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Discriminative Face Hallucination via
Locality-Constrained and Category Embedding

Representation
Licheng Liu , Member, IEEE, Rushi Lan , and Yaonan Wang

Abstract—Recent years have witnessed the rapid development
of face image hallucination techniques. However, the previous
face hallucination methods are unsupervised and ignore the label
information of training samples, leading to undesirable results.
This article proposes a locality-constrained and category embed-
ding representation (LCER) method to super-resolve face image
in a supervised manner by embedding the label information
in data representation. The proposed LCER incorporates the
locality prior and category information into one unified frame-
work, which aims to learn both the advantages of locality in
preserving the true typologic structure of data manifold and the
discriminability in exposing the class subspace information. Such
strategy allows the LCER not only to preserve more sharpen
image details but also to guarantee the face structure pattern
be transferred mainly from the same subject in super-resolution
reconstruction. Extensive experiments were conducted to evalu-
ate the proposed LCER, and the comparative results demonstrate
that it achieved superior face hallucination performance in both
the quantitative measurements and visual impressions compared
to several state-of-the-art.

Index Terms—Category embedding, discriminative face hal-
lucination, locality-constrained representation (LcR), manifold
learning.

I. INTRODUCTION

FACE hallucination, aiming to promote the performance
of face recognition [1], is such a domain-specific super-

resolution technique that tries to infer high-resolution (HR)
face images from the corresponding low-resolution (LR)
observations. After the seminal works of [2] and [3], many
efforts have been devoted to increasing more detailed face
features as much as possible. Generally speaking, the face
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hallucination methods in literature can be classified into two
main types, namely, global face methods based on statisti-
cal models and local face methods based on small patch
priors.

The statistical model-based global face methods try to
reconstruct HR images on the correlation mapping derived
from the LR and HR face image pairs by leveraging the face
statistical models. Exemplificative models, including but not
limited to the principal component analysis (PCA) [4], the
locality preserving projections (LPPs) [5], the canonical cor-
relation analysis (CCA) [6], the singular value decomposition
(SVD) [7], [8], the orthogonal procrustes regression (OPR) [9],
and so on. Though these algorithms are able to preserve the
global structures of human face well, the global-based meth-
ods share a common challenge in preserving image details like
edge and texture information.

In contrast to global reconstruction, the local patch prior-
based face approaches can further preserve the image details
via handling small patches rather than holistic images. The
neighbor embedding (NE)-based method is the first attempt
that studied the correlations from neighbor patches for
super-resolution reconstruction [10]. Jiang et al. [11] further
presented a coupled-layer NE (CLNE) with graph regular-
ization for facial image hallucination, where a more robust
NE was achieved by iteratively updating the representation
weights. The success of NE-based methods is attributed to the
assumption that the LR and HR patch spaces maintain the
same topology structure, which is originated from the well-
known locally linear embedding (LLE) [12] algorithm. Thus,
the projection coefficients learned from the LR patch space
can be used directly in the HR patch space to synthesis the
desirable HR patch.

Actually, the human face is highly structured, and simi-
lar patterns are always trend to present in the same position.
Based on this observation, Ma et al. [13] introduced a least
square regression (LSR)-based position patch method for face
hallucination, where the query LR patch was projected on the
space spanned by all the training patches seated at the identi-
cal location. A flaw of LSR is that it employs no constraint on
representation coefficients, leading to unstable solutions. Up to
now, various prior knowledge has been exploited to stabilize
the linear system, among which the sparsity and locality are
the two representative priors.

The sparsity prior assumes that data is inherent sparse and
can be approximated by a subset of training samples [14]–[16].
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Motivated by this, Yang et al. [17] developed a sparse
representation model for face image super-resolution with
the assistance of coupled LR and HR dictionaries.
Li et al. [18] proposed to hallucinate face image by learn-
ing the sparse local-pixel structures of the target HR facial
images. Wang et al. [19] introduced an lp-norm induced
weighted sparse representation model for face hallucination.
Jiang et al. [20] presented a smooth sparse representation
(SSR) to hallucinate face image, which tries to strengthen
the smooth structure of the training data manifold. The col-
laborative representation is involved to face super-resolution
too, since it can achieve a comparable performance compared
to sparse coding but with a very faster speed [21]. To take
advantage of deep architecture, Farrugia and Guillemot [22]
proposed to hallucinate the face image via a coupled layer
collaborative representation.

In contrast, the locality prior induced by weighted
l2-norm encourages the training samples similar with the
test one to contribute significantly to the final result.
Jiang et al. [23], [24] introduced the locality-constrained rep-
resentation (LcR) scheme to model the position patches
for face hallucination. The representation capacity of
LcR was later enhanced by incorporating with Tikhonov
regularization [25]. Shi et al. [26], [27] employed the LcR
model in high dimensional feature space induced by a kernel
function, where the nonlinear characteristics of the orig-
inal HR space can be captured to enhance the qualities
of super-resolution results. The LcR framework was further
extended into the quaternion domain [28] and a quaternion
locality-constrained coding (QLC) was proposed for color
face image super-resolution [29]. Later, Jiang et al. [30]
presented a thresholding LcR with the strategy of repro-
ducing learning (TLcR-RL) for face hallucination, in which
the newly reconstructed face was added back to the training
dataset to strengthen the distribution comparability between
the query face and the training images. Considering that
images are easily corrupted by noise in practice, Liu et al.
introduced two different reweighting strategies into the local-
ity model and presented a robust locality-constrained bi-
layer representation (RLcBR) [31] as well as an iterative
relaxed collaborative representation (iRCR) [32] to hallucinate
face images affected by impulse noise and Gaussian noise,
respectively.

