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Abstract—Electroencephalogram (EEG)-based brain-machine
interface (BMI) has been utilized to help patients regain motor
function and has recently been validated for its use in healthy
people because of its ability to directly decipher human inten-
tions. In particular, neurolinguistic research using EEGs has been
investigated as an intuitive and naturalistic communication tool
between humans and machines. In this study, the human mind
directly decoded the neural languages based on speech imagery
using the proposed deep neurolinguistic learning. Through real-
time experiments, we evaluated whether BMI-based cooperative
tasks between multiple users could be accomplished using a vari-
ety of neural languages. We successfully demonstrated a BMI
system that allows a variety of scenarios, such as essential activ-
ity, collaborative play, and emotional interaction. This outcome
presents a novel BMI frontier that can interact at the level of
human-like intelligence in real time and extends the boundaries
of the communication paradigm.

Index Terms—Brain—-computer interface, deep neurolinguis-
tic learning, electroencephalogram (EEG), neural language
decoding.

I. INTRODUCTION

HE NATURAL interaction between humans and
machines enables us to convey human thoughts directly
in a real-world environment. In particular, brain—-machine
interfaces (BMIs) reach technological maturity and translate
neural activity into meaningful outputs that might drive
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communication between the human mind and external
devices [1], [2], [3]. BMI has been investigated not to
indirectly interact with the machine through other external
manipulation devices, such as a keyboard and joystick, but
rather as a direct interaction method that can decode human
intentions and inform machines [4], [S], [6], [7]. Significant
research in BMI systems has yielded marked improvements as
assisted-living devices for individuals with motor or sensory
impairments, such as stroke and amyotrophic lateral sclerosis
(ALS) [8]. In the past few years, the field has expanded
toward healthy people to support daily life with promising
results, as reported in [9] and [10].

A major challenge for this interaction is to naturally ensem-
ble the human mind and machines, decode intuitive human
intentions, achieve high accuracy, and communicate in real
time [11], [12], [13]. Recently, speech-imagery decoding from
brain signals has been investigated as a BMI paradigm. This is
because it captures and decodes neural signals corresponding
directly to speech production, thereby enabling a naturalis-
tic mode of communication [14], [15]. Recent studies have
shown that invasive microelectrode recordings [e.g., electro-
cardiography (ECoG)] can detect voice activity [16], classify
the neural correlates of speech perception [17], and mimic
natural dialog [11]. These findings are important steps toward
the development of language-based BMI communication that
directly decodes speech from recorded neural signals.

Furthermore, for noninvasive scalp electroencephalogram
(EEG) signals, a few studies have reported speech imagery
decoding. Despite lower-amplitude signals and relatively poor
spatial resolution, EEG can provide considerable information
by decoding speech imagery over the scalp [18]. It could pro-
vide a noninvasive and low-cost means of investigating cortical
activity with a high temporal resolution, allowing it to be used
for the naturalistic form of the BMI communication system.
Recent advances have led to notable success in improving lan-
guage content decoding directly from EEG. For example, the
neural correlates of vowels, consonants, phonemes, syllables,
and even words have been classified using advanced decoding
algorithms [19], [20]. Despite the promising results achieved
to date, EEG-based speech imagery decoding is still a potential
field because it has several limitations.

During speech imagery, the neurophysiological response is a
complex blend of interaction between the semantic and syntac-
tic factors of given words, thus, neural activities are changed
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Fig. 1. Overview of deep neurolinguistic learning-based noninvasive neural
language decoding for neural prosthetic arm control.

according to each class, participant, and single trial [21].
These phenomena lead to difficulties, such as constraints of
the number of classes, deteriorated decoding performance, and
nonguaranteed real-time performance. In attempting to decode
language content directly to overcome constraint classes, some
studies have focused on decoding vowels and consonants [22],
syllables [23], phonemes [24], and words [25], [26]. Some
studies have demonstrated the classification of auditory sen-
tences/perception from neural correlate activity [27]. Other
studies have attempted to use advanced machine learning
algorithms to improve the classification of speech imagery
units [20], [26], [28]. Compared to many previous incarna-
tions for brain—machine interaction skills [29], speech imagery
decoding still exhibits relatively poor performance and has
several limitations [21].

Here, we present the possibility of real-time neural lan-
guage decoding at the sentence level through speech-imagery
tasks based on noninvasive brain activity. In this study, neu-
ral language is defined as the decoding outcome of a user’s
speech imagination from brain signals. We provided the most
intuitive interaction between humans and neural prosthetic
arms through the proposed deep neurolinguistic learning in
real time (Fig. 1). To the best of our knowledge, this is the
first attempt to collect EEG signals according to the catego-
rization of sentence components into the subject, verb, and
object words. Accordingly, we present an intelligent BMI tech-
nology that can avoid constraints on the number of classes
using deep neurolinguistic learning. To this end, we hypoth-
esized that the neural correlates between the characteristics
of the audio and brain signals, and a model that obtained
high performance could be proposed by learning it through a
deep learning architecture. Hence, in this study, we evaluated
the neural language decoding in offline and real-time environ-
ments. Based on this, we demonstrated that brain-controlled
neural prosthetic arms enable high-performance collaborative
tasks with multiple users. This collaboration may function
alongside humans and neural prosthetic arms to complete
cooperative control using only BMI technology. In this study,
we introduced new BMI frontiers that allow users to communi-
cate using a combination of neural language and perform tasks
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at the level of human-like intelligence with a neural prosthetic
arm using only their minds.

II. MATERIALS AND METHODS
A. Participants

Eleven participants (six males and five females) ranging
in age from 20 to 34 years were recruited for the exper-
iment. All participants were healthy volunteers and were
naive regarding BMI technology. The volunteers received
the experimental protocols, paradigms, and purposes before
the experiment. Each participant provided written informed
consent in accordance with the Declaration of Helsinki. All
experimental protocols were approved by the ethics commit-
tee of the Institutional Review Board of Korea University
[KUIRB-2019-0143-01].

