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Abstract—This retrospective describes the overall research
project that gave rise to the authors’ paper “Neuronlike adap-
tive elements that can solve difficult learning control problems”
that was published in the 1983 Neural and Sensory Information
Processing special issue of the IEEE TRANSACTIONS ON
SYSTEMS, MAN, AND CYBERNETICS. This look back explains
how this project came about, presents the ideas and previous
publications that influenced it, and describes our most closely
related subsequent research. It concludes by pointing out some
noteworthy aspects of this article that have been eclipsed by
its main contributions, followed by commenting on some of the
directions and cautions that should inform future research.
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I. INTRODUCTION

WHEN our paper “Neuronlike adaptive elements that
can solve difficult learning control problems” was pub-

lished in the 1983 Neural and Sensory Information Processing
special issue of the IEEE TRANSACTIONS ON SYSTEMS,
MAN, AND CYBERNETICS [1], there was no way to predict
that it would have a lasting influence, or that reinforcement
learning (RL), the class of machine learning methods to which
it contributed, would now be one of the most active areas
of artificial intelligence. In this retrospective, we describe the
overall research project that gave rise to our paper, explain
how this project came about, present the ideas and previous
publications that influenced it, and describe our most closely
related subsequent research. We do not, however, attempt to
do justice to earlier related work of which we were unaware
in 1983; much of that can be found in [2]. We end by point-
ing out some noteworthy aspects of this article that have been
eclipsed by its main contributions, followed by commenting on
some of the directions and cautions that should inform future
research.

In the late 1970s and early 1980s, we had the opportu-
nity to participate in a research project aimed at assessing the
scientific merit of a hypothesis proposed by physiologist A.
Harry Klopf, a senior scientist with the Avionics Directorate
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of the Air Force Office of Scientific Research (AFOSR).
Klopf was dissatisfied with the great importance attributed
to equilibrium-seeking processes for explaining natural intel-
ligence and for providing a basis for machine intelligence.
These include homeostasis and error-correction learning meth-
ods for pattern classification. He argued that systems that try
to maximize something (whatever that might be) are qual-
itatively different from equilibrium-seeking systems, and he
further argued that maximizing systems hold the key to under-
standing important aspects of natural intelligence and for
building artificial intelligences. In particular, Klopf hypoth-
esized that neurons, the major components of our brains, are
individually “hedonists” that work to maximize a neuron-local
analog of pleasure while minimizing a neuron-local analog of
pain [3], [4].

A project with the goal of assessing Klopf’s ideas to deter-
mine if they were novel and if they were worth pursuing, was
funded through an AFOSR contract to principal investigators
Michael Arbib, William Kilmer, and Nico Spinelli, profes-
sors at the University of Massachusetts Amherst and founders
of the Cybernetics Center for Systems Neuroscience, a far-
sighted center focusing on the intersection of neuroscience
and artificial intelligence. Andrew Barto, a recent Ph.D. from
the University of Michigan, was hired as a post-doc in 1977,
shortly joined by graduate students Richard Sutton and Charles
Anderson, who later received Ph.D.s under Barto’s direction
after he became a UMass faculty member. It was our good
fortune that the project’s funding and its PIs gave us wide lat-
itude to explore the study of learning in artificial intelligence,
including its early history, its connections to experimental data
and theories of animal learning from psychology, and its con-
nections to data and theories about the neural basis of learning
from neuroscience.

II. MINIMIZING OR MAXIMIZING?

Klopf argued that a system that attempts to maximize
a quantity is distinctly different from one that attempts to
minimize a quantity, such as a system that seeks stability
by minimizing the difference between its current state and
a desired state. He coined the term “heterostat” to distinguish
a maximizing system from a “homeostat”, Ashby’s term for a
system that maintains stability in a changing environment [5].

There is, of course, no mathematical difference between
minimizing and maximizing (just change the sign), but one
of the first things we realized was that there is a qualitative
difference between being directed by a signed error vector,
indicating, for example, the difference between a current and a
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desired state, and being directed by scalar evaluations that—in
themselves—do not indicate a direction of improvement.

This turns out to be a major distinction between supervised
learning, which is fundamentally an equilibrium-seeking pro-
cess (zeroing out errors) and RL, in which the learner has to
do more work to determine how it should change in response
to its experiences. An equilibrium-seeking process can stop
when equilibrium is attained (zero error), but an evaluation-
driven system, not knowing what evaluation is best, has to
be incessantly active, continually exploring for directions of
improvement. Both error correction and RL are optimization
processes, but error correction is a restricted special case where
RL is more general. It seemed to us that Klopf’s intuition about
the relevance of this to intelligence might be on the mark.

III. INITIAL PROGRESS

From our exploration of earlier research on building artifi-
cial learning systems, we came to a rather surprising conclu-
sion. Despite the prominence of evaluation-driven learning in
some of the earliest artificial learning systems, this form of
learning had been largely overshadowed by error-correcting
learning due to supervised learning’s ability to learn to rec-
ognize patterns by being exposed to training examples. There
were clear and important exceptions, but this sparsity of ear-
lier research on what we now call RL confirmed Klopf’s
contention that something was missing from approaches to
machine learning that were then current. This encouraged us
as we launched into the subject. An account of this history is
beyond our scope here but can be found in [2, Sec. 1.7] and
in [6].

There was also an important form of neglect in psychology
in that studies of animal learning became unfashionable, sup-
planted by the “cognitive revolution.” In particular, learning
from the rewarding and punishing consequences of behavior,
studied as instrumental conditioning in psychology, suffered
from neglect, despite always being seen as a key principle of
learning. This principle was famously stated in Thorndike’s
“Law of Effect” [7], which says that if an animal’s response
to a situation is closely followed by the animal’s satisfaction,
then that response becomes more strongly connected to the sit-
uation and is, therefore, more likely to be produced when the
animal faces that situation again; conversely, if a response is
followed by discomfort, the connection is weakened, making
the animal less likely to produce the response when that sit-
uation recurs. This “law” has endured to the present, though
not without much revision and controversy. It describes the
common sense process of learning by trial and error (though
it is misleading to equate the word error with the error vectors
of supervised learning).