Recent years, the deep learning techniques have been suc-
cessfully applied for image super-resolution and face halluci-
nation. For example, Dong et al. [33] proposed a convolutional
neural network (SRCNN) for general image super-resolution.
This article is the first attempt to utilize deep models for super-
resolution reconstruction by learning an end-to-end mapping
between the LR and HR spaces. Liu et al. [34] introduced the
domain expertise to a cascade sparse coding-based network
(CSCN) for super-resolution. Lu et al. [35] presented a
deep linear mapping learning (DLML) framework for face
hallucination. Kim et al. [36] proposed a very deep convo-
lutional network for super-resolution (VDSR), in which the
cascaded small filters were used to extract context character-
istics over large image regions. Ledig et al. [37] extended
the generative adversarial network (GAN) to SRGAN for

Fig. 1. Discriminative face hallucination problem encountered in the face
recognition system, where the training images are partitioned into different
classes and the input probe image belongs to one of the classes in the training
dataset but with low resolution. The low-resolution problem will severely
degrade the performance of the recognition system. Therefore, how to improve
the qualities of test face images with the assistant of labeled training samples
becomes an emergency issues in the face hallucination field.

single image super-resolution. Yu and Porikli [38] adopted
the decoder–encoder–decoder scheme and presented a trans-
formative discriminative autoencoder for face hallucination.
Generally, the deep face hallucination trends to utilize cer-
tain pretrained deep models and fine tuning with the facial
priors to generate temporary faces, which are further used
to sharpen the hallucination results from the regression
model [39], [40].

Though the previous methods achieved promising
performance to a certain extent, one common limitation
is that they ignore the discriminative face hallucination
problem which is frequently encountered in the face recog-
nition system. Considering that the LR problem commonly
exists in many practical face recognition systems, and
the degraded input face images will severely decline the
system performance (see Fig. 1) [41]. One intuitive way to
promote the system performance is to improve the visual
quality of input face images by some appropriate face image
super-resolution techniques. Therefore, how to design the
discriminative face hallucination methods to improve the
qualities of test face images with the assistant of labeled
training samples in the recognition system becomes an
emergency issue in the face hallucination field.

However, the aforementioned face hallucination methods
mainly focus on the manifold structure assumption but rarely
take into consideration of the discriminative information of
training data, which significantly benefits the image represen-
tation and classification applications [42], [43]. To address
this concern, in this article, we propose a new discrimina-
tive face hallucination method named locality-constrained and
category embedding representation (LCER) from a different
point of view to previous ones. In LCER, the unsupervised
locality-constrained coding and supervised category embed-
ding are united into one framework, which benefits our method
in twofold. First of all, since the proposed LCER is a position-
patch-based approach, it is reasonable to apply the nearest
neighbors to represent the test patch. Moreover, for discrim-
inative face super-resolution, since the label information of
training samples is known in advance (shown in Fig. 1), it is
meaningful to encourage the samples with the same label to
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offer more contribution in data representation. The advantages
of using locality prior as well as label information admits the
proposed LCER method to preserve more image details and
desirable face patterns in super-resolution reconstruction. The
contributions of this article are summarized as the following
threefold.

1) The proposed LCER employs label information of train-
ing samples in data representation, which guarantees the
face structure pattern be mainly transferred from the
correct class in HR face synthesis. To the best of our
knowledge, this is the first attempt to super-resolved face
images in the supervised manner.

2) The discriminative term that exploits the local
information for super-resolution representation in LCER
is interpreted from the Bayes probability perspective.
This not only ensures the rationality of the proposed
model but also demonstrates the capacity of LCER in
preserving the face subspace features from the statistical
viewpoint.

3) We have carried out extensive experiments on both the
standard face datasets and real-word images to verify
the efficiency and effectiveness of the proposed method
in hallucinating both the clean and noisy face images.

The remiander of this article is organized as follows. The
proposed discriminative face hallucination model, as well
as the corresponding optimization strategy is introduced in
Section II. The experimental results and analysis are presented
in Section III. Section IV draws a conclusion.

II. PROPOSED DISCRIMINATIVE FACE

HALLUCINATION METHOD

A. LCER Model

In this article, we consider a different scenario, where
the training samples contain the face images that belong to
the same class (person) but with different illuminations and
expressions associated to the input test one. Such scenario is
necessary and meaningful, especially, for the video surveil-
lance system (see Fig. 1). Therefore, in such case, the face
hallucination becomes into the task that super-resolves the LR
observations by the training samples partitioned into different
classes, among which the test face image belongs to. Such face
image super-resolution problem with labeled training data is
called discriminative face hallucination.

Suppose that the training LR and HR datasets are com-
posed of C classes, e.g., XL = {XL

1, XL
2, . . . , XL

C} ∈ RN×K

and XH = {XH
1 , XH

2 , . . . , XH
C } ∈ RM×K , where each face

image is stretched into an N dimension column vector for
the LR face and an M dimension column vector for the HR
face, and the ith class includes Ji number of face images,
that is, XL

i = {XL
1 , . . . , XL

Ji
} and XH

i = {XH
1 , . . . , XH

Ji
} with

K = ∑C
i=1 Ji be the total number of training images.