B. Experimental Setup and Protocol

Eight words, including subject, verb, and object words, were
selected as the most representative elements of a sentence.
We selected words that could provide the essential vocabu-
lary for intuitive human—machine interaction, particularly for
controlling the neural prosthetic arms. Initially, we collected
audio signals of the real words spoken by each participant. The
words included “I” and “partner” as subject words, “move,’
“have,” and “drink” as verb words, and “box,” “cup,” and
“phone” as object words. The participants were asked to speak
25 repetitions of each word, as in the speech-imagery sessions.

After recording the audio signals, the participants sat in a
comfortable chair and wore a 64-channel EEG actiCap with
active Ag/AgCl electrode placement, following the interna-
tional 10-20 system. The ground and reference electrodes
were set as FCz and FPz, respectively. EEG signals were
recorded using BrainVision Recorder (BrainProduct GmbH,
Germany) with MATLAB 2020a software. The calibration ses-
sion began after all impedances of the electrodes were less than
10 k2. During breaks, the conductive gel was injected into the
electrodes using a syringe with a blunt needle.

The EEG recording session was designed to comprise three
subsessions according to categorization (first session: subject
word; second session: verb word; and third session: object
word). The participants conducted speech imagery of the
words presented. When the experiment began, visual instruc-
tions were provided on a monitor depending on the procedure.
Initially, the participants rested comfortably for 3 s. After
relaxation, a visual instruction with one of the words was
displayed on the monitor as a text sign for 2 s. The partic-
ipants required a small amount of time (1 s) to prepare, after
which they conducted the speech imagery task in four subtri-
als continuously (Fig. 2). According to each subsession, the
participants performed 25 trials per class [30], resulting in
800 trials (25 trials x 4 times x 8 classes) in total. To main-
tain the physical and mental condition of the participants and,
thus, ensure high signal quality, the participants were provided
with sufficient breaks (approximately 10-15 min) between
each subsession. If they reported an inconvenient position or
unstable mental condition (e.g., fatigue), we either adjusted
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Fig. 2. Experimental setup and protocols in the calibration session. A trial
had a duration of 17 s in total. Instructions were provided through visual
cues before the participants performed speech imagery. The participants were
directed to imagine each of the designated words only once during an imagery
period; therefore, only one data point was included in a single subtrial. As
a result, four EEG data samples could be obtained via a single trial, which
included four subtrials. We performed 50 trials per class and collected a total
of 200 data samples per imagined word class.

the experimental environment according to their requests or
paused the experiment temporarily [31].

C. Deep Neurolinguistic Learning

1) Signal Preprocessing: The EEG signal was first down-
sampled from 1000 to 500 Hz, and then a band-pass filter
in a range of [30-125] Hz was performed using Hamming-
windowed zero-phase finite impulse response (FIR) filters with
an optimized order (N = 50). We selected a band-pass filter in
the range of [30-125] Hz to allow CNN to consider a wider
latent space. The EEG data were downsampled from 1000
to 500 Hz. The spectrogram images were obtained by com-
bining the 64 channels into one. Although speech imagery
is mainly related to Wernicke’s and Broca areas, the study
employed whole EEG channels to evaluate how EEG signals
can be dispersed by the scalp and skull.

2) Spectrogram Embedding: To apply our developed
methodology correctly, a mel-spectrogram that expresses
speech signals from EEG signals must be estimated. The mel-
spectrogram was transformed with a window size of 1024, a
hop size of 256, 1024 points of a Fourier transform, and a
sampling rate of 22050 Hz [32]. To build a spectrogram of
ground-truth per word class, the average value of the spec-
trogram was calculated using 25 samples. We would like to
use spectrogram images that were as simplified as possible to
train deep learning models based on these mel-spectrograms.
Therefore, the simplified images through spectrogram embed-
dings are generated with the downsampling techniques we
create. After extracting the original mel-spectrogram from all
participants, the spectrograms were represented in a simpli-
fied form for model training. We simplified the spectrograms
using feature embedding, which is a downsampling strategy.
The embedding of spectrograms involves downsampling and
reversing the existing figures to positive notes. This process
allowed us to obtain the most representative mel-spectrogram
to define the ground truth for each individual. Data were sam-
pled by reducing the resolution of mel-spectrogram, which is
raw data, and a low-resolution spectrogram image was gener-
ated through this. In addition, the reason for the reversal of the
negative values is to make it easier for the model to learn, and
the part expressed when voice occurs in the mel-spectrogram
is converted into a positive value. The surrounding noise is

made as zero as possible so that the model can focus on the
part where voice occurs when learning.

In particular, downsampling was applied to the frequency
bands and time axes, reducing the mel-spectrogram data to
28 x 28. The optimal size we found was 28 x 28, and
reducing the image size to less than that resulted in poor
classification performance; reducing the image size to more
than that resulted in the same or no significant change in
the performance, although the learning time of the model
increased. We empirically obtained the estimated spectrograms
using these embedding techniques, which allowed the learning
model to perform better in progressing classification because
the target label of regression becomes simpler. It is impossi-
ble to accurately describe the original speech characteristics
using a simplified spectrogram via embeddings. However, this
strategy can be regarded as a highly efficient preprocessing
technique for data because our model has sufficient resolution
to proceed with predictions based on images.

In this embedding process, the deep neurolinguistic learning
model compares the similarities of ground-truth images with
images of simplified spectrograms estimated from EEG signals
as the output via the SSIM algorithms. SSIM with a quality
assessment index is based on the calculation of three terms:
luminance (/), contrast (c¢), and structure (s). The final index
is a combination of three terms, as shown in

SSIM(x, y) = [lx. ]* - [ce ]’ - [se ] (D)

2uxpy + Ci
I(x,y) = m 2)
x T MKy
2010y + C
(x,y) = 3
c(x,y) o2+ ot Cr 3)
oy + C3
=T 4
s(x,y) o0y + Cs “)

In this case, ty, (y, 0%, 0y, and oy, are the local mean,
standard deviation, and cross covariance of images x and y,
respectively. We calculated SSIM where « = 8 = y = 1. Also,
C1 = (0.01 x L)?, C> = (0.03 x L), and C3 = (C>/2), where
L is the dynamic range of the specified input image, positive
scalar.

