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Discriminative Geometric-Structure-Based Deep
Hashing for Large-Scale Image Retrieval

Guohua Dong , Xiang Zhang , Xiaobo Shen , Long Lan , Zhigang Luo , and Xiaomin Ying

Abstract—Deep hashing reaps the benefits of deep learning and
hashing technology, and has become the mainstream of large-
scale image retrieval. It generally encodes image into hash code
with feature similarity preserving, that is, geometric-structure
preservation, and achieves promising retrieval results. In this arti-
cle, we find that existing geometric-structure preservation man-
ner inadequately ensures feature discrimination, while improving
feature discrimination of hash code essentially determines hash
learning retrieval performance. This fact principally spurs us to
propose a discriminative geometric-structure-based deep hash-
ing method (DGDH), which investigates three novel loss terms
based on class centers to induce the so-called discriminative
geometrical structure. In detail, the margin-aware center loss
assembles samples in the same class to the corresponding class
centers for intraclass compactness, then a linear classifier based
on class center serves to boost interclass separability, and the
radius loss further puts different class centers on a hypersphere
to tentatively reduce quantization errors. An efficient alternate
optimization algorithm with guaranteed desirable convergence is
proposed to optimize DGDH. We theoretically analyze the robust-
ness and generalization of the proposed method. The experiments
on five popular benchmark datasets demonstrate superior image
retrieval performance of the proposed DGDH over several state
of the arts.

Index Terms—Deep supervised hashing (DSH), discriminative
ability, geometric structure, image retrieval.

I. INTRODUCTION

LARGE-SCALE image retrieval has witnessed great
advances in the efficacy of approximate nearest neighbors
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(ANNs) search methods. This success can be attributed to the
merits of hashing technology, for example, little memory space
and near real-time search. Importantly, hashing technology
maintains the underlying neighborhood relationships between
data samples. Traditional nondeep hashing methods [1]–[6]
learn hash code based on features that have been extracted
in advance, and their performance has a lot to do with those
features, which may limit the representation capability of hash
code.

The powerful representation capability surged in the era
of deep learning has been enjoyed in deep hashing meth-
ods [8]–[14], where both feature representation and hash-
ing function are jointly learned in an end-to-end manner.
This desirable advantage enables deep supervised hashing
(DSH) methods to significantly boost the image retrieval
performance. Among them, a wealth of attempts, including
deep pairwise supervised hashing (DPSH) [8], deep discrete
supervised hashing (DDSH) [9], and improved deep hash-
ing networks (IDHNs) [12], introduce the pairwise similarity
in deep networks for learning hash code and have achieved
impressive performance. Overall, such deep hashing methods
considers the asymmetric similarity learning loss to preserve
pairwise similarity, that is, geometric-structure preservation,
but this could not induce adequate feature discrimination,
which essentially determines the efficacy of hash codes.

To clarify this point, a toy example is conducted on the
CIFAR-10 dataset to illustrate the 2-D deep features of sam-
ples from four classes before the quantization process into
Fig. 1. It is not difficult to find that the features of sam-
ples from four distinct classes are highly overlapped in
Fig. 1(a). As a result, most of the corresponding binary
codes are encoded incorrectly, according to the 2-D coordi-
nates of real-value deep features in Fig. 1(c). This hints that
the mere geometric-structure preservation, that is, similarity
preservation, might be insufficient. In contrast, incorporat-
ing feature discrimination with geometric-structure preser-
vation can induce high-quality binary codes, as shown in
Fig. 1(b) and (d). For ease, we call the above insight the
discriminative geometric-structure preservation.

From the above analysis, three aspects should be
emphasized to support our motivation for discriminative
geometric-structure preservation: 1) different binary codes in
themselves are essentially separable in Hamming space, thus
we make it rather necessary to distinguish their real-valued
cousins. For instance, two different binary codes “10” and “01”
have fixed margin value of

√
2 in Euclidean distance; 2) dis-

criminative features are derived before quantization process.
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(a) (b)

(c) (d)

Fig. 1. Toy example on CIFAR-10 [7], where four classes are randomly
selected and then 1500 samples selected from each class as the training set,
to illustrate the motivation of the discriminative geometric-structure. (a) 2-bit
real-value deep features learned by asymmetric similarity learning loss, and
(c) spirit of the corresponding loss, that is, similarity preservation. In con-
trast, the analogue of DGDH is shown, respectively, to emphasize (b) feature
discrimination but to still implicitly and (d) reduce quantization errors.

Thus, real-valued feature discrimination plays a core role in
learning binary codes. As Fig. 1(c) and (d) shows, discrim-
inative features can induce good binary codes, even though
the quantization process is not advanced enough. This could
weaken the effect of quantization process on the quality of
binary codes. Accordingly, the general quantization process
available could be straightforwardly used; and 3) the quanti-
zation loss in most existing hashing methods serves to make
real-value features approach the corresponding binary codes.
To some degree, the quantization loss indeed makes real-value
features separable, if such real-value features of different sam-
ples are very far from each other. But, for the lack of global
class information, this still induces incorrect binary codes.
Hence, feature discrimination almost effects the entire pipeline
of hashing learning.