Denote by YL ∈ RN a vectorized test face image, in the
position-patch manner, it is first divided into H small overlap-
ping patches {yL(i, j)|1 ≤ i ≤ P, 1 ≤ j ≤ Q} ∈ Rn×K with H =
PQ, where P is the number of overlapping patches in each row,
and Q is the number of overlapping patches in each column.
Analogously, the LR and HR training image pairs can be also

divided into small patch sets, XL
k (i, j) = {xL

k (i, j)|1 ≤ i ≤ P,

1 ≤ j ≤ Q}K
k=1 ∈ Rn×K and XH

k (i, j) = {xH
k (i, j)|1 ≤ i ≤ P,

1 ≤ j ≤ Q}K
k=1 ∈ Rm×K .

For the (i, j)th test sample (image patch) xL(i, j) ∈ Rn, basi-
cally, it can be represented by a linear combination of the
corresponding LR training image patches seated at the same
position

yL(i, j) = XL(i, j)s(i, j) (1)

where s(i, j) = [s1(i, j), . . . , sK(i, j)] ∈ RK is the representa-
tion coefficients.

Equation (1) is a linear regression problem, whose solution
is [44]

s(i, j) = (
XL(i, j)TXL(i, j)

)−1
XL(i, j)TyL(i, j) (2)

in which the superscript T denotes the transportation operator.
Unfortunately, (1) may obtain unstable solutions, especially,

when K is larger than n. Thus, additional regularization is
needed in the objective function to penalize the representation
coefficient as follows:

min
s(i,j)

∥
∥yL(i, j) − XL(i, j)s(i, j)

∥
∥2

2 + �(s(i, j)). (3)

One vital problem in (3) is the chosen of penalty function
�(·). Different settings of � will result in different regular-
ization terms, achieving different representation models. For
example, when � is set as l1-norm, (3) becomes to the well-
known sparse representation, while � choose to be l2-norm, (3)
changes into the so-called collaborative representation. Though
the work in [45] argues that sparse prior of the coefficient vec-
tor s(i, j) is important, the work in [46] claims that the sparsity
may be not so necessary since it is the collaborative represen-
tation but not the sparse representation that makes the model
efficiently in representation.

For the discriminative face image super-resolution, since
the label information is available in the training dataset, it
is believed that, similar to the supervised approaches [47], the
utilization of label information can help to improve the rep-
resentation capacities of face hallucination models. Motivated
by this, we suggest the following discriminative model for face
image super-resolution:

min
s(i,j)

∥
∥
∥yL(i, j) − XL(i, j)s(i, j)

∥
∥
∥

2

2
+ �(s(i, j))

+ �
(
zL

c (i, j) − zL(i, j)
)

(4)

where zL
c is the estimation of yL on the subspace spanned by

training samples from cth class and zL is the estimation of
input LR face yL with respect to the whole training samples.

Since both zL
c and zL are the reconstructions of yL associated

to Xc and X, respectively, �(zL
c (i, j)− zL(i, j)) is reformulated

as �(XL
c (i, j)sc(i, j), XL(i, j)s(i, j)). To emphasize the discrim-

inative information, we choose to minimize the Euclidean
distance between XL

c (i, j)sc(i, j) and XL(i, j)s(i, j), therefore,
the third term in (10) is specified as

�
(
zL

c (i, j), zL(i, j)
) = γ

C

C∑

c=1

∥
∥
∥XL

c (i, j)sc(i, j)−XL(i, j)s(i, j)
∥
∥
∥

2

2
.

(5)
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Fig. 2. Visual comparison between LSR, SR, LcR, and LCER, where the training samples with different classes are denoted by different shapes. In the
proposed LCER, the majority of samples used for representation of the query patch come from the same class. Moreover, some samples, though from different
classes but similar to the test one, are also used for data representation. In contrast, the LSR used all the training samples, while the SR just controls the
sparsity of data encoding. The LcR takes into account the similarity prior between the test sample and training samples, but without considering the class
label information.

Equation (5) penalizes the summation of the differences
between the reconstruction from each class and that from the
whole training dataset. By minimizing (5), the input image
patch yL(i, j) is encouraged to be represented by the train-
ing samples with the identical label associated with yL(i, j).
This can induce discriminative information for representing the
query image patch (the visual impression of LCER is shown
in Fig. 2).

To further emphasize the contribution of the class in
representation, we add a weight into (5) as

�
(
zL

c (i, j), zL(i, j)
)=γ

C

C∑

c=1

βc
∥
∥XL

c (i, j)sc(i, j)−XL(i, j)s(i, j)
∥
∥2

2

(6)

where βc is the weight assigned for cth class which is
defined as

βc =
{

1, ifcis the correct label foryL(i, j)
1
C , otherwise.

(7)

The l2-norm is chosen to serve as �(·) to penalize the
coefficients. However, different from collaborative representa-
tion, which uses l2-norm to regularize the coefficients directly,
we prefer to regularize the weighted coefficients as follows:

�(s(i, j)) = ‖τ (i, j) � s(i, j)‖2
2 (8)

where � represents the Hadamard product and τ (i, j) =
(τ1(i, j), τ2(i, j), . . . , τK(i, j))T denotes a K-dimensional
weight vector that penalizes the distance between the test face
image patch and each training patch. The kth entry of τ(i, j)
is defined simply by the Euclidean distance

τk(i, j) = ∥
∥yL(i, j) − xL

k (i, j)
∥
∥2

2. (9)

As can be seen that, if the kth training sample approaches
to the test patch, it is assigned by a small weight, while a
large weight is assigned to the training sample, that is, far
away from the test one. Therefore, by using the Euclidean dis-
tances as the weights, the nearest neighbors of the test patch in
training samples will provide more contribution in represen-
tation than those non neighborhoods, which can enclose the
true topological structure of the patch manifold [48].