3) Training Model: We estimated a spectrogram from EEG
signals over two stages in the model and finally decoded the
words to which the predicted images correspond by comparing
them to the ground truth of speech class images representing
each word. The learning process is illustrated in Fig. 3.

We first describe the process of recording the EEG signals
corresponding to each speech image. The recorded EEG sig-
nals were filtered through preprocessing modules and prepared
with epoch data, which are traditionally used for EEG anal-
ysis. As previously mentioned, we applied the [30-125] Hz
range, which is the bandwidth of frequencies mainly used in
speech imagery decoding, and used 64 corrected channels for
the data analysis [26]. Some of the EEG channels in the frontal
lobe, which are highly influenced by eye movement and visual
stimulation, were removed from the contaminated factors and
transformed into clean EEG signals using infomax indepen-
dent component analysis (ICA) [31], [33], [34]. The corrected
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Deep neurolinguistic learning. (a) Overall flow of the entire system, based on EEG data analysis, categorizes the imagined words and produces

meaningful sentences that can eventually allow collaboration with the robot. (b) Detailed illustration of deep neurolinguistic learning. During the training
phase, the model receives raw EEG and raw mel-spectrogram as inputs, enabling estimation of the imagined words in the form of a mel-spectrogram through
EEG signal analysis. A mel-spectrogram is preprocessed by embedding. Finally, with the SSIM algorithm, the predicted and reconstructed mel-spectrogram
is compared to the previously acquired ground-truth spectrogram, each representing a certain class.

EEG signals were normalized using a common average ref-
erence (CAR) filter, and preprocessed EEG data divided into
lengths of 0-2 s were transferred to the next step and used
for learning the model. This preprocessing process of EEG
signals, such as band-pass filtering, artifact removal, and nor-
malization, has been equally adapted to real-time experiments.
EEG signals are recorded through the filters, embedded in the
mel-spectrogram, and leveraged as a label for decoding EEG
signals. In the proposed framework, three different CNNs per-
form the roles of encoder and decoder. The encoder involves
convolution layers that can configure the output to be smaller
than the input size, whereas the decoder uses deconvolution

layers to increase the input size. The deep neurolinguistic
learning model first utilizes a CNN to extract meaningful
features from EEG data and simplified spectrograms, which
progressively simplifies the initial input data using kernels
across multiple layers. Each optimized and constructed CNN
effectively extracted spatial, temporal, and frequency features
from two types of input data (EEG and ground truth) and
processed them into data with a length of 1 x 300 via the
final pooling layer. We transferred 3 x 1 x 100 size fea-
tures to a module for the next level of the gated recurrent unit
(GRU)-based regression [35]. The model learns the applied
features to obtain representations of the EEG data and extracts
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TABLE I
SPECIFICATIONS OF THE MODEL ARCHITECTURE AND PARAMETERS

Network Layer Type Parameter Output size

1x52x1000

1 Input

Filter size: 1x50
) Convolution Stride size: 1x2 20%52x476
Feature map: 20

BatchNorm

Filter size: 1x50

Convolution Stride size: 1x2

CNNEEG 3 Feature map: 40 40x52x214
BatchNorm -
Activation (ELU)
Average pooling Filter size: 1x7
4 = - Stride size: 1x1 40x52x208
Dropout Dropout ratio: 0.6
Depth wise separable convolution l;‘:::z;_?::
5 o 40x1x208
BatchNorm -
Activation (ELU)
Average pooling Filter size: 1x10
6 Stride size: 1x2 40x1x100
Dropout Dropout ratio: 0.6
7 Fully connected 1x100
8 Fully connected 1 x(N:number of classes)
9 Softmax Classification output
1 Input - Nx1x100
) Fully gated unit Hidden units: 100 Nx100
GRU Dropout Dropout ratio: 0.6
3 Fully connected 1x(Nx100)
4 Regression layer 1x100

representations of the corresponding spectrogram information
as inputs to the regression model simultaneously. The model
enables the test phase to estimate data of 1 x 100 in size,
which can represent the estimated spectrogram with only the
input data acquired from the EEG data.

The core part of the CNN consists of a convolutional layer,
as shown in Fig. 3. Each convolution layer has several filters to
extract the high-level features. Each filter moves successively
across the overall spectrogram and extracts the feature values.
When the entire spectrogram matches the shape of a particular
filter, it has a high value in that part; thus, after the filter
traverses the entire spectrogram, it can obtain features only for
the part that has a shape similar to that of the filter (Table I).
Through these processes, we obtain features that correspond
to a particular filter. We used an exponential linear unit (ELU)
as an activation function in the convolutional block

(&)

ELU(x) = { X, if x>0}.

a(e®—1),if x<0

A pooling layer is located between the convolution layers and
forms a specific area on each feature map, obtained through
a filter to derive the largest value within the region. This
method is called max pooling, and the derivation of the aver-
age value within the corresponding region is called average
pooling. This process allowed us to expect more distinctive
features that have undergone convolution. The pooling opera-
tion also performs downsampling, which maintains the shape,
although it can reduce the existing image. A layer of an appro-
priate depth should be established because the deeper the
layers of the CNN, the better the characteristics of the target,
and more implications can be extracted. The specifications of
the learning model architecture and parameters are listed in
Table 1.

To complete our decoding framework, we adopted GRU
as a prediction model. GRU has the advantage of requiring
less learning time and learning with fewer data owing to the
small number of parameters [36]. Our model was designed
to achieve stable performance under exceptional conditions,
in contrast to when there is a sufficient amount of data. The
GRU has a simpler structure than long short-term memory
(LSTM) [37] to solve the long-term dependency problem and
reduce the computation of hidden state updates each time.
GRU is a type of recurrent neural network (RNN) framework
with gate mechanisms inspired by LSTM. GRU has a structure
similar to that of conventional LSTMs and is characterized by
a simpler structure, which allows for faster and more efficient
learning.