Inspired by the above analysis, we propose a discrimina-
tive geometric-structure-based deep hashing method (DGDH),
which consists of asymmetric similarity learning loss and
discriminative geometric-structure learning loss. To instantly
yield the hash codes of gallery set, we slightly modify the
asymmetric similarity learning loss with adding an averag-
ing factor to eliminate the effect of large sample size. On the
basis of our modified asymmetric similarity learning loss, three
novel loss functions are further explored to jointly preserve
the previous mentioned discriminative geometrical structure.
In detail, the margin-aware center loss serves to ensure intra-
class compactness by making intraclass samples close to their
corresponding class center. Besides, the liner classifier based
on the class centers is investigated to boost interclass separa-
bility. For good quality of binary codes, the radius loss imposes
deep features on a hypersphere with a specific radius to reduce
the quantization error of their pertinent hash codes. As a result,
we yield the learned discriminative geometrical structure that

the learned class centers corresponding to the binary codes are
distributed on a hypersphere, and meanwhile, intraclass sam-
ples surround the class centers with a fixed certain margin.
More detailed explanations about our loss are deferred to the
sequel text.

In summary, our contributions are threefold.
1) We first discuss the importance of feature discrimination

on the entire pipeline of hashing learning, and then pro-
pose a DGDH that can learn discriminative real-value
deep features to improve retrieval accuracy and effi-
ciency. In DGDH, three lightweighted loss terms are
jointly proposed for feature discrimination.

2) We develop an efficient alternate algorithm guaran-
teed with desirable convergence to optimize hash code.
Moreover, we present a solid theoretical validation
on the robustness and generalization of the proposed
method (supplementary material).

3) Experiments of image retrieval on five popular datasets
including the very large Cloth-1M [15] demonstrate the
superior performance of the proposed DGDH against the
state-of-the-art hashing methods.

The remainder of this article is organized as follows.
Section II reviews the most related methods. Section III details
the proposed method. Experimental analyses are presented in
Section IV. Section V concludes this article.

II. RELATED WORK

This article combines the joint merits of hashing [16]–[18]
and deep learning for single-modal retrieval, so we intro-
duce single-modal works of the above two aspects and related
multimodal works.

1) Nondeep Hashing Methods: According to previous liter-
atures [5], [6], nondeep hashing methods can be divided into
data-independent and data-dependent ones. As early efforts in
this field, locality sensitive hashing (LSH) [1] and followup
works [19], [20] endeavor to adopt random projection to pro-
duce hash code, but the random fashion is data independent
and these methods need longer bits to achieve competitive
performance to the data dependent.

To induce compact hash code and keep efficiency, data-
dependent hashing methods [2]–[5], [21]–[29] have attracted
a tremendous amount of attention in machine learning
and become the mainstream of large-scale image retrieval.
Roughly, they can be grouped into three branches: 1) unsu-
pervised [2]–[4]; 2) supervised [5], [24]–[29]; and 3) semisu-
pervised hashing. Unsupervised hashing mainly focuses on
preserving the intrinsic data structure. For instance, [2] and [3]
model the manifold structure with graph to preserve the neigh-
borhood relationship between hash codes. Gong et al. [4]
learned hash code through PCA reduction and rotation matrix
learning. In contrast, supervised counterparts [5], [24]–[29]
exploit supervised information like the data label or pairwise
similarity to produce hash code. For example, [5], [25]–[28]
introduce pairwise label to maintain similarity, and [24]
and [29] use class label to keep semantic information. Besides
absolute supervised or unsupervised hashing, semisupervised
hashing [30]–[32], such as MLAGH [31] and SGDH [32],
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can simultaneously explore both the supervised information
and the underlying data structures in one framework, and
thus is a good choice to deal with large scale dataset with a
small number of supervised samples. One shortcoming of the
above nondeep hashing methods is the limited representation
capability of sample features.

2) Deep Hashing Methods: The earliest deep hashing
method is semantic hashing [33], which, proposed in 2009,
adopts restricted Boltzmann machine to pretrain the network
and uses a multilayer autoencoder structure to fine-tune it.

Since 2012, when AlexNet [34] was proposed and showed
encouraging performance in object recognition task, convolu-
tional neural networks (CNNs) have drawn extensive attention
in many computer vision tasks which a fortiori include image
retrieval. For instance, Xia et al. [35] proposed the first
CNN-based hashing method (CNNH), which consists of two-
stage learning processes. Later, the network in network hash-
ing (NINH) [36] and deep semantic ranking-based hashing
(DSRH) [37] are proposed to jointly combine two stages in an
end-to-end fashion. Particularly, NINH learns deep representa-
tion using triplet loss and designs a divide-and-encode module
to encode features into binary hashing codes. DSRH endeav-
ors to introduce multilevel similarity of a ranking list into the
deep hashing network (DHN). No lunch is free. Constructing
the ranking list would entail extra computation costs. Recently,
DSH [38] is proposed to design a discriminative loss to pull
the network outputs of similar images together as well as to
push the dissimilar ones far away. Besides, DHN [39] simul-
taneously addresses both the similarity preservation and the
quality of binary coding. Afterward, deep priority hashing
(DPH) [40] further mines more difficult-to-learn samples to
boost performance both in similarity preservation and binary
quantization. Different from them, DPSH [8] designs a dis-
crete hashing optimization method to train the networks with
a quantization loss function for the quality of binary codes,
guided by the pairwise labels. The spirit in deep regular-
ized similarity comparison hashing (DRSCH) [41] treats both
the ranking information and pairwise labels as the supervised
information. Nonetheless, most previous methods use diverse
expensive symmetry schemes to construct the ranking or pair-
wise information. This might displease retrieval performance
in efficiency.