Substituting (5) and (8) into (4), we obtain the final LCER
framework for discriminative face hallucination

min
s(i,j)

∥
∥yL(i, j)−XL(i, j)s(i, j)

∥
∥2

2 + λ‖τ (i, j) � s(i, j)‖2
2

+γ

C

C∑

c=1

βc
∥
∥XL

c (i, j)sc(i, j) − XL(i, j)s(i, j)
∥
∥2

2

s.t. 1Ts(i, j) = 1. (10)

The proposed LCER model utilizes the locality prior and the
discriminative information for face image hallucination. It is
expected to learn both the advantages of locality in preserving
the true manifold structure and the discriminant in exposing
the class-specific information. On the one side, for discrimina-
tive face image super-resolution, since the label information of
the test image is known in advance, it is reasonable to utilize
the data from the same class to reconstruct the HR face image.
On the other side, the proposed framework is a position-patch-
based method, in which small position patches are served as
basic units to synthesize the target HR patches. Therefore, it
is meaningful to use the nearest neighbors not limited to the
corresponding class but throughout the whole training dataset
to represent the test LR patch, since small similar patterns can
exist across different images in different classes [21].

B. Interpretation From Probability Perspective

For a deep observation, the innovation of LCER is mainly
contributed to the discriminative term γ

∑C
c=1 βc‖XL

c sc −
XLs‖2

2, which admits the proposed LCER significantly differ
from LcR or other typical face hallucination models. Actually,
the discriminative term in LCER can be interpreted from the
probability viewpoint as follows.

For a collection of LR training samples from C classes
XL = [XL

1 , XL
2 , . . . , XL

C], where XL
c denotes the data matrix

of class c and each column of XL
c is a sample vector. Thus,

the data matrix XL can be viewed as an expanded class, and
we use lLX to represent the label set of all the candidate classes
in XL. Denote by S the linear space spanned by all the training
samples in X. Suppose xL ∈ S is an estimation of the sam-
ple yL, it can be linear represented by the training samples
with proper regression model, i.e., xL = XLs = ∑C

c=1 xL
c sc,

where s = [sT
1 , sT

2 , . . . , sT
C]T, and sc is the coefficient vector

corresponding to xL
c . Thus, xL

c = Xl
csc is a data point in the

subspace associated with class c.
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Recall that the discriminative learning is try to approximate
yL by a proper subspace rather than the holistic one. In other
words, it is expected that the label of xL should be close to
xL

c as much as possible to preserve the face subspace charac-
teristics. This can be achieved by maximizing the following
probability:

P
(
l
(
xL) = l

(
xL

c

)∣
∣l(xL

c ) ∈ lLX
)
. (11)

One can adopt the Gaussian kernel, which is a widely used
measure to characterize the neighbor-based similarity, to define
the probability [42]

P
(
l(xL) = l

(
xL

c

)∣
∣l
(
xL

c

) ∈ lLX
) ∝ exp

(−γβc
∥
∥xL − xL

c

∥
∥
)
.

To further improve the representation capacity, we choose
to maximize the joint probability

max P
(
l(xL) = l

(
xL

1

)
, . . . , l

(
xL) = l

(
xL

C

)∣
∣l
(
xL

1

) ∈ lLX

. . . , l
(
xL

C

) ∈ lLX
) ∝ max

∏

c

P
(
l(xL) = l

(
xL

c

))

∝ max exp

(

−γβc

C∑

c=1

∥
∥xL − xL

c

∥
∥2

2

)

. (12)

Applying the logarithmic operator and discard the constant
terms, (12) can be reformulated as

min γ

C∑

c=1

βc
∥
∥XLs − XL

c sc
∥
∥2

2 (13)

where βc is the class specific parameter, indicating certain
prior knowledge.

As can be seen, (13) is actually the third term of the
objective function in LCER.

C. Optimization Strategy

The proposed LCER model admits a closed form solution
since it is actually a regularized least square problem. In this
section, the indices i and j are omitted without confusion.
For convenience, we write the objective function of (10) into
subobjectives as follows:

F(s) = FD(s) + λFL(s) + γ

C
FC(s) (14)

with

FD(s) = ∥
∥yL − XLs

∥
∥2

2

FL(s) = ‖τ � s‖2
2

FC(s) =
C∑

c=1

βc
∥
∥XL

c sc − XLs
∥
∥2

2

be the data fidelity term, the locality regularization term, and
the category regularization term, respectively.

The second term can be rewritten as

FL(s) = ‖diag(τ )s‖2
2 (15)

where diag(·) is diagonalization operation which transforms a
vector into a diagonal matrix with the diagonal be the vector.