First, in a GRU structure, the reset gate works with the aim
of properly initializing the historical information. Using the
sigmoid function as an output, the values of zero and one were
multiplied by the previously hidden layer. The value of the
hidden layer at the previous point in time and the information
at the present point can be obtained by multiplying the weight
and can be expressed as shown in

RONpS (W,h(’_l) 4 U,x<’>). 6)

Next, in the GRU, the update gate combines the forget
gate and input gate of the LSTM and determines the rate
of updating of past and present information. In the update
gate, the output u® to the sigmoid determines the amount of
information at this point, and (1 — u(’)) which subtracts the
output from one, multiplies the information in the hidden layer
at the final moment, which is similar to the roles of the input
gate and target gate of the LSTM. This is expressed by (7),
as follows:

U = (Wuh(’_l) + qu<’>). 7

The candidate layer is used to calculate the candidate
information groups at this time. The key point is to multiply
the results of the reset gate rather than use the information of
the previously hidden layer. The vertical representation is as
follows. In (8), T is a tangent hyperbolic, and * denotes the
pointwise operation

O = (W) x4 0xO). ®)

Finally, the hidden layer combines the results of the updated
gate with the candidate result. As previously stated, the result
of the sigmoid function determines the amount of information
in the final result, and the result of the 1-sigmoid function
determines the amount of information at a previous point in
time, as summarized in

h® = (1 - u<’>) « B0 4y 5 j O )

In the next step, we provided a feature vector of the esti-
mated spectrogram via the GRU model as an input to the CNN,
called the training phase. This network is a CNN design in
which weights are trained in the process of extracting feature
vectors from the ground truth and is applied as a transpose
CNN (with a reversed CNN architecture) to allow the feature
vectors to be extended back to the original image data in the
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Algorithm 1: Deep Neurolinguistic Learning

Algorithm 2: R-SGM

Input:

- EEG data: X = {x}2 |, {x;} e ROT,

- Mel-spectrogram: Y = {y;}9, {y;} ¢ REXT
e D : Total number of trials

e G : Corresponding class

e C : Channels

e 7T : Time points

Output:

- Predicted words: W = {wq, wo,..., wi}
1 for k=1t K do
2 Xi = {x1, 225, xi}3
3 Yie = {1 yase o vihs
4 switch Training CNN do
5 Train CNNEEG encoder;
6 Training the CNNQ/IEL encoder and decoder;
7 Create eeg_fvy and mel_fvy;
s Save eeg_fv = {eeg_fvy. eeg_fuy..... eceg_for}:
9 Save mel_fv = {mel_fv|, mel_fv,,..., mel_fv; };
10 endsw
11 switch Training GRU do
12 Train the GRU;
13 Create mel_fvy;
14 endsw
15 end
16 if k = K then
17 Run CNNkMEL decoder using mel_fv;;
18 Create y;
19 end
20 if k = K then
21 Recall Y = {y1, y2,---, Yi};
22 for i =1 do
23 Calculate the similarity scores between y and y;;
24 Rank the similarity scores with the corresponding y;.
25 wg = i word;
26 end
27 end
28 W= {wp, wp,..., wi };

form of 2-D metrics. The image of the spectrogram, which is
estimated by EEG decoding, was compared with the prepared
ground truth using the SSIM algorithm to determine which
class of images is most similar to the ground-truth image
representing the corresponding class. Through this process,
a deep neurolinguistic model can be used to determine the
final prediction. The overall training procedure of the model
is summarized in Algorithm 1.

Using the proposed method, we inferred which word the
participant imagined from the EEG. Simultaneously, mean-
ingful commands can be generated to interact with the neural
prosthetic arm using a combination of these predicted words.
To this end, for natural interaction, we generated the neu-
ral command as a sentence form consisting of words. In this
study, we devised a machine learning model for generating
neural commands, which are the final commands that are
passed to the neural prosthetic arms generated by combin-
ing words classified through BMI decoding, with a simple
rule-based sentence generation model (R-SGM). As depicted
in Algorithm 2, R-SGM is used to target the most stochasti-
cally high sentence composition units, sequencing them in the
order of subject words, verb words, and object words. R-SGM
is used to reobtain misdecoded results. R-SGM-based neu-
ral command generation leverages the sequence of sentence

Function: Generation of neural language as a sentence-level form
Input:

- Predicted words: W = {wq, wp,..., wi}

e wy : A predicted word as one of the components of a sentence,
obtained through a deep neurolinguistic learning model

e K : The number of wy

Output:
- Sentence generated as the neural command
o S = {“Predicted sentence’}
1 for k=11t K do
2 W = {wy, wa,..., wi}
3 if k =1 then
4 switch w; do
5 case subject word
6 | subj =wy; S{k} = subj;
7 endsw
8 endsw
9 end
10 else if k =2 then
11 switch w; do
12 case verb word
13 | verb = wy; S{k} = verb;
14 endsw
15 endsw
16 end
17 else if k = 3 then
18 switch w3 do
19 case object word
20 | obj = ws; S{k} = Obj;
21 endsw
22 endsw
23 end
24 end
25 Call the pre-assigned sentence example database.
26 forn=11t0 N do
27 for k=11t K do
28 By comparing S{k} with components of a sentence
29 if Mismatch between S{k} and sentence example then
30 | return;
31 end
32 Update the pre-assigned sentence including S{k} into S
33 end
34 end

35 if Composition requirements of the sentence are met then
36 ‘ display(S);
37 end

constructs and components that the model learns in advance.
Thus, we pre-established the sentence example databases and
added them when a similar sequence of sentence components
was entered (Algorithm 2). Neural commands at the sentence
level can not only affect the most intuitive instruction in natural
collaborative control with brain signal-based robots but also
increase the degree of freedom of neural commands to large
scalability. Because communication in our language involves
infinite degrees of freedom, it can be achieved using only EEG.

