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Abstract—Modern classifier systems can effectively classify tar-
gets that consist of simple patterns. However, they can fail to
detect hierarchical patterns of features that exist in many real-
world problems, such as understanding speech or recognizing
object ontologies. Biological nervous systems have the ability
to abstract knowledge from simple and small-scale problems in
order to then apply it to resolve more complex problems in sim-
ilar and related domains. It is thought that lateral asymmetry
of biological brains allows modular learning to occur at differ-
ent levels of abstraction, which can then be transferred between
tasks. This work develops a novel evolutionary machine-learning
(EML) system that incorporates lateralization and modular
learning at different levels of abstraction. The results of ana-
lyzable Boolean tasks show that the lateralized system has the
ability to encapsulate underlying knowledge patterns in the form
of building blocks of knowledge (BBK). Lateralized abstraction
transforms complex problems into simple ones by reusing general
patterns (e.g., any parity problem becomes a sequence of the 2-bit
parity problem). By enabling abstraction in evolutionary compu-
tation, the lateralized system is able to identify complex patterns
(e.g., in hierarchical multiplexer (HMux) problems) better than
existing systems.

Index Terms—Building blocks, cognitive neuroscience, later-
alization, learning classifier systems (LCSs), modular learning.

I. INTRODUCTION

CURRENT learning systems exhibit world-leading behav-
ior in playing complicated strategic games, but they

often struggle on other apparently simple tasks, especially
when an abstract concept needs to be discovered and reap-
plied in a new setting [1]. They struggle to identify patterns
within patterns, and so they cannot reuse knowledge effi-
ciently [2]. Instead, repeated patterns within a layer of a
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neural network must be learned separately. Although new
innovations, such as attention mechanisms [3]–[5] and cap-
sules [6], [7] address some of these problems, most con-
ventional systems still depend on a homogeneous approach,
in which all features within a layer are treated in the same
manner.

Evolutionary machine-learning (EML) alternatives show
promise in classifying targets that consist of simple patterns
of data, but existing EML-based systems still struggle with
many real-world problems that entail hierarchical patterns.
An effective alternative might be found in learning classifier
systems (LCSs), an EML approach that naturally splits a solu-
tion into niches, allowing it to handle hierarchical patterns in
a heterogeneous manner.

These heterogeneous features could represent knowledge at
different levels of abstraction in compact building blocks of
knowledge (BBK) that are relevant and sufficient to solve a
specific problem [8]. A BBK is a unit of knowledge utilized
by the artificial agent to represent either part of a problem
or the complete problem. Levels of abstractions are perspec-
tives that can be used to address a problem. For example, in a
visual task, a local viewpoint (eyes, nose, and mouth of a cat),
and a global viewpoint (whole cat) are two different levels of
abstraction [9], [10].

The use of heterogeneous knowledge representation can
be seen in biological intelligence(s), which can learn new
knowledge from simple and small-scale problems and then
apply it to resolve more complex problems in similar
and related domains [11], [12]. Two organizing princi-
ples of vertebrate brains—1) lateralization and 2) modu-
larity of function—support this reuse of learned knowl-
edge. We propose that the incorporation of these principles
could overcome the limitations inherent in homogeneous
systems.

Lateral asymmetry in vertebrate (and many invertebrate)
brains allows for modular learning at multiple levels of
abstraction [13], [14]. For example, in many domains, the left
hemisphere processes elementary (constituent) information,
while the right hemisphere simultaneously processes the same
information at a higher (holistic) level of abstraction. This
organization has been shown to produce advantages in neural
efficiency and cognitive performance [15]–[17].

It is hypothesized that a lateralized EML system can effi-
ciently learn complex problems by splitting knowledge into
constituent and holistic components. One half of the system
(which we call the left half) needs to represent the most basic
elements of knowledge; that is, individual features and simple
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Fig. 1. Conventional EML approach (left) considers individual features
and niches in a homogeneous manner. A lateralized approach (right) splits
a complex problem into constituent and holistic knowledge.

niches.1 At the same time, the other (right) half needs to
create a more abstract knowledge representation by reapply-
ing basic knowledge to represent higher order features across
niches. Finally, the left half and the right half need to cooperate
to efficiently resolve the problem. Many real-world problems
are constructed from subproblems. Hence, the system must
be able to consider the problem at two different levels of
abstraction (constituent level and holistic level) simultane-
ously. A schematic explanation that contrasts the conventional
homogeneous and lateralized approaches is shown in Fig. 1.

Apart from LCSs, other component-based EML techniques
exist but they provide only a partial solution to this problem.
For example, a layered learning GP (LLGP) technique has
been used to cope with the hierarchical distribution of knowl-
edge. This technique requires a human-in-the-loop hierarchi-
cal decomposition of the task and the selection of suitable
algorithms for the learning of subtasks. Moreover, LLGP
requires a strict sequence of learning to resolve large-scale
problems [18], [19]. Similarly, a transfer learning-based GP
technique can easily solve simple classification tasks but
struggles to completely learn complex (e.g., 7-bit parity)
problems [20]. Cartesian GP (CGP) is another GP-based tech-
nique that implicitly reuses graph nodes to address large-scale
problems [21], [22]. Although CGP can produce many-to-
one genotype-to-phenotype mapping, it generates an arbitrary
sequence of computer programs that can solve only a partic-
ular problem. It also creates very large solutions, making the
learning intractable [23].

LCSs are more tractable as their GP-tree-like code fragment
(CF)-based representation can encode complex knowledge in
hierarchical problems with minimal bloat [24], [25]. However,
these systems require a huge number of training instances,
strict ordering of layered learning, and much human interven-
tion. Moreover, these systems process everything at the same
level of abstraction during the learning process, that is, the
population of rules is still monolithic [25], [26]. Consequently,
these systems do not have the ability to identify and learn
higher order abstract relationship(s) between the features and
knowledge of a complex problem.

A. Goals and Benefits

The overall goal of this work is to enable abstraction in
learning by creating a novel lateralized EML system, inspired

1A niche is an area of the sample space where the neighboring instances
share a common property.

by the principles of biological intelligence. The system will
have the ability to apply lateralization and modular learning
at different levels of abstraction to solve complex problems.
To achieve this goal, the following objectives have been set.

1) Create a lateralized system such that a single input can
be processed at different levels of abstraction, that is, at
the constituent level and/or the holistic level. Instead of
mapping features to knowledge in a homogeneous man-
ner that considers all input features equally, the problem
will be split into two halves. One half will map sub-
groups of features to knowledge at a constituent level,
whereas the other will map all features to knowledge at
a holistic level.

2) Represent BBKs in a heterogeneous manner. Different
sized blocks of knowledge can be recombined in a recur-
sive manner, that is, a holistic block can be (re)used as
a constituent block at a higher level of abstraction.

3) Identify and reuse the relevant BBKs to efficiently
resolve complex problems, that is, those consisting of
patterns within patterns.

In real life, we often face problems that have multiple parts
and are also multifaceted, where it is useful to be able to
classify objects at the lower level of detail and at higher levels
of abstraction, for example, when we recognize a car, we can
identify it as a vehicle for transportation, but we can also
identify windscreen, wheels, etc., depending on the complex
problem we are trying to solve.

II. BACKGROUND

The goals of this section are threefold: first, to present an
overview of the benchmark problems that will be used to
evaluate the novel system; second, to introduce the relevant
biological principles of vertebrate intelligence that will inform
the work; and third, to describe the current state-of-the-art EC
techniques, especially LCSs, that will provide a foundation
upon which the novel lateralized system will be constructed.

