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Hierarchical Decomposition-Based Distributed Full
States Tracking Consensus for High-Order

Nonlinear Multiagent Systems
Yafeng Li , Ju H. Park , Senior Member, IEEE, Changchun Hua , Senior Member, IEEE, and Xiu You

Abstract—This article studies the distributed adaptive
leader-following control for high-order time-varying nonlinear
multiagent systems (MASs) with uncertain parameters. The state
feedback protocol and output feedback protocol are proposed,
respectively, to render all states consensus errors to converge to
zero asymptotically. First, the hierarchical decomposition algo-
rithm is used to construct a refreshed communication graph to
address the mutual dependence problem of controllers. Then, by
introducing a local neighborhood consensus errors-based trans-
formation, the leader-following consensus problem is converted
into the stabilization problem for the consensus error system.
Using the backstepping method and tuning function technique,
the distributed adaptive state feedback controller is designed to
render all followers’ states to track the leader’s ones. Further,
by constructing the reduced-order dynamic gain k-filter to esti-
mate unmeasured states, a distributed adaptive output feedback
controller is designed. In both controller design methods, the tra-
ditional Lipschitz condition need not be satisfied any more for
all time-varying nonlinear functions, and different from most of
the existing results on the high-order nonlinear MASs, full states
consensus can be obtained. Finally, a general numerical example
is given to illustrate the effectiveness of the proposed methods.

Index Terms—Adaptive control, distributed control, leader-
following, multiagent systems (MASs), time-varying systems.

I. INTRODUCTION

IN THE past decades, the distributed cooperative con-
trol for multiagent systems (MASs) has attracted lots

of researchers’ attention, due to its broad range of appli-
cations, such as distributed reconfigurable sensor networks,
autonomous vehicles, micro-grid, industrial systems, martial
systems, and so on [1], [2], which can bring many great bene-
fits including high adaptivity, low cost, easy maintenance, and
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so on. Based on the Lyapunov stability theorem and the graph
theory, many kinds of MASs have been investigated, such as
first-order MASs [3]–[5], second-order MASs [6]–[8], high-
order linear MASs [9]–[12], and high-order nonlinear MASs
[13]–[16], and the references therein. Obviously, in terms of
the agent model, the high-order nonlinear MASs are more gen-
eral and practical in nature, where some of the results can
even cover the results in the first three types of MASs, and at
the same time, the distributed control protocol design is more
challenging.

Compared with the results on the first-order MASs, second-
order MASs, and high-order linear MASs mainly focusing
on the full states consensus problem, most of the results
on the high-order nonlinear one mainly focus on the output
consensus problem due to the complexity of its dynam-
ics [14]–[20]. In [14], using the adaptive dynamic surface
control, the distributed containment control problem was
investigated for uncertain nonlinear strict-feedback MASs with
multiple dynamic leaders under a directed graph, but the initial
domain of the states was semi-global. The work [15] investi-
gated the finite-time leader-following consensus problem for
high-order nonlinear MASs under the undirected graph. In [16]
and [17], the effects of unknown parameters were further
considered and the adaptive distributed state feedback con-
trol protocols were proposed. In [18]–[20], the stochastic
disturbance was further considered and the distributed coop-
erative control for stochastic MASs was addressed. There are
also some results on the full states consensus for high-order
nonlinear MASs, such as [21]–[23] and the reference therein.

For the high-order nonlinear MASs, the aforementioned
results mainly focus on the distributed state feedback consen-
sus and most of the results only guarantee the bounded stability
of the MASs. However, the states variables in many practi-
cal engineering systems are usually hard to measure directly
and even can not be measured. The distributed output feed-
back control problem has been always an important topic
in the area of MASs control [24]–[28]. In [24] and [25],
the k-filter-based distributed consensus and the dynamic-gain-
based distributed consensus were studied for lower-triangular
MASs, respectively, but only the output consensus can be guar-
anteed. The work [26] investigated the finite-time control for
the chain MASs. In [27] and [28], the output feedback dis-
tributed full states consensus were further considered for more
general nonlinear MASs, where the restrictive conditions were
more conservative.
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Inspired by the aforementioned results, the distributed adap-
tive state feedback and output feedback control protocols are
designed for lower-triangular time-varying nonlinear MASs
with uncertain parameters, such that all states of followers can
track the leader’s states asymptotically. The main contributions
of our paper list as follows.

1) The distributed adaptive state feedback protocol is
proposed for time-varying nonlinear MASs, where the
conditions on the nonlinear functions are general.
Different from the results studied in [14]–[20], the full
states consensus can be achieved with mild conditions.

2) The reduced dynamic gain k-filter is constructed to
compensate the unmeasured states, which is more gen-
eral and can be easily extended to relax some existing
results [24], [29]–[33]. Based on the k-filter, the dis-
tributed adaptive output feedback protocol is designed.

3) Both of the proposed main results can guarantee that all
states of the followers track the leader’s ones asymp-
totically. One more general case is also discussed in
Corollary 5.

Notations: Rn denotes the n dimensional Euclidean space.
‖X‖ = (Tr{XTX})(1/2) is the norm of a matrix X. 1N :=
[1, . . . , 1]T ∈ RN . This article considers the system of N+1
agents (N followers and one leader). The communication graph
is depicted by G = (υ, ε) with a finite set of N+1 nodes υ =
{υi, i = 0, 1, . . . , N}, and a set of edges or arcs ε ⊆ υ × υ.
The set of neighbors of a node i is Ni = {j|(υj, υi) ∈ ε},
i.e., the set of nodes with arcs incoming to υi. The con-
nectivity matrix is A = [aij] ∈ Rn×n, and the in-degree
matrix is D = diag{d1, . . . , dN}. Define the Laplacian matrix
as L = D − A, and pinning matrix B = diag{b1, . . . , bN}.
The details are not presented here for saving space, referring
to [25].

II. PRELIMINARIES

A. Problem Formulation

Consider the following high-order time-varying nonlinear
MASs, and the dynamic of ith agent is described by:

ẋis = gsxi(s+1) + θ fs(t, x̄is) (1)

where for i = 0, 1, . . . , N, s = 1, 2, . . . , n, xi(n+1) := ui

is the input and x̄is := [xi1, xi2, . . . , xis]T is the state vec-
tor. fs(t, x̄is) : Rs+1 → R is smooth function. gs and θ are
unknown constants. The sign of gs is known. Without loss of
generality, we assume that gs > 0. Following assumptions and
lemma will be used in the controller design process.

Assumption 1: The graph constructed by N followers and
one leader is directed. Moreover, there exists at least one
directed path from the leader to each follower.

Assumption 2: The norm of the leader’s states ‖x̄0n‖ is
bounded.

Assumption 3: For s = 1, . . . , n, the function fs(t, x̄is) satis-
fies the properties that for t ≥ t0 with t0 be the initial moment,
if ‖x̄is‖ ≤ �s, where �s is a positive constant, then fs(t, x̄is)

and all of its first derivative, second derivative, . . . , (n−s+1)th
derivative on its variables t and x̄is, are bounded, uniformly
in t.

TABLE I
HIERARCHICAL DECOMPOSITION ALGORITHM

Lemma 1 [34]: Let φ : R→ R be a uniformly continuous
function on (0,∞]. Suppose that limt→∞

∫ t
0 φ(τ)dτ exists and

is finite. Then, φ(t)→ 0 as t→∞.
Remark 1: From Assumptions 2 and 3, for all t ≥

t0 and ‖x̄is‖ ≤ �s, the time-varying nonlinear function
fs(t, x̄is) and all of its first derivative, . . . , (n − s)th deriva-
tive on the variables t and x̄is are uniformly continuous and
satisfy that (fs(t, x̄is) − fs(t, x̄0s)) → 0, ([∂fs(t, x̄is)]/∂t −
[fs(t, x̄0s)]/∂t)→ 0 , ([∂fs(t, x̄is)]/∂xi1−[fs(t, x̄0s)]/∂x01)→ 0,
([∂2fs(t, x̄is)]/[∂xi1∂xi2] − [∂2fs(t, x̄0s)]/[∂x01∂x02])→ 0, . . . ,
as (x̄is − x̄0s)→ 0, which are very general. For example, any
time-invariant smooth function fs(x̄is) satisfies Assumption 3.
Assumption 2 indicates that all leader’s states are bounded,
and similar assumptions can also be found in [14], [18]–[20],
and [24]. Even though Assumptions 2 and 3 do not hold, the
output consensus results can still be achieved.