Klopf’s idea of hedonistic neurons was that neurons imple-
ment a neuron-local version of the law of effect. He hypoth-
esized that the synaptic weights of neurons change with
experience according to the following. When a neuron fires
an action potential, all the synapses that were active in con-
tributing to the action potential become eligible to undergo
changes in their efficacies. If the action potential is followed
within an appropriate time period by an increase in reward, the

efficacies of all eligible synapses then increase (or decrease in
the case of punishment). In this way, synapses change so as
to alter the neuron’s firing patterns in the service of increasing
the neuron’s probability of being rewarded, and decreasing its
probability of being penalized, by its environment.

In Klopf’s hypothesis, reward and punishment were deliv-
ered to a neuron via the same inputs that excited or inhibited
its electrical activity. He objected to the idea that there is
a single specialized reward signal that drives learning. Our
algorithms departed from this by using a single specialized
input to deliver rewards, but we did not completely dis-
count his objection to it, as we discuss in Section- III-B
below.

The actor–critic architecture presented in our 1983 paper
brought together two lines of research that we had been pur-
suing from the beginning of the AFOSR project. One line
focussed on developing a neuron-like adaptive element fol-
lowing Klopf’s idea of a hedonistic neuron. We called this an
associative search element, or ASE, later to be known as the
actor component of the actor–critic architecture. The other line
of research focused on issues of signal timing and prediction.
This line led to the neuron-like adaptive element we called the
adaptive critic element, or ACE, which became the other main
component of the actor–critic architecture. This component
was the source of the reward and penalty signals evaluating
the actions of the ASE.

We discuss the ASE and ACE before discussing their com-
bination in the actor–critic architecture. Both elements were
“neuron like” in the same abstract way that McCulloch-Pitts’
formal neurons were [8]. We decided that trying to model real
neurons in any detail would distract us from the project’s main
computational objective.

A. Associative Search Element

The idea of storing information distributed across large areas
of a physical structure had gained prominence by the late
1970s for both its computational promise and as a model
of how information might be stored in brain (e.g., [9]–[11]).
Called associative memories, the simplest were based on corre-
lation matrices, and storing information consisted of presenting
“keys” paired with “patterns” to store key-pattern associations.
As a learning process, this was supervised learning because the
desired pairings of keys and patterns were explicitly provided
to the memory systems, though the systems were able to gen-
eralize beyond these training pairings as in pattern recognition
uses of supervised learning.

We decided that an RL version of an associative memory
would be a good way to illustrate the difference between RL
and supervised learning. Instead of being given the desired
patterns to be associated with the keys, the RL associative
memory network had to search for the pattern that maximized
an externally supplied reward signal. As this kind of learning
proceeded, each key tended to cause the retrieval of better—
more rewarding—choices for the pattern to be associated with
it. The only part of the system having prior knowledge about
what associations were best was the evaluator, or critic, which
computed the reward signal.
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Details of this network and some simulation results were
presented by Barto et al. in 1981 [12]. In one example, the
network was a single layer of 25 ASEs. Input keys were
8-D vectors delivered to each ASE; output patterns con-
sisted of the binary responses of each ASE, and each ASE
received the same reward signal. We called this an associative
search network (ASN). The ASEs’ learning algorithm gen-
erally followed Klopf’s hypothesis about how the synaptic
weights of neurons might be adjusted by an RL process, but
we borrowed from earlier RL algorithms known as stochas-
tic learning automata. These algorithms originated with the
work of Tsetlin [13] (reviewed in [14] and [15]) and were not
well known in artificial intelligence circles. We also borrowed
from Tzanakou and Harth’s Alopex method that these authors
proposed as a stochastic model of the development of visual
receptive fields [16], [17].

Stochastic learning automata and the Alopex method use
randomness to search among alternative actions for those that
deliver the most reward. Actions are selected according to
probabilities that are altered on the basis of reward feedback
so as to allocate more probability to higher performing actions.
Actions have to be tried out to find out how they perform. This
process is selectional in the same way that natural evolution
is selectional in favoring higher fitness organisms. We added
a random number to the activation level of each ASE so that
it randomly tried out all of its actions and biased the random
selection toward actions yielding more reward. Randomness
was essential to provide the variety needed to drive the search,
just as animal populations need variety to drive evolution.

ASEs differed from stochastic learning automata, and from
the Alopex method, in an important respect. Stochastic learn-
ing automata did not normally receive input other than the
reward signal, whereas all the ASEs making up the ASN
received input vectors coding the associative memory keys
in addition to the reward signal. As learning continued, the
input keys became associated with better and better output
patterns as scored by the reward signal. Where a stochastic
learning automaton attempted to find a single best action, an
ASE attempted to find the best action for each input key. In
this respect, an ASE worked more like the law of effect in
forming connections between situations, here the keys, and
responses, here the associated patterns.

In more theoretical terms, a stochastic learning automaton
faces a multiarmed bandit problem (e.g., [15] and [18]). An
ASE, and therefore, the ASN as well, faced what we called
an “associative search problem,” now commonly referred to
as a “contextual bandit problem.” This problem involves
remembering, in the form of associative links, the results of
conducting multiple searches. It is, therefore, closely related
what computer science calls “memoization,” which is the pro-
cess of saving results of a calculation in memory so that
results that have been calculated previously can be retrieved
from memory instead of being calculated again [19], [20]. In
RL, the calculation is an ongoing search for higher rewarding
actions. Consequently, at its base, RL is a kind of contextual
memorized search.