A. Problem Domains

To test the effectiveness of the lateralized approach for clas-
sification problems well-known complex Boolean problems
(multiplexer (Mux), parity, majority-on, and carry problems)
will be used. These problems possess a number of features
essential to evaluating the lateralized approach. First, they
exhibit heterogeneity and epistasis, which are known to cause
problems in classification techniques as these cannot make
the linearly separable assumption. Second, they possess iden-
tifiable components of a solution that are transferable to
other problems, making them useful for evaluating transfer
learning abilities. Third, they have known exact solutions, so
the correctness of the produced solution can be interrogated.
And finally, Boolean problems have measurable search space,
dependency structure, multimodal solutions, and distributed
niches (subsolutions) [27].

Although Boolean problems are sometimes considered to be
“toy” benchmark problems, these characteristics make them
analogous to real-world problems, such as those found in
finance, bioinformatics, and behavior modeling. Hence, many
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Fig. 2. Instance of the 18-bit hierarchical Mux problem. The lower layer
consists of 3-bit parity problems, whereas the upper layer is a 6-bit Mux
problem.

state-of-the-art systems have been evaluated by using Boolean
problems [20], [24], [25], [28], [29]. The scalability of the
lateralized approach will be investigated by utilizing more
complex derived versions of these problems, such as hierarchi-
cal Mux problems and high-scale parity problems (i.e., beyond
the common 7-bit problem).

Hierarchical problems are hard to resolve as they have low
sparsity and hierarchical distribution of knowledge [24], [27].
Therefore, these problems are the best candidates with which
to evaluate the effectiveness of the lateralized system. The
hierarchical Boolean problems presented here consist of two
layers. The lower layer is composed of multiple instances of
a specific Boolean problem. The evaluation and integration of
the lower layer generate an instance of the upper layer, which
is another Boolean problem. For example, an 18-bit hierarchi-
cal problem may be composed of the following layers: 1) a
lower layer based on a 3-bit parity problem and 2) an upper
layer based on the 6-bit Mux problem. An example instance of
an 18-bit hierarchical multiplexer (HMux) is shown in Fig. 2.
A deeper introduction to Boolean problems, for readers who
are unfamiliar, is presented in the supplementary material (see
Section S-II).

B. Cognitive Architecture in Vertebrate Brains

Vertebrate brains have a functional architecture that allows
them to abstract knowledge from simple and small-scale prob-
lems and then reuses it to solve complex problems. It is not
the intention of this work to model the specific architecture
of a specific species; rather to take inspiration from basic
principles of functional organization that are fundamental to
vertebrate intelligence. We focus here on two such principles:
1) lateralization and 2) semantic processing.

1) Lateralization: The propensity of a specific cognitive
process to be performed more efficiently and precisely by one
hemisphere as compared to the other is called hemispheric
lateralization [30]. At the macrostructural view, the left and
right hemispheres look alike. However, they have distinct neu-
roanatomy, neurochemistry, and functional architecture [30].
Three aspects of lateralization are relevant for applications
to AI.

a) Representation and processing: Some functions are
strictly lateralized to one hemisphere or the other. For example,
each hemisphere receives sensory inputs from the opposite side
of the body and controls the contralateral musculature. But,
for higher order cognition, differences between hemispheres

are more relative than absolute, with both hemispheres con-
tributing to most tasks. Often these hemispheric differences
concern the scale at which the same sensory inputs are rep-
resented for subsequent processing. For example, in visual
perception, the left hemisphere processes information at a local
(or constituent) level while the right hemisphere processes
information at a more global (or holistic) level [31].

These fundamental differences in the representational scale
may arise through filtering. For example, the double filter-
ing by the frequency model proposes that the left hemisphere
acts as a high pass filter, allowing it to represent detailed
information that is available in high spatial or temporal
frequencies. At the same time, the right hemisphere acts as
a low pass filter, allowing it to represent global patterns that
emerge in low spatial or temporal frequencies [32]. Such com-
plementary forms of representation are not limited to sensory
information, however. For example, in language processing,
the left hemisphere may activate single, literal, meanings
of words, or sentences, while the right hemisphere keeps
alternative, metaphorical, or figurative meanings active [33].
This ability to represent and process the same problem
instance at a local constituent level and a global holistic
level will need to be incorporated in the work presented here
[Objective 1)].

b) Coordination: Effective cognition requires that the
computations carried out in opposite hemispheres be coordi-
nated. Recognizing faces requires that we integrate individual
features (left) with their configural arrangement (right) [34];
understanding a joke requires that we integrate the literal
meanings of individual words (left) with their alternative sub-
text (right) [35]; and understanding a song requires that we
integrate the lyrics (left) with the melody (right) [36]. It is
the coordination between the left and right hemispheres that
enables the transfer of critical information at different levels
of abstraction. This coordination needs to be included in the
modules created here [Objective 3)].

c) Goal-driven processing: Vertebrate brains have the
ability to select the computations required to perform a specific
task from the most suitable and relevant hemisphere. Goal-
driven processes analyze the problem at hand and shift control
to the superior and suitable hemisphere. For example, if the
emotional state of a conversational partner is most relevant,
outputs from right hemisphere speech processing systems will
dominate; however, if the linguistic elements are of concern,
then left hemisphere computations are prioritized [16], [17].
The connections between hemispheres in vertebrate brains can
be excitatory or inhibitory, allowing for either integration or
inhibition, as goals dictate [37]. The ability to identify which
hemisphere is best matched to the task is important in practical
situations. A strategy needs to be developed for the identifi-
cation of the most suitable module with respect to the given
problem instance [Objective 3)].

2) Semantic Processing: Semantic cognition is the com-
petency to utilize, control, and generalize learned knowl-
edge. Dominant models of semantic cognition include two
interacting components—1) a representational system that
abstracts information from the environment to form con-
cepts and 2) a control system that selects and activates
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the appropriate features of a concept given current goals or
contexts [38], [39].

a) Semantic representation: A concept is a coherent
collection of knowledge about the world. According to the
hub-and-spoke model [39], the features that comprise a con-
cept are distributed throughout the brain in modal spokes
(motor, auditory, color, shape, etc.) that are formed through
sensory-motor experience and/or abstracted from statistical
regularities in the environment. These modal spoke then con-
nect to a cross-modal hub (anatomically located in the anterior
temporal lobe in humans), in which related concepts are con-
nected to each other. The hub is, therefore, able to represent
generalized concepts that are independent of any specific
instance. The activation of a concept (e.g., a hammer) then
entails activation of its cross-modal hub, along with modality-
specific activation of its features (how it is held, what it is used
for, its visual form, etc.) [40]–[43]. Although the network is
bilateral, left and right hubs display subtle asymmetries by
virtue of their connections to lateralized perceptual and motor
systems [38].

b) Semantic control: Not all features of a concept are
relevant in all contexts. Anatomically distinct semantic con-
trol mechanisms (localized in the frontal cortex) activate the
most relevant meanings with respect to the current task or
subtask [39]. For example, when asked to describe the simi-
larities between a fire extinguisher and a tomato, people show
increased activation in color-processing areas of the brain.
In contrast, reflecting on the similarity between hammers
and hacksaws activates areas that generate motor movements.
Controlled semantic cognition therefore allows for concepts to
be constructed from BBKs as dictated by current needs [39],
[40], [42], [43].