B. Hierarchical Decomposition

In [4], [18], [19], and [23] and some existing results, the
proposed distributed protocol of the ith agent contains the
local control inputs information collected from its neighbors,
which is difficult to compute without a prescribed priority. To
address this issue, the original graph G = (υ, ε) is split into a
hierarchical structure based on the hierarchical decomposition
algorithm in Table I, where B ← A means inserting element
A into set B. Then, a refreshed graph Gr = (υ, εr) and con-
nectivity matrix Ar = [āij] ∈ Rn×n are formed. Refer to [24]
for details. The following lemma is useful.

Lemma 2 [24]: Consider the MASs (1) under Assumption 1.
Based on the hierarchical decomposition algorithm in Table I,
the obtained Laplacian matrix Lr satisfies that (Lr+B) has full
rank and all eigenvalues of (Lr + B) have positive real parts.

Remark 2: Different from the results in [24], the objective
of this article is to construct the state feedback and output
feedback protocols such that all the states of followers can
track the leader’s states asymptotically, and a reduced order
dynamic gain k-filter is also constructed with mild conditions
which makes the studied MASs more general.
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III. MAIN RESULTS

A. Distributed State Feedback Leader-Following Control

In this section, the distributed state-feedback consensus con-
trol method is proposed based on the refreshed graph Gr. First,
for s = 1, . . . , n, define the local neighborhood consensus
error for ith agent as

ξis =
N∑

j=1

āij
(
xis − xjs

)+ bi(xis − x0s). (2)

Then, the derivative of ξis is ξ̇is = gsξi(s+1) + θLiFs,
where Li is the ith row of the matrix (L + B), and Fs :=
[fs(t, x̄1s), . . . , fs(t, x̄Ns)]T − 1Nfs(t, x̄0s). Choose the following
transformation:

zis = ξis − αi(s−1) (3)

where αi(s−1) is designed virtual controller and αi0 = 0.
In the sequel, the controller is designed using the backstep-

ping method and the tuning function technology. Choose the
Lyapunov function as

⎧
⎪⎨

⎪⎩

V =∑N
i=1
∑n

s=1(Vis + Vgi(s−1))+∑N
i=1 Vθ i

Vis = 1
2 z2

is + 1
2 gsδ̃

2
is

Vgi(s−1) = 1
2 g̃2

i(s−1), Vθ i = 1
2 θ̃2

i ,

(4)

where δ̃is = g−1
s − δ̂is, θ̃i = θ− θ̂i, g̃is = gs− ĝis, and δ̂is, θ̂i, ĝis

are the estimations of g−1
s , θ , gs in ith agent. Define g̃i0 = 0.

Step 1: The derivative of Vi1 is

V̇i1 = zi1(g1zi2 + g1αi1 + θLiF1)+ g1δ̃i1
˙̃
δi1. (5)

Design the virtual controller αi1 and adaptive law ˙̂δi1 as

αi1 = −δ̂i1ᾱi1 (6)
˙̂
δi1 = zi1ᾱi1 (7)

where ᾱi1 = θ̂iLiF1 + zi1, which only includes the
states information of neighbors. Using Assumptions 2
and 3, there exists smooth function f̄i1(·) such that
ᾱi1 = ∑N

j=1 āij(f̄i1(t, θ̂i, zi1, xi1) − f̄i1(t, θ̂i, zi1, xj1)) +
bi(f̄i1(t, θ̂i, zi1, xi1)− f̄i1(t, θ̂i, zi1, x01)), satisfying that if x11 →
x01, . . . , xN1 → x01 and θ̂i is bounded, then ᾱi1 → 0. ˙̂θi is
designed later. It follows from (4)–(7) that:

V̇i1 + V̇θ i = g1zi1zi2 + g1δ̃i1zi1ᾱi1 + θ̃izi1LiF1

− z2
i1 + g1δ̃i1

˙̃
δi1 + θ̃i

˙̃
θi

= −z2
i1 + g1zi1zi2 + θ̃i

(
τθ i1 − ˙̂θi

)
(8)

where τθ i1 = zi1LiF1.
Step s: Assume that at the step (s − 1), there exist virtual

controller αi(s−1) and adaptive law ˙̂δi(s−1) as follows:

αi(s−1) = −δ̂i(s−1)ᾱi(s−1) (9)
˙̂
δi(s−1) = zi(s−1)ᾱi(s−1) (10)

where there exists smooth function f̄i(s−1)(·) such that

ᾱi(s−1) =
N∑

j=1

āij

⎛

⎜
⎜
⎜
⎜
⎝

f̄i(s−1)

(
t, θ̂i,
¯̂
δi(s−2), ¯̂gi(s−2)

z̄i(s−1), x̄i(s−1)

)

−f̄i(s−1)

(
t, θ̂i,
¯̂
δi(s−2), ¯̂gi(s−2)

z̄i(s−1), x̄j(s−1)

)

⎞

⎟
⎟
⎟
⎟
⎠

+ bi

⎛

⎜
⎜
⎜
⎜
⎝

f̄i(s−1)

(
t, θ̂i,
¯̂
δi(s−2), ¯̂gi(s−2)

z̄i(s−1), x̄i(s−1)

)

−f̄i(s−1)

(
t, θ̂i,
¯̂
δi(s−2), ¯̂gi(s−2)

z̄i(s−1), x̄0(s−1)

)

⎞

⎟
⎟
⎟
⎟
⎠

(11)

satisfying that if x̄1(s−1) → x̄0(s−1), . . . , x̄N(s−1) → x̄0(s−1),

θ̂i is bounded, and the entries of vectors ¯̂δi(s−2) =
[δ̂i1, δ̂i2, . . . , δ̂i(s−2)]T , ¯̂gi(s−2) = [ĝi1, ĝi2, . . . , ĝi(s−2)]T are
bounded, then ᾱi(s−1) → 0. At the same time, the derivative
of
∑s−1

m=1(Vim + Vgi(m−1))+ Vθ i satisfies

s−1∑

m=1

(
V̇im + V̇gi(m−1)

)+ V̇θ i

= −
s−1∑

m=1

z2
im + g(s−1)zi(s−1)zis + g̃i(s−2)

(
τgi(s−2)1 − ˙̂gi(s−2)

)

+
(

g̃i(s−3) + zi(s−1)

∂αi(s−2)

∂ ĝi(s−3)

)(
τgi(s−3)2 − ˙̂gi(s−3)

)
+ · · ·

+
(

g̃i1 +
s−1∑

m=3

zim
∂αi(m−1)

∂ ĝi1

)
(
τgi1(s−2) − ˙̂gi1

)

+
(

θ̃i +
s−1∑

m=2

zim
∂αi(m−1)

∂θ̂i

)
(
τθ i(s−1) − ˙̂θi

)
(12)

where the designed functions τgi(s−2)1, . . . , τgi1(s−2), τθ i(s−1)

have similar properties with ᾱi(s−1).
Then, calculate the derivative of Vis,

V̇is = zis

(

gs
(
zi(s+1) + αis

)+ θLiFs −
s−1∑

m=1

∂αi(s−1)

∂δ̂im

˙̂
δim

− ∂αi(s−1)

∂t
−

N∑

j=1

s−1∑

m=1

∂αi(s−1)

∂xjm

(
gmxj(m+1) + θ fm

(
x̄jm
))

− ∂αi(s−1)

∂ ĝi(s−2)

τgi(s−2)2 − · · · − ∂αi(s−1)

∂ ĝi1
τgi1(s−1)

− ∂αi(s−1)

∂θ̂i
τθ is

)

+ zis
∂αi(s−1)

∂ ĝi(s−2)

(
τgi(s−2)2 − ˙̂gi(s−2)

)

+ · · · + zis
∂αi(s−1)

∂ ĝi1

(
τgi1(s−1) − ˙̂gi1

)

+ zis
∂αi(s−1)

∂θ̂i

(
τθ is − ˙̂θi

)
+ gsδ̃is

˙̃
δis (13)

where τgi(s−2)2 = τgi(s−2)1 − zis
∑N

j=1([∂αi(s−1)]/[∂xj(s−2)])
xj(s−1), . . . , τgi1(s−1) = τgi1(s−2) − zis

∑N
j=1([∂αi(s−1)]/∂xj1)

xj2, τθ is = τθ i(s−1) + zis(LiFs − ∑N
j=1
∑s−1

m=1([∂αi(s−1)]/
∂xjm)fm(x̄jm)).