To address the above issue, asymmetric deep hashing
methods are in efforts to construct the lightweight pairwise
similarity for learning binary codes in an asymmetric manner.
Among them, many efforts [9], [42], [43] leverage the pair-
wise information to perform feature learning as well as to learn
binary codes. To be specific, DDSH [9] directly constructs
two asymmetric datasets to guide deep networks to capture
two types of information: the similarity between deep features
from one dataset and binary codes from the other dataset, and
that of binary codes of different datasets. Recently, asymmet-
ric DSH (ADSH) [43] improves traditional asymmetric graph
hashing [44] by using the pairwise similarity of the entire
gallery dataset and its random subset.

As for other existing deep hashing methods, they mostly
consist of either the similarity preservation or local ranking
or quantization error reduction; thus, the effect of feature

discrimination over hashing code is still underexplored.
Although central similarity quantization (CSQ) [13] pulls all
similar data points close to the corresponding hash centers
for the compactness of hash codes but ignores the interclass
relationship of hashing centers. Besides, it only works in the
special scenario where the number of hash bits is a power of 2.

3) Related Multimodal Hashing Works: In contrast to sin-
gle modal hashing technique, multimodal hashing may be
relatively hard as it not only accounts for intermodality
relations [45]–[51] but also handles intramodality problem.
If putting aside the differences between them, both hash-
ing techniques still have some common issues. For instance,
DCMH [45] deliberately devises the single-modal deep hash-
ing module without discrete relaxation, and then extends it
to multimodal model by introducing intermodality similarity.
SRLCH [49] exploits the projection subspace of the labels
to guide each modality for cross-modal semantic consistency.
Similar to our motivation, DCH [46] also emphasizes the sig-
nificance of feature discrimination in cross-modal retrieval.
CPAH [50] chiefly leverages adversarial learning to keep
modality-common representation consistency, thereby achiev-
ing appealing performance, yet it is still built on asymmetric
similarity learning. DSMHN [51] adopts 2-D CNN to capture
the spatial information for image-text retrieval and 3-D CNN
to capture the spatial and temporal information for video-text
retrieval.

III. DISCRIMINATIVE GEOMETRIC-STRUCTURE-BASED

DEEP HASHING

Deep hashing methods have been shown efficient in image
retrieval. However, few methods focus on discrimination of
hash code, which is helpful to improve retrieval performance.
In this section, we propose DGDH, which jointly learns dis-
criminative real-value deep feature and compact hash code
through constructing a discriminative geometrical structure. In
what follows, we first give some definitions and the network
architecture of DGDH. Then, the loss functions of DGDH to
train the network and their motivations are illustrated in detail.
An algorithm is then proposed to solve DGDH. In the supple-
mentary material, we analyze the robustness and generalization
ability of DGDH in theory.

A. Problem Definition and Notations

Given an image xi ∈ Rd1×d2×3 and the corresponding image
label set yi ⊆ {1, . . . , c̄}, where 3 indicates that the image has
three channels and both d1 and d2 denote the width and height
of each image, respectively. c̄ is the total number of classes in a
dataset. Note that the number of elements in yi depends on how
many classes xi belongs to. DGDH aims to generate the corre-
sponding discriminative hash code bi = sign(F(xi;φ)) ∈ Rr×1,
where r is the hash code length and φ denotes the network
parameters.

B. Network Architecture

The basic leaning framework of DGDH is illustrated in
Fig. 2. The proposed method is an end-to-end deep model,
and its backbone network structure is based on CNN-F [52],
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Fig. 2. Overall learning framework of DGDH. It has five convolutional layers, three full connected layers, and a hashing layer. The network parameters are
optimized by minimizing the proposed discriminative geometric-structure learning loss and the asymmetric similarity learning loss. See more details in the
text.

(a) (b)

Fig. 3. Distribution of the network outputs before training. Here, we take
four classes as an example to illustrate the distribution. (a) Deep features
without tanh(·). (b) Real-value deep features with tanh(·) operation.

which has five convolutional layers and three full-connected
layers. More details about CNN-F are in [52]. In this article,
we replace the last full-connected layer (Fc3) of CNN-F with a
r-node full-connected layer to generate real-value deep feature,
where r is the hash codes length. After this layer, a hashing
layer is added to generate hash code. We minimize two kinds
of loss to optimize the network parameters of DGDH: 1) the
proposed discriminative geometric-structure learning loss and
2) the asymmetric similarity learning loss. The former, as the
main contribution of DGDH, defines an effective discrimina-
tive geometric structure, which involves three components:
1) the margin-structure center loss; 2) the radius loss; and
3) the linear classifier-based discriminative loss. The latter is
to learn hash code of gallery set directly in this article. Details
about these losses are in the next section.

C. Loss Function

The purpose of DGDH is to learn discriminative hash code,
which may determine the retrieval performance. To attain this
goal, we first introduce asymmetric similarity learning loss to
learn hash code of gallery set directly. Then, we design an
ingenious discriminative geometric structure, which consists
of three parts: 1) the margin-aware center loss; 2) the linear
classifier; and 3) the radius loss. In what follows, we detail
each loss of DGDH and their aims and interpretations one step
by step.

Samples that pass through a pretrained network without the
guidance of our loss could obtain 2-D deep features as in
Fig. 3(a). To make the deep features hash like, we can resort
to a sign(·) constraint to the deep feature F(xi;φ) of each
sample xi, that is, sign(F(xi;φ)). But as we all know, on the

basis of deep neural networks, sign(F(xi, φ)) with respect to
xi is not differentiable, and thus, it is not easy to optimize
the network parameters with the gradient descend algorithm.
Following previous works [43], [53], here “sign(·)” is replaced
with “tanh(·),” that is, x̃i = tanh(F(xi;φ)) ∈ Rr×1. Then, the
distribution of real-value deep features with tanh(·) operation
is shown in Fig. 3(b). Note that the real-value deep feature of
sample xi in this manuscript is tanh(F(xi;φ)) and F(xi;φ) is
dubbed as deep feature of xi.