Concepts are therefore flexible; able to represent both gen-
eralizable and task-specific knowledge. This flexible use of
concepts needs to be incorporated in this work to allow the
representation of knowledge at different levels of abstraction
through the activation of relevant BBKs. Both specific and
generalized knowledge need to be utilized in concert to resolve
heterogeneous problems. The cognitive concept hypothesis
will be utilized to generate a block of knowledge (named con-
cept) for each learned problem (see Section III). The system
will need to have the ability to utilize a learned concept at a
constituent level or holistic level depending on its occurrence
in the problem instance [Objective 2)].

C. Evolutionary Computation

Early attempts to create artificial cognitive systems were
inspired by evolutionary computation [44]. The relevant evo-
lutionary computation approaches are described as follows.

1) Layered Learning GP: LLGP is a methodology for
learning complex problems by (a human-in-the-loop) decom-
posing them into a hierarchy of subtasks [19]. These subtasks
are separately learned in a sequence by utilizing suitable learn-
ing algorithms. The knowledge learned for a subtask at the
lower layer of the hierarchy is utilized for the learning of
a task at the upper layer [18], [45]. The layered learning

approach is suitable for complex problems where direct learn-
ing is intractable and hierarchical decomposition is possible.
The layered learning approach requires human intervention to
decompose the complex problem and select a suitable algo-
rithm for learning a subtask. Moreover, the layered learning
methodology requires a strict sequence of learning in order
to solve complex tasks [46]. In contrast, our novel system
will have the ability to simultaneously analyze the complex
problem at both constituent and holistic levels. Consequently,
the novel system will identify and utilize relevant BBKs
without human intervention.

Recently, a common subtree-based transfer learning tech-
nique has been introduced in GP. The resultant system has the
ability to automatically find the relevant information that can
be transferred between the problems. However, it cannot trans-
fer information between different problem domains. Moreover,
this system struggles to completely learn complex problems,
for example, 7-bit parity problems [20]. The novel lateral-
ized system will have the ability to handle heterogeneous and
complex Boolean problems.

2) Cartesian GP: CGP is a methodology for developing
graph-based programs to solve a problem. In CGP, a program
is represented by a 2-D grid of nodes in the form of a graph.
The program has the ability to implicitly reuse nodes in the
graph. Consequently, the mapping from genotype to pheno-
type in such a program is many-to-one [21], [47]. The CGP
technique generates an arbitrary sequence of computer pro-
grams that can solve only a particular problem; the learned
solution cannot be reused to solve other complex problems.
Moreover, the size of the solutions is very large for large-scale
and complex problems. Consequently, the learning becomes
intractable [23]. The novel system will have the ability to
generate a compact solution by (re)using the learned BBKs
at different levels of abstraction.

3) Learning Classifier Systems: LCSs are a methodology
for developing rule-based machine learning by applying dis-
covery algorithms and learning components [26]. Holland and
Reitman developed the first LCS, naming it CS-1, that is,
“Cognitive System One” [44]. An LCS-based artificial agent
learns by taking the appropriate action that maximizes its cur-
rent or future rewards [48]. LCSs apply genetic algorithms
(GAs) to generate new rules and explore unique niches in the
problem space. In this way, LCSs evolve a collection of clas-
sifier rules that collectively solve the given problem. These
rules have fitness based on their contribution toward the solu-
tion. In the learning process, LCSs improve the fitness of
good rules and produce new fitter rules. Moreover, to keep
the population of rules within a bound, LCSs apply differ-
ent condensation and compaction techniques to remove the
weak, and redundant classifier rules from the population [49].
A brief introduction to GA and LCSs, for readers unfamiliar
with these base techniques, is presented in the supplementary
material (see Section S-I).

4) Code Fragments: CF representation is an important
encoding scheme that has been introduced in LCSs to achieve
high-level knowledge representation by storing and transfer-
ring learned knowledge [25]. A CF is a GP-like tree in which
the internal nodes have operations that are selected from a
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predefined set, that is, AND, OR, NOT, NAND, and XOR.
The leaf nodes, in contrast, can represent environment vari-
ables or previous CFs. The inclusion of CFs in LCSs resolves
previously unresolvable complex problems (such as the 135-bit
Mux problem, n-bit parity problem, and n-bit Mux problem),
enables the transfer of learned knowledge, and generates
compact rule sets for an optimal population [24], [25].

Existing CF-based systems struggle to solve complex prob-
lems, such as hierarchical Boolean problems (see Section IV)
and have many constraints. For example, a solution proposed
to resolve the n-bit Mux problem requires a strict ordering
of layered learning, prior knowledge of problem decomposi-
tion, and much human intervention [24]. Similarly, the cyclic
graphs-based technique (XCSSMA), which can solve n-bit
parity problems, is not beneficial for Mux problems because
the finite state machines used in the action are unable to
capture patterns in the Mux search space [23]. Recently, CF-
fitness-based techniques have been introduced to search for
useful and relevant features for efficient learning. Nevertheless,
these systems struggle to completely learn 18-bit HMux prob-
lems due to the homogeneous nature of their knowledge
representation [50]. A novel CF-based technique will need
to be developed to facilitate the efficient learning of com-
plex BBKs at different levels of abstraction without human
intervention.

III. NOVEL LATERALIZED SYSTEM

This work develops a novel lateralized system for classifi-
cation problems. We first introduce the novel techniques that
are used to achieve heterogeneous knowledge representation
at different levels of abstraction. Then, the overall strategy
adopted by the novel system to resolve a given problem is
presented. Finally, the learning methodology of the lateralized
system is described.

A. Representing Heterogeneous Knowledge

The knowledge associated with a learned problem needs
to be stored for future use. Initially, the CFs link represented
environmental features through functional nodes. A disjunctive
normal form of CFs constitutes a rule, which encapsulates how
well CFs link together to classify the problem. These rules are
then combined in a population, which enables specific niches
of the problem to solve the problem domain.

The knowledge associated with a problem is stored as a
BBK in the knowledge pool. This BBK, termed a concept,
includes the set of rules, CFs, attributes (such as length of an
instance, for example, 3-bit parity has length 3), and unique
ID, applicable in a learned problem domain. At a constituent
level, the conditions in the classifier are the encoded features
of the input problem instance. Because concepts have unique
IDs and may appear in the terminals of a CF, they can be
(re)used in the conditions of the holistic-level decision-making
process. Conventional LCSs have a set of rules (population)
for each learned problem. In contrast, the lateralized system
stores knowledge for all learned problems as a set of concepts
in the knowledge pool. A concept has sufficient knowledge
to solve any instance of its associated problem. A schematic

Fig. 3. Illustration of 3-bit parity (C1) and 6-bit Mux (C6) concepts.

Fig. 4. Schematic illustration of the strategies developed to achieve cognitive
inspired functionality in the lateralized system. RHSM and LHSM represent
right hemispheric stratagem module and left hemispheric stratagem module,
respectively.

illustration of concepts is shown in Fig. 3, with length, number
of rules, and number of CFs (both in condition and action of
the “if <conditions> then <action>” rules) attributes.

B. Overall Strategy

A schematic illustration of the strategies developed for the
novel lateralized system is shown in Fig. 4. The process
by which the lateralized system addresses a problem can be
divided into two main phases: 1) knowledge identification and
2) problem resolution.