It remained for us to decide how good and bad evalua-
tions would be represented for delivery to the ASEs making

up the ASN. A natural way to do this was to use changes
in a scalar reward signal for adjusting each ASE’s synaptic
weights, instead of using reward signal itself: a reward increase
made the element’s response more likely in the present con-
text; a reward signal decrease made it less likely. These reward
signal changes were the reinforcement signals that directed
changes in each ASE’s synaptic weights; not the reward signal
itself.1

It was necessary to include in the ASN a special reward-
predictor element that learned to predict the amount of reward
an ASE should expect when acting in the current con-
text. This enabled reward signal changes to act correctly as
reinforcement. In our simulations the context vectors—the
keys—changed randomly at each time step. The network’s
output influenced the immediate context-dependent reward sig-
nal, but it had no influence on what key would be presented
next (unlike the situation in our later actor–critic simulations).
We had to prevent a change in reward due to a random
change in the key from being attributed to the element’s action.
To do this, the reward change was computed by comparing
the current reward with the reward expected when acting in
the current context. This foreshadowed the ACE’s role in the
actor–critic architecture.

B. Adaptive Critic Element

We chose the term critic for the ACE component of the
actor–critic architecture after Widrow et al.’s use of this term
to contrast “learning with a critic” from “learning with a
teacher,” as supervised learning is often called [21]. A teacher
provides the learner with desired or correct actions, whereas a
critic merely evaluates a learner’s actions. Evaluations might
be the result of comparing the learner’s actions with desired
actions (as was the case for our ASN simulations), in which
case evaluations are based on how much the learner’s actions
differ from the desired actions. However, evaluations do not
need to be based on any knowledge of what the desired actions
should be. In fact, the critic does not even need to have access
to the learner’s actions; it can base its evaluations on the con-
sequences of those actions on the learner’s environment. The
pole-balancing control problem of our 1983 paper illustrates
this because the ACE evaluates the behavior of the cart–cart
system, not the ASE’s actions, to which it does not have
access.

We included the term adaptive in the ACE because it was a
learning system itself, capable of learning to make more infor-
mative evaluations. In the case of the actor–critic architecture,
this meant learning to evaluate the long-term performance of
the actor by learning to predict how much reward would be
expected to accrue over the future. The predictions themselves
then became the reinforcing input to the actor.

The inspiration for the ACE came from animal learning
psychology, in particular, from classical, or Pavlovian, con-
ditioning. This form of learning enables an animal to act in

1The terms reward and reinforcement are sometimes used interchangeably,
but we distinguish between them. An RL system’s reward signal sets the
learner’s objective, which is to maximize the amount of reward received over
time. Reinforcement, on the other hand, is the quantity that an RL learning
rule uses to adjust the parameters determining its action probabilities.
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anticipation of upcoming inputs from its environment, allow-
ing the animal to prepare for, or to avoid, those inputs.
The animal effectively learns to predict aspects of its future.
The feature of classical conditioning most relevant to the
actor–critic architecture is the phenomenon of higher-order
conditioning (and the similar phenomenon of secondary rein-
forcement in instrumental conditioning). This occurs when
events that predict the arrival of reward become rewarding
themselves. Higher order conditioning and secondary rein-
forcement remove the need to wait until a final reward or
penalty is received in order to learn.

A few years before our 1983 actor–critic paper, we
presented the basics of the ACE algorithm as a model of clas-
sical conditioning [22], [23], which subsequently evolved into
temporal difference (TD) algorithms. Sutton’s 1984 Ph.D. dis-
sertation [24] developed TD algorithms further, and Sutton’s
1988 paper [25] extended the theoretical treatment, laying
the groundwork for the extensive development that followed
within the modern RL framework, e.g., [2].

The name TD derives from the algorithm’s use of changes,
or differences, in predictions over successive time steps to
drive the learning process. The prediction at any given time
step is updated to bring it closer to the prediction of the same
quantity at the next time step. It is a self-supervised learning
process that works to reduce errors between current and later
predictions, taking intervening incoming data into account.
Used in RL, TD algorithms learn to predict a measure of the
total amount of reward expected over the future.

In employing a TD algorithm, the ACE of the actor–critic
architecture addressed two requirements for successful learn-
ing. One requirement was to address the “delayed reward
problem,” which is when the relevant consequences of an
action occur after some nontrivial time interval, making it
difficult to assign credit or blame to the appropriate action,
or actions, of the learner. The other requirement was to pro-
vide an appropriate reinforcement signal to the ASE. Both of
these functions were clearly illustrated in the pole-balancing
problem tackled in our 1983 paper.

The ACE also went part of the way toward addressing
Klopf’s rejection of a single unitary reward signal in his hedo-
nistic neuron hypothesis. He argued that whatever generated
this signal would have to be so intelligent itself that assuming
its existence would beg the question of how intelligence arises.
Klopf proposed what he called “generalized reinforcement” as
a way to avoid a unitary reward signal. The TD idea is not
unrelated. It uses ordinary (nonreward) input to play an impor-
tant role in rewarding action. The actor is trying to maximize
the excitation of the critic as well as maximize the reward,
thus a kind of generalized reinforcement. But unlike Klopf’s
desire to eliminate a reward signal altogether, TD learning is
tied ultimately to reward, which is necessary in order to create
a well-defined optimization problem.

IV. POLE BALANCING

Our 1983 paper featured the problem of learning to balance
a pole hinged onto a movable cart. This idea came from our
discovery of the 1968 paper by Michie and Chambers entitled

“BOXES: An Experiment in Adaptive Control” [26]. BOXES
was a true RL system, and the paper’s description of how it
worked and the ideas underlying it helped shape our thinking
about RL and how to explain our research. We thought that
the version of the pole-balancing problem tackled by BOXES
would provide a vivid illustration of the capabilities of the
algorithms we had been working on, would clearly illustrate
how RL differed from supervised learning, and would help to
establish the utility of RL.