1) Asymmetric Similarity Learning Loss: In order to avoid
passing large-scale samples in gallery set through the network,
we also use asymmetric similarity learning loss to connect the
real-value deep features of training samples and the hash codes
of gallery samples. The formulation is

LA = min
φ,bj

1

n�n�

n�∑

i=1

n�∑

j=1

(
x̃T

i bj − rSij
)2

.

s.t. bj ∈ {−1, 1}r (1)

where n� and n� are the cardinality of training set and gallery
set, respectively. [1/(n�n�)] is added to eliminate the effect
of large sample size. Let ∅ denote the empty set, and the
similarity matrix S ∈ Rn�×n� is defined as

Sij =
{

1, yi ∩ yj �= ∅
0, otherwise.

(2)

Actually, the asymmetric similarity learning loss can main-
tain similarity/dissimilarity among samples. However, it is
a local constraint, as shown in Fig. 1(a), with which drag-
ging samples close/apart from each other may not make
different classes separable enough. Fortunately, the proposed
discriminative geometric structure as below, composed of
margin-aware center loss, center-based linear classifier, and
radius loss, will endeavor to improve feature discrimination
from different aspects.

2) Margin-Aware Center Loss: The ral-value deep features
learned by (1) shown in Fig. 1(b) are not separable enough. To
address this issue, we introduce center loss [54], which is in
efforts to enhance intraclass compactness and has the simple
form

min
φ

1

2

nb∑

i=1

‖x̃i − ck‖2
2 (3)

where nb is the minibatch size, and ck ∈ Rr×1 denotes the
class center of the example xi. The original center loss is
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(a) (b)

Fig. 4. Illustration of the margin-aware center loss, the distance d =
‖x̃i − ck‖2 of samples with their corresponding centers are (a) less than or
equal to the margin m and (b) greater than the margin m, respectively. The
distance in green space is ignored and that in gray space is punished.

designed for single label classification. In image retrieval, the
images often involve multiple labels. Thus, we extend it to
the multilabel case and obtain the margin-aware center loss as
follows:

LM = min
φ,ck

1

n�

n�∑

i=1

c̄∑

k=1

ωik max(‖x̃i − ck‖2 − m, 0)2 (4)

where the weight

ωik = δ(k ∈ yi)

τ + ∑c̄
k=1 δ(k ∈ yi)δ(‖x̃i − ck‖2 > m)

(5)

wherein the parameter τ is to prevent the denominator from
being zero, and m is the margin of real-value deep features to
the corresponding class centers.

The indicator function is

δ(condition) =
{

1, if condition is true
0, otherwise.

(6)

The matrix C = [c1, . . . , ck] ∈ Rr×c̄ denotes the class center
matrix where each column represents a class center. We ever,
respectively, initialize them with the random values, the class
means, and k-means centers of real-value deep features and
find that such initialization ways almost make no difference
on performance; thus, we opt to initialize them randomly.

Interpretation: By minimizing (4), each sample will be close
to the corresponding class center within a certain margin. To
clearly understand the mechanism of margin-aware center loss,
we draw an illustration in Fig. 4. As shown in this figure,
the margin-aware center loss punishes the distances between
samples and their corresponding class centers when the dis-
tances are larger than the margin m, and otherwise, reckons
that the samples are close to their class centers. Thus, this
loss could drag intraclass samples into a circle with the radius
m where the circle center corresponds to the class center. As
the tolerable margin is introduced, the interclass relationships
are not devastatingly hurt. It paves the safe way to use the
interclass discrimination. By comparing the 2-D features of
Figs. 1(a) and 5(a), the margin-aware center loss can make
the samples from the same class more compact, on the basis
of asymmetric similarity learning loss.

3) Center-Based Linear Classifier: The margin-aware cen-
ter loss only pulls real value deep features to the correspond-
ing class centers, but the class centers are not necessarily
separable. We expect that the class centers should be as

(a) (b)

Fig. 5. Illustration of the effect of linear classifier. (a) Real-value deep
features after using margin-aware center loss. (b) Real-value deep features
after adding linear classifier.

discriminative as possible. This induces diverse semantic
information. For concise, we learn a linear classifier based
on the class centers to boost interclass separability. Then, the
linear classifier is

LL = min
ck,W

1

c̄

c̄∑

k=1

∥∥ck
TW − Ȳk

∥∥2
2 + η‖W‖2

F (7)

where W ∈ Rr×c̄ is the transformation matrix to project the
class centers to the label space. The last term ‖W‖2

F is to
avoid trivial solution of W, and η is the corresponding penalty
parameter. Ȳk ∈ R1×c̄ is a one-hot label vector, that is, the
kth column of the label matrix Ȳ . This label matrix is class-
agnostic and purely pushes different centers far away from
each other with the help of the projection matrix W. In other
words, (7) always behaves identically as long as the label
matrix has different columns of one-hot vectors; thus, it is
a permutation of the identity matrix. In general, for simplic-
ity, we directly treat the identity matrix as the label matrix,
that is, the kth entry of Ȳk is “1,” while the others are “0.”

Interpretation: We also draw a diagram to explain the effect
of linear classifier. Benefitting from margin-aware center loss,
the center-based linear classifier will push away different cen-
ters of classes, while the samples within the same class will
be dragging toward the class center. As a result, the samples
from different classes are also far from each other. As shown
in Fig. 5(a) and (b), the linear classifier makes the samples of
different classes distinguishable from each other.