The lateralized system needs to first determine if any knowl-
edge has already been learned about the patterns in the input
signal. This knowledge identification phase is critical as the
system uses different learning methods depending on the qual-
ity (e.g., the accuracy of prediction) of existing knowledge to
solve the problem. The novel system passes the input sig-
nal to the left half (to consider constituent patterns) and to
the right half (to consider higher level holistic patterns) at the
same time (see Fig. 4). The methods that determine the quality
of the knowledge regarding the input signal are termed left-
hemispheric stratagem module (LHSM) and right hemispheric
stratagem module (RHSM), respectively.

The subsequent problem resolution phase evaluates the qual-
ity of the identified knowledge, that is, it can independently
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solve the problem (e.g., the accuracy of prediction is 100% or
above a threshold), it can cooperate to solve the problem, or
it is irrelevant to the problem. Consequently, action proceeds
through one of three methods, that is, no learning needed,
new learning from existing knowledge, or new learning from
scratch. Despite this difference in methods used to deter-
mine the action, the overall state-action-reward scheme of the
novel lateralized system is similar to standard reinforcement
learning [51].

1) Knowledge Identification: Each environmental instance
of the given problem is presented to both the LHSM and
RHSM simultaneously in an online fashion. At the start of
the learning process, the knowledge pool is empty. In such a
scenario, both the LHSM and RHSM do not perform any com-
putation and the system starts learning from a tabula rasa. The
system is said to have learned a problem when its accuracy
reaches 100% (or a given threshold). Hence, the associated
concept is transferred to the knowledge pool.

The LHSM needs to identify those learned blocks of knowl-
edge (concepts) that could be combined together to form
the input instance. Concepts store their length, that is, the
number of stored features. The LHSM iteratively searches
through the knowledge pool to identify those concepts that
have a length that is a factor of the length of the current
instance. Repeating those concepts could therefore represent
the complete instance. The identified concepts (termed con-
stituent concepts) could form the lower layer of a solution
to a hierarchical problem. For each constituent concept, the
LHSM splits the given problem instance into parts such that
the length of each part is equal to the length stored in the
concept. Subsequently, each part is resolved by utilizing the
constituent concept in the exploit mode (i.e., by selecting the
best action). The resulting action bits are concatenated together
to form an abstract layer, to be treated as a separate learning
problem to be solved by the LHSM only.

Now, the LHSM again searches through the knowledge pool
to identify those concepts that have a length equal to the length
of the abstracted layer problem instance. The identified con-
cepts are termed holistic concepts. The LHSM generates the
candidate groups of concepts by pairing the constituent con-
cept with each holistic concept. For example, the system is
tasked to solve a problem instance of length 18 bits (fea-
tures). Suppose that the lower layer constituent concept C1
has a length 3 (the number of stored features). The resultant
upper layer generated by utilizing C1 has a length 6 (because
C1 is repeated for six parts). Furthermore, suppose that there
are two learned concepts (C5 and C6) that have length 6. These
concepts are selected as holistic concepts. The resultant can-
didate groups of knowledge are: 1) lower layer constituent
concept C1 and upper layer holistic concept C5 and 2) lower
layer constituent concept C1 and upper layer holistic concept
C6. This process is repeated for each constituent concept.

The LHSM evaluates each candidate group by performing
a preliminary test, for example, by utilizing 1000 environ-
mental instances. During this evaluation process, the LHSM
addresses a given problem instance by utilizing constituent
concept and holistic concept in the exploit mode at the lower
layer and higher layer of the problem instance, respectively.

Algorithm 1: Strategy Adopted by the LHSM to Identify
the Candidate Groups of Concepts That Have the Potential
to Efficiently Learn the Given Problem (cf. Fig. 4)

Data: The environment and problem configurations
Result: Relevant Groups of Concepts

1 Initialize the parameter settings and global variables;
2 Identify Constituent-Concepts(); % Generate a list of

concepts that have a length (pre-determined value) which
is a factor of the length of the current problem instance.

3 for Each Identified Constituent-Concept do
4 Split Problem(); % Split the problem instance

into parts (sub-problems) such that each part has
length equal to the length of the constituent-concept.

5 Solve Sub-Problems(); % Solve each part by
utilizing the constituent-concept in exploit mode.

6 Get Higher Layer(); % The actions are
concatenated to form a higher layer instance.

7 Identify Holistic-Concepts(); % Identify concepts
that have a length equal to the length of the higher
layer instance.

8 Generate Candidate Groups (); % Group pairs of
the constituent-concept with each holistic-concept.

9 end
10 Preliminary Test(); % Perform preliminary test for

each candidate group by utilizing 1000 problem
instances.

11 Mark Relevant Knowledge(); % Mark candidate
groups of concepts that have a prediction accuracy equal
to (or above) a given threshold.

12 Return Relevant Knowledge;

Subsequently, if the prediction accuracy is equal to (or above)
a given threshold, the candidate group is marked (a flag is
set) as relevant knowledge, otherwise, it will be discarded.
Finally, the LHSM passes the relevant knowledge groups
to the problem resolution method. The pseudocode of the
strategy adopted by the LHSM for the identification of the
relevant knowledge is given in Algorithm 1 and an illustra-
tive walk-through is available in the supplementary material
(Section S-III).

The RHSM needs to identify those learned blocks of knowl-
edge that have sufficient knowledge to solve the problem
independently (prediction accuracy is 100% or above a speci-
fied threshold). The concepts in the knowledge pool that have
a length equal to the length of the given instance are termed
candidate concepts. For example, the system is tasked to solve
a problem instance of length 18 bits (features). Suppose that
there are three learned concepts, C1, C6, and C10 that have
lengths 3, 6, and 18, respectively. Only concept C10, that
has length 18, is selected as a candidate concept that may
independently solve the given problem.

The RHSM computes confidence for each candidate con-
cept. Confidence is the prediction accuracy of the RHSM in
exploit mode. The RHSM computes confidence in two steps.
Initially, the RHSM performs a preliminary test for each can-
didate concept. During the preliminary test, the RHSM solves
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1000 problem instances utilizing the candidate concept in the
exploit mode and computes confidence. If the confidence is
below a specific threshold, for example, 90%, the candidate
concept is removed from the candidate list. This process is
repeated for each candidate concept.

In the next stage, the RHSM performs an intermediate
level test for each candidate concept remaining in the list.
During this stage, the RHSM is tasked to solve more problem
instances, for example, 5000×length of the given problem
instance. The RHSM solves these problem instances by utiliz-
ing the candidate concept in the exploit mode and computes
the confidence again. If a confidence score above a defined
threshold is produced, the RHSM concludes that it has seen
this problem before. Otherwise, the RHSM removes this can-
didate concept from the candidate list. This process is repeated
for each candidate concept. Finally, the RHSM shares the list
of candidate concepts, along with their confidence values, with
the problem resolution module (see Algorithm 2).

2) Problem Resolution: The problem resolution module
receives feedback about the candidate concepts and candi-
date knowledge groups from RHSM and LHSM, respectively.
During the analysis of the feedback from RHSM, the problem
resolution module iteratively searches through the list of can-
didate concepts to find a concept that has a confidence value
100% (or above a given threshold). If such a concept is found,
the problem resolution module marks the given problem as
an already learned problem. Consequently, the system runs
in exploit mode and utilizes that concept to solve any future
problem instances given by the environment. Moreover, the
mode is set as no learning is needed. The problem resolu-
tion module generates an inhibit signal so that the LHSM
ceases and further analysis on the feedback from the LHSM
is stopped. Else, the problem resolution module generates an
excite signal to the LHSM to continue to identify relevant
knowledge.