The BOXES pole-balancing task was adapted from the
1964 work of Widrow and Smith [27], who used supervised
learning, assuming instruction from a teacher already able to
balance the pole. But instead of receiving action-by-action
instructions that could be copied, the sole training information
available to BOXES was a failure signal when the pole fell
past a certain angle or the cart hit the end of its track.
This created a difficult delayed-reward problem (or delayed-
penalty problem in this case) making the credit (or blame)
assignment difficult.

In our earlier work with the ASN, described above, the
pattern output of the network was evaluated by the critic,
but the output pattern did not influence which key, or con-
text vector, was presented next. The key presented at each
step was selected uniformly at random from a finite set of
keys. But in a more general setting, the RL system’s actions
would influence the stream of context inputs in addition to
the critic’s evaluations. Applying RL to a control problem like
pole balancing was a natural way for the RL system’s actions
to influence the state of the system being controlled, with each
state generating context input to the RL system. Furthermore,
the critic’s evaluations could be based on observing the behav-
ior of the controlled system rather than on observing the
RL system’s actions themselves, thus illustrating an important
property of RL. We therefore decided that a control problem
would be an excellent testbed for our RL algorithms, and that
Michie and Chambers’ pole-balancing task would be a good
place to start.

We followed the setup Michie and Chambers used in design-
ing their BOXES system for the pole-balancing task. Like
BOXES, our RL controller had no knowledge about the system
being controlled, only receiving at each time step a vector
describing the controlled system’s state or a failure signal if
the pole fell past a critical angle or the cart hit the end of
the track. We used exactly their state representation, which
was to divide the 4-D continuous state space into 225 “boxes”
on the basis of the thresholds they selected, and to inform
the controller which box the system’s state was currently
in. Using the picturesque “demon” terminology introduced
into AI by Selfridge’s 1959 Pandemonium program [28],
Michie and Chambers described how BOXES worked
like this:

In order to envision how the · · · algorithm works it is
easiest to imagine each one of the 225 boxes as being
occupied by a local demon, with a global demon
acting as a supervisor over all the local demons · · ·
Each local demon is armed with a left-right switch
and a scoreboard. His only job is to set his switch



44 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 1, JANUARY 2021

from time to time in the light of data which he
accumulates on his scoreboard [26, p. 148].

The rule used by the local demons was quite complicated
but essentially depended on records for each control decision,
left or right, of the number of decisions taken before a run
failed.

It was easy to translate this organization into our neural
network terms, ending up with the entire system being imple-
mented by a single neuron-like element, in particular, by a
single ASE. At each time step, the ASE’s input vector would
be one of 225 standard-unit-basis vectors: all zeros except a
one in the position corresponding to the box occupied by the
current state. Then, a local demon would correspond a synapse
whose influence on the element’s output would correspond to
its left–right switch. Its scoreboard, then, would correspond to
its synaptic efficacy, or connection weight. The global demon
would correspond to the activation rule of the neuron-like ele-
ment that would convert the active local demon’s decision,
plus a random number contribution, into the element’s binary
output by thresholding.

A side benefit of our neuron-like implementation was that
it could easily accommodate state representations more com-
plicated than the one used by BOXES. The full function
approximation power of neural networks could be enlisted,
including multilayer neural networks, as subsequent advances
demonstrated. See Section VII below.

Due to the delayed-reward problem presented by the pole-
balancing task, which was not present in our earlier work with
the ASN, we modified the ASE learning rule by adding eligi-
bility traces. Recall that according to Klopf’s hedonistic neu-
ron hypothesis, all the synapses that were active in contributing
to the neuron firing would become eligible to undergo changes
in their efficacies, with the changes happening if reinforce-
ment arrived during the period of eligibility. He envisioned
that eligibility would be implemented by the concentration
of a synaptically-local chemical that began increasing when
the synapse was active in firing the neuron, reached a maxi-
mum shortly after this, and thereafter decayed to zero after a
time interval long enough to register delayed reinforcement.
This concentration would be a trace of past activity called an
eligibility trace.

We added eligibility traces to the ASE in the simplest way
we could think of. Each eligibility-triggering event added to
the ongoing trace at the appropriate synapse; otherwise that
trace decayed exponentially with a time constant selected
as a parameter of the simulation. The result was not too
different from the records kept by the local demons of
BOXES. Sutton and Barto [2] extensively discuss eligibility
traces in the context of ideas for synaptic tags proposed by
neuroscientists.

We conjectured that our ASE algorithm, with eligibility
traces that decayed sufficiently slowly, would be superior to
the BOXES algorithm. Our main reasoning was that Michie
and Chambers did not seriously concern themselves with the
necessity for variety in the controller’s actions. In other words,
BOXES did only very limited exploration. It was purely deter-
ministic except for using pseudorandom numbers to break

ties in selecting actions and for selecting the initial state for
each learning trial, where a trial lasted from state reset until
failure.2

An ASE, on the other hand, selected every action randomly,
with probabilities adjusted as in stochastic learning automata.
We thought that with eligibility traces lasting long enough to
deal with the delayed-reward problem, a single ASE could
learn faster than BOXES.

In the Summer of 1982, we saw an announcement for
the “Neural and Sensory Information Processing” special
issue of IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS in which our 1983 paper would eventually
appear. We thought this would provide an excellent oppor-
tunity to publicize our research—if we could make it to the
deadline for submission. So we decided to implement our
system along with BOXES with the intention of compar-
ing their performances, thinking that our stochastic approach
would easily surpass the performance of BOXES.

As the special issue deadline approached, we struggled to
get our system to outperform BOXES, which worked better
than we had expected. Very near the deadline, we decided to
insert a TD algorithm into our pole-balancer in the form of
the ACE. Sutton had been developing the TD idea that was
to become a major part of his 1984 Ph.D. dissertation [24].
With the ACE providing reinforcement signals to the ASE,
the system was able to learn better than BOXES could. This
combination of the ASE and ACE became known as the actor–
critic architecture.