Design the virtual controller αis and adaptive law ˙̂δis as

αis = −δ̂isᾱis (14)
˙̂
δis = zisᾱis (15)

where the designed smooth function ᾱis is

ᾱis = θ̂iLiFs −
s−1∑

m=1

∂αi(s−1)

∂δ̂im

˙̂
δim −

N∑

j=1

s−1∑

m=1

∂αi(s−1)

∂xjm
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×
(

ĝimxj(m+1) + θ̂ifm
(
x̄jm
))− ∂αi(s−1)

∂t
− ∂αi(s−1)

∂ ĝi(s−2)

× τgi(s−2)2 − · · · − ∂αi(s−1)

∂ ĝi1
τgi1(s−1) − ∂αi(s−1)

∂θ̂i
τθ is

−
(

zi(s−1)

∂αi(s−2)

∂ ĝi(s−3)

)
⎛

⎝
N∑

j=1

∂αi(s−1)

∂xj(s−3)

xj(s−2)

⎞

⎠− · · ·

−
(

s−1∑

m=3

zim
∂αi(m−1)

∂ ĝi1

)⎛

⎝
N∑

j=1

∂αi(s−1)

∂xj1
xj2

⎞

⎠

+
(

s−1∑

m=2

zim × ∂αi(m−1)

∂θ̂i

)⎛

⎝LiFs −
N∑

j=1

s−1∑

m=1

∂αi(s−1)

∂xjm
fm
(
x̄jm
)
⎞

⎠

(16)

satisfying that under Assumptions 2 and 3 if x̄1s →
x̄0s, . . . , x̄Ns → x̄0s and θ̂i,

¯̂
δi(s−1), ¯̂gi(s−1) are bounded, then

ᾱis → 0. ᾱis only includes the states information of neighbors.
It follows from (12)–(16) that:

s∑

m=1

(
V̇im + V̇gi(m−1)

)+ V̇θ i

= −
s∑

m=1

z2
im + gsziszi(s+1) + g̃i(s−1)

(
τgi(s−1)1 − ˙̂gi(s−1)

)

+
(

g̃i(s−2) + zis
∂αi(s−1)

∂ ĝi(s−2)

)(
τgi(s−2)2 − ˙̂gi(s−2)

)

...

+
(

g̃i1 +
s∑

m=3

zim
∂αi(m−1)

∂ ĝi1

)
(
τgi1(s−1) − ˙̂gi1

)

+
(

θ̃i +
s∑

m=2

zim
∂αi(m−1)

∂θ̂i

)
(
τθ is − ˙̂θi

)
(17)

where τgi(s−1)1 = zi(s−1)zis − zis
∑N

j=1([∂αi(s−1)]/∂xj(s−1))xjs.
Step n: Through the above recursive design method, if we

design ui and the other adaptive laws as follows:

ui = 1
∑N

j=1 āij + bi

⎛

⎝
N∑

j=1

āijuj + biu0 − δ̂inᾱin

⎞

⎠ (18)

˙̂
δin = zinᾱin (19)
˙̂
θi = τθ in (20)
˙̂gi1 = τgi1(n−1) (21)

...

˙̂gi(n−1) = τgi(n−1)1 (22)

where ᾱin, τθ in, τgi1(n−1), . . . , τgi(n−1)1 can be easily obtained
from step s and their details are not given any more, then,
combined with (17), we have

N∑

i=1

n∑

m=1

(
V̇im + V̇gi(m−1)

)+ V̇θ i = −
N∑

i=1

n∑

m=1

z2
im. (23)

Now, we give the first main result of our paper.
Theorem 1: For the high-order time-varying nonlin-

ear MASs (1) satisfying Assumptions 1–3, the distributed

adaptive state feedback controller (18) with the adaptive
laws (7), (10), (15) and (19)–(22), can render all the tracking
errors (x̄in − x̄0n) to converge to zero asymptotically.

Proof: Due to that (Lr + B) is the nonsingular matrix,
combined with Assumption 2, we know that if for i =
1, . . . , N, s = 1, 2, . . . , n, ξis are bounded, then xis are
bounded. Combined with (3), (23), and Assumptions and 3,
we obtain that the states xis and θ̂i,

¯̂
δin, ¯̂gi(n−1) are bounded.

Hence, żis and zis are bounded. Then,
∑N

i=1
∑n

m=1 z2
im is uni-

formly continuous. Due to that
∫ t

t0
(
∑N

i=1
∑n

m=1 z2
im(τ ))dτ =

− ∫ t
t0

V̇(τ )dτ ≤ V(t0) is finite, based on the Lemma 1, zis → 0
as t → ∞. Combined with (3), Assumption 1 and the prop-
erties of the virtual controllers αis, we have (x̄in − x̄0n) → 0
as t→∞. The proof is completed.

Based on the above controller design method and stability
analysis, the following corollaries can be obtained.

Corollary 1: If fs(t, x̄is) is time invariant, such as fs(t, x̄is) =
fs(0, x̄is), for the high-order nonlinear MASs (1) satisfying
Assumptions 1 and 2, the distributed adaptive state feedback
controller (18) can render all the tracking errors (x̄in− x̄0n) to
converge to zero asymptotically.

Corollary 2: For the high-order time-varying nonlinear
MASs (1) only satisfying Assumption 1, the distributed adap-
tive state feedback controller (18) can render the output
tracking error (xi1 − x01) to converge to zero asymptotically.

Remark 3: In this section, the distributed adaptive state
feedback consensus protocol is proposed for the time-varying
nonlinear MASs (1) with unknown parameters. The conditions
on the nonlinear functions in the MASs are very general, which
makes the proposed protocol be applicable for a wider class
of MASs. The unknown parameters are compensated using an
adaptive method. Different from [14] and [16]–[20], the full
states consensus can be achieved. This method can also be
extended to stochastic MASs.

B. Distributed Output Feedback Leader-Following Control

In this section, the distributed adaptive output feedback
leader-following control method is proposed based on the
refreshed graph Gr. Compared to the state feedback method in
the previous section, the reduced order dynamic gain k-filter
is further constructed to estimate the unmeasured states. The
following transformation and assumption are given first.

For the MASs (1), letting Xis = �s
m=1gm−1xis and g0 := 1

for i = 0, 1, . . . , N, s = 1, 2, . . . , n, gives
{

Ẋis = Xi(s+1) +�s
m=1gm−1θ fs(t, x̄is)

yi = xi1 = Xi1
(24)

where Xi(n+1) := ρui, ρ = �n
m=1gm and only the output

information yi can be measured. Obviously, (x̄in − x̄0n) → 0
as t→∞ is equivalent to (X̄in− X̄0n)→ 0 as t→∞. In this
section, the following assumption is necessary.

Assumption 4: There exist unknown parameters σs, known
smooth functions ϕ0s(t, yi), ϕ1s(t, yi) and known bounded
time-varying vector function ϕ2s(t) such that

�s
m=1gm−1θ fs(t, x̄is)

= ϕ0s(t, yi)+ σsϕ1s(t, yi)+ ϕT
2s(t)Xi (25)
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where ϕ21 = 0, ϕ2s(t) = [ϕ2s2(t), . . . , ϕ2ss(t), 0, . . . , 0]T ∈
Rn−1 and Xi := [Xi2, . . . , Xin]T . ϕ0s(t, yi), ϕ1s(t, yi) and all of
their first derivative, . . . , (n− s+ 1)th derivative are bounded,
uniformly in t, for all t ≥ t0 and ‖yi‖ ≤ �̄, where �̄ is a
positive constant.