4) Radius Loss: So far, we have obtained the real-value
deep features with sufficient separability. Is that enough for
DGDH? The answer is no. We need to further reduce the
quantization error between the real-value deep features and
the binary hash codes. How to make it with the loss? As each
entry of binary hash codes is either 1 or −1, the 2-norm of
the r-bit binary hash code vectors is

√
r. Since real-value deep

features are the surrogate of binary hash codes, the norm of
real-value deep features should be also

√
r. Note that through

the tanh(·) function, the norm of real-value deep features
has been already restricted within the intersection between a
hypersphere and the square region, which is bounded by the
corresponding binary codes [Fig. 1(d)]. Thus, their norms near√

r means pushing them to the binary codes. This could be
beneficial for reducing the quantization error. This spirit can
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(a) (b)

Fig. 6. Illustration of the effect of radius loss. (a) Real-value deep features
before introducing radius loss. (b) Real-value deep features after introducing
radius loss. The black arrows indicate radius loss pulls class centers to binary
hash codes.

be formulated as

min
φ

1

n�

n�∑

i=1

(‖x̃i‖2 − √
r
)2

. (8)

As in real datasets, the amount of training samples n� is far
larger than the amount of class centers k; thus, in contrast to
constraining amounts of samples in (8), constraining the class
centers can greatly reduce the computation overhead. In addi-
tion, as in (4), we have constrained the samples to be close
to the corresponding class center in the margin-aware center
loss. Then, making the class centers locate on the hypersphere
with the radius of

√
r could also drag the corresponding sam-

ples close to this hypersphere. Taking these into account, we
project the class centers instead of real-value deep features of
samples to the hypersphere with the radius of

√
r. Thus, the

insight can be formulated as

LR = min
ck

1

c̄

c̄∑

k=1

(‖ck‖2 − √
r
)2

. (9)

Interpretation: In Fig. 6, since the activation function works
there, the real value of deep features should range from
−1 to 1. Thus, the entire samples are not beyond the above
range. According to (9), the class centers will be dragged
toward the hypersphere with the radius

√
2. Due to the above

facts, the real-value features will approach to the binary codes
+1/−1. Fig. 6(b) verifies the spirit of radius loss, that is, the
radius loss indeed reduces the binary quantization error by
dragging the class centers to the vertex of the hypersphere.

5) Overall Loss of DGDH: By combining (1), (4), (7),
and (9) together, we obtain the overall loss of DGDH as
follows:

L = min
φ,C,W

LA + αLM + βLR + γ LL (10)

where α, β, and γ are, respectively, the balance parame-
ters of each loss in (10). Since the proposed discriminative
geometric-structure learning loss is based on small sample
size of class centers, they are lightweighted and have low
complexity. This point will be further verified in experiments.

D. Optimization

When training DGDH, we need to determine all the param-
eters in (10). In this section, we propose an efficient alternate

algorithm to solve (10). More specifically, we update one
variable with the others fixed at each round iteration.

Update φ With ck, bj, and W Fixed: When ck, bj, and W are
fixed, we derive the following gradient of (10) with respect to
the network weights φ through the chain rule:

∂L

∂φ
= ∂L

x̃i

∂ x̃i

∂F(xi;φ)

∂F(xi;φ)

φ
. (11)

The first two terms of (11) are computed by

∂L

x̃i

∂ x̃i

∂F(xi;φ)
=

⎧
⎨

⎩
2

n�

∑

j∈�

(
x̃T

i bj − rSij
)
bj

T

+ 2α

c̄∑

k=1

ik(x̃i − ck)δ(‖x̃i − ck‖2 > m)

×
(

1 − m

‖x̃i − ck‖2

)⎫
⎬

⎭

	
(

1 − x̃2
i

)
(12)

where 	 denotes the Hadamard product. Based on the gra-
dient of (12), the backpropagation (BP) algorithm is used to
update φ.

Update ck With φ, bj, and W Fixed: When φ, bj, and W are
fixed, (10) can be recast as

min
ck

α

n�

n�∑

i=1

c̄∑

k=1

ik max(‖x̃i − ck‖2 − m, 0)2

+ β

c̄

c̄∑

k=1

(‖ck‖2 − √
r
)2 + γ

c̄

c̄∑

k=1

∥∥ck
TW − Ȳk

∥∥2
2. (13)

To solve (13), we compute the gradient of (10) with respect
to ck

∂L

∂ck
= 2α

n�

∑n�

i=1 δ(k ∈ yi) · δ(‖x̃i − ck‖2 > m)
(

1 − m
‖x̃i−ck‖2

)
(ck − x̃i)

)

τ + ∑n�

i=1 δ(k ∈ yi)δ(‖x̃i − ck‖2 > m)

+ 2β

c̄

(
1 −

√
r

‖ck‖2

)
ck + 2γ

c̄

(
WWT ck − WȲT

k

)
. (14)

Then, ck can be updated by

ct+1
k = ct

k − μ
∂L

∂ct
k

(15)

where ct
k denotes ck in the tth iteration, and μ is the learning

rate of updating ck.
Update bj With φ, ck, and W Fixed: Let B� ∈ Rn�×r denote

the gallery hashing matrix. When φ, ck, and W are fixed, we
recast (10) as

min
B�

∥∥X̃T
�B�

T − rS
∥∥2

F

= ∥∥B�X̃�

∥∥2
F − 2rtr

(
B�X̃�S

) + const

s.t. B�{−1, 1}n�×r (16)

where X̃� = tanh(F(X�;φ)) ∈ Rr×n� denotes the real-value
deep features for training set. Then, we can solve B� to update
bj, a transposition of a row in B� . According to [43], we
solve B� in a bit-by-bit manner. That is, each bit in turn is
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Algorithm 1: DGDH
Input: Training set X�, class labels Y , parameters α, β, γ , η, τ ,

pre-fined network CNN-F. Network iteration Nnet , center
updating iteration Ncenter and algorithm iteration Niter . The
network learning rate l, the class center updating rate μ and the
batch size nb.