To maintain the consistency of the variables, we convert
Xc into Ẋc which has the same size as X. The elements of

Xc are assigned to Ẋc at their corresponding locations in X,
while the elements located at other locations are set to zeros.
Mathematically, Ẋc is defined as

Ẋc = [0, . . . , Xc, . . . , 0]. (16)

Therefore, the third term in (14) can be reformulated as

FC(s) =
C∑

c=1

βc
∥
∥XLs − ẊL

c s
∥
∥2

2 =
C∑

c=1

βc
∥
∥X̄L

c s
∥
∥2

2 (17)

in which X̄L
c = XL − ẊL

c .
With the constraint

∑K
k=1 sk = 1, we rewrite the objective

function into the following form:

F(s) =
∥
∥
∥
∥
∥

y
K∑

k=1

sk −
K∑

k=1

(xksk)

∥
∥
∥
∥
∥

2

2

+ λ‖diag(τ )s‖2
2 + γ

C

C∑

c=1

βc
∥
∥X̄L

c s
∥
∥2

2

=
∥
∥
∥
∥
∥

K∑

k=1

(y − xk)sk

∥
∥
∥
∥
∥

2

2

+ λ‖diag(τ )s‖2
2 + γ

C

C∑

c=1

βc
∥
∥X̄L

c s
∥
∥2

2

= ∥
∥
(
y1T − X

)
s
∥
∥2

2 + λ‖diag(τ )s‖2
2 + γ

C

C∑

c=1

βc
∥
∥X̄L

c s
∥
∥2

2

= sT(
y1T − X

)T(
y1T − X

)
s + λsTdiag(τ )2s

+ sT

(
γ

C

C∑

c=1

βc
(
X̄L

c

)T
X̄L

c

)

s

= sTQs (18)

where Q = (y1T − X)T(y1T − X) + λdiag(τ )2 +
(γ /C)

∑C
c=1 βc(X̄L

c )TX̄L
c .

Finally, the optimization problem in (10) is formulated as
follows:

min sTQs, s.t. 1Ts = 1. (19)

The Langrange of the objective function is

L(s, ν) = sTQs + ν
(
1Ts − 1

)
(20)

where ν is the Langrange multiplier.
The optimal s can be obtained by taking the derivative of L

with respect to s and ν, and setting them to zeros, respectively,
{

∂L
∂s = 2Qs + ν = 0
∂L
∂ν

= 1Ts − 1 = 0.
(21)

From the first equation in (21), one can obtain

s = −ν

2
Q−11. (22)

Substituting (22) into the second equation in (21), we have

ν = −2
(

1TQ−11
)
. (23)

Finally, by substituting (23) into the first equation in (21),
the optimal s can be obtained

ŝ = Q−1

1TQ−11
. (24)
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Fig. 3. Flow chart of position patch-based face hallucination via LCER.

Instead, one can also solve the linear system of equations
Qs = 1 to avoid computing the inverse of Q. Then the obtained
coefficient vector ŝ need to be normalized so as to meet the
constraint 1Ts = 1.

D. Face Super-Resolution via LCER

For face image super-resolution, two training sets are
needed, namely, the LR training set composed of LR training
face images and the HR training set containing the correspond-
ing HR training face images. Denote by {XH

k }K
k=1 and {XL

k }K
k=1

the HR and LR training sets, respectively, the primary task is
to forecast the HR face image YH from its LR observation YL.

First, the input LR and training face images are all par-
titioned into small overlapping patches by the separation
strategy used in [23]. Each input LR test image patch now
can be represented via a linear combination of the LR train-
ing ones located at the identical position by using the proposed
LCER model. By doing this, a weight vector (representation
coefficient) will be achieved associated to the LR training
image patches. Analogously, by assuming the HR image
patch manifold share the identical topological structure with
the LR one [10], the target HR image patch can be recon-
structed by transforming the weights from the LR image patch
manifold to the corresponding HR ones. The final HR face
image can be achieved by concatenating all the synthesized
HR image patches to the corresponding positions with the
pixel values in the overlapping regions be averaged. The flow
chart of position-patch-based face hallucination method via
LCER is shown in Fig. 3, and the implementation details are
summarized in Algorithm 1.

E. Initial Label Estimation

As discussed previously, the label information of the input
LR face is needed in the proposed LCER method. However,
in practical application scenarios, e.g., the face recognition
system, the label of the input image is actually unknown,
which usually needs to be identified. To solve this problem,
an intuitive way is employing some well-known classification
algorithms to recognize the label of the input image. To this
end, various face recognition methods can be chosen. In this
article, we estimate the label of input LR face by the LLC algo-
rithm. Mathematically, the input LR face yL is first represented
via LR training samples with the LLC model

min
s

∥
∥yL − XLs

∥
∥2

2 + λ‖τ � s‖2
2 (25)

Algorithm 1 Robust Face Super-Resolution via LCER

Input: The input LR face image YL, the LR training images
{XL

k }K
k=1, the HR training images {XH

k }K
k=1, and the regular

ization parameter γ .
1: Divide the input LR face image into small overlapped image

patches {yL(i, j)}P,Q
i=1,j=1.

2: For the (i, j)th position patch yL(i,j), do
1) Extract the LR and HR training samples from the LR and

HR training images according to the same location. The
extracted LR and HR training samples are used to construct
the LR and HR codebooks XL(i,j) and XH(i,j) respectively.

2) Construct the locality weight vector τ(i, j) by calculating the
distances between the test LR patch and the LR training
samples,

τk(i, j) = ‖yL
k (i, j) − XL

k (i, j)‖2
2 k = l, . . . , K

3) Set the weight vector βc via Eq. (7).
4) Compute the optimal representation coefficient vector s(i, j)

for the test LR image patch y(i,j) associated with the LR
training samples XL(i,j) via Eq. (10).

5) Forecast the HR patch by

yH(i, j) = XH(i, j)s(i, j).