Remark 4: If the nonlinearities in (1) only depend on the
output, then (1) can be directly transformed to (24) satis-
fying Assumption 4, such as the single-link robot system
in [35] and [36]. The nonlinear function �s

m=1gm−1θ fs(t, x̄is)

under Assumption 4 containing more states information (i.e.,
ϕT

2s(t)Xi) is extremely different from the ones in [24] and
[28]–[33], such as the parallel active suspension system, refer-
ring to [29]. Further detailed introductions can refer to the
number example and Remark 7 in Section IV.

1) Reduced Order Dynamic Gain K-Filter Design: Construct
the following reduced order dynamic gain k-filter to estimate
the ith agent’s states:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζi = λi + lL0qyi

λ̇i = (A− lL0qcT)ζi + ϕ0(t, yi)− l̇L0qyi

− l̇DL0qyi − lL0qϕ01(t, yi)+ ϕ2(t)ζi

�̇i1 = (A− lL0qcT)�i1 − lL0qϕ11(t, yi)

+ ϕ2(t)�i1

�̇im = (A− lL0qcT)�im + ϕ̄1m(t, yi)

+ ϕ2(t)�im, 2 ≤ m ≤ n
ν̇i = (A− lL0qcT)νi + Eui + ϕ2(t)νi

(26)

where ζi, λi, �i1, �im, νi ∈ Rn−1. To unify the form
of the all introduced variables, define νi = [νi2, . . . , νin]T ,
ζi = [ζi2, . . . , ζin]T , λi = [λi2, . . . , λin]T , and �i1 =
[�i12, . . . , �i1n]T , . . . , �in = [�in2, . . . , �inn]T . l ≥ 1 is the
dynamic gain to be designed as (31). L0 = diag{1, l, . . . , ln−2}.
ϕ0(t, yi) = [ϕ02(t, yi), . . . , ϕ0n(t, yi)]T ∈ Rn−1. ϕ̄1m(t, yi) =
[0, . . . , 0, ϕ1m(t, yi), 0, . . . , 0]T ∈ Rn−1, where ϕ1m(t, yi) is
the (m− 1)th entry of the vector. E = [0, . . . , 0, 1]T ∈ Rn−1.
D = diag{0, 1, . . . , n − 2}. c = [1, 0, . . . , 0]T ∈ Rn−1.
q = [q2, . . . , qn]T is designed such that (A− qcT) is Hurwitz.
A ∈ R(n−1)×(n−1) and ϕ2 ∈ R(n−1)×(n−1) are as follows:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

ϕ2 =
⎡

⎢
⎣

ϕ222
...

. . .

ϕ2n2 · · · ϕ2nn

⎤

⎥
⎦.

Then, the state estimate is formed as X̂i = ζi +∑n
m=1 σm�im + ρνi. Defining ei = Xi − X̂i = [ei2, . . . , ein]T ,

one has

ėi =
(
A− lL0qcT)ei + ϕ2(t)ei. (27)

Defining εi = l−μL−1
0 ei with μ a positive design parameter,

we have

ε̇i = l−μL−1
0

(
A− lL0qcT)ei + l−μL−1

0 ϕ2(t)ei

− l̇

l
(μI + D)l−μL−1

0 ei

= l
(
A− qcT)εi + L−1

0 ϕ2L0εi − l̇(μI + D)εi

l
. (28)

Choosing the Lyapunov function Vei = εT
i Pεi, where P is the

positive matrix to be specified later, we have

V̇ei ≤ −lεT
i

(
P
(
A− qcT)+ (A− qcT)TP

)
εi

− l̇

l
εT

i (2μP+ PD+ DP)εi

+ 2εT
i PL−1

0 ϕ2(t)L0εi. (29)

Design q and P such that P(A − qcT) + (A − qcT)TP ≤ −I.
Due to l ≥ 1, there exists the positive bounded time-varying
function ϕ(t) such that

2εT
i PL−1

0 ϕ2(t)L0εi ≤ ϕ(t)εT
i εi. (30)

Then, design l̇ as

l̇ = l(−ηl+ η + ϕ̄(t)), l(0) ≥ 1. (31)

where η > 0 is a constant, and ϕ̄(t) ≥ 0 is smooth bounded
function to be specified later. Since P is positive, there exist
positive constants μ1, μ2 and large enough μ such that

μ1I ≤ 2μP+ PD+ DP ≤ μ2I. (32)

From (31) and (32), we have

− l̇

l
εT

i (2μP+ PD+ DP)εi

≤ μ2ηlεT
i εi − μ1(η + ϕ̄(t))εT

i εi. (33)

From (29)–(33), we have

V̇ei ≤ −(l(1− μ2η)+ μ1(η + ϕ̄(t))− ϕ(t))εT
i εi. (34)

Choose η and ϕ̄(t) such that (1−μ2η) ≥ (1/2), μ1(η+ϕ̄(t))−
ϕ(t) ≥ 0 and ϕ̄(t) ≥ 0, then

V̇ei ≤ −1

2
lεT

i εi. (35)

Since ϕ̄(t) is bounded, l is bounded. From (35), ei converges
to zero as t → ∞. For the reduced order dynamic gain k-
filter (26), we have the following lemma.

Lemma 3: The dynamic systems λi, ζi, �i1, . . . , �in in (26)
with input yi and states (�i1, . . . , �in, λi, ζi) are input-to-state
stable, and if yi converges to zero asymptotically, then the
states (�i1, . . . , �in, λi, ζi) converge to zero asymptotically.

Proof: From (26), we have

λ̇i =
(
A− lL0qcT)λi + ϕ2(t)λi +�i

(
l̇, l
)
yi

+ ϕ0(t, yi)− lL0qϕ01(t, yi) (36)

where �i(l̇, l) = −l̇DL0q−l̇L0q+(A−lL0qcT)lL0q+ϕ2(t)lL0q.
Similar with (27)–(35), and from (36) the derivative of Viλ =
(l−μL−1

0 λi)
TP(l−μL−1

0 λi) is

V̇iλ ≤ −1

4
l
∥
∥
∥l−μL−1

0 λi

∥
∥
∥

2 + 4
∥
∥(lμL0

)
P
∥
∥2

× ∥∥�i
(
l̇, l
)
yi + ϕ0(t, yi)− lL0qϕ01(t, yi)

∥
∥2

. (37)

Due to that l and l̇ are bounded, (36) is input-to-state stable
with the input yi and state λi, referring to [34, Lemma 4.7]. If
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yi converges to zero asymptotically, then λi converge to zero
asymptotically. So is (�i1, . . . , �in, ζi).

Remark 5: The constructed reduced-order k-filter can
be easily extended to interconnected nonlinear systems to
improve the results studied in existing works, such as [24] and
[30]–[33], which will further reduce the number of introduced
dynamic variables and allow the nonlinearities to be time vary-
ing. In addition, based on the analysis about Lemma 3, we can
easily obtain that if (yi−y0)→ 0, then (�i1−�01)→ 0, . . . ,

(�in −�01)→ 0, (λi − λ0)→ 0, (ζi − ζ0)→ 0.
2) Distributed Output Feedback Controller Design: In this

section, based on the constructed k-filter, the distributed adap-
tive output feedback controller is designed by the backstepping
method and tuning function technique. First, for s = 2, . . . , n,
define the local neighborhood consensus error of ith agent as

ξ̃i1 =
N∑

j=1

āij
(
xi1 − xj1

)+ bi(xi1 − x01),

ξ̃is =
N∑

j=1

āij
(
νis − νjs

)+ bi(νis − ν0s). (38)

Choose the following transformation:

z̃i1 = ξ̃i1, z̃is = ξ̃is − α̃i(s−1) (39)

where α̃i(s−1) is the designed virtual controller.
Choose the Lyapunov function as follows:
⎧
⎨

⎩

Ṽ =∑N
i=1
∑n

s=1(Ṽis + Vσ is)