Output: Network parameters φ and gallery hashing matrix B� .
1 Initialize network parameters φ, randomly initialize transformation

matrix W, class center matrix C and gallery hashing matrix B� ,
compute similarity matrix S and class label matrix Ȳ based on Y .

2 for i = 1:Niter
3 for j = 1:Nnet
4 Update network parameters φ via Eqs. (11)-(12).
5 end
6 for j = 1 : Ncenter
7 Update class centers via Eqs. (14)-(15).
8 end
9 Update transformation matrix W via Eq. (20).

10 Update gallery hashing matrix B� via Eq. (18).
11 end

updated. Let bq, x̃q, and rq denote the qth column of B� , X̃T
�,

and R, respectively, wherein R = rSTX̃T
�. Besides, B̂� , ˆ̃XT

�,
and R̂ indicate to remove the qth column of B� , X̃T

�, and R,
respectively. To solve bq, (16) becomes

min
bq

tr
(

bq

(
2x̃T

q
ˆ̃XT
�B̂T

� − 2rT
q

))
, s.t. bq ∈ {−1, 1}r. (17)

The solution to (17) is

bq = −sign
(

2B̂�
ˆ̃X�x̃q − 2rq

)
. (18)

Update W With bj, φ, and ck Fixed: When bj, φ, and ck are
fixed, we optimize the following formula:

min
W

∥∥CTW − Ȳ
∥∥2

F + η‖W‖2
F

= tr
(
CTWWTC − 2CTWȲT + ηWTW

)
. (19)

By setting the gradient of (19) about W to be zero, we obtain
the solution of W

W = (
CCT + ηI

)−1
CȲ (20)

where Ȳ ∈ Rc̄×c̄ denotes the label matrix of class centers C,
wherein each row represents the label vector corresponding to
each individual class center.

The entire training procedure of DGDH is listed in
Algorithm 1. We theoretically analyze the robustness and gen-
eralization of DGDH. For space limitation, the theoretical
analysis is left in the supplementary material (Section I).

IV. EXPERIMENTS

This section mainly verifies the efficacy of DGDH
by conducting image retrieval experiments on five pop-
ular datasets, including CIFAR-10 [7], MS-COCO [55],
Flickr25K [56], NUS-WIDE [57], and large-scale dataset
Clothing 1M (Cloth-1M) [15]. Extensive analyses of effi-
ciency, ablation study, and feature visualization further show
the effectiveness of DGDH.

For CIFAR-10, MS-COCO, and NUS-WIDE datasets, we
use the same data split as DMUH [58]. For Flickr25K and
Cloth-1M, the protocols are as follows.

TABLE I
DATASET STATISTIC

1) The Flickr25K dataset [56] is a subset of one million
Flickr1M dataset [59]. It consists of 25 000 multilabel
images from 38 categories. We also remove the images
with no labels in this dataset and keep the rest
24 581 images for experiment. Then, we randomly select
30 images from each category as query set and randomly
select 5000 images as the training set. The rest images
form the gallery set for image retrieval.

2) The Cloth-1M dataset [15] contains 1 034 912 clothing
images from the Internet. Most of the images are anno-
tated into 14 categories according to their surrounding
texts; thus, 1 000 000 images have noisy labels. Another
34 912 images are manually annotated with clean labels.
Based on the images with clean labels, we randomly
select 100 and 500 images each category as query and
training sets, respectively. The rest part of the manu-
ally annotated images and the images with noisy labels
constitute the gallery set.

The dataset statistic is shown in Table I. For all the datasets,
the pairwise similarity construction is based on the class labels,
where the similarity is 1, if a pair of examples shares at least
one label, and otherwise 0.

A. Settings

We compare DGDH with two kinds of well-established
baselines.

Traditional nondeep hashing methods involve three repre-
sentative methods, which correspond to LSH [1], ITQ [4],
and SDH [5]. For such methods, we extract the second Fc
layer features with 4096-dimension of the pretrained CNN-F
network as the input features, and then run the source codes
provided by the authors to conduct experimental comparison.

Deep supervised hashing methods include some state-of-
the art methods, such as DPSH [8], DDSH [9], IDHN [12],
CSQ [13], OrthoH [60], and DMUH [58]. All of the com-
pared deep methods are in frame of CNN-F. The network
input images are consistently resized as a 224×224×3-pixel
tensor, that is, center crop and resize each channel of image
to 224×224. For single-channel image, copy it three times
to derive the input with the size of 224×224×3. For fair-
ness, all the compared methods use identical training and
query set to train and test deep models, respectively. All deep
methods are evaluated on a TITAN-RTX GPU, the training
batch size of DGDH on CIFAR-10, MS-COCO, Flickr25K,
and NUS-WIDE dataset is 64 and 128 on Cloth-1M dataset,
and the encoding batch size is 128 on all datasets. For other
deep methods, the parameters are consistent with their pub-
lished paper or released source codes. For the datasets that
has not appeared in their original papers, we tune as the better
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TABLE II
MAP RESULTS (%) ON CIFAR-10, MS-COCO, FLICKR25K, AND CLOTH-1M DATASETS, AND THE MAP@5000 RESULTS ON

NUS-WIDE DATASET FOR 16, 32, AND 64 BITS IMAGE RETRIEVAL, RESPECTIVELY

parameters for them as possible in our best. For DPSH, DDSH,
IDHN, CSQ, and OrthoH, we run the released source code by
the authors. For DMUH, we reproduce its code and obtain
similar results with the published paper [58]. Since the data
division of CIFAR-10, MS-COCO, and NUS-WIDE datasets
in this article is the same with DMUH, we directly cite the
mean average precision (MAP) results of DMUH on these
three datasets.