D. System Evaluation

1) Real-Time Decoding Strategy: To conduct real-time
experiments that can decode words imagined by users and
organize them into sentences, we established an appropriate
experimental environment. The participants imagined a combi-
nation of three words, that is, a subject, a verb, and an object,
in a single sentence. In this way, the combination of words
imagined by the participant can be accurately decoded and
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output into one sentence with meaning through the applica-
tion of a natural language processing model. For example, the
previously decoded subject, verb, and object words, I, move,
and box are converted into sentences that can convey the clear
meaning, “I want to move the box on the table” through the
R-SGM, allowing the neural prosthetic arm to recognize the
human’s thoughts and perform the appropriate actions. In total,
21 subdata segments were obtained by dividing the vertical
axis into each word class and the horizontal axis into 2-s
decoding windows with 4-s-long data. In a real-time exper-
iment, the participant imagined a sentence using three words
for 4 s, that is, a single trial. Specifically, the submodel we
developed contained a total of three trials, each with a spe-
cialized classification performance for the imagining of each
subject, verb, and object word. We guided participants to imag-
ine speaking sentences in a logical manner in the order of
subject, verb, and object, and we classified these obtained data
with SSIM-based similarity scores, as shown in the submodel.
The subject decoding submodel is classified with high simi-
larity in the front segment, whereas the verb segment shows
high similarity in the subsequent sequence. Finally, the object
decoding submodel outputs a high similarity at the back end
of the segmented data. The duration of real-time processing
statistically took an average of 4.450 s to decode a single
neural language (e.g., a word), and an average of 8.645 s to
decode three neural languages to generate neural commands
in sentence form in total.

2) Design of High-Level Collaborative Scenarios: Finally,
we evaluated the entire system by designing real-time BMI
scenarios with collaborative tasks using neural prosthetic arms
(Fig. 4). We designed various high-level cooperative scenarios

comprising five tasks each. The tasks comprised an essen-
tial activity (Task I), collaborative play (Tasks II-IV), and
emotional interaction (Task V) [Fig. 4(c)—(e)]. The five dif-
ferent tasks were as follows: Task I (drinking juice by the
user himself or herself), Task II (providing juice to the part-
ner), Task III (drinking juice with the partner’s help), Task
IV (delivering a phone in a box to the partner), and Task V
(expressing the user’s emotions to the partner). In this study,
in both a single user and a multiuser environment, the pos-
sibility of controlling neural prosthetic arms was validated
through neural language decoding, such as drinking water,
moving, and bringing objects close to each other. We define
high-level cooperative scenarios as a combination of several
individual upper-extremity movements in which users perform
meaningful actions in real life using a neural prosthetic arm.
For example, the simple extension of a neural prosthetic arm
and the use of a neural prosthetic arm to hold an object is
related to individual upper-extremity movements. In contrast,
combining these movements to drink a cup of water or shake
hands and hug a partner by using a neural prosthetic arm is a
high-level scenario. As depicted in Fig. 4(c), each participant
sits in a comfortable position in front of the neural prosthetic
arms and engages in a scenario in which the participants alter-
nate their roles. Because decoding a subject word referred to
in sentence components is now achievable, we demonstrated
this technique for neural prosthetic arm control for the other
partner in existing user-centric controllable BMI technologies.

In addition, emotional words, such as “hug,” “shake,” and
“greet,” which could share the same emotions in an envi-
ronment in which motor-disabled patients are assumed, were
newly created. For example, in the pandemic environment
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Fig. 5. Example of spectrograms during speech imagery according to each
word. Each spectrogram, which includes spectral information, was converted
from the original mel-spectrogram to an image simplified by the embedding
procedure and used as the ground-truth spectrogram. The learning model was
trained on the ground truth according to each word and could predict the
spectrogram forms.

when we prefer to communicate in a non-face-to-face man-
ner, the neural prosthetic arms enabled us to express another
person’s thoughts and deliver their emotions on their behalf
in this study. This is a scenario configuration suitable for the
current limited context and confirms the feasibility of future
BMI technologies being used appropriately in these situations.

III. EXPERIMENTAL RESULTS

We applied percent valid correct (PVC) as an evaluation
indicator [38] due to interaction between brain and robot. If
the probability of the classification model is lower than the
threshold, it is determined that the brain signals are invalid and
are not used for evaluation. In that case, the neural prosthetic
arm is not controlled. A deep neurolinguistic learning model
was trained using mel-spectrograms extracted from audio sig-
nals as the ground truth and preprocessed EEG data. The
mel-spectrogram was computed using the short-time Fourier
transform (STFT) method [32], and it was visualized differ-
ently depending on the subject, verb, and object words. In
this study, we adopted the mel-spectrogram, which can be
clearly distinguished among audio signals, as a tool for neu-
ronal decoding. Examples of the original mel-spectrogram and
embedded spectrogram are presented as the ground truth, as
depicted in Fig. 5. Thus, to adapt to the feature embedding,
spectrogram transformation was conducted to achieve a form
similar to that of the EEG data. For each class, after embed-
ding, the mel-spectrogram is shown in downsampled form as
the ground truth. The learning model was trained on the EEG
data and an embedded spectrogram. The results of neural lan-
guage decoding were estimated using the structural similarity
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representation uses a source imaging technique to activate brain regions statis-
tically, while a participant performs each task. The yellow-colored distribution
indicates p-values less than 0.001, and the red-colored distribution indicates
p-values less than 0.005.

index measure (SSIM) [39] between the ground truth and pre-
dicted spectrogram. The predicted spectrograms were clearly
reflected in the audio configuration features. For example,
when the participants imagined the spoken form of words such
as “drink,” the spectral features at the “in-" (in) time points
were not evident. However, at the “-nk” (nk) time points,
spectral features appeared. In addition, the duration features
were reflected according to the syllable length of the words.
For example, compared with the length of the syllable when
cup is spoken and the length of the syllable when partner
is spoken, we confirmed that the duration of spectral activa-
tion is longer and thicker for the partner case. Fig. 5 shows
the averaged representation to show qualitatively whether the
patterns of spectrogram per class were similar across all par-
ticipants. In other words, in the calibration session, the original
mel-spectrograms and predicted spectrograms per class were
individually composed for each participant.