+ (2γ + 1)
∑N

i=0 Vei +∑N
i=1(Vρi + ρVκi)

Ṽis = 1
2 z̃2

is, Vσ is = 1
2 σ̃ 2

is, Vρi = 1
2 ρ̃2

i , Vκi = 1
2 κ̃2

i

(40)

where γ is a positive constant. σ̃is = σs − σ̂is, ρ̃i = ρ − ρ̂i,
κ̃i = ρ−1− κ̂i, and σ̂is, ρ̂i, κ̂i are the estimations of σs, ρ, ρ−1

in the ith agent.
Step 1: From (38), (39), ei = Xi − X̂i and X̂i = ζi +∑n
m=1 σm�im + ρνi, the derivative of Vi1 is

˙̃Vi1 = z̃i1 ˙̃zi1 = ρ z̃i1(z̃i2 + α̃i1)

+ z̃i1

N∑

j=1

āij

((
ζi2 +∑n

m=1 σm�im2 + ei2
+ϕ01(t, yi)+ σ1ϕ11(t, yi)

)

−
(

ζj2 +∑n
m=1 σm�jm2 + ej2

+ϕ01
(
t, yj
)+ σ1ϕ11

(
t, yj
)
))

+ z̃i1bi

((
ζi2 +∑n

m=1 σm�im2 + ei2
+ϕ01(t, yi)+ σ1ϕ11(t, yi)

)

−
(

ζ02 +∑n
m=1 σm�0m2 + e02

+ϕ01(t, y0)+ σ1ϕ11(t, y0)

))

. (41)

Using the Young’s inequality, there exists smooth positive
function βi1 such that

z̃i1

⎛

⎝
N∑

j=1

āij
(
ei2 − ej2

)+ bi(ei2 − e02)

⎞

⎠

≤ βi1z̃2
i1 +

N∑

j=0

γ lε2
j2

(N + 1)n
. (42)

Design the virtual controller α̃i1 and adaptive law ˙̂κi as

α̃i1 = −κ̂i ¯̃αi1, (43)
˙̂κi = z̃i1 ¯̃αi1 (44)

where

¯̃αi1 =
N∑

j=1

āij
(
ζi2 − ζj2

)+ bi(ζi2 − ζ02)

+
N∑

j=1

āij
(
ϕ01(t, yi)− ϕ01

(
t, yj
))+ biϕ01(t, yi)

− biϕ01(t, y0)+ σ̂i1

N∑

j=1

āij
(
ϕ11(t, yi)− ϕ11

(
t, yj
))

+ σ̂i1bi(ϕ11(t, yi)− ϕ11(t, y0))+
n∑

m=1

biσ̂im(�im2 −�0m2)

+
N∑

j=1

n∑

m=1

aijσ̂im
(
�im2 −�jm2

)+ βi1z̃i1 + z̃i1

which only includes the information of neighbors. Using
Assumptions 2 and 4, ¯̃αi1 satisfies that if x11 →
x01, . . . , xN1 → x01, ζ1 → ζ0, . . . , ζN → ζ0, �12 →
�02, . . . , �Nn → �0n and σ̂i2, . . . , σ̂in are bounded, then
¯̃αi1 → 0. ˙̂σi1 and ˙̂σi2 are designed later. The structure of ¯̃αi1
is similar with ᾱi1 in the previous section.

It follows from (41), (44) that:

˙̃Vi1 + ρV̇κi + V̇σ i1 + · · · + V̇σ in

≤ −z̃2
i1 + ρ z̃i1z̃i2 +

N∑

j=0

γ lε2
j2

(N + 1)n
+ σ̃i1

(
τσ i11 − ˙̂σi1

)

+ · · · + σ̃in

(
τσ in1 − ˙̂σin

)
(45)

where τσ i11 = z̃i1bi(ϕ11(t, yi) + �i12 − ϕ11(t, y0) − �j02) +
z̃i1
∑N

j=1 āij(ϕ11(t, yi) + �i12 − ϕ11(t, yj) − �j12), τσ i21 =
z̃i1
∑N

j=1 āij(�i22 − �j22) + z̃i1bi(�i22 − �022), . . . , τσ in1 =
z̃i1
∑N

j=1 āij(�in2−�jn2)+ z̃i1bi(�in2−�0n2), which have the
similar properties with ¯̃αi1.

Step 2: The derivative of Ṽi2 is

˙̃Vi2 = z̃i2 ˙̃zi2 = z̃i2

( ˙̃
ξi2 − ˙̃αi1

)

= z̃i2

⎛

⎝ξ̃i3 −
N∑

j=0

∂α̃i1

∂xj1

(
n∑

m=1

σm�jm2 + σ1ϕ11
(
t, yj
)+ ρνj2 + ej2

)

−
n∑

m=1

∂α̃i1

∂σ̂im

˙̂σim +�i2 −
N∑

j=0

∂α̃i1

∂ζj2
lq2

×
(

n∑

m=1

σm�jm2 + σ1ϕ11
(
t, yj
)+ ρνj2 + ej2

)⎞

⎠ (46)

where �i2 denotes all the other known terms and satisfies that
if x11 → x01, . . . , xN1 → x01, ζ1 → ζ0, . . . , ζN → ζ0, �12 →
�02, . . . , �Nn → �0n and κ̂i, σ̂i2, . . . , σ̂in are bounded, then
�i2 → 0.

Using Young’s inequality, there exists smooth
function βi2 such that −z̃i2(

∑N
j=0(∂α̃i1/∂xj1)ej2 +
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∑N
j=0(∂α̃i1/∂ζj2)lq2ej2) ≤ βi2z̃2

i2 +
∑N

j=0(γ lε2
j2/((N + 1)n)).

Design the virtual controller α̃i2 as

α̃i2 = −
⎧
⎨

⎩
−
⎛

⎝
N∑

j=0

∂α̃i1

∂xj1
+

N∑

j=0

∂α̃i1

∂ζj2
lq2

⎞

⎠

×
(

n∑

m=1

σ̂im�jm2 + σ̂i1ϕ11
(
t, yj
)+ ρ̂iνj2

)

+ ρ̂iz̃i1 + βi2z̃i2 + z̃i2 +�i2

+ ∂α̃i1

∂σ̂i1
τσ i12 + · · · + ∂α̃i1

∂σ̂in
τσ in2

⎫
⎬

⎭
(47)

where τσ i12 = τσ i11 − z̃i2
∑N

j=0(∂α̃i1/∂xj1)(�j12 +
ϕ11(t, yj)) − z̃i2

∑N
j=0([∂α̃i1]/[∂ζj2])lq2(�j12 + ϕ11(t, yj)),

τσ i22 = τσ i21 − z̃i2
∑N

j=0([∂α̃i1]/∂xj1)�j22 −
z̃i2
∑N

j=0([∂α̃i1]/[∂ζj2])lq2�j22, . . . , τσ in2 = τσ in1 −
z̃i2
∑N

j=0([∂α̃i1]/∂xj1)�jn2 − z̃i2
∑N

j=0([∂α̃i1]/∂ζj2)lq2�jn2.
α̃i2 satisfies that if x11 → x01, . . . , xN1 → x01,
ζ1 → ζ0, . . . , ζN → ζ0, �12 → �02, . . . , �Nn → �0n,
ν12 → ν02, . . . , νN2 → ν02, and κ̂i, σ̂i2, . . . , σ̂in are bounded,
then α̃i2 → 0.