3: End For.
4: Synthesis the final target HR face image by concatenating all

the above-reconstructed HR image patches with the pixel values
averaged in the overlapped positions.

Output: The final hallucinated HR image YH.

where XL is the codebook with each column be a vectorized
training image, τ is the correlation adaptor, and s is the
corresponding encoding coefficient vector.

Once the optimal coefficient ŝ is obtained, the sparse
encoding residual associated to each class can be calculated

Resi
(
yL) = ∥

∥yL − XLδi(ŝ)
∥
∥2

2 (26)

where δi(ŝ) means selecting the coefficients of ŝ corresponding
to the ith class.

Finally, the class of the input LR face yL is determined by
the one that achieves the minimal sparse coding residual

Class(yL) = min
k

Resk
(
yL)

. (27)
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TABLE I
AVERAGED QUANTITATIVE EVALUATION SCORES GENERATED BY ALL COMPARATIVE ALGORITHMS FOR 50 TEST IMAGES IN AR DATASET AND 100

TEST IMAGES IN NUST RWFR DATASET DEGRADED BY DIFFERENT DOWNSAMPLING FACTORS

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Settings

In our experiments, two public face datasets are cho-
sen to evaluate LCER in face hallucination from different
perspectives.

AR Dataset: A subset of 700 face images associated to 50
subjects (persons) are selected for experiments. Thus, each
subject holds 14 face images, and we randomly select one
image for testing with the remaining 13 ones for training.
Thus, all the test face images are absent in the training set.
The HR face images are cropped into 120 × 100 pixels and
aligned according to the positions of two eyes.

NUST RWFR Dataset: There are totally 2400 face images
with size of 80 × 80 pixels corresponding to 100 persons
(classes) in NUST RWFR dataset. That is, each person holds
24 face images with various expressions and illuminations.
Moreover, the face images in NUST RWFR dataset are not
well aligned, leading to a more difficult hallucination problem.
One face image was randomly chosen from each class for test-
ing. Therefore, 100 face images are used as test images while
the remaining 2300 ones are used for training.

The LR face images are obtained by downsampling (by a
factor of 4) and blurring (by a 4 × 4 average smoothing fil-
ter) the corresponding HR faces. For the position-patch-based
method, small image patches should be first extracted from
the holistic image. In order to balance the super-resolution
performance and the computational time, the HR patches are
recommended with the size of 12×12 pixels, with four pixels
(the experiments of patch size and overlapping analysis have
been conducted in Section III-F) be overlapped between two
adjacent patches. The two parameters λ and γ are empirically
set to be 0.9 and 0.005, respectively.

B. Comparison on Standard Datasets

This section evaluates the proposed LCER method by
comparing with five state-of-the-art face super-resolution
approaches, namely, the LSR [13], the LcR [23], the lin-
ear model of coupled sparse support (LM-CSS) [22], the
SSR [20], and the RLcBR [31]. The hallucination results

Fig. 4. PSNR and SSIM scores of super-resolved results versus the index
of test images in the AR face dataset.

are quantitatively evaluated by two commonly used quality
assessment measurements, namely, peak signal to noise ratio
(PSNR) and structural similarity (SSIM) [49]. Generally
speaking, higher PSNR and SSIM values always indicate bet-
ter qualities of the hallucination results. The source codes of
LcR, LM-CSS, SSR, and RLcBR are provided by the orig-
inal authors, while the other methods are implemented by
ourselves. Fig. 4 plots the PSNR and SSIM scores of the
hallucination results for all the 50 test images in the AR
dataset generated by these comparison methods, while the
averaged PSNR and SSIM values are reported in Table I. One
can see that, the proposed LCER method obtains the high-
est PSNR and SSIM values for almost all the face images in
the AR dataset. The quantitative measurement results indicate
the proposed LCER method achieved the best face super-
resolution performance. This owes to the LCER not only
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5. Visual comparison on the AR face dataset. (a) LR faces. (b) LSR. (c) LcR. (d) LM-CSS. (e) SSR. (f) RLcBR. (g) LCER. (h) Ground truth. We have
shown the SSIM values in percentage.

(a) (b) (c) (d) (e) (f)

Fig. 6. Reconstruction results generated from the top five most relevant
classes. (a) Target HR faces. (b) Reconstructed face from the most related
class. (c)–(f) Reconstructed faces from other unrelated classes.

taking into consideration of the locality prior of patch manifold
but also the discriminative label information of training data
in super-resolution processing.

To give some visual impressions, Fig. 5 shows some face
hallucination results of the AR database from all the com-
pared methods. In this figure, the first column exhibits the LR
faces, the last column lists the ground truth, and columns 2–6
present the hallucination results of different methods, respec-
tively. From Figs. 4 and 5, the following conclusion can be
drawn.

1) The locality-constrained-based methods (e.g., LcR and
RLcBR) obtained better super-resolution results than the
LSR-based method (i.e., LSR). This verifies the locality
prior which has been proven more important than spar-
sity, indeed helpful to reconstruct local detailed patterns
in the hallucination results.

2) The two-layer-based representation methods (e.g.,
LM-CSS and RLcBR) achieved relative poor
performance. The reasons are as follows. Though
it employs two layers to exploit the local geometrical
structure on the HR manifold for super-resolution
reconstruction, the performance of LM-CSS is limited
by the representation capacity of the collaborative
representation model. The RLcBR utilizes an HR layer

to compensate the noisy LR layer which is effective
for noisy face hallucination, but useless for clean face
hallucination.