During the analysis of the feedback from the LHSM, if
the relevant knowledge groups exist in the list. The problem
resolution module iteratively searches through all the relevant
knowledge groups and forms a list of all the concepts that
are present in those groups. Subsequently, the problem resolu-
tion module marks all those concepts and their associated CFs
(stored with those concepts) as relevant knowledge. The mode
is set as learning from existing knowledge. Consequently, the
system learns the given problem by utilizing all the relevant
knowledge, that is, automatically using CFs and concepts in
the classifiers. However, if the problem resolution module does
not find any relevant knowledge groups in the feedback from
LHSM, the mode is set as new learning from scratch. In such
a scenario, the system behaves as an ordinary LCS and learns
the given problem from a tabula rasa. The overall pseudocode
of the novel strategy adopted by the lateralized system to solve
a problem is given in Algorithm 3.

It is important to note that as each subsequent problem
is learned, the concept, length (number of unique features
addressed), and associated CFs are stored in the knowledge
pool. The associated CFs can be used separately from the
concepts to seed feature learning. A CF stores the relation-
ship between features and targets. The individual CFs are used

Algorithm 2: Strategy Adopted by the RHSM System
to Identify the Candidate Concepts That Can Confidently
Solve Problem (cf. Fig. 4)

Data: The environment and problem configurations
Result: The candidate concepts that can confidently solve

the given problem
1 Identify candidate concepts(); % Generate a list of

concepts that have a length equal to the length of the
current problem instance.

2 for Each Identified Concept do
3 Preliminary Test(); % Perform preliminary test

for each candidate concept by utilizing 1000 problem
instances.

4 Compute Confidence(); % Confidence
(prediction accuracy) of each concept to solve the
problem.

5 if Concept Confidence < Threshold then
6 % The confidence is below 90%.
7 Remove Candidate Concept(); % Remove the

candidate concept from the candidate list.
8 end
9 end

10 for Each Candidate Concept do
11 Intermediate Test(); % Perform intermediate

level test for each candidate concept by utilizing
(5000×length of the given problem instance) problem
instances.

12 Compute Confidence(); % Confidence of each
concept to solve the problem.

13 if Concept Confidence > Threshold then
14 % The confidence is above 90%.
15 Save Confidence Value(); % Save the

confidence value for the candidate concept.
16 else
17 Remove Candidate Concept(); % Remove the

candidate concept from the candidate list.
18 end
19 end
20 Return Candidate Concepts And Confidence Values();

together in the condition and action of rules (see Section IV-E).
Consequently, niches can form, allowing for heterogeneous
representation of knowledge. These rules are encapsulated in
concepts, which store the solution for a part of the problem
or the whole problem. Moreover, a concept may represent
a higher level of knowledge w.r.t. one problem, while also
representing a lower level of knowledge w.r.t. another problem.

C. Learning Methodology

Lateralization could be implemented by utilizing any EML-
based system, but we have chosen LCS due to their niche-
based algorithms and built-in support for heterogeneity (i.e.,
different rules can co-exist in the same population). These two
features make LCSs an ideal candidate to support lateraliza-
tion, extending the concepts of niches and heterogeneity to
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Algorithm 3: Overall Strategy Adopted by the Lateralized
System to Solve Problem (cf. Fig. 4)

Data: The environment and problem configurations.
Result: The given problem is identified as no learning

needed, new learning from existing knowledge,
or new learning from scratch.

1 Initialize the parameter settings and global variables;
2 Knowledge Identification
3 RHSM(); %Algorithm 1.
4 LHSM(); %Algorithm 2.
5 Problem Resolution
6 Analyze RHSM Output(); %Iteratively search

through the list of candidate concepts and check their
confidence values.

7 if Concept Confidence = 100% then
8 %Confidence value 100 (or above a given

threshhold).
9 Run in Exploit Mode Only();

10 Generate Inhibit Signal(); %Generates an
inhibit signal so that LHSM cease and further
analysis on the feedback from LHSM is stopped.

11 Set No learning is Needed();
12 else
13 Generate Excite Signal();
14 end
15 Analyze LHSM Output();
16 if Relevant Knowledge Groups Exist then
17 %Iteratively search through all the relevant

knowledge groups.
18 Form List of Concepts(); %Forms a list of all

the concepts that are present in the relevant
knowledge groups.

19 Mark Relevant Knowledge(); %Marks all
those concepts and their associated CFs (stored
with those concepts) as a relevant knowledge.

20 Set Learning From Existing Knowledge();
21 else
22 Set Learning From Scratch();
23 end

the different levels of a problem’s composition. The learn-
ing methodology of the lateralized system is developed by
utilizing the framework of Wilson’s XCS [52], an accuracy-
based LCSs. The ability of XCS to generate a complete and
accurate solution enables the lateralized system to capture all
the BBKs required for a concept. The learned concepts and
associated CFs can then be used at different levels of abstrac-
tion. Moreover, the use of CFs provides improved expressivity
and scalability as compared to the ternary alphabet [25].
These characteristics of CFs enable the lateralized system to
efficiently handle diverse knowledge.

The lateralized system enhances the state-of-the-art CF-
based XCS [25] in the following ways.

1) Condition and Action of Classifier: State-of-the-art CF-
based systems have CFs either in the condition or in the action
of the classifier [25], [53]. The novel lateralized system has

CFs in both the condition and the action of the classifier. To the
best of our knowledge, this is the first time that CFs have been
included in both. The inclusion of concepts in the CFs and then
CFs in both condition and action of the classifier enables the
lateralized system to represent a complex and heterogeneous
knowledge, reduce search space, generate compact rules, and
have a lateralized population of rules.

2) Code Fragment Enhancement: The lateralized system
enhances CFs such that the leaf nodes have the ability to ran-
domly select concepts or other CFs or environment variables.
This inclusion of concepts in the CF enables the classifier to
independently resolve a large part of the problem.

3) Lateralized Population: Two contributions are inherent
in the population of rules evolved by the lateralized system.
First, CFs include concepts from different levels and domains
in the knowledge pool. Second, the set of rules that are evolved
to solve a problem, therefore, have diverse CFs from the
learned BBKs. Consequently, the system incorporates diverse
knowledge that enables the inclusion of a population of rules
at different levels of abstraction. Thus, the population of rules
is termed a lateralized population.

IV. EXPERIMENTAL WORK

A. Learning Order

The order with which subproblems are presented to an EML
system plays an important role in learning [24], [25]. In the
start, the lateralized system could be trained with a diverse set
of subproblems. The learned knowledge is stored in the knowl-
edge pool. The lateralized system can automatically (without
human involvement) identify the relevant required BBK from
the knowledge pool (if they exist). Instead of trying each
block of learned knowledge, the lateralized system adopts an
efficient strategy to identify the relevant BBKs from the knowl-
edge pool. To identify higher level relevant knowledge, the
RHSM only evaluates the learned concepts that have the same
length as that of the given problem instance. If the higher
knowledge is not present, the LHSM analyses only those con-
cepts that could be repeated to form a complete problem
instance. Moreover, if the required knowledge is completely
absent, the system considers it a novel problem and learns
from a tabula rasa. In this case, the lateralized system behaves
similarly to a conventional LCS.

For all the experiments, the lateralized system and CF-based
LCS (conventional LCS does not utilize subproblems) are
trained with the same set of relevant subproblems in the same
order. A separate set of experiments for the lateralized system
is also conducted to calculate the overhead due to extraneous
subproblems (see Section IV-D).