It follows from (46), (47) that:

˙̃Vi1 + ˙̃Vi2 + ρV̇κi + V̇ρi + V̇σ i1 + · · · + V̇σ in

≤ −z̃2
i1 − z̃2

i2 + z̃i2z̃i3 +
N∑

j=0

2γ lε2
j2

(N + 1)n

+ ρ̃i

(
τρi1 − ˙̂ρi

)
+
(

σ̃i1 + z̃i2
∂α̃i1

∂σ̂i1

)(
τσ i12 − ˙̂σi1

)

+ · · · +
(

σ̃in + z̃i2
∂α̃i1

∂σ̂in

)(
τσ in2 − ˙̂σin

)
(48)

where τρi1 = z̃i2(z̃i1 − ∑N
j=0([∂α̃i1]/∂xj1)νi2 −∑N

j=0([∂α̃i1]/∂ζj2)lq2νj2).
Step (3 ≤ s ≤ n−1): Similarly, design the virtual controller

α̃is as follows:

α̃is = −
⎛

⎝z̃i(s−1) + βisz̃is + z̃is +�is + ∂α̃i(s−1)

∂ρ̂i
τρi(s−1)

−
⎛

⎝
N∑

j=0

∂α̃i(s−1)

∂xj1
+

N∑

j=0

s∑

�=2

∂α̃i(s−1)

∂ζj�
l�−1q�

⎞

⎠

×
(

ρ̂iνj2 +
n∑

m=1

σ̂im�jm2 + σ̂i1ϕ11
(
t, yj
)
)

+ ∂α̃i(s−1)

∂σ̂i1
τσ i1s

+ · · · + ∂α̃i(s−1)

∂σ̂in
τσ ins −

(
s−1∑

m=3

z̃im
∂α̃i(m−1)

∂ρ̂i

)
N∑

j=0

νj2

×
⎛

⎝ ∂α̃i(s−1)

∂xj1
+

s∑

�=2

∂α̃i(s−1)

∂ζj�

q�

l1−�

⎞

⎠−
(

s−1∑

m=2

z̃im
∂α̃i(m−1)

∂σ̂i1

)

×
N∑

j=0

⎛

⎝

⎛

⎝ ∂α̃i(s−1)

∂xj1
+

s∑

�=2

∂α̃i(s−1)

∂ζj�
l�−1q�

⎞

⎠
(
�j12 + ϕ11

(
t, yj
))
⎞

⎠

−
(

s−1∑

m=2

z̃im
∂α̃i(m−1)

∂σ̂i2

)
N∑

j=0

�j22

⎛

⎝ ∂α̃i(s−1)

∂xj1
+

s∑

�=2

∂α̃i(s−1)

∂ζj�

q�

l1−�

⎞

⎠

− · · · −
(

s−1∑

m=2

z̃im
∂α̃i(m−1)

∂σ̂in

)

×
N∑

j=0

�jn2

⎛

⎝ ∂α̃i(s−1)

∂xj1
+

s∑

�=2

∂α̃i(s−1)

∂ζj�

q�

l1−�

⎞

⎠

⎞

⎠ (49)

where the smooth functions τρi(s−1) =
τρi(s−2) − z̃is

∑N
j=0([∂α̃i(s−1)]/∂xj1)νj2 − z̃is

∑N
j=0∑s

�=2([∂α̃i(s−1)]/∂ζj�)l�−1q�νj2, τσ i1s = τσ i1(s−1) −
z̃is
∑N

j=0([∂α̃i(s−1)]/∂xj1)(�j12 + ϕ11(t, yj)) − z̃is
∑N

j=0∑s
�=2([∂α̃i(s−1)]/∂ζj�)l�−1q�(�j12 + ϕ11(t, yj)), and the

functions τσ i2s = τσ i2(s−1) − z̃is
∑N

j=0([∂α̃i(s−1)]/∂xj1)�j22 −
z̃is
∑N

j=0
∑s

�=2([∂α̃i(s−1)]/∂ζj�)l�−1q��j22, . . . , τσ ins =
τσ in(s−1) − z̃is

∑N
j=0([∂α̃i(s−1)]/∂xj1)�jn2 − z̃is

∑N
j=0∑s

�=2([∂α̃i(s−1)]/∂ζj�)l�−1q��jn2. �is denotes all
the other known terms. α̃is and �is satisfy that if
x11 → x01, . . . , xN1 → x01, ζ1 → ζ0, . . . , ζN → ζ0,
�12 → �02, . . . , �Nn → �0n, ν̄1s → ν̄0s, . . . , ν̄Ns → ν̄0s, and
κ̂i, σ̂i2, . . . , σ̂in are bounded, then α̃is → 0 and �is → 0.

Then, we have

˙̃Vi1 + · · · + ˙̃Vis + ρV̇κi + V̇ρi + V̇σ i1 + · · · + V̇σ in

≤ −
s∑

m=1

z̃2
im +

N∑

j=0

sγ lε2
j2

(N + 1)n
+ ρ̃i

(
τρi(s−1) − ˙̂ρi

)

+ z̃isz̃i(s+1) +
(

σ̃i1 +
s∑

m=2

z̃im
∂α̃i(m−1)

∂σ̂i1

)
(
τσ i1s − ˙̂σi1

)

+ · · · +
(

σ̃in +
s∑

m=2

z̃im
∂α̃i(m−1)

∂σ̂in

)
(
τσ ins − ˙̂σin

)
. (50)

Step n: Through the above recursive design method, if we
design ui and the other adaptive laws as follows:

ui = 1
∑N

j=1 āij + bi

⎛

⎝α̃in +
N∑

j=1

āijuj + biu0

⎞

⎠ (51)

˙̂ρi = τρi(n−1) (52)
˙̂σi1 = τσ i1n, (53)

...

˙̂σin = τσ inn (54)

where α̃in, τρi(n−1), τσ i1n, . . . , τσ inn can be obtained as step
(3 ≤ s ≤ n−1) and their details are not given any more. Then
the derivative of Ṽ is

˙̃V ≤ −
N∑

i=1

n∑

m=1

z̃2
im −

N∑

i=1

1

2
lεT

i εi. (55)

Now, we give the second main result of our paper.
Theorem 2: For the high-order time-varying nonlinear

MASs (1) satisfying Assumptions 1–2 and 4, the distributed
adaptive output feedback controller (51) with the adaptive
laws (44), (52)–(54), can render all the tracking errors (x̄in −
x̄0n) to converge to zero asymptotically.

Proof: Due to that ϕ̄(t) is bounded, from (31), l is bounded.
Since (Lr + B) is nonsingular matrix, from Assumption 2
and inequality (55), we know that for i = 0, 1, . . . , N, yi
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are bounded. Similar with the Lemma 2, all the variables
�im, λi, ζi, and νi are bounded. So we can easily obtain
that

∑N
i=1
∑n

m=1 z̃2
im +

∑N
i=1(1/4)εT

i ε is uniformly continu-
ous. Due to that

∫ t
t0
(
∑N

i=1
∑n

m=1 z̃2
im +

∑N
i=1(1/2)lεT

i ε)dτ ≤
− ∫ t

t0
˙̃V(τ )dτ ≤ Ṽ(t0) is finite, based on the Lemma 1,

z̃11 → 0, . . . , z̃Nn → 0 and e0 → 0, . . . , eN → 0 as t → ∞.
Since (Lr+B) is nonsingular matrix, for i = 1, . . . , N, yi → y0
as t → ∞. Based on the Lemma 3, due to (yi − y0) → 0
as t → ∞, we have (�im − �0m) → 0, (λi − λ0) → 0,
(ζi − ζ0) → 0. Combined with the properties of the vir-
tual controllers α̃i(s−1) and Lemma 2, we can obtain that
νi → ν0 as t → ∞. So, (X̂i − X̂0) → 0 as t → ∞. Since
e0 → 0, . . . , eN → 0 as t → ∞, x̄in → x̄0n as t → ∞. The
proof is completed.

Based on the above controller design method and stability
analysis, the following corollaries can be obtained.

Corollary 3: If ϕ0s(t, yi), ϕ1s(t, yi), ϕT
2s(t) are time invariant,

such as ϕ0s(t, yi) = ϕ0s(0, yi), ϕ1s(t, yi) = ϕ1s(0, yi), ϕT
2s(t) =

ϕT
2s(0), for the nonlinear MASs (1) satisfying Assumptions 1

and 2 and (25), the distributed adaptive output feedback con-
troller (51) can render all the tracking errors (x̄in − x̄0n) to
converge to zero asymptotically.

Corollary 4: For the high-order time-varying nonlinear
MASs (1) satisfying Assumption 1 and (25), the distributed
adaptive output feedback controller (51) can render the output
tracking error (xi1 − x01) to converge to zero asymptotically.