3) The SSR obtains better super-resolution results than
the locality prior-based methods (LcR, RLcBR). This is
because that the SSR presents the smooth geometrical
structure of the training image patch space by encour-
aging similar training samples holding similar sparse
coding coefficients.

4) All the previous schemes are unsupervised and do not
comprehensively take into account the category charac-
teristics in super-resolution, ignoring the discriminative
face patterns. In contrast, the proposed LCER achieves
the most satisfactory hallucination performance, in
which the face details have been well reconstructed. The
reason lies in that the results of LCER benefit from the
locality prior knowledge to preserve local geometrical
manifold as well as the category embedding to ensure
that the discriminative face patterns are mainly trans-
ferred from exemplar images belonging to the same
subject.

C. Reconstruction Comparison of Each Class

In the proposed LCER model, a discriminative category
embedding regularization is used to encourage the training
samples from the correct category to play key roles in rep-
resentation. Such strategy guarantees the reconstructed face
structures be mainly transferred from the exemplar face images
corresponding to the same subject.

To show the effectiveness of the discriminative term, in
what follows, we exhibit the reconstruction results of two face
images in the AR dataset from the most related five classes.
The reconstruction results are depicted in Fig. 6, where the
first column lists the original HR faces, columns 2–6 show
the reconstructed faces from most related five classes. As can
be seen, the reconstruction results from the correct class (the
most relevant class) shown in the second column contain the
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Fig. 7. Comparison of different methods on hallucinating noisy LR faces
images.

major patterns of the target HR faces. The reconstructions from
other classes hold little patterns but some detail information.
This demonstrates that the discriminative term indeed help-
ful in excavating the inherent characteristics from the same
subject for super-resolution reconstruction.

D. Robust Against Noise

In reality, the captured images are inevitably influenced by
noise. Thus, a good face hallucination method should be able
to not only enhance face details but also robust to noise. In
this section, we conduct extensive experiments on the AR
dataset to assess the robustness of all the comparison meth-
ods by super-resolving noisy face images. The noisy LR faces
were generated by adding different levels of Gaussian noise
(with standard deviation σ = 1, 3, and 5) to the LR faces.
The noisy LR faces were then fed directly into each compared
method. The results were still evaluated by PSNR and SSIM
indexes, and the averaged PSNR and SSIM scores are plotted
in Fig. 7. As can be seen, the LCER obtains the highest PSNR
and SSIM values for noisy LR face image super-resolution.
This demonstrates that the proposed method is still effective
in noisy environment.

E. Results on Very LR Face Images

In this section, extensive experiments were carried out to
evaluate the efficiency of LCER in hallucinating very LR face
images. The very LR faces are generated by blurring and
downsampling the corresponding HR face images with factors
of 8 and 16, respectively. The very LR face images were then
hallucinated by all the comparison methods and the results are
assessed by PSNR and SSIM. The averaged PSNR and SSIM
values of all the 50 test images in the AR dataset and 100
test images in NUST-RWFR dataset with different magnifica-
tion factors are tabulated in Table I. From this table, one can
see that, the proposed LCER method obtained higher PSNR
and SSIM values than other state-of-the-art for all the cases.
Interestingly, the larger the magnification factor is, the more
PSNR and SSIM gains achieved by the proposed LCER. Fig. 8
shows the super-resolution results of two LR face images
downsampled by factors of 8 or 16 from different methods. As
can be seen, the performance of all the comparison methods
degraded with the increasing of the downsampling factor. This
is reasonable since the large the downsampling factor is, the
more image details lost in the LR images, resulting in a hard
recovery problem. However, the LCER still preserved well the
texture details even in high magnification factor environment

TABLE II
AVERAGED QUANTITATIVE EVALUATION SCORES OF THE RESULTS

GENERATED BY THE COMPARED ALGORITHMS FOR 50 TEST IMAGES IN

AR DATASET DEGRADED BY DIFFERENT DOWNSAMPLING FACTORS

where the structure characteristics are almost lost because of
the large downsampling factor.

F. Effect of Different Patch Sizes and Overlappings

In this section, we test the performance of the proposed
LCER method with various settings of patch size and over-
lapping pixels. The experimental settings are as follows. The
HR images are set to be with the size of 4×4, 8×8, 12×12,
and 16 × 16 pixels with the overlaps between two adjacent
patches to be 0, 4, 8, and 12 pixels, respectively. Thus, the
patch size of the corresponding LR images is 1 × 1, 2 × 2,
3 × 3, and 4 × 4 pixels with 0, 1, 2, and 3 pixels be over-
lapped between two adjacent patches. The LCER method with
different patch size and overlap settings are applied to the
50 LR face images in the AR dataset. The averaged PSNR
and SSIM values are tabulated in Table II. As can be seen,
for the same patch size, the performance of LCER becomes
better when the overlap becomes larger. This is reasonable
since larger overlap brings in more information from adjacent
patches to synthesis each pixel in the reconstructed results.
For the same overlap, the performance of LCER improves
along with the patch size increasing except for the patch size
with 16 × 16 pixels. Basically, image patches with large size
contain more patterns than small patches, and can provide
more useful information for representation. However, too large
patch may cause smoothness and lose some face details in
super-resolution reconstruction, leading to undesirable results.
Generally speaking, the patch size should be set neither too
large nor too small. Too small patch size with little overlapping
pixels will lost the human structure patterns in super-resolution
reconstruction, while too large patch size with many pixels
overlapped will not only lost the face details but also increase
the computational complexity dramatically. Therefore, the HR
patch size is set to be 12 × 12 with 4 pixels been overlapped
between two adjacent patches to balance the hallucination
performance and computational complexity.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 8. Comparison of hallucination results of very LR faces in the AR face dataset. The super-resolution reconstruction of LR images downsampled by the
magnification factor of 8 is shown in the first two rows, while those of LR images downsampled by magnification factor of 16 are the last two rows. (a) LR
faces. (b) LSR. (c) LcR. (d) LM-CSS. (e) SSR. (f) RLcBR. (g) LCER. (h) Ground truth. The SSIM values are shown in percentage.