In addition, we visualized a spatial representation using
a source imaging technique to statistically identify acti-
vated brain regions while the participant performed each task
(Fig. 6). Imagining and speaking a language from a neuro-
physiological perspective is closely related to two regions
of the brain. The main regions in the brain are typically
associated with language function, with each of the num-
bered sections indicating one Brodmann area (BA). BA44 and
BA45 (Broca’s area) were the most common regions associ-
ated with speech imagery production. Wernicke’s areas (BA22
and BA42) included in the superior temporal gyrus were also
observed in cortical activities [21]. At the front end of this loop
lies Broca’s area, which is connected to the production of lan-
guage and speech, or language output. At the other end of the
superior posterior temporal lobe lies Wernicke’s area, asso-
ciated with the comprehension, processing, and interpretation
of words that are spoken or language inputs [40] [Fig. 6(a)].
The two areas are connected by a large bundle of nerve fibers
called the arcuate fasciculus. We first identified the quality of
the data obtained from the participants by using source local-
ization analysis to confirm that the degree of spatial activation
during actual speaking and speech imagery is significantly
relevant [40]. Standardized low-resolution electromagnetic
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Fig. 7. BMI performance. (a) PVC performance was achieved in the decoding of each word for each participant through a calibration session. (b) Comparison
of grand-averaged PVC performance with state-of-the-art methods. The performances showed significant differences according to the subject, verb, and object
words. The paired #-test was conducted as statistical analysis (*: p < 0.01, **: p < 0.005). (c) Real-time PVC performance evaluated for each subject, verb,
and object word. (d) Number of successful trials in performing high-level collaborative tasks. A total of 25 trials were performed, with five trials for each
scenario task. (e) Grand-averaged successful trials per task across all participants.

tomography (SLORETA), which is a current density estimation
technique for inverse modeling of brain points, was adapted
for visualization [41]. The statistical distribution in the brain
regions was visualized by calculating the p-values between
the baseline and imagery periods. Significant differences were
observed mainly in the left cerebral hemisphere, including the
lateral sulcus and inferior frontal gyrus for all words. The yel-
low distribution indicates p-values less than 0.001, and the red
distribution indicates p-values less than 0.005. As shown in
Fig. 6(b), we analyzed the source localization obtained during
the process of imagining all words from the EEG signals and
confirmed that regions of the brain were activated in Broca’s
area and Wernicke’s area related to transitional languages.
Fig. 7(a) shows the PVC performance for generating neu-
ral commands using deep neurolinguistic learning in the
calibration session. The three-bar plots represent the PVC
performance of the sublearning model trained using subject,
verb, or object words. In this example, each sublearning
model achieved a grand-averaged PVC performance of 0.792
(£0.058) in the subject words, whereas the verb and object
decoding models achieved performances of 0.825 (£0.037)
and 0.811 (£0.053), respectively, across all participants. The
results of the calibration session show that decoding subject-
related words consisting of “I” and “partner” is difficult
compared to decoding verb and object words. For ten par-
ticipants (except for P03), the learning model showed lower
accuracy in subject words than in verb and object words.
This result was also observed in subsequent real-time experi-
ments, and in general, the decoding of verb and object words
was relatively similar in the PVC performance. The speech-
imagery-based learning model intuitively recalls the imagery
of language, although it has not been used in BMI experiments.
Thus, even naive participants can achieve similar performance
to experienced people. All the participants we recruited were

inexperienced in the use of BMIs, and their performance
did not differ significantly from the initial experiment or the
subsequent experiment under skilled conditions.

To compare the PVC performance between the baseline
methods and the proposed deep neurolinguistic learning, we
implemented the machine learning methods presented in [42]
and [43] and the deep learning models in [44], [45], and
[46]. We evaluated the leave-one-out cross-validation measure-
ments to prevent performance variability. The training epoch
was 300, and the test was conducted using weights, which
showed the lowest loss after 150 epochs. The AdamW opti-
mizer [47] with 0.001 weight decay and early stopping was
applied in deep learning methods. Considering the real-time
neural language decoding scenario, PVC was calculated by
determining an attempt with a confidence of 0.6 or less as
an invalid trial for offline evaluation. For model training, an
average of 15 min of running time was spent using the com-
putation resources of an Intel 3.60 Core i7 9700 K CPU
with 64 GB of RAM, two NVIDIA TITAN V GPUs, and
CUDA/Cudnn. When the trained decoding model was pre-
pared, immediate classification results were obtained for the
test data. In a two-step framework, two deep learning mod-
els pretrained with training data generated an image from the
EEG signals and then classified the mel-spectrogram image
(generated from test data). This process required an aver-
age of 1.5 s, and the mel-spectrogram image classification
required only a brief amount of time, close to the immediate.
Under this performance, we conducted real-time online experi-
ments repeatedly without any problem. In addition, to compare
the PVC performance between the baseline methods and the
proposed method, we conducted a statistical analysis. Initially,
we validated the normality and homoskedasticity of each com-
parative method [CSP+RLDA versus Proposed. in Fig. 7(b)],
owing to the small number of samples. The normality for each
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baseline method using the Shapiro—Wilk test was conducted
for satisfying a null hypothesis (HO), and the assumption of
homoscedasticity was also met for each comparative group
using Levene’s test. Statistical analysis was conducted using
a paired t-test (*:p < 0.01, **:p < 0.005). The performances
showed significant differences according to the subject, verb,
and object words.

Fig. 7(c) shows the results of real-time experiments. All
experiments were conducted in a real-world environment, and
the learning model was calibrated according to each partic-
ipant. Each sublearning model was newly trained and tested
three times, as represented by the bottom, top, and average
of the candles illustrated in the plot. In the real-time experi-
ment, each sublearning model achieved a grand-averaged PVC
performance of 0.699 (0.033) for the subject words, whereas
the verb and object decoding models achieved performances
of 0.722 (£0.032) and 0.735 (40.044), respectively.