In Theorem 2, the dynamic gain k-filter-based distributed
output feedback protocol is proposed for the nonlinear MASs,
where the control input appears in the last dynamics Ẋin. The
results can be further extended to the following nonlinear
MASs:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋi1 = Xi2 + θ f1(t, x̄i1)
...

Ẋi� = ρ̄ui + Xi(�+1) +��
m=1gm−1θ f� (t, x̄i� )

...

Ẋin = ρ̄�n
m̄=�+1gm̄ui +�n

m=1gm−1θ fn(t, x̄in)

yi = Xi1

(56)

where ρ̄ = ��
m=1gm. g1, . . . , g� are unknown positive

constants and the parameters g�+1, . . . , gn are known.
Assumption 5: For s = � + 1, . . . , n, following system:

Ẋis = Xi(s+1) +�s
m=1gm−1θ fs(t, x̄is)

+ ρ̄�s
m̄=�+1gm̄

(
ỹ0 − Xi(�+1)

)
(57)

with inputs ỹ0, Xi1, . . . , Xi� , and output Xi(�+1) is bounded-
input to bounded-output.

Corollary 5: For the high-order time-varying nonlinear
MASs (56) satisfying Assumptions 1, 2, 4, and 5, the
distributed output feedback controller design method of
Theorem 2 can extend to this case to solve the states
(xi1, . . . , xi� ) leader-following asymptotic consensus problem.

Proof: In this corollary, similar to the design process of con-
troller (51), redesign ν̇i in (26) as ν̇i = (A− lL0qcT)νi+ Ēui+
ϕ2(t)νi, where Ē = [0, . . . , 0, 1, g�+1, . . . ,�

n
m̄=�+1gm̄]T ∈

Rn−1. Choose the state estimate as X̂i = ζi +∑n
m=1 σm�im +

ρ̄νi. Through � steps, the controller can be designed

as ui = [(α̃i� +∑N
j=1 āij(uj + νj(�+1))+ bi(u0 + ν0(�+1)))/

(
∑N

j=1 āij + bi)] − νi(�+1) and the other adaptive laws is
similar with (44), (52)–(54). Then, similar to the proof of
the Theorem 2, the leader-following consensus of the states
(xi1, . . . , xi� ) can be directly addressed. Combined with (57),
the boundedness of the state variables (xi(�+1), . . . , xin) can
be guaranteed.

Remark 6: Assumption 5 is given to make the remain-
ing states of the followers be bounded, which is essential to
guarantee the stability of each agent.

IV. NUMERICAL EXAMPLE

To illustrate the effectiveness of the proposed methods, con-
sider following MASs under the directed graph Fig. 1 where
b1 = 1, a13 = a21 = a32 = 1 and the other weight aij is
zero. By the hierarchical decomposition, we have b1 = 1,
ā21 = ā32 = 1 and the other weight āij is zero. The dynamic
of the ith agent is as follows:

⎧
⎨

⎩

ẋi1 = xi2 + ϕ01(t, yi)

ẋi2 = ρui + σ2ϕ12(t, yi)+ ϕ222(t)xi2
yi = xi1

(58)

where set ϕ01(t, yi) = 0.8 sin(t)yi, ϕ12(t, yi) = y2
i , ϕ222(t) =

0.8 sin(t). ρ = 0.5 and σ2 = 0.7.
Remark 7: The dynamics of the considered agent (58) is

general. If the functions ϕ01(t, yi) = 0, σ2ϕ12(t, yi) = 0
and ϕ222(t) is chosen as a constant, then (58) is reduced
to the parallel active suspension system, referring to [29]. If
ϕ01(t, yi) = ϕ222(t) = 0, and ϕ12(t, yi) = sin(yi), then (58) is
reduced to the single-link robot system [35], [36].

Design the reduced order (first order) dynamic gain k-filter
to estimate the ith agent’s states as (26). From (30), setting
P = 1, we have 2εT

i PL−1
0 ϕ222(t)L0εi ≤ 0.8(1 + sin(t))εT

i εi.
Setting μ1 = μ2 = μ = 0.5 and η = 2, then design l̇ as
l̇ = l(−ηl+η+0.8(1+sin(t))), l(0) = 1. Choosing q2 = 1, we
have V̇ei ≤ −(1/2)lεT

i εi. In the sequel, use the backstepping
method to construct the distributed controller.

Step 1: Calculate the derivative of Ṽi1

˙̃V11 = z̃11(x12 − x02 + ϕ01(t, y1)− ϕ01(t, y0))

= ρ z̃11(z̃12 + α̃11)

+ z̃11((ζ12 + σ2�122 + e12 + ϕ01(t, y1))

− (ζ02 + σ2�022 + e02 + ϕ01(t, y0))), (59)
˙̃V21 = ρ z̃21(z̃22 + α̃21)

+ z̃21((ζ22 + σ2�222 + e22 + ϕ01(t, y2))

− (ζ12 + σ2�122 + e12 + ϕ01(t, y1))), (60)
˙̃V31 = ρ z̃31(z̃32 + α̃31)

+ z̃31((ζ32 + σ2�322 + e32 + ϕ01(t, y3))

− (ζ22 + σ2�222 + e22 + ϕ01(t, y2))). (61)

Using the Young’s inequality, there exist β11 = 1, β21 = 1,
β31 = 1 such that z̃11(2e12−e32−e02) ≤ β11z̃2

11+ (1/2)lε2
12+

(1/2)lε2
02, z̃21(e22 − e12) ≤ β21z̃2

21 + (1/2)lε2
22 + (1/2)lε2

12,
z̃31(e32 − e22) ≤ β31z̃2

31 + (1/2)lε2
32 + (1/2)lε2

22. Design the
virtual controller α̃i1 and adaptive law ˙̂κi as

α̃i1 = −κ̂i ¯̃αi1, ˙̂κi = z̃i1 ¯̃αi1 (62)
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where the designed functions ¯̃α11 = (ζ12−ζ02)+ (ϕ01(t, y1)−
ϕ01(t, y0)) + β11z̃11 + z̃11 + σ̂12(�122 − �022), ¯̃α21 = (ζ22 −
ζ12) + ϕ01(t, y2) − ϕ01(t, y1) + σ̂22(�222 − �122) + β21z̃21 +
z̃21, and ¯̃α31 = (ζ32 − ζ22) + ϕ01(t, y3) − ϕ01(t, y2) +
σ̂32(�322 −�222)+ β31z̃31 + z̃31. Obviously, ¯̃αi1 satisfies that
if x11 → x01, . . . , x31 → x01, ζ1 → ζ0, . . . , ζ3 → ζ0,
�12 → �02, . . . , �32 → �02 and σ̂12, . . . , σ̂32 are bounded,
then ¯̃αi1 → 0. From (59)–(62),

∑3
i=1
˙̃Vi1 + V̇κi + V̇σ i2 ≤

−∑3
i=1 z̃2

i1 +
∑3

i=1 ρ z̃i1z̃i2 + σ̃12(τσ121 − ˙̂σ12) + σ̃22(τσ221 −˙̂σ22)+σ̃32(τσ321− ˙̂σ32)+lε2
12+(1/2)lε2

22+(1/2)lε2
32+(1/2)lε2

02,
where τσ121 = z̃11(�122 − �022), τσ221 = z̃21(�222 − �122),
τσ321 = z̃31(�322 −�222).