Fig. 9. Comparison of different methods on hallucinating noisy LR faces
images.

Fig. 10. Two test samples in CMU + MIT database.

G. Locality Versus Discriminate

The proposed LCER achieves promising face super-
resolution performance, attributing to two priors it used,
namely, locality and discriminability. The former is used to
enclose the inherent manifold structure, while the latter is uti-
lized to enhance the pattern representation. To further verify
the roles they played in (10), we implement two variants of
LCER. Denote by “LCER-L” the model designed from LCER
without the discriminate term, that is, γ = 0 in (10). The other
variant denoted by “LCER-D” is designed from the final model
by discarding the locality term, that is, λ = 0 in (10).

The two variants are then used to hallucinate the LR face
images in the AR database and compared with LCER. The
comparisons of averaged PSNR and SSIM values are in Fig. 9.

TABLE III
RUNNING TIME (SECOND) OF DIFFERENT METHODS ON ONE RANDOMLY

CHOSEN LR FACE IMAGE IN THE AR DATASET

From the figure, it can be seen that LCER-L and LCER-D
gained competitive performance. This indicates that the local-
ity and discriminate priors play almost equal contribution
in representation. In contrast, the LCER obtains the highest
scores, which means that both the locality and discriminabil-
ity are necessary and meaningful in the final face hallucination
model, without any of which, the performance of the final
model will be degraded.

H. Hallucination of Real World Images

In the experiments mentioned above, the used LR images
were generated by conducting downsampling and blurring
operators on the corresponding HR images. However, as
pointed out in [50], the actual spatial feature correlation
between the LR and HR face spaces cannot be correctly
determined by the manually adjusted LR face images.

In what follows, we conduct extensive experiments in real-
world images to further evaluate the performance of LCER
in practical applications. Two images holding the real-life
scenes shown in Fig. 10 are chosen from the CMU + MIT
database [51] for testing. The two images are with low reso-
lution and low quality since they are captured from a certain
distance. To further well simulate the real scenarios, the two
image are corrupted by Gaussian noise, where seven face
images are manually cropped for testing. The comparison
hallucination results are shown in Figs. 11 and 12. As can
be observed, the proposed LCER method can still produce
high-quality HR face images in the real-word scenarios.
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(a) (b) (c) (d) (d) (e) (f)

Fig. 11. Comparison of hallucination results of LR face images cropped
from the left image in Fig. 10. (a) Cropped LR faces. (b) LSR. (c) LcR.
(d) LM-CSS. (e) SSR. (f) RLcBR. (g) LCER.

(a) (b) (c) (d) (e) (f) (g)

Fig. 12. Comparative hallucination results of LR face images cropped
from the right image in Fig. 10. (a) Cropped LR faces. (b) LSR. (c) LcR.
(d) LM-CSS. (e) SSR. (f) RLcBR. (g) LCER.

I. Computational Complexity Analysis

The computational cost of our proposed method is mainly
come from the calculation of matrix Q, the matrix inverse and
product in (24). Basically, it requires O(nK2 +CK3) operators
for the calculation of matrix Q. For the matrix inverse and
multiplications, O(2K3) operators are needed. Thus, the total
computational complexity of LCER is O(nK2+(C+2)K3) for
each LR test patch, in which n is the dimension of LR patch,
C is the number of classes in training data, and K denotes the
total number of training samples.

In addition, we also compared the running time of our
proposed method against to that of other methods. One face
image in the AR dataset is randomly chosen as the test data.
All the experiments are carried out on a PC equipped with
2.60-GHz CPU. The running time of each method is tabu-
lated in Table III. One can see that, the LCER is slightly
slower than the single regression methods (LSR, LcR), but
faster than these two layer-based methods (LM-CSS, RLcBR)
and the smoothness regularized method (SSR).

IV. CONCLUSION

This article presented a novel LCER for discriminative face
image super-resolution. In contrast with the previous works
that are unsupervised and take into no account the class label
information, the proposed LCER super-resolves face images in
a supervised manner by learning a category embedding rep-
resentation. More specifically, a category embedding penalty
term is introduced into the objective function, enabling the
training samples holding the same label with the query one
to offer more contribution in super-resolution reconstruction.
This guarantees that the face patterns are mainly transformed
from exemplar faces belonging to the same subject. Besides,
considering that similar small patches distribute throughout the
whole training data space, we employed the locality penalty to
force training samples not limited to the same class but close to
the test one offer more contribution to the final representation.
The union of locality prior and category information admit the
hallucination results of LCER to preserve more image details
and desirable patterns. The evaluation results demonstrate the
superiority of LCER compared with several state-of-the-art
schemes in terms of both quantitative measurements and visual
impressions.
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