But at almost literally the last minute before the special
issue deadline, there was another setback: we discovered a bug
in our implementation of the cart-pole simulation. Our proce-
dure for updating the pole’s angle with respect to the cart
accepted as input the current pole angle expressed in radi-
ans, but returned the new angle in degrees.3 Consequently,
unbeknownst to us, our system had been learning to control a
very different cart-pole system than we had intended, or that
BOXES had learned to control in Michie and Chambers’ paper.
We quickly fixed the bug, but then struggled to tune our con-
troller and simulation to produce effective learning. Finally,
after an all-night session, we achieved adequate results and
submitted this article.4

2Michie and Chambers explicitly avoided probabilistic decision making,
stating that “such devices cannot be optimal,” regarding the two-armed bandit
problem as a “famous unsolved problem of mathematics.” It was not until the
1970s that a version of the problem was solved with Gittins Indices [29], and
we knew that stochastic learning automata could achieve ε-optimality with ε

being arbitrarily small [14].
3In 1999, a similar error caused the loss of NASA’s 125-million dollar

Mars Climate Orbiter due to the use of both English and metric units of
acceleration. This put us in good company, though happy that our error was
less costly.

4This late night struggle explains the unusual values we published for the
coefficients of friction of the pole on the cart (μc = 0.0005) and the cart
on the track (μt = 0.000002). Of course, we wanted to experiment more,
but it worked with these values, and we had to stop. Our haste also explains
an unfortunate error that appeared in this article as published: the sign of
gravity given in the Appendix has the wrong sign (although it was correct in
our simulations). We learned of this from readers’ attempts to duplicate our
results. With the published sign of gravity, they found that no learning at all
was needed to balance the down-hanging pole. This error did not hinder further
research because it was quickly noted and became widely known among RL
researchers.
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Fig. 1. Actor–critic architecture configured for the pole-balancing task as
depicted in our 1983 paper [1].

In 1985, we had the opportunity to work with AI pio-
neer Oliver Selfridge on some additional experiments with
the actor–critic architecture applied to the pole-balancing
task [30]. It is more difficult to balance a short pole than
it is to balance a longer pole. This suggested the following
strategy for learning to balance a short pole: start with an
easier-to-balance long pole and shrink its length as learning
proceeds, ending up with the skill of balancing the short pole.
We tried this using the actor–critic architecture of our 1983
paper. Learning to balance a 1-m pole took on average 67 fail-
ures, whereas learning to balance a 2/3-m pole took on average
119 failures. Switching to the short pole after learning to bal-
ance the long pole took just six more failures on average. This
illustrated how an RL system could benefit from what psychol-
ogists call shaping [31], the training strategy that starts with an
easy problem and incrementally increases its difficulty as the
animal learns. Shaping is indispensable for animal training,
and it can benefit learning via RL algorithms as well.

V. SOME DETAILS OF THE ARCHITECTURE

Fig. 1 follows the figure from our 1983 paper showing the
actor–critic architecture configured for the pole-balancing task.
The output of the decoder is the standard unit basis vector
representation of the 4-D cart-pole state space divided into
n = 225 boxes. The ACE receives the reward signal r as
input, in this case, the failure signal, and produces an “internal
reinforcement” signal r̂ which it sends to the ASE.

Fig. 2 is an updated representation of the actor–critic
architecture based on our better understanding of how the
architecture is related to psychology and neuroscience (see
Section IX below). We distinguish between a reward signal,
which sets the overall objective of the task, and a rein-
forcement signal, which directs the changes in the learner’s
parameters, here being the input connection weights of the
ASE and ACE. As in Fig. 1, the ACE receives the signal r as
input, but Fig. 2 labels it reward instead of reinforcement. The
signal the ACE sends to the ASE is the reinforcement signal,

Fig. 2. Updated representation of the actor–critic architecture configured for
the pole-balancing task. The input r is now labeled reward, and the dashed
lines depict the TD error as the reinforcement signal for adjusting the input
connection weights of both the ASE and the ACE.

which here is the TD error δ(t) = r(t)+γ p(t)−p(t−1), where
p is a prediction of the eventual reward and γ is a discount
factor between 0 and 1. The TD error is also the reinforce-
ment signal for the ACE. This is shown by the dashed lines
that cross the context input lines to each element.

A unique feature of the architecture is that although the TD
error δ(t) is the reinforcement signal for both the ASE and the
ACE, these elements learn to perform different functions: the
ASE adjusts its parameters (its synaptic weights) in order to
move its action probabilities toward higher-rewarding actions,
while the ACE adjusts its parameters in order to make more
accurate reward predictions.5 The TD error tells the ASE if
the current prediction p(t) of the amount of reward expected
over the future has just increased (δ > 0) or just decreased
(δ < 0) so that the ASE’s action probabilities can be adjusted
to make it more, or less, likely to execute the same action
when the current context occurs again. On the other hand, the
TD error tells the ACE if its prediction of future reward is
too low (δ > 0) or too high (δ < 0) so that it can correct its
prediction.

The same reinforcement signal produces these different
functions because the learning rules of the ASE and ACE dif-
fer in a subtle way: they use different notions of eligibility.
Eligibility for the weight of an input connection to the ACE
depends solely on input via that connection. That is, eligi-
bility traces associated with the ACE’s input connections are
traces of past input via those connections. In contrast, eligibil-
ity for a weight associated with an input connection to the ASE
depends, in addition to input via that connection, on the ASE’s

5In some presentations (e.g., [2]), the TD error at step t is δ(t) = r(t+1) +
γ p(t + 1) − p(t), that is, it depends on the reward and prediction at the next
time step t + 1. The interpretation of this form is that it is the error in the
prediction made at step t that becomes available as a signal at t + 1. The
interpretation of the alternate form used in our 1983 paper is that δ(t) is the
error in the prediction made at t − 1 that becomes available as a signal at
time t. Both interpretations appear in the literature.
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output. That is, eligibility traces for an ASE’s connections are
traces of past input via those connections but modulated by
the element’s output. According to Klopf’s notion of eligibil-
ity for a neuron, a synapse that transmits an excitatory pulse
to the neuron would become eligible only if that input partic-
ipated in causing the neuron to fire an action potential, and
if a synapse transmits an inhibitory pulse, it would become
eligible only if the neuron was inhibited from firing an action
potential.