As mentioned previously, a real-time experiment was con-
ducted after systemically linking the neural prosthetic arms
with the BMI system during a calibration session. The suc-
cess rates of the BMI scenarios with a neural prosthetic arm
are shown in Fig. 7(d) and (e). Each high-level collaborative
task was performed five times to assess whether the entire
scenario was complete. This evaluation involved each par-
ticipant’s ability to perform the BMI tasks, as indicated in
Fig. 7(d). Participants achieved an average success rate of
18 trials out of a total of 25 trials. Overall, PO3 and P05
each succeeded more than 20 times, showing high scenario
performance rates of 88.00% and 92.00%, respectively. P06
exhibited the lowest performance and success rate of approxi-
mately 52.00%. Overall, collaborative tasks with simple neural
commands, such as Tasks I and V, showed high success rates
across all participants, as depicted in Fig. 7(e). In summary,
we found that the success rate of each task represented approx-
imately 72.36% of the performance, with 3.618 successes
across all participants.

The values of SSIM were presented during a single trial of
the real-time experiment, as shown in Fig. 8(a). An example
of successful decoding involves P05 who generated a neu-
ral command: “I want to move a box on the table.” During
the 4 s of speech imagery, we observed that the SSIM of the
subject part increased first in the order of the components
of the sentence, followed by the SSIM of the verb part, and
finally that of the object part, resulting in neural language
decoding. Specifically, each sublearning model (i.e., subject,
verb, and object words) was trained through system calibra-
tion beforehand, and decoding was performed simultaneously
in real-time according to the step size of the decoding win-
dow. While sliding the decoding window over 4 s, the SSIM
was calculated, and the word was selected as the final deci-
sion by storing the case in which the SSIM was higher than
0.600 three times. When we decoded the neural languages in
real time, the threshold of the SSIM was empirically obtained
at 0.600. For each sublearning model, 0.875 (4th window in
“I’), 0.853 (11th window in “move”), and 0.883 (last window
in “box”) were recorded as the highest scores.

We also evaluated the spatial distribution to ensure that the
participants were fully focused on performing their tasks and
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Fig. 8. Decoding process of deep neurolinguistic learning in real time.
(a) Each bin represents a segment of real-time EEG data obtained using a
decoding window. The similarity score is calculated and compared to the
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s trial for which the subject, verb, and object were classified with a high
similarity score. The following scalp plot is intended to depict the correlation
between imagined word decoding and neurophysiological evidence. Different
colors on the scalp plots represent the average value of the EEG amplitude
for each time interval.

to examine whether decoding affected psychological and men-
tal factors that significantly impacted ambient noise or brain
signals. Furthermore, during speech imagery tasks, the spatial
distribution showed that the left hemisphere, where Broca’s
and Wernicke’s areas were located, exhibited relatively more
continuous activation than the right hemisphere [Fig. 8(b)]. In
the case of motor imagery tasks, the brain structurally divides
body parts, showing strong spatial activation when imagining
only or executing tasks [48], [49]. However, because language
is not structurally distinct from the brain, it is difficult to dis-
tinguish words solely based on the spatial distribution of each
component.

IV. DISCUSSION

The current findings significantly expand previous stud-
ies, showing that the neural languages can be decoded in
real-time at the noninvasive EEG recording level. We used
a novel BMI paradigm called speech imagery, which mimics
natural conversations. In state-of-the-art BMI studies, investi-
gators have attempted to provide an intuitive communication
pathway between the brain and machines in real-world envi-
ronments. Recent studies have focused on the intuitiveness of
neural commands along with the application of BMI for deep
learning technology [50]. This intuitiveness begins by match-
ing the motions of the robot with the neural commands from
the human imagination. The motor imagery decoding strategy
has advanced from simple body-part imagery (e.g., left hand,
right hand, and foot) to intuitive motion imagery, such as arm
reaching and hand grasping [31], [51], [52]. Recently, speech
imagery, which transcends the limits of the class available as
neural commands and decodes speech into brain signals, has
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received attention. The speech imagery paradigm improves the
accessibility of BMI for speech-impaired patients or even for
healthy people, and demonstrates the feasibility of decoding
imagined words from the user’s brain signals. Speech-imagery
decoding was the first successful method for invasive brain
signals [11], [53], [54]. Recently, it has been shown that the
speech imagery of simple words can be decoded even from
noninvasive EEG signals [21], [26]. Based on these state-of-
the-art BMI technologies, in this study, the components of
sentences (subjects, verbs, objects, etc.) were decoded rather
than simple word decoding, to increase the degree of free-
dom for users to freely generate practical neural commands.
This is the first attempt to adapt the natural communication
mechanism to a BMI system that generates neural commands
by combining the components of sentences with a variety of
subject, verb, and object words at the brain signal level.
Furthermore, through additional experiments that achieved
higher decoding performance, we found that speech imagery
can be used conveniently for naive users compared with such
as conventional motor imagery (Fig. 9). We recruited five
experienced participants and five naive participants for a sim-
ple comparative experiment. The motor imagery paradigm,
which is currently used in noninvasive BMI paradigms, and
the speech imagery paradigm were adopted in this study.
When performing a particular task, we evaluated the decoding
performance with respect to the simple classes required (e.g.,
drinking water, picking up a phone, or moving a box from
position A to B). First, the difference in decoding performance
between experienced and naive users was found to be approx-
imately 10% within MI. We observed that the difference was
statistically significant (p < 0.005), as shown in Fig. 9. In
contrast, for speech imagery, the physical performance differ-
ence between experienced and naive users were approximately

11

2%, and no statistically significant difference was observed
(»p > 0.01). In other words, motor imagery could present
some difficulties for first-time BMI users, and continued BMI
training ensured that it would be readily available in real-
world scenarios. However, speech imagery is highly capable of
simple word detection. In particular, no significant difference
between experienced and naive participants was observed;
thus, we could confirm that participants who first encoun-
tered BMI could easily perform the task, which is a significant
contribution to the commercialization of BMI technology.
Furthermore, even within the same experience, speech imagery
was shown to be better decoded, and naive users found the
intuitive paradigm more comfortable when conducting their
BMI tasks. However, the BCI illiteracy problem still existed
when recruiting participants. Although the proposed learning
methods could not cover the BCI illiteracy problem, we will
develop learning methods that can be used by a variety of
age groups and genders. Hence, we plan to establish train-
ing strategy ideas for BCI illiterates before the data-recording
session and apply few-shot learning techniques that show reli-
able performance with only a small amount of learning data
algorithmically.