For DGDH, we fix the involved parameters: α = 100,
β = 100, γ = 100, η = 10, and τ = 0.001. In addition, we
set the iteration numbers of updating the network to Nnet = 4,
the iteration numbers of updating centers to Ncenter = 1, the
algorithmic iteration number to Niter = 10, and the weight
decay to 5 × 10−4, respectively. For all datasets, we tune the
class center updating rate μ ranging from [10−5, 10−6] and
the network learning rate l from [10−4.5, 10−6], respectively.

To validate DGDH and the compared methods, we use
the evaluation metrics: Hamming ranking in MAP, precision–
recall performance, and precision of top 50 retrieved images
(precision@top50).

B. Results

Hamming Ranking Performance: We report the MAP
results for CIFAR-10, MS-COCO, Flickr25K, and Cloth-1M
datasets, and the MAP@5000 results for NUS-WIDE dataset
in Table II. By comparing ITQ and SDH with LSH, we
can draw the conclusion that data-dependent methods gain
better performance than data-independent methods; this can
attribute to the advantage of information inherent in the
data. Benefiting from supervisory signal, supervised deep
hashing methods and SDH outperform unsupervised counter-
parts. In most cases, deep hashing methods can outperform
traditional nondeep methods, as deep methods enjoy pow-
erful feature representation. It is not difficult to find that
DGDH achieves more performance gains as compared to
other baselines. In particular, DGDH, respectively, exceeds
DDSH by 6.97% and SDH by 28.62% for 32-bit results on
CIFAR-10. For the MS-COCO dataset, taking 64 bits as exam-
ple, DGDH achieves the increase of 2.53%–15.93% against
deep hashing counterparts, and exceeds the nondeep methods

by 10.70%–30.17%. On the Flickr25K dataset, taking 16-bit
image retrieval as example, DGDH exceeds deep counter-
parts by 7.88%–12.70% and surpasses the traditional nondeep
methods by 13.10%–26.56%, respectively. DGDH achieves
the sound performance again on NUS-WIDE and Cloth-1M
datasets. The main reason for sound performance gains might
be that DGDH can learn more discriminative features through
the discriminative geometric-structure learning loss, thereby
inducing compact and well-performed hash code. Besides, we
find that DGDH can achieve better performance with the rise
of the number of bits on CIFAR-10, MS-COCO, NUS-WIDE,
and cloth-1M datasets. This is because more bits deliver more
information under a certain length range. For instance, on the
Flickr25K dataset, the above trends are kept on 16–32 bits,
but the performance declines with 64 bit; this is also rea-
sonable as Flickr25K contains relatively less samples and the
longer bits may induce information redundancy, thus decreas-
ing the performance. To remove the effect of the gallery set
on performance, we train DGDH with another setting where
the gallery set is discarded while the mere training set is left
(we call this model DGDHonlyTrain). According to Table II,
DGDHonlyTrain still achieves powerful retrieval performance.

The precision–recall curves on CIFAR-10, MS-COCO,
Flickr25K, NUS-WIDE, and Cloth-1M datasets are shown
in Fig. 7. We can easily find that DGDH shows the best
retrieval performance compared with all the baselines. On
CIFAR-10, DGDH remains high precision even if the recall
increases greatly. This may be because the CIFAR-10 dataset
is relatively easy to retrieve for DGDH, so that the retrieval
results are always correct during retrieval. By comparison,
supervised methods show better performance than unsuper-
vised ones. Besides, deep hashing methods mostly outperform
nondeep methods. For another single-label dataset Cloth-1M,
DGDH gains better performance than other methods by a large
margin. This shows the superiority of DGDH in retrieving
large-scale dataset when the training sets are relatively small.
For multilabel datasets, such as MS-COCO, Flickr25K, and
NUS-WIDE, DGDH also achieves the decent performance
against the compared baselines. These results show the
effectiveness of DGDH on both single-label and multilabel
datasets.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 7. Hamming ranking performance (in precision–recall curve) for 16 bits on (a) CIFAR-10, (b) MS-COCO, (c) Flickr25K, (d) NUS-WIDE, and (e) Cloth-
1M datasets, 32 bits on (f) CIFAR-10, (g) MS-COCO, (h) Flickr25K, (i) NUS-WIDE, and (j) Cloth-1M datasets, and 64 bits on (k) CIFAR-10, (l) MS-COCO,
(m) Flickr25K, (n) NUS-WIDE, and (o) Cloth-1M datasets, respectively.

(a) (b) (c) (d) (e)

Fig. 8. Hamming ranking performance (in precision@top50) on (a) CIFAR-10, (b) MS-COCO, (c) Flickr25K, (d) NUS-WIDE, and (e) Cloth-1M datasets,
respectively.

Retrieving top-ranked images is widely used in real life,
so we also report the precision of top 50 retrieved images
versus different hashing bits on five datasets in Fig. 8. For
this evaluation, DGDH also yields the salient performance
as compared to the well-behaved baselines. This implies the
promising potential of the discriminative geometric-structure
learning loss again.

