 million images of over 2662 people. We feed
the facial image into the network and collect features from
layer fc7.

FaceNet-C [69], [72]: FaceNet is a deep CNN model
trained with the Triple-let loss. FaceNet-C means the model
trained on CASIA-WebFace [71]. The output feature is a
512-D embedding.

FaceNet-V [69], [72] means the FaceNet trained on the
VGGFace2 [73] dataset.

InsightFace [56], [57]: Compared to SphereFace,
InsightFace utilizes the AcFace loss that has fewer parameters
yet with a better classification margin. The model is trained
on the MS1MV2 dataset. The facial frames are fed into the
pretrained model, and we can obtain the final 512-D feature
embedding.

3) Fusion Methods: We perform both early fusion and two
late fusion methods on audio-visual kinship verification.

Early Fusion: The multiview features are concatenated
together as the fused feature for later similarity comparison.

Late Fusion (Mean): For the late fusion, the similarity
scores are computed separately for each modality. Then, the
mean fusion average scores were obtained from multimodali-
ties as the final decision score.

Late Fusion (Max): Rather than calculating the averaged
score, max fusion takes the maximum score as the final
decision score.

Siamese fusion [20] introduced one FC layer to learn the
fusion scheme. By adding the contrastive loss on the top of the
network, the FC layer automatically learns the fusion weights
for each element.

C. Experimental Settings

1) Implementation Details: We implement our network on
the PyTorch library. Since the released pretrained InsightFace
net and ResNet-50 (audio) are implemented based on MXNet
and Matconvnet libraries, respectively. We first convert those
models into PyTorch using opensource code from Github [74]
and [75]. To initialize our network parameters, we use the
ResNet-34 weights trained on MS1MV2 [56] for the visual
network and the ResNet-50 weights trained on VoxCeleb2 [23]
for the audio network. Parameters in other layers are initial-
ized using random weights. For training the proposed method,
the parameters of networks are optimized by the Adam opti-
mizer with the learning rate of 1e-6, weight decay of 1e-4,
and mini-batch size of 50. We train the entire network for 250
iterations. The program runs on two NVIDIA V100 GPUs
(32 GB). The hyperparameter λadv determines the degree of
multimodal discriminative information used during the model
training process. In the case of using small λadv, no sufficient
modality discrimination could be applied. We set λadv with
1 [76].

2) Evaluation Protocol: In our experiments, we compute
the cosine similarity between two features. The threshold is
used to classify whether two subjects have a kin relation-
ship [21]. The verification accuracy and receiver operating
characteristic (ROC) curves are used to evaluate the method’s
performance.

D. Experimental Results and Comparison

This section presents experimental results of kinship ver-
ification on the TALKIN-Family dataset from both single
modality and multiple modalities.

1) Single-Modal Kinship Verification: Table III shows the
kinship verification accuracy from single modality (based
on one modality). For the voice-based kinship verification,
the ResNet-50 has the best performance. The traditional
methods I-vector and GMM-UBM have comparatively low
performance. Notice that Grandparent–Grandchild results are
not provided because the UBM is hard to converge due to
limited data. The possible solution is to employ external
data to train the UBM. Regarding the pyannote model, the
performance can be slightly improved by averaging all vocal
features within one utterance.

For kinship verification from faces, deep models outperform
traditional descriptors by a large margin. Compared to tradi-
tional descriptors, the MRNML metric-learning method [3] has
a better average accuracy, and the spatial–temporal descriptor
LBP-TOP also outperforms the averaged frame-level features.
Among deep learning models, InsightFace surpasses others
with a large margin except for GFGS, that VGG-Face achieves
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TABLE III
AVERAGE ACCURACIES (%) FOR K-FOLD KINSHIP VERIFICATION WITH VOICES, FACES, AND FUSION

OF VOICES AND FACES UNDER THE WILD CONDITIONS IN THE TALKIN-FAMILY DATASET

TABLE IV
COMPARISON OF DIFFERENT FUSION METHODS ON THE TALKIN-FAMILY DATASET FOR AUDIO-VISUAL KINSHIP VERIFICATION IN THE

WILD WITH AVERAGE ACCURACIES (%) FOR K-FOLD VALIDATION. THE FIRST TWO ROWS ARE SINGLE-MODAL VERIFICATION

PERFORMANCE WITH “A” SHORT FOR AUDIO AND “V” FOR VIDEO. APPLICABLE ALSO TO TABLE VII

Fig. 3. ROC curves of different methods on TALKIN-Family with the wild condition obtained on (a) siblings, (b) parent–child, and (c) grandparent–grandchild
kin relations.

the best performance. The better models boost the kinship
verification performance due to the accurate feature representa-
tions. Therefore, we apply ResNet-50 (voice) and InsightFace
(face) as the backbone networks for the fusion.