We call the ACE’s eligibility noncontingent because it
is not contingent on the element’s output, and we call the
ASE’s eligibility contingent because it does depend on the
element’s output. Output contingency makes the ASE learn
about the effect of its actions on the reinforcement signal.
Lacking output contingency, the ACE learns to predict reward
independently of its output.

The situation is somewhat more complicated than what we
have written here. For example, in [1], the ASE’s output was
always nonzero, being either +1 or −1, so that eligibility
traces accumulated positive and negative contributions of past
activity. Details can be found in [2]. In Section IX, we discuss
these issues from the perspective of neuroscience.

VI. DECOMPOSITION INTO SUBGAMES

One of the objectives of Michie and Chambers’ BOXES
system was to illustrate the benefit of decomposing a large
problem into many small problems, arguing (with reference
to earlier work on playing Naughts and Crosses, i.e., Tic-tac-
toe [32], [33]) that “it may be easier to learn to play many easy
games than one difficult one.” The organization of BOXES
illustrated this by its division of the pole-track state space
into 225 boxes, in each of which a local demon was faced
with the relatively simple problem of learning how to act just
for states falling in that box. BOXES illustrated that success
on the large problem could be achieved in this way even if
the subproblems, i.e., the problems faced by the local demons,
were not independent.

The influence of this aspect of Michie and Chambers’
paper is apparent in the direction we took in further devel-
oping RL. We maintained the view that favored learning in
a state-dependent manner instead of treating the problem of
finding an optimal policy as a monolithic, or “black box,”
optimization problem. In [2], Sutton and Barto referred to
monolithic optimization methods as “evolutionary methods,”
and instead focussed on learning while interacting with an
environment in order to take advantage of individual behav-
ioral interactions, which monolithic optimization algorithms
do not do.

It is fair to regard this emphasis on learning functions of
states, such as value functions and policies, during interaction
with the environment partly as a legacy of the influence on
us of the BOXES paper. Also contributing to this emphasis
was that learning via interaction fits better with our sense of
how animals learn during their lifetimes. Evolutionary meth-
ods clearly have their place in machine learning where they can
be the preferred methods for some problems, but to us there is

a clear difference between interaction-based RL and evolution-
ary, or black-box, methods. Distinguishing the complementary
capabilities of each may be a prerequisite to designing algo-
rithms that combine them as effectively as they are combined
in the natural world.

VII. REINFORCEMENT LEARNING WITH MULTILAYER

NEURAL NETWORKS

We adopted the BOXES state representation for our pole-
balancing experiments so that our system would be as similar
to BOXES as possible, differing only in the most critical
features. All the while, we were well aware of the much
wider set of possible state representations that neural networks
could provide, including the very rich representational abili-
ties of multilayer neural networks. In parallel with our work
on developing TD algorithms, modeling classical condition-
ing, and illustrating RL with the pole-balancing example, we
were exploring RL methods for training the hidden layers of
multilayer neural networks so that state representations could
be learned rather than provided from the start.

We published a series of papers showing that multilayer
neural networks could learn desired nonlinear mappings if
each unit in the network learned via RL and the reward
signal was broadcast uniformly to each unit [34]–[37]. In
this approach, inspired by the earlier work with “teams” of
stochastic learning automate, e.g., [15] and [38], the gradient
of the objective function was stochastically estimated rather
than backpropagated as in the error backpropagation algorithm
that shortly became well known through the 1986 chapter by
Rumelhart et al. [39]. Although our RL method was much
slower than the backpropagation algorithm, we argued that it
was simpler and more plausible biologically [40].

Co-author Anderson experimented with the RL approach
for training multilayer networks, finding that adding a train-
able hidden layer improved performance in the pole-balancing
task [41]. He examined the features that the hidden layer
learned, noting that they captured essential aspects of the
control problem. Later, in his 1986 Ph.D. dissertation [42]
(also [43]), Anderson compared a number of algorithms for
hidden unit learning as applied to several tasks, including
pole balancing and the Tower of Hanoi task. He found that
both the RL method and error backpropagation learn the solu-
tions to the tasks much more successfully than earlier methods
for training multilayer networks, and he analyzed the features
developed by the hidden units in solving these tasks.

Fig. 3 shows the two-layer actor and critic networks
Anderson applied to the pole-balancing task [42]. Trained
by backpropagation, the two-layer system far outperformed
a single-layer system, although both learned more slowly than
the system with the hand-crafted boxes state representation
used in our 1983 paper. Anderson attributed this to the con-
siderable number of steps that were required for the hidden
units to learn the necessary features. Anderson’s work is the
first instance of which we are aware in which learning algo-
rithms for multilayer neural networks were used in RL tasks,
foreshadowing current advances in deep RL.
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Fig. 3. Two-layer neural network actor–critic architecture applied to the
pole-balancing task from Anderson’s 1986 Ph.D. dissertation [42]. The left
and right networks, respectively, implemented the critic and the actor. In each
network, the five input lines connect to five hidden units and to the single
output unit, for a total of 35 weights. The relative magnitudes and signs of the
learned weights are shown by the circles on the line intersections, with the
open and black circles, respectively, indicating positive and negative weights.