In addition, the results demonstrated that a few participants
showed similar performance trends according to a training
session and real-time experiments, whereas others showed
completely different performance trends [Fig. 7(a) and (c)].
In particular, because of analyzing the tendency of decoding
PVC performance for each element of a sentence (i.e., subject
words, verb words, and object words), the participants in PO1,
P03, P07, and P09 showed similar performance tendencies in
both the training session and real-time experiments. For exam-
ple, the PVC values for participant PO3 were as high as 0.8813
for subject words, 0.7988 for object words, and 0.7976 for verb
words in the training session. In the real-time experiments,
PO3 also showed a performance tendency with PVC values
in the order of 0.7888 for subject words, 0.7667 for object
words, and 0.7100 for verb words. Furthermore, the other
participants could not form a certain tendency pattern; there-
fore, the performance trends with PVC values according to
the training session and real-time experiments were different.
Participants with different performance tendencies between the
training session and real-time experiment were expected to
be induced with a few concentration variances owing to the
self-directed and continuous decoding (i.e., speech imagery)
in real-time experiments, in contrast to training sessions that
provide task instruction directly. In the asynchronous BMI
experiment, most users wondered if the intended task was
accurately decoded. In particular, for asynchronous real-time
experiments, the experimental protocol does not simply per-
form a single imagery task without feedback, although it is
asked to conduct each imaginary task (i.e., the components of a
sentence) continuously. Based on this, neural commands at the
sentence-level form are created. Therefore, the difference in
performance tendency between sessions was revealed because
the participants themselves generated neural commands with-
out feedback after a single task, which even affected the
decoding performance. Although asynchronous BCI in real-
time should finally be pursued, it seems that sufficient training
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with synchronous paradigms will be required to maintain
constant decoding performance. Therefore, in real-time exper-
iments, the experimental protocols are separated into training
sessions, synchronous training sessions, and asynchronous
real-time experiments. Hence, we expect that the participants
can maintain a decoding performance tendency between offline
and real-time experiments.

In the BMI literature, although many EEG decodings are
being conducted based on the convolutional neural network
(CNN) [50], it has not yet been reported to achieve high real-
time performance. Because of the sensitivity and nonstationary
characteristics of EEG, which change with each session, it
may not be trained according to the characteristics of the
previously trained input. To compensate for the weaknesses
of signal decoding using CNNs, the proposed deep neurolin-
guistic learning is designed to train two encoders together
and perform a final prediction with one decoder (Fig. 3). The
parameters and configuration of both encoders and the decoder
are described in Table I. Each encoder was trained using EEG
signals and audio signal features (mel-spectrogram) by adapt-
ing the principle of meta-learning [55]. Owing to training
the mel-spectrogram together, it was able to contribute to the
model’s consistent class learning from invariance characteris-
tics of the EEG signals each time. In addition, the prediction
probability was increased by predicting the mel-spectrogram
using a decoder. This architecture has become a training strat-
egy that can dramatically improve the low EEG decoding
performance, even in a real-time environment. It was possi-
ble to improve the real-time performance and design of the
convergence framework by utilizing unclear brain signals and
mel-spectrogram characteristics. Furthermore, in terms of scal-
ability for practicality in the future, the framework should
be able to enable the decoding of not only the learned sen-
tence component classes but also words from unknown speech
imagery classes. We will continue to focus on automatically
relearning or adapting each model to the user’s state at a
particular time to achieve reliable performance.

The results were rigorously validated using real-time exper-
iments. In contrast to the conventional BMI systems, which
are used only as a tool for control by a single user, the
proposed system is designed for multiple users who can con-
trol the neural prosthetic arms for both themselves and each
other simultaneously. Therefore, in this study, intuitive com-
munication was achieved by combining neural languages as
sentence form, and the feasibility of a communication system
through collaborative play with robots and brain signals only
between multiple users was demonstrated. To the best of our
knowledge, this is the first attempt to design a scenario in
which collaborative play and neural commands are gener-
ated for another participant through noninvasive EEG signals.
Therefore, most of the participants showed a success rate of
approximately 3.6 out of 5 attempts per task, demonstrating
that it is possible to imagine continuous speech imagery at the
sentence level in real-time (Figs. 7(c) and 8). In contrast to the
conventional motor imagery paradigm, which requires contin-
uous concentration of exercise and movement, we found that
the real-time success rate was high because it was easier to
perform speech imagery. However, in the ablation study, the
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proposed deep neurolinguistic learning showed a limitation in
that the distinction between words with similar pronunciations
was not completely learned. For example, the actual pronun-
ciation of words, such as “he” and “she” is different from the
elements of subject words; however, the learning model cannot
differentiate between EEG signals and mel-spectrograms. In
the case of a similar syllable length, it differs from each char-
acteristic of mel-spectrogram in the audio signals distinctly
between words, to allow the model to be trained as high-
level features. Therefore, in this study, words with sentence
components in which the syllable characteristics of words are
distinguished were selected and processed. At this stage, the
limitations are evident, and we will apply them to interpret and
extract more accurate audio information from brain signals.

V. CONCLUSION

This article describes a new approach aimed at intuitive
interactions between humans and neuroprostheses by decoding
neural language using noninvasive EEG signals. We demon-
strated that a mind-controlled neural prosthetic arm based on
deep neurolinguistic learning can collaborate with humans to
complete high-level tasks successfully. In this study, speech
imagery was used as a BMI paradigm and extended from
simple word classification to create neural commands by com-
bining the components of each sentence (e.g., subject, verb,
and object words) in real time. Consequently, this strategy
enables the use of a variety of neural languages to naturally
drive an external device using only EEG signals.

In addition, this is the first case in which BMI technol-
ogy is applied to multiple users without restrictions on the
number of classes owing to the use of language-based decod-
ing. Although BMI technology is still demonstrated in limited
laboratory environments owing to the sensitivity and sensing
difficulties of brain signals, this finding suggests that the scope
and environments of collaboration with humans and machines
will be increasingly wider. We believe that this research will
contribute to a new frontier in BMI technology.
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