2) Multimodalities: As presented at the end of Table III,
the proposed UAAML method shows an improvement over the
single modalities for all 11 kin relations and the average level.
Table IV also compares the results of several baseline fusion
methods. Fig. 3 visualizes different methods’ corresponding
ROC curves. It can be seen that by fusing the audio and
visual features, the performance could be improved, demon-
strating that the vocal and facial features complement each
other. In addition, the proposed fusion method improves the
single-modality verification accuracies and the baseline fusion
methods to a certain extent. Average accuracy improves by

about 3.5% and 2.0% from the single modality and baseline
fusion methods. Although baseline fusion methods cannot beat
the UAAML method at the average level, score fusion meth-
ods show slightly higher accuracy in relations such as BS,
NS, and GMGS. This is a motivation for future work that fur-
ther explores multifusion strategies for audio-visual kinship
verification.

3) Ablation Study: To analyze the effect of different com-
ponents of UAAML, we ablate the proposed method and
evaluate the effectiveness of each.

a) Fusing different features: To study fusing various
single-modality features, we include the two single-modal
features for both face and voice modality into evaluation.
The VGG-M and ResNet-50 models are used for vocal fea-
tures, and the FaceNet-V and InsightFace models are applied
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TABLE V
COMPARISON BY FUSING DIFFERENT SINGLE-MODAL FEATURES. (A1 IS

THE VOCAL FEATURE COLLECTED FROM RESNET-50 TRAINED ON

VOXCELEB2, A2 IS THE VOCAL FEATURE OBTAINED FROM VGG_M
TRAINED ON VOXCELEB; V1 IS THE FACIAL FEATURE EXTRACTED

FROM INSIGHTFACE, AND V2 IS THE FACIAL FEATURE

COLLECTED FROM FACENET-V)

for facial features. To simplify the process, we implement
feature fusion to evaluate the effectiveness of the fusion.
The L2 normalization is computed before fusion to reduce
the discrepancy within different features. Table V shows
the averaged verification accuracy when combining vari-
ous multiple features. The experimental results show that
the InsightFace (Face) and ResNet-50 (Voice) feature fusion
achieves the best performance. However, when combining
VGG-M (voice) features or FaceNet-V features with compar-
atively low performance, the system can be easily affected
by poor features. Therefore, the InsightFace and ResNet-50
encoders are used as our backbone networks.

b) Roles of different losses and components: We further
evaluate the effectiveness of adversarial learning, contrastive
learning loss, and attention layer: 1) w/o. att + Lkin denotes
the network discards the adversarial learning and the atten-
tion layer, and it is trained with the contrastive learning
loss; 2) w/o. att + Ladv denotes the adversarial network
without the attention layer, which is trained with the self-
supervised learning strategy [77] without kin labels. It learns
the consistency between modalities to embed the semantic
multimodal features; and 3) w/ att + Lkin denotes the network
discards the adversarial learning module but keeps the atten-
tion layer, which is trained with the kinship loss. Table VI
reports the verification accuracy. Experimental results demon-
strate the necessity of the adversarial module, attention layer,
and kinship loss. The proposed UAAML further improves the
performance compared with the three variants. Those results
also convey that adversarial and attention modules are the key
components for audio-visual kinship verification.

c) Normalization layer: We perform the model training
with the same efforts without the normalization layer. As
shown in Fig. 4, the performance drops significantly, show-
ing that the normalization layer is crucial to make the training
process stable and improve the performance.

E. Evaluation on the TALKIN Dataset

In this section, we further evaluate the effectiveness of
the proposed UAAML method on the TALKIN dataset for

TABLE VI
LOSS AND MODULE ANALYSIS OF THE UAAML METHOD ON THE

TALKIN-FAMILY DATASET. THE ATT IS THE ABBREVIATION

OF FEATURE ATTENTION

Fig. 4. Comparison of the effect when we take the same efforts training the
network with normalization and without normalization.

TABLE VII
COMPARISON OF DIFFERENT FUSION METHODS ON THE TALKIN

DATASET WITH AVERAGE ACCURACIES (%) FOR FIVE-FOLD VALIDATION

audio-visual kinship verification. The TALKIN dataset has
four parent–child kin relations, that is, FS, FD, MS, and MD.
For each kin relation, there are 100 pairs of kin facial videos,
and 100 pairs of nonkin videos. The five-fold validation is
performed. Similarly to previous experimental settings, we
apply the InsightFace with ResNet-34 architecture [56], [57]
(face) and ResNet-50 [23], [58] (voice) as the single-modality
backbone networks. Table VII presents the performance of
single-modality methods and different fusion methods, and
Fig. 5 shows the corresponding ROC curves. The experimental
results demonstrate that the proposed UAAML method obtains
the highest level of accuracy compared to both single-modality
and baseline fusion methods. The baseline score fusion method
(max) shows a 1.0% higher accuracy in the FS relation com-
pared with UAAML. Considering that the videos in TALKIN
contain additive background noise, the performance of the
audio modality is relatively worse and, thus, brings limited
fusion improvement. Therefore, for audio-visual kinship ver-
ification, especially when it comes to real-world problems,
more robust voice models are needed [78].