Time Analysis: To evaluate the efficiency of DGDH, we
test the training and encoding time of DGDH compared
with other deep hashing methods. The comparison results on
CIFAR-10, MS-COCO, Flickr25K, and NUS-WIDE datasets
are shown in Table III, and results of Cloth-1M dataset are
shown in Table IV. From these two tables, DGDH spends
less training and encoding time than other compared meth-
ods on CIFAR-10, MS-COCO, and Flickr25K datasets. For
NUS-WIDE and Cloth-1M datasets, DGDH spends compet-
itive training time comparing with other methods, and uses
less encoding time than the compared methods. The time
comparison results verify the efficiency of DGDH.

TABLE III
TRAINING TIME AND ENCODING TIME (MIN) ON CIFAR-10, MS-COCO,

FLICKR25K, AND NUS-WIDE DATASETS FOR 32-BIT IMAGE

RETRIEVAL, RESPECTIVELY (GPU: TITAN-RTX)

Impact of Network Backbone: Extra experiments are eval-
uated to analyze the impact of network backbone on DGDH.
The comparison results of DGDH with DPSH, IDHN, CSQ,
OrthoH, and DMUH are shown in Table IV. We observe
that DGDH has better MAP performance than the compared
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Fig. 9. Visualization of top-10 retrieving results for 64-bit on CIFAR-10 dataset. (a) DGDH. (b) DMUH. (c) OrthoH. (d) CSQ. (e) IDHN. (f) DDSH.
(g) DPSH. The green rectangles indicate correct retrieved images and the red ones are inaccurate.

TABLE IV
MAP RESULTS VERSUS DIFFERENT NETWORKS ON LARGE-SCALE

CLOTH-1M DATASET FOR 16, 32, AND 64 BITS IMAGE RETRIEVAL,
AND THE TRAINING AND ENCODING TIME (MIN) ON CLOTH-1M

DATASET FOR 32-BIT IMAGE RETRIEVAL, RESPECTIVELY

TABLE V
MAPS OF ABLATION STUDY ON (a) CIFAR-10, (b) MS-COCO,
(c) FLICKR25K, (d) NUS-WIDE, AND (e) CLOTH-1M DATASETS

methods, regardless of using CNN-F or ResNet50. Moreover,
when the network goes deeper, most methods achieve obvious
performance improvement.

Ablation Study: We conduct ablation study to investigate the
effects of different components in DGDH, that is, asymmetric
learning loss LA, margin-aware center loss LM , center-based
linear classifier LL, and radius loss LR. Table V shows
that when we add LM , LL, and LR to DGDH, the retrieval
performance increases, thus verifying the effectiveness of
geometric-structure learning loss again.

Visualization of Image Retrieval Results: To intuitively see
retrieval performance, we conduct image retrieval for 64-bit on
the CIFAR-10 dataset and visualize the retrieval images ranked
by seven deep supervised methods in Fig. 9. The retrieval
results of query 1 and query 2 are the success and failure
cases, respectively. For query 1, the top-10 images of DGDH
are all correct. In the second retrieval exemplar, it is difficult
for query 2 to be discerned by humans, thus it is allowable
that all retrieval images are all incorrect.

Visualization of the Discriminative Geometric-Structure: To
clearly understand how the discriminative geometric-structure
DGDH learns, we do experiments on CIFAR-10 [7] to show
the learned deep features with different margin values m. As
m describes the margin between the class centers and the
real value features, and the 2-norm of both the class cen-
ters and the real value features have correlation with the
hash bit r, so we make the margin value m ranges from
(0, 0.01, 0.1, 1, 10) × r. In detail, we randomly select four
classes and select 1500 images from each class on CIFAR-10
to train DGDH. Then, we display the learned 2-D deep fea-
tures in Fig. 10. As Fig. 10(a)–(e) shows, the discriminative
geometric-structure of 2-D features is that samples from four
classes locate on four circle regions around the correspond-
ing binary hash codes with tolerable margins, and this is
consistent with our goal in Fig. 1(d). Since the different
distributions of dataset, amounts of intraclass samples are usu-
ally hard to approach to the corresponding class centers. To
this, preserving a proper margin for most intraclass samples
can significantly reduce the cumulative loss and thus could
achieve more compact representation for intraclass samples.
As shown in Fig. 10(c), the margin 0.1 × r achieves the best
discriminative ability among all the given margins.

V. CONCLUSION

This article proposes a DGDH, which can learn discrimi-
native and compact deep features and hash codes. In detail,
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(a) (b) (c) (d) (e)

Fig. 10. Learned discriminative geometric-structure of 2-bit deep features tanh(F(xi;φ)) on CIFAR-10 dataset versus different margin values. (a) m = 0 × r.
(b) m = 0.01 × r. (c) m = 0.1 × r. (d) m = 1 × r. (e) m = 10 × r.

DGDH learns an attractive discriminative geometric struc-
ture where class centers are located on a hypersphere and
samples surround the corresponding class centers with a cer-
tain margin. The experimental results on toy and real-world
datasets verify the effectiveness of this discriminative geo-
metric structure. Moreover, DGDH can reduce quantization
errors in a new manner, which connects the samples, class
centers, and the binary hash codes through the proposed geo-
metrical structure. Theoretical analysis verifies robustness and
generalization ability of DGDH. Extensive image retrieval
experiments on five popular datasets demonstrate the supe-
riority of DGDH over several state-of-the-art methods. In
future work, it is hopeful to further enhance image retrieval
performance by integrating the intriguing insights of recent
studies [61], [62] into a unified hashing learning framework
to enjoy the strengths of the context information.
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