B. Experimental Setup

The lateralized system uses the LCS parameter values that
have been commonly used in [25], [54], and [55]. These values
are: learning rate β = 0.2; prediction error threshold ε0 = 10;
fitness fall-off rate α = 0.1; fitness exponent ν = 5; GA
threshold θGA = 25; crossover probability χ = 0.8; mutation
probability μ = 0.04; deletion threshold θdel = 20; deletion
fraction δ = 0.1; subsumption threshold θsub = 20; don’t care
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probability = 0.33; fitness reduction = 0.1; prediction error
reduction = 0.25; and prediction reward = 1000. Additional
parameter settings for XCS with the Bayesian optimization
algorithm (XCS/BOA) [56] are: error BOA 400; θBOA = 20;
maximum parents 4; minimum population 0; local popula-
tion 10; and MCMC updates 18. All the experiments have
been repeated 30 times and the values presented here are
obtained by averaging the results of those experiments. The
population size used for each experiment is presented in the
supplementary material (see Section S-IV)

C. Experiments

The lateralized system is bootstrapped with five hard-
coded Boolean functions, that is, AND, OR, NAND, NOT,
and NOR. The system does not learn these basic functions.
These functions are given to the lateralized system as they
are commonly supplied to EML systems in [25]. Initially, the
lateralized system learns simple problems, such as the 3-bit
parity problem, 3-bit carry problem, and 6-bit Mux problem.
Subsequently, the system is trained with higher level problems,
such as 6-bit carry, 11-bit Mux, and 18-bit HMux problems.
During the learning of these problems, the system is tasked
to identify and utilize the relevant BBKs from previously
learned knowledge. Consequently, the system efficiently learns
new problems and acquires the ability to resolve higher level
complex problems. The experimental results generated by the
lateralized system (LateralXCS) are compared with the results
generated by the conventional LCS (XCS), CF-based LCS
(XCSCFC) [25], XCS/BOA [56], conventional GP, LLGP [18],
and CGP [21] techniques.

1) Multiplexer Problems: The first set of experiments was
conducted by using Mux problems to obtain a proof of con-
cept of the lateralized system. All the LCS systems (XCS,
XCSCFC, XCS/BOA, and LateralXCS) managed to learn 6-
bit, 11-bit, and 20-bit Mux problems. For these problems, the
learning pace of XCS/BOA is better than all other systems.
The experimental results of 6-bit, 11-bit, and 20-bit Mux
problems are presented in the supplementary material (see
Section S-III-A). However, both XCS and XCS/BOA were
unable to learn 37-bit Mux problems, whereas, XCSCFC
and LateralXCS successfully learned the problem by utilizing
200 000 problem instances, see Fig. 5. The learning pace of the
LateralXCS is slower than XCSCFC from 30 000 to 120 000
problem instances. This occurs because the LateralXCS has
to identify suitable building blocks from the pool of learned
knowledge. The XCSCFC swiftly achieved 99.8% accuracy
but struggled to learn the problem completely. However, the
LateralXCS achieved 100% accuracy by utilizing 300 000
problem instances. The average accuracy and standard devia-
tion, for the last hundred runs, of LateralXCS and XCSCFC
are 100 ± 0.00 and 99.99 ± 9.52985e−05, respectively.

2) Parity Problems: All the LCS systems (XCS, XCSCFC,
XCS/BOA, and LateralXCS) managed to learn 2-bit, 3-bit, and
4-bit parity problems. For these problems, the learning pace
of XCS/BOA is better than all other systems. However, for 5-
bit, 6-bit, and 7-bit parity problems, XCS and XCS/BOA are
not able to learn the problems completely, whereas, XCSCFC

Fig. 5. Experimental results of 37-bit Mux problem using conventional
LCS (XCS), CF-based XCS (XCSCFC), XCS/BOA, and Lateralized XCS
(LateralXCS).

Fig. 6. Experimental results of 7-bit parity problem using XCS, XCSCFC,
XCS/BOA, and LateralXCS.

lags behind the LateralXCS. The experimental results of 2-bit
to 6-bit parity problems are presented in the supplementary
material (see Section S-III-B).

The experimental results of the 7-bit parity problem are
shown in Fig. 6. The LateralXCS successfully identified and
reused the relevant building blocks of learned knowledge.
Consequently, the system is able to efficiently learn the 7-bit
parity problem by utilizing only 15 000 problem instances. In
contrast, XCS, XCS/BOA, and XCSCFC learned 70%, 83%,
and 100% 7-bit parity problem by utilizing 250 000 problem
instances, respectively. The interpretation of rules generated by
LateralXCS shows that the lateralized system automatically
considers a higher level parity problem as a two-bit parity
problem. Three features of LateralXCS play a critical role in
this regard: 1) the ability to identify and utilize relevant learned
concepts; 2) the ability to address a problem at different levels
of abstraction; and 3) the ability to apply CFs to the condition
as well as the action of classifiers.

A Wilcoxon signed-rank test was applied to statistically
compare LateralXCS with XCSCFC (see Table I). The test
was conducted on the results of the 100 problem instances
after the lateralized system achieved a performance accuracy
of 100%. The second and third columns contain the average
performance along with the standard deviation. All P-values
are less than 0.00001, which is evidence that the performance
improvement of LateralXCS is statistically significant.
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TABLE I
WILCOXON SIGNED-RANK TEST

TABLE II
PERFORMANCE COMPARISON WITH DIFFERENT GP SYSTEMS

Fig. 7. Experimental results of 2-bit–16-bit parity problems using
LateralXCS.

The XCS and GP systems are based on different evolu-
tionary techniques and apply different strategies to address
problems. The main objective of the work presented here is
not to develop a system that outperforms the GP-based system.
However, their performance is compared to show the effec-
tiveness of the lateralized approach. The same set of parity
problem experiments was conducted by using GP, LLGP, and
CGP systems. Each experiment was repeated 30 times with
50 generations and 1024 population. The experimental results
of the 7-bit parity problem are shown in Table II. None of the
GP-based systems were able to completely learn the 7-bit par-
ity problem, whereas the LateralXCS achieved 100% accuracy
using the same number of problem instances.

The effectiveness of the LateralXCS was tested by utilizing
higher level parity problems. The experimental results of 2-
bit to 16-bit parity problems using LateralXCS are shown in
Fig. 7. The LateralXCS efficiently achieved a performance
accuracy of 100% by utilizing less than 20 000 instances per
problem. The performance scalability of the LateralXCS is
explained in Section IV-E.

The accuracy achieved by XCS, XCS/BOA, XCSCFC, and
LateralXCS after utilizing 50 000 problem instances during
the learning of 2-bit to 16-bit parity problems is shown
Fig. 8. XCS and XCS/BOA could not usefully learn beyond
the 7-bit parity problem due to the lack of generalization
in the ternary alphabet. The accuracy of XCSCFC gradu-
ally decreases from 100% (for 2-bit parity problems) to 34%
( for 10-bit parity problems). Due to such a poor accu-
racy, XCSCFC stopped generating fit rules to match the test
instances. Consequently, XCSCFC could not be applied to the
remaining higher level parity problems due to its dependency

Fig. 8. Accuracy of XCS, XCSCFC, XCS/BOA, and LateralXCS after
utilizing 50 000 problem instances of 2-bit–16-bit parity problems.