Step 2: The derivative of Ṽ12 is

˙̃V12 = z̃12

(
u1 − u0 − lq2ξ̃12 + ϕ222(t)ξ̃12

− ˙̂κ1 ¯̃α11 − κ̂1

⎛

⎜
⎜
⎝

ϕ222(t)(ζ12 − ζ02)

+lq2(e12 − e02)

+lq2ρ(ν12 − ν02)

+lq2σ2(�122 −�022)

⎞

⎟
⎟
⎠

− κ̂1

⎛

⎝
˙̂σ12(�122 −�022)+ σ̂12

×(ϕ222(t)− lq2)(�122 −�022)

+σ̂12(ϕ12(t, y1)− ϕ12(t, y0))

⎞

⎠

− κ̂1(β11 + 1− 0.8 sin(t))

⎛

⎜
⎜
⎝

e12 − e02
+ζ12 − ζ02
+ρ(ν12 − ν02)

+σ3(�132 −�032)

⎞

⎟
⎟
⎠

− 0.8κ̂1 cos(t)z̃11

)
. (63)

Using Young’s inequality, there exists smooth function β12 =
2(κ̂1(β11+1−0.8 sin(t)))2+2κ̂2

1 q2
2l2 such that −z̃12(κ̂1((β11+

1 − 0.8 sin(t)) + lq2))(2e12 − e32 − e02) ≤ β12z̃2
12 + 3lε2

12 +
(3/4)lε2

32 + (3/4)lε2
02. Design

α̃12 = −
(
−lq2ξ̃12 + ϕ222(t)ξ̃12 − ˙̂κ1 ¯̃α11

− κ̂1(ϕ222(t)(ζ12 − ζ02))

− κ̂1
(
σ̂12(ϕ222(t)− lq2)(�122 −�022)

)

− κ̂1σ̂12(ϕ12(t, y1)− ϕ12(t, y0))

− κ̂1(β11 + 1− 0.8 sin(t))(ζ12 − ζ02)

− 0.8κ̂1 cos(t)z̃11 + β12z̃12 − κ̂1ρ̂1

× (lq2 + (β11 + 1− 0.8 sin(t)))(ν12 − ν02)

+ ρ̂1z̃11 − κ̂1σ̂12(lq2 + (β11 + 1− 0.8 sin(t)))

× (�122 −�022)− τσ122κ̂1

× (�122 −�022)+ (β12 + 1)z̃12

)
(64)

where the designed smooth functions τσ122 = τσ121 −
z̃12κ̂1(lq2 + (β11 + 1 − 0.8 sin(t)))(�122 − �022). Similar
with (63), (64), design

α̃22 = −
(
−lq2ξ̃22 + ϕ222(t)ξ̃22 − ˙̂κ2 ¯̃α21

− κ̂2(ϕ222(t)(ζ22 − ζ12))

− κ̂2
(
σ̂22(ϕ222(t)− lq2)(�222 −�122)

)

− κ̂2σ̂22(ϕ12(t, y2)− ϕ12(t, y1))

− κ̂2(β21 + 1− 0.8 sin(t))(ζ22 − ζ12)

− 0.8κ̂2 cos(t)z̃21 + β22z̃22 − κ̂2ρ̂2

Fig. 1. Communication topology.

Fig. 2. Responses of the states x01 and x02.

× (lq2 + (β21 + 1− 0.8 sin(t)))(ν22 − ν12)

+ ρ̂2z̃21 − κ̂2σ̂22(lq2 + (β21 + 1− 0.8 sin(t)))

× (�222 −�122)− τσ222κ̂2

× (�222 −�122)+ (β22 + 1)z̃22

)
(65)

α̃32 = −
(
ϕ222(t)ξ̃32 − ˙̂κ3 ¯̃α31 − κ̂3(ϕ222(t)(ζ32 − ζ22))

− lq2ξ̃32 − κ̂3
(
σ̂32(ϕ222(t)− lq2)(�322 −�222)

)

− κ̂2σ̂32(ϕ12(t, y3)− ϕ12(t, y2))− κ̂3(ζ32 − ζ22)

× (β31 + 1− 0.8 sin(t))− 0.8κ̂3 cos(t)z̃31 + β32z̃32

− κ̂3ρ̂3(lq2 + (β31 + 1− 0.8 sin(t)))(ν32 − ν22)

+ ρ̂3z̃31 − κ̂3σ̂32(lq2 + (β31 + 1− 0.8 sin(t)))

× (�322 −�222)− τσ322κ̂3

× (�322 −�222)+ (β32 + 1)z̃32

)
(66)

where β22 = 2(κ̂2(β21 + 1 − 0.8 sin(t)))2 + 2κ̂2
2 q2

2l2, β32 =
2(κ̂3(β31 + 1 − 0.8 sin(t)))2 + 2κ̂2

3 q2
2l2, τσ222 = τσ221 −

z̃22κ̂2(lq2 + (β21 + 1 − 0.8 sin(t)))(�222 − �122), τσ322 =
τσ321 − z̃32κ̂3(lq2 + (β31 + 1− 0.8 sin(t)))(�322 −�222).

Design

ui =
⎛

⎝
3∑

j=1

āij + bi

⎞

⎠

−1⎛

⎝α̃in +
3∑

j=1

āijuj + biu0

⎞

⎠ (67)

˙̂ρi = τρi1, ˙̂σi2 = τσ i22 (68)

where the positive smooth functions τρ11 = −z̃12κ̂1(lq2+β11+
1−0.8 sin(t))(ν12−ν02)+ z̃11z̃12, τρ21 = −z̃22κ̂2(lq2+ (β21+
1−0.8 sin(t)))(ν22−ν12)+z̃21z̃22, τρ31 = −z̃32κ̂3(lq2+β31+1−
0.8 sin(t))(ν32−ν22)+ z̃31z̃32. From Steps 1 and 2,

∑3
i=1(
˙̃Vi1+˙̃Vi2 + ρV̇κi + V̇σ i2 + V̇ρi)+ 7

∑3
i=0 V̇ei ≤ −∑3

i=1(z̃
2
i1 + z̃2

i2)−∑3
i=0(1/2)lεT

i εi.
Choose the initial values as x01 = −1, x02 = 1, x11 = 0.5,

x12 = −0.7, x21 = −0.7, x22 = 0.5, x31 = 0.4, x32 = 0.4,
λ02 = 0.6, �022 = 0.6, ν02 = 0.6, λ12 = 0.4, �122 = 0.4,
ν12 = 0.4, λ22 = 0.5, �222 = 0.5, ν22 = 0.5, λ32 = 0.4,
�322 = 0.4, κ̂1 = κ̂2 = κ̂3 = ρ̂1 = ρ̂2 = ρ̂3 = σ̂12 = σ̂22 =
σ̂32 = 0.3, and set u0(t) = −4x01−4x02+2 sin(1.5t)−1.4x2

01.
There exists x02 in u0, which is a state feedback controller. Of
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Fig. 3. Responses of the states xi1.

Fig. 4. Responses of the states xi2.

Fig. 5. Responses of the dynamics λi2.

Fig. 6. Responses of the dynamics �i22.

course, u0 can be designed as output feedback controller based
on the constructed k-filter. This simulation mainly illustrates
the effectiveness of the distributed protocol of the followers,
so we just set u0 as a simple structure. Due to that the matrix
[0.8 1;−2 − 1.2] is Hurwitz, it is straightforward to prove
that the states of the leader are bounded under u0. Simulation
results are shown in Figs. 2–8. Fig. 2 illustrates that states
of the leader are bounded. From Figs. 3 and 4, the states of
followers can track states of the leader effectively based on the
distributed adaptive output feedback controllers (67). Figs. 5–7
show the estimates can achieve consensus. Fig. 8 shows the
responses of adaptive laws.

Fig. 7. Responses of the dynamics νi2.

Fig. 8. Responses of the estimates.

V. CONCLUSION

This article investigates the distributed adaptive leader-
following control for high-order time-varying nonlinear MASs
with uncertain parameters under a directed communica-
tion graph. To avoid the mutually dependent controllers
information produced in the design process, the hierarchical
decomposition algorithm is used. Then, by introducing the
consensus errors-based transformation, using the backstepping
method and tuning function technique, the adaptive state feed-
back protocol is designed to guarantee all states of followers
to track all the corresponding states of the leader asymptoti-
cally with mild conditions on nonlinearities. On the other hand,
when states of the agents are unmeasured, the reduced order
dynamic gain k-filter is constructed, based on which the adap-
tive output feedback protocol is proposed to achieve the full
states consensus. All of the proposed theorems and corollar-
ies can guarantee the global stability of the MASs. A general
numerical example is given to illustrate the effectiveness of
the proposed methods.
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