F. Influence Factors

The audio-visual kinship verification is affected by many
factors. From the perspective of biological attributes, this
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Fig. 5. ROC curves of different methods on the TALKIN dataset obtained
on parent–child kin relations.

Fig. 6. Line charts illustrate the verification accuracy on different modalities.
The bar chart shows the age gap between the kin subjects.

includes the depth of the genealogical tree, age, and gender.
From the data acquisition conditions, the factors include the
recording background and video speech content. We analyze
how those factors influence the performance by providing the
corresponding experimental results.

1) Genealogical Tree: Fig. 6 shows the averaged verifica-
tion accuracy for three generations of kinship with different
inputs. It can be seen that the deeper the genealogical tree,
the performance on faces drops significantly. One reason for
this is the age difference between kinship, as distributed in
Fig. 6. The siblings of the same generation have the small-
est age difference of about ten years on average, of which
parent–child has about a 26-year age difference. However,
second-generation subjects have an average age difference of
about 50 years. As people start aging, the appearance of their
faces varies in structure and texture. These differences affect
the inner similarity of the kin image pairs, consequently reduc-
ing the verification performance, whereas acoustic features
compensate for facial aging issues to some extent, especially
for the Grandparent–Grandchild relationship.

2) Gender Factor: The experimental setting of relation-
specific evaluation provides us with the possibility of ana-
lyzing the influence brought by gender. From Table IV, we
could observe that the influence of gender is significant for
siblings, where the opposite gender (BS) has a comparatively
lower accuracy than the cases with the same gender (BB, SS).
Regarding the parent–child and grandparent–grandchild rela-
tions, the influence of gender is more limited, and its impact
is lower than the influence caused by the texture difference
brought by the age gap. On the other hand, on the TALKIN
dataset, the influence of opposite genders can be found in the

(a) (b)

Fig. 7. Performance of kinship verification on TALKIN-Family under differ-
ent conditions. (a) Shows the performance comparison on the visual kinship
verification under white and nonwhite backgrounds. (b) Compares the single
modal and multimodal performance with different data recording settings.

parent–child relations (Table VII), as some kinship videos are
recorded at the similar age (e.g., FS pairs: [25, 26], [43, 44],
[45, 46], [71, 72], etc.), rather than at the same time (e.g.,
TALKIN-Family).

3) Recording Conditions: The data collection conditions
potentially influence the system performance, such as speech
text in speaker verification [51], and the same photo issue in
kinship verification [50] by providing latent clues. To con-
trol one variable factor for one time, we generate the kinship
pairs that: 1) speak the fixed text but with different back-
grounds (text-dependent) and 2) are recorded under the white
background but with different speaking content (white back-
ground). The data statistics on the two scenarios are listed
in Table VIII. Fig. 7 shows the experimental results on text-
dependent and white background conditions with different
inputs. The background influence could be clearly seen from
Fig. 7(a) that the white background performance has higher
accuracy. Two reasons explain the phenomenon: 1) the noise
effect is eased under the white background and 2) the white
background videos within one family are possibly recorded
at the same place, with similar illumination, which could
cause data bias [50]. This also explains why we asked the
participants to take videos under two backgrounds, one of
which is white, to easily distinguish the same or different
backgrounds. As illustrated in Fig. 7(b), the fixed text set-
ting achieves comparable performance to the free-speaking
setting due to the equal similarity within kin and nonkin pairs.
Overall, the audio-visual fusion improves performance under
all conditions, while under two semicontrolled environments,
the improvement of fusion is comparably limited.

G. Human Performance

We test the human performance on kinship verification by
using a subset of TALKIN-Family. Twelve volunteers from
China participated in the experiments. Before the test, they
had never seen or known any information about the dataset
subjects. They were asked to answer whether the given clips
have a kin relation. In general, we set up three types of tasks,
namely, kinship verification from: 1) facial videos without
voice; 2) voice; and 3) facial videos with voice. For each
task, we select two kin pairs and two nonkin pairs from
each of 11 kin relations, resulting in 22 positive pairs (kin-
ship) and 22 negative pairs (nonkinship) in total. To avoid
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TABLE VIII
DATA STATISTICS FOR THE AUDIO-VISUAL KINSHIP VERIFICATION UNDER CONDITIONS OF FIXED