Fig. 9. Experimental results of 18-bit hierarchical Mux problem using XCS,
XCSCFC, XCS/BOA, and LateralXCS.

on previously learned fitter rules. In contrast, the LateralXCS
achieved 100% accuracy for all the given 2-bit–16-bit parity
problems.

3) Hierarchical Problems: Two sets of experiments for
hierarchical problems were conducted: 1) hierarchical Mux
problems and 2) hierarchical carry problems. In 18-bit HMux
problems, the lower layer consists of 3-bit parity problems and
the upper layer consists of a 6-bit Mux problem. Initially, both
XCSCFC and LateralXCS were trained with 3-bit parity and
6-bit Mux problems. Subsequently, all systems were tasked to
learn the 18-bit HMux problem. The experimental results of
the 18-bit HMux problem are shown in Fig. 9. Both the XCS
and state-of-the-art XCSCFC were unable to efficiently learn
the hidden patterns in the given problem, and XCS/BOA could
not usefully learn the hierarchical problem (although it can
learn these problems by using a large population). In contrast,
the LateralXCS learned the hidden patterns and was able to
organize the relevant BBKs in a useful way. Consequently, the
LateralXCS learned the required rules to solve the problem,
achieving performance accuracy of 100%. The number of
instances (≈ 600 000) utilized by the LateralXCS to learn the
18-bit HMux problem is low with respect to the complexity of
the problem, that is, low sparsity and hierarchical distribution
of knowledge.

The Wilcoxon signed-rank test was applied in a similar
way as for parity problem experiments (see Table I). The
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Fig. 10. Overhead problem instances utilized by LateralXCS during the
learning of 18-bit hierarchical Mux problems.

P-values are less than 0.00001. The experimental results of
the 18-bit HMux problem for GP-based systems are shown in
Table II. It shows that none of the GP-based systems achieved
the performance accuracy of 100%, whereas the LateralXCS
achieved 100% performance accuracy by utilizing an equiv-
alent number of problem instances. In 18-bit hierarchical
carry problems, the lower layer consists of 3-bit majority-
on problems and the upper layer consists of a 6-bit carry
problem. All systems managed to learn the 18-bit hierarchical
carry problem. The experimental results are presented in the
supplementary material (see Section S-III-C).

D. Overhead of Irrelevant Subproblems to LateralXCS

The overhead (extra) problem instances utilized by the
LateralXCS to identify the relevant BBKs during the learn-
ing of 18-bit HMux problems are presented in Fig. 10. The
overhead cost depends on the relevancy of the learned problem
concerning the given problem. For example, both 6-bit Mux
and 6-bit parity problems are potentially relevant subproblems
for learning the 18-bit HMux problem (the sequence of knowl-
edge steps is presented in the supplementary material, see
Section S-V). After utilizing preliminary problem instances,
the novel system identified 6-bit Mux as relevant and 6-bit
parity as irrelevant subproblems. LateralXCS also considers
5-bit MajorityOn and 5-bit parity as irrelevant subproblems
without utilizing any problem instances during the learning of
the 18-bit HMux problem. The number of combinations tried
by the LateralXCS with the addition of a new problem along
with the overhead cost is presented in the supplementary mate-
rial (see S-Table II). At worst 128 000 problem instances are
needed to find the relevant BBKs for 18-bit HMux when the
system has learned 14 diverse knowledge steps that form 16
candidate combinations.

E. Interpretation of Decisions

The decision-making process of the LateralXCS is inter-
pretable. Close observation of the rules generated by the
LateralXCS reveals that the system successfully identified and
efficiently utilized the relevant BBKs from the pool of learned
knowledge.

Fig. 11. Example rule (R1) from 7-bit parity problem (d6 represents condition
bit #6 and 6P represents 6-bit parity concept). Numerosity 25, Experience:
121465, Accuracy 1, Prediction Error: 0, Prediction: 1000, Fitness: 0.095, and
Specificness 1. R1 is represented as CF(∼ (∼ d6)) : CF(∼ (6P)).

Fig. 12. Example rule (R2) from 7-bit parity problem (d6 represents condition
bit #6 and 6P represents 6-bit parity concept). Numerosity 6, Experience:
111038, Accuracy 1, Prediction Error: 0, Prediction: 1000, Fitness: 0.023,
and Specificness 1. R2 is represented as CF(∼ d6) : CF(6P).

The LateralXCS efficiently learned the 7-bit parity problem
by utilizing a small number of problem instances as compared
to other EML systems, see Fig. 6. The learned concept of
the 7-bit parity problem consists of 203 rules, 69 condition-
CFs, and 116 action-CFs. An example rule from the learned
concept of the 7-bit parity problem is shown in Fig. 11. This
is the most experienced (iterations 121465) and accurate rule
with high numerosity (25) and low specificity (1). The only
CF in the condition has three elements, that is, condition bit
#6, operator NOT, operator NOT. The condition CF is “not
of not of condition bit #6,” that is, NOT(NOT(D6)). The CF
in the action part has two elements, that is, the 6-bit parity
concept and operator NOT. The action CF is “NOT of 6-bit
parity.” A rule matches with the given problem instance if
all of the CFs in its condition generate value “1.” According
to this principle, the above-mentioned rule matches all the
problem instances that have value 1 at the 7th bit (i.e., D6).
The resultant response of the system is the opposite of the
6-bit parity concept.

Another important rule from the 7-bit parity problem is
shown in Fig. 12. This is also an experienced (iteration
111038) and accurate rule with numerosity 6, and specificity
1. The only CF in the condition part has two elements, that
is, condition bit #6 and NOT operator. This CF is “not of
condition bit #6,” that is, NOT(D6). The CF in the action
part has only one element which is “6-bit parity.” This rule
matches all the problem instances that have the value “0” at
the 7th bit. The resultant response of the system is the same
as that of the 6-bit parity concept. These two rules cover all
the instances of the 7-bit parity problem. By evolving these
compact rules, the lateralized system effectively converted the
7-bit parity problem into a two-bit parity problem, as shown
in Fig. 13. Consequently, the LateralXCS efficiently learned
the 7-bit parity problem by utilizing a very small number of
problem instances. Therefore, it is plausible that LaterXCS can
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Fig. 13. Logical interpretation of two experienced and accurate 7-bit parity
problem rules (see rule R1 Fig. 11 and rule R2 Fig. 12).

Fig. 14. Tree representation for CF Id: 1218D. 6M, 3P, and d4 represent
6-bit Mux concept, 3-bit parity concept, and condition bit #4, respectively.

Fig. 15. Tree representation for action CF Id: 08D36. 3P, and d5, d9, d15
represent 3-bit parity concept, and condition bits #5, #9, #15, respectively.

solve any scale n-bit parity problem given successively scaled
problems.

Hierarchical Boolean problems are challenging due to an
additional layer of complexity, low sparsity, and hierarchical
distribution of knowledge. It is necessary to apply hetero-
geneous BBKs to resolve a hierarchical Mux problem. The
learned concept of 18-bit HMux problem consists of 3202
rules, 2347 condition-CFs, and 679 action-CFs. An example
rule from 18-bit HMux is shown in the supplementary mate-
rial (see S-Fig. 14). This is an experienced (iterations 7700)
and accurate rule with numerosity 12, and specificity 6. There
are 6 CFs in the condition of the rule. The tree representations
for condition CF (Id: 1218D) and action CF (Id: 08D36) are
shown in Figs. 14 and 15, respectively. A close observation
of this rule reveals that, along with other BBKs, it has 6-bit
Mux and 3-bit parity concepts in its condition and 3-bit parity
in its action. These concepts act at the constituent level when
they are inside the CFs to resolve hidden problem instances. In
contrast, they act at the holistic level when tasked to indepen-
dently resolve any respective problem instance of 6-bit Mux
problem or 3-bit parity problem. This shows that the system
has the ability to identify and utilize the critical BBKs, from
the learned knowledge pool, to resolve the hidden layers of
the problem.