VIII. THEORY

RL has seen tremendous progress since our 1983 paper. New
algorithms, many applications, and vastly improved theoreti-
cal understanding emerged as a result of the contributions of
numerous researchers. RL has benefitted from being connected
to more traditional fields, in particular, to stochastic optimal
control and dynamic programming. RL is now regarded as a
collection of methods for approximating solutions to Markov
decision processes (MDPs), a framework into which all of our
earlier work can be placed. Here, we mention a few highlights
of this theoretical development that bear directly on the actor–
critic architecture, omitting details that can be found in many
publications, e.g., [2].

The actor–critic architecture can be understood most clearly
as a policy-gradient algorithm. A policy is a function that maps
environment states to control actions, often probabilistically.
In a policy-gradient algorithm, the policy is represented as a
parameterized function with parameters adjusted by the learn-
ing algorithm. In an actor–critic algorithm, the actor updates
policy parameters by moving the policy parameter vector in
the direction of an estimated gradient of a measure of long-
term reward, where the gradient is estimated from sample
trajectories. The ASE learning rule in our 1983 paper does
not exactly perform gradient ascent, but later versions incor-
porating William’s REINFORCE algorithm [44] do achieve
stochastic gradient ascent.

The critic of the actor–critic architecture updates parameters
of a parameterized state-value function, which is a function
that assigns to each state an estimate of the expected long-term
return (the expected cumulative reward) when a given policy
is followed from that state. The critic uses a TD algorithm
to adjust the value-function parameters in order to improve

its prediction accuracy based on observed state transitions and
rewards.

The interaction of the actor and critic is analogous to
the policy-iteration algorithm of dynamic programming. Each
iteration of that algorithm alternates between computing a
state-value function for a current policy, and then improv-
ing the current policy according to the current state-value
function. Actor–critic methods effectively perform these two
phases simultaneously, interleaving single steps of state-value
function estimating with single steps of policy improvement.

The theoretical properties of traditional policy iteration are
well known (it converges to an optimal policy for finite MDPs
under mild conditions), but the actor–critic analog is more dif-
ficult to analyze. The most comprehensive convergence results
are due to Bhatnagar et al. [45], who prove convergence to a
local maximum of the long-run average reward for several
versions of the actor–critic algorithm using a two-timescale
approach in which the critic learns faster than the actor.

The 1990s saw the development of RL algorithms based on
estimating action-value functions instead of state-value func-
tions, the prime example being Q-learning [46]. Action-value
functions map state–action pairs to expected return. With these
methods, there is no need for an explicit policy representa-
tion because actions can be selected simply by consulting the
estimated values of the actions for the current state. Action-
value functions have been called “action-dependent adaptive
critics” [47].

Action-value algorithms came to be preferred over actor–
critic algorithms because of their relative ease of imple-
mentation, but understanding their convergence properties is
challenging, especially when they use function-approximation
methods for learning action-value functions. As a result,
interest in policy-gradient algorithms, including actor–critic
algorithms, has lately increased. Their reliance on explicit
parameterized policy representations offers a number of advan-
tages, among which are the following: 1) they provide useful
ways to deal with continuous action spaces; 2) they make
it possible to select actions with arbitrary probabilities, and
yet can converge to deterministic policies; and 3) they offer
a good way to introduce prior knowledge into the learning
process. Additionally, sometimes a high-performing policy is
much simpler than an action-value function [48]. By account-
ing for this simplicity in selecting a policy parameterization,
learning can be faster and lead to a better policy than possible
with action-value methods.

IX. ACTOR–CRITIC IN THE BRAIN

Mounting evidence from neuroscience suggests that the ner-
vous systems of humans and many other animals implement
algorithms that correspond in striking ways to RL algorithms.
The most remarkable point of contact involves dopamine, a
chemical fundamentally involved in reward processing in the
brains of mammals. Experiments have shown that neurons (at
least many of them) that produce dopamine as a neurotrans-
mitter respond to rewarding events with substantial bursts of
activity only if the animal does not expect those events [49].
This finding suggests that many dopamine-producing
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neurons are signaling reward prediction errors instead of
reward itself.

Experiments have also shown that as an animal learns to
predict a rewarding event on the basis of preceding sensory
cues, the bursting activity of dopamine-producing neurons
shifts to earlier predictive cues while decreasing to later
predictive cues. This parallels the backing-up effect of the
TD error as the ACE learns to predict reward. It is now
widely accepted that bursts of dopamine neuron activity con-
vey reward prediction errors to brain structures where learning
and decision making take place, and evidence supports the idea
that the prediction errors might be TD errors [50].

Experimental results like these have led to the hypothesis
that the brain might implement something like our actor–critic
architecture. TD errors conveyed by the activity of dopamine
neurons are reinforcement signals that train both the critic’s
predictions and encourage or discourage the actor’s choice of
actions [49], [51].

Whether a brain region performs an actor-like or a critic-
like function depends on how synaptic efficacies change
in each region in response to receipt of dopamine rein-
forcement. Synapses in a critic-like region would implement
noncontingent eligibility traces. In neural terms, noncontin-
gent eligibility means that the eligibility of a synapse is solely
a function of presynaptic activity, that is, of activity that
reaches the synapse as input from other neurons. Synapses
in an actor-like region, on the other hand, would implement
contingent eligibility, which is a function of the activity both
the pre- and postsynaptic neurons. Neuroscientists would say
that critic synapses have a two-factor learning rule (presy-
naptic activity + dopamine), whereas actor synapses have a
three-factor learning rule (presynaptic activity + postsynaptic
activity + dopamine). Moreover, if the neuron is to implement
a kind of law of effect as Klopf conjectured, the presynaptic
activity must have taken part in generating the postsynap-
tic activity in order for the synapse to become eligible for
modification.

Even if neurons behave nothing like the ASE or the ACE
of the actor–critic architecture, our 1983 paper suggested that
neurons may be capable of very sophisticated processing,
vastly more complex than the logic-gate analogy of old would
suggest. That nearly the entire BOXES system of Michie and
Chambers could be implemented by a single neuron-like ele-
ment is a touchstone for thinking about neural networks as
being more analogous to networks of computers than to logic
circuits.