SPEECH AND CLEAN BACKGROUND ON THE TALKIN-FAMILY DATASET

(a) (b)

Fig. 8. Human performance on a subset of TALKIN-Family from the face,
voice, and face&voice, respectively: (a) overall verification performance with
different modalities and (b) TP and TN distributions of human performance
under different settings.

the recall of previously seen information, we designed the set
such as there is no subject overlap between positive and neg-
ative pairs or among the three subtasks. Fig. 8 illustrates the
human performance results, in which Fig. 8(a) shows the over-
all accuracy and distribution of the subject performance. We
compare the true positive (TP) and true negative (TN) accuracy
in Fig. 8(b). Generally, an important finding is that humans
tend to have a better ability to verify kinship from voice than
from face, while when given synchronous facial videos and
voice, humans can make a better judgment. Fig. 8(a) indicates
that face and voice information enables human observers to
make a more stable assessment and higher accuracy. Fig. 8(b)
shows that the humans have higher accuracy in verifying the
negative samples, and multimodal information helps humans
to recognize nonkinship, thus improving the overall accuracy.
It is worth noting that it takes about an hour for one observer
to complete the entire test, while machine-learning methods
spend much less time in the inference process. We conclude
that machine-learning methods can outperform human ability
both efficiently and effectively.

VI. CONCLUSION AND FUTURE WORK

Audio-visual kinship verification is a new and potential
research topic. In this article, we systematically investigate
the problem of audio-visual kinship verification. We estab-
lish the most comprehensive audio-visual kinship dataset,
called TALKIN-Family. Moreover, the baseline experiments
of single-modal kinship verification are performed, of which
the vocal kinship verification is evaluated for the first time.
Based on the single-modal methods, we provide a deep
learning framework, called UAAML, to jointly learn the
modal-invariant and adaptive fused features for kinship verifi-
cation with contrastive loss. The extensive experimental results

demonstrate the effectiveness of audio-visual fusion compared
to unimodal methods. Our proposed fusion method could out-
perform to the baseline methods. The human performance
shows that by providing both the faces and voices, people
could have higher kinship verification accuracy than using
faces or voices only.

We expect this work sets a milestone for audio-visual
kinship verification. To stimulate future study, in this sec-
tion, we investigate the limitations of our datasets and the
proposed approach and discuss future directions. Finally, we
point out how TALKIN-Family can be applied in research
beyond kinship verification.

A. Limitations and Future Work

1) TALKIN-Family Dataset: The offline data collection has
drawbacks, such as the difficulty of increasing the data volumes,
the cost of human effort to collect the data, and homogeneous
ethnicity distributions. Given this, the future work is consid-
ered to speed up the data collection procedure by applying
crowdsourcing, at the same time, saving manual labor and
increasing the data diversity. Since the TALKIN-Family only
has people from China, when conducting the validation on
other ethnicities, the ethnicity adaptation and how to mitigate
the demographic bias [79] can be a future research direction.

2) UAAML: The main limitation of the proposed UAAML
is that the model training demands high computational
resources. However, during the inference time, the proposed
method is comparable to simpler methods such as the naive
fusion. In our experimental results, the late fusion shows bet-
ter performance in some kin relations. We argue that the
reason lies in the different scores that are better classified
by the late fusion. This inspires us to explore hybrid fusion
methods in the future to combine the advantages of both.
More effective and efficient fusion methods are demanded for
audio-visual kinship verification, such as multimodal regular-
ization [80], and multimodal joint representation [81] learning
the complementary semantics.

B. Research Opportunities With the TALKIN-Family Dataset

This work focuses on studying the audio-visual kinship ver-
ification based on the TALKIN-Family dataset. Beyond it, the
proposed dataset could also be used in studying kinship with
a wide range. The TALKIN-Family database contains family
information, subject labels, environment context, etc. Those
data attributes allow researchers to explore kinship verification
with intensive analysis for example, at the family level, on the
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effects of age and gender, and with background context and
speaking content. Based on audio-visual kinship verification,
the study could also be extended to other kinship recognition
problems, such as trisubject kinship verification [30], family
recognition, family retrieval [21], child face/voice generation.
Furthermore, the robustness of multimodal kinship recognition
is also an open issue, such as against adversarial attack [82],
spoof attack [83], [84], poor conditions (e.g., modality missing
and cross-modal feature learning). Data bias, fairness [79], and
privacy-aware studies [85] are also worthy of further attention
with the growing concern of data privacy protection. TALKIN-
Family can also be helpful in audio-visual studies, such as
talking face generation [86] and face-voice matching [87], and
human perception studies on kin faces and voices.

In conclusion, we expect that TALKIN-Family could moti-
vate researchers from different fields to advance the audio-
visual kinship studies, techniques, and applications and enable
further development.
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