V. DISCUSSION

This work is designed to solve problems where a presented
instance of a problem can be constructed from instances of
subproblems. The system considers (addresses) the problem

at two different levels (constituent level and holistic level)
simultaneously. As the problem scales and the knowledge pool
grows, there will be more and more candidate constituent sub-
problems, which does slow down the behavior. However, the
system has the ability to identify (without a human-in-the-
loop) the relevant subproblems for a large problem that has
constituents parts. Consequently, it scales much more quickly
than systems that do not consider subproblems.

It is noted that a concept requires a large number of online
instances to form, relative to what might be required in super-
vised learning. However, the novel system uses reinforcement
learning to support the plausibility of applying the lateralized
approach to multistep problems, for example, path planning.

In complex problems, the additional processing of the lat-
eralized system is justified by its ability to automatically
(without a human-in-the-loop) identify and use the relevant
BBKs to efficiently solve a given problem. Furthermore, the
novel system can be qualitatively evaluated on the trans-
parency and understandability of the evolved solution. As the
decision-making process of the novel system is interpretable
(see Section IV-E), the system is a step toward explainable
artificial intelligence.

Alternative systems that are able to use learned subcom-
ponents fail to achieve the final step of efficiently integrating
knowledge that is represented at different levels. For exam-
ple, cooperative coevolution methods link subpopulations of
learned subcomponents but do not allow mating between indi-
viduals in heterogeneous subpopulations [57]. Consequently,
individual parts of the system cannot efficiently solve the
whole problem because they cannot mate across levels of
abstraction.

The novel lateralized system is essentially different from the
ensemble approach. The majority of ensemble systems obtain
an accurate prediction, by using multiple constituent learn-
ing algorithms, which can be obtained by utilizing the single
best constituent algorithm [58]–[60]. It is important to note
that there is no guarantee that the performance accuracy of an
ensemble system is always better than the performance accu-
racy of the best constituent algorithm [61]. On the other hand,
if a lateralized system finds a holistic-level BBK that has the
ability to independently resolve the given problem, it gener-
ates an inhibit signal to stop further processing of other system
components and utilizes only that holistic BBK to solve the
future problem instances. Consequently, the performance accu-
racy of a lateralized system is always better than or equal to
the performance accuracy of an individual BBK.

Another similar methodology is Granular computing that
has been applied to recognize regularities, present at differ-
ent levels of abstraction, in the data [62], [63]. This approach
makes an effective use of the granular structure to represent
the same problem at different levels of abstraction and from
different viewpoints [64]. In granular computing, a level of
abstraction consists of granules that have similar nature or
granularity; it is essential to identify an effective level of gran-
ularity concerning the given problem a priori. The hierarchical
representation can only be used for the intended problem and
cannot be used for other problems [65]. The novel lateralized
approach, in contrast, allows the integration of heterogeneous
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BBKs to solve one specific level of abstraction. It also has
the ability to consider a given problem at multiple levels of
abstraction, without human-in-the-loop. Furthermore, it has the
ability to avoid extraneous computations by generating inhibit
and excite signals.

The majority of deep learning-based systems store knowl-
edge in multiple layers such that all features are treated
equally in each layer. These systems generate a homogeneous
knowledge representation that cannot be reused elsewhere
in the system [2]. Consequently, these systems generate a
huge/deep network of homogeneous knowledge in order to
learn complex (hierarchical) problems and do not take advan-
tage of the potential to transfer knowledge between levels
in the hierarchy. It is important to note that transfer learn-
ing takes whole layer sections from one system and applies
them to another system. But that is not the same as (re)using
information multiple times within the same system. In contrast,
a lateralized system generates a heterogeneous knowledge rep-
resentation at different levels of abstraction. It has the ability
to automatically identify relevant BBKs from the heteroge-
neous knowledge pool and (re)utilize them at the constituent
level or holistic level. This means that a holistic-level BBK
learned for a lower level problem could be used/reused as
a constituent level BBK for a higher level problem, either
within the same system or across different systems [9], [10],
[53]. For example, a lateralized system could consider eye
color at the same time as the shape of the triangle formed
between the eyes and nose to recognize a face in a nonlinear
manner [9].

Formal concept analysis (FCA) [66], [67] is another
approach that may resemble “concepts” in lateralized learning.
FCA generates a hierarchy of concepts by utilizing a collec-
tion of objects and their attributes. In the FCA hierarchy, a
concept consists of objects that share a set of attributes. Thus,
a concept here represents the relationship between a set of
objects and a set of attributes. In FCA, it is necessary to seg-
regate attributes from objects and cast them on a conceptual
scale to generate concepts [66]. However, the novel lateral-
ized concepts are empirically (automatically) extracted from
data rather than explicitly defining them, which would require
a human-in-the-loop.

The lateralized approach does have limitations. It may not
work well for optimization problems, because once the agent
has solved an optimization problem it is rarely used as a
constituent part for another problem. This includes bilevel
optimization problems where the value of the subproblem
solution depends on the higher level problem. Moreover, in
order to take advantage of the lateralized approach, it is
necessary to first have constituent knowledge. For example,
when dealing with images the system needs to recognize
salient objects at the level of constituent parts (e.g., eyes in
a face or headlights in a car) to efficiently classify a face
or a car. However, once a class is learned, the lateralized
system can reutilize it, for example, for the identification
of crowd versus motorway congestion. We believe that the
inclusion of lateralization may open a new door for EML
systems that can efficiently learn real-world classification
problems.

VI. CONCLUSION

The novel system successfully applied lateralization and
modular learning at different levels of abstraction to resolve
complex Boolean problems. Considering the same problem at
different levels of abstraction (i.e., at a constituent level and a
holistic level) enables the novel system to reformulate a com-
plex problem as a simple problem and efficiently resolve it. For
example, the novel system addressed the n-bit parity problem
as a two-bit problem by utilizing the learned concept of the (n-
1)-bit parity problem and the one additional condition bit #n.
Experimental results demonstrated that the lateralized system
has the ability to identify and utilize the relevant BBKs to
efficiently learn the distribution of knowledge in hierarchical
Boolean problems.

This work makes the following major contributions to the
field of machine learning.

1) Lateralization, enabling modular learning, is success-
fully applied for the first time to resolve single-step,
scalable, and complex problems.

2) Novel abstraction methods are developed to represent
the same problem at different levels of abstraction (i.e.,
constituent level and holistic level).

3) A heterogeneous knowledge representation is enabled
such that different sized blocks of knowledge can be
automatically (without human-in-the-loop) recombined
in a recursive manner, that is, a holistic block can be
(re)used as a constituent block at a higher level of
abstraction. Conventional homogeneous representations
struggle to achieve this feat.

Future tests will include noisy, redundant, and irrelevant
information that were not included in the test domain in this
article as this would have added uncertainty to the analysis.
In further work, the lateralized approach will also be tested to
address perceptual aliasing in multistep decision-making tasks.
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