Furthermore, understanding how adaptive elements such as
the ASE operate requires thinking about them as embedded
in closed-loop interactions with their environments. They are
metaphorically “swimming” in a medium composed of the
rest of the neural net plus the organism’s (or robot’s) external
environment. Their adaptive changes are sensitive to the effects
that their actions have on input signals they later receive.

The brain’s reward system is undoubtedly much more com-
plicated than current RL algorithms, and the story is still
unfolding as more is being learned about the brains’s reward
system, but the actor–critic architecture, along with other RL
algorithms and theory, is proving to be enormously useful in

making sense of experimental data, in suggesting new kinds
of experiments, and in pointing to factors that may be critical
to manipulate and to measure. See [2] for more about RL and
neuroscience.

X. FUTURE

Some of the most impressive achievements in AI have been
produced by programs that include RL. Notable examples
are DeepMind’s Go-playing programs [52], [53]. While these
programs are vastly more complex than an actor–critic archi-
tecture, and the problem they faced is vastly more difficult than
pole balancing, they nevertheless carry forward some features
of our RL pole balancer, such as learning from interaction with
a dynamic environment, caching trial-and-error search results,
and learning value predictions to address long-term goals. The
future will see the methods used in these game-playing pro-
grams, and other successful learning programs, adapted and
extended to address a widening range of challenging prob-
lems, including pressing real-world problems of scientific and
social importance.

RL has the potential to improve the quality, efficiency,
and cost effectiveness of processes on which we depend in
education, healthcare, transportation, and energy management,
among others, but challenges have to be addressed to realize
this potential. Many design decisions are involved in apply-
ing RL. The architecture has to be designed by selecting
appropriate learning algorithms, state and action representa-
tions, training procedures, hyperparameter settings, and other
design details. An important goal for future research is to
make RL algorithms more robust and easier to apply so that
new applications can be developed by experts in the applica-
tion domains instead of by teams of experts in RL and other
machine learning methods.

There are ample opportunities to improve and generalize RL
algorithms and architectures. Examples include: architectures
for learning hierarchical polices to improve efficiency and the
ability to transfer learning to new problems; efficient methods
for learning with incomplete state information; expanding the
role of prediction to enable agents to predict and control many
signals from their environments, not just long-term reward;
further development of multiagent RL; further development
of model-based RL to integrate planning and higher level rea-
soning; and architectures for open-ended life-long learning.
Progress has been made along these and other directions, but
much more is possible. Additional improvements are discussed
in [2] and [54].

As RL moves out into the real world, it is critical to
make sure that what is learned conforms to the intentions
of the application’s designer, and that the learning agent
does no harm to itself or to its environment, including any
people in it, both during and after learning. This requires
adopting risk mitigation and management strategies that exist
for other risk-prone technologies and designing new meth-
ods especially targeting risks posed by machines that learn
through interacting with real-world environments. Unless RL
is restricted to always operate in benign environments, like
game playing where one can tolerate the worst that can happen,
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ensuring the safety of RL applications is a critical challenge
that needs careful attention.

The design of an RL system’s reward function is of spe-
cial importance for RL safety. This is the function that
assigns reward and penalty magnitudes to states, actions,
state–action pairs, and perhaps other aspects of the system.
Because RL fundamentally involves optimization, with the
reward function being the objective function, it shares with
other optimization processes the problem that it can produce
unexpected, and sometimes unwanted, possibly catastrophic,
results. This possibility has long been recognized. For exam-
ple, Norbert Wiener, the founder of cybernetics, warned of this
problem more than half a century ago by relating the supernat-
ural story of “The Monkey’s Paw:” “· · · it grants what you ask
for, not what you should have asked for or what you intend”
[55, p. 59]. The problem is featured as “perverse instantia-
tion” in Bostrom’s broadside about the dangers of AI [56].
Methods for designing reward functions are needed that go
beyond the hand tuning that is common practice today, and
sound methodologies are needed to assess the safety of what
a reward function enables a system to learn.

Turning to the connections between RL and neuroscience,
the future will see continued fruitful interaction between neu-
roscience and RL. Advances in RL will suggest new ways
to think about the brain’s decision and reward systems, and
advances in neuroscience will inform the further development
of RL. As neuroscience uncovers more about how reward
processing works in the brain, we may see experimental sup-
port for Klopf’s hypothesis that neurons—at least some of
them—individually implement a kind of law of effect.

XI. CONCLUSION

Contributing to this 50th Anniversary Issue of IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS

has given us the opportunity to revisit some of our earliest
efforts in what has become the flourishing RL subarea of
machine learning. The 1983 “Neural and Sensory Information
Processing” special issue of the journal provided the ideal
venue for our work at a time when biologically inspired
machine learning was not as routine as it is today. We have
been gratified and surprised by the influence our paper has
had. It is among the most frequently cited of the publications
by any of us, its three authors, and pole balancing has served
as a testbed for many different learning archiectures.

Exploring Klopf’s hedonistic neuron hypothesis led us
through some of the early history of AI, to psychology’s
theories of learning, and eventually to appreciation of stochas-
tic optimal control and dynamic programming. The striking
parallels between TD algorithms and the brain’s dopamine
system revealed strong connections between RL algorithms
and reward processing in the brain. Although Klopf’s idea of
the hedonistic neuron remains a hypothesis, time will tell if it
finds compelling neuroscientific support.

There is now a large international community of researchers
improving RL algorithms and architectures, combining RL
with other technologies, creating new RL applications, and
exploring new directions inspired by RL. The actor–critic

architecture now is in the company of many other architectures
that embody core RL ideas while exploiting the immensely
improved computational resources available today. We fully
expect that RL can help improve the quality, fairness, and
sustainability of life on our planet, provided its risks can be
successfully managed.
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