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Classifying With Adaptive Hyper-Spheres:
An Incremental Classifier Based

on Competitive Learning
Tie Li, Gang Kou, Yi Peng , and Yong Shi

Abstract—Nowadays, datasets are always dynamic and pat-
terns in them are changing. Instances with different labels are
intertwined and often linearly inseparable, which bring new
challenges to traditional learning algorithms. This paper pro-
poses adaptive hyper-sphere (AdaHS), an adaptive incremental
classifier, and its kernelized version: Nys-AdaHS. The classifier
incorporates competitive training with a border zone. With adap-
tive hidden layer and tunable radii of hyper-spheres, AdaHS
has strong capability of local learning like instance-based algo-
rithms, but free from slow searching speed and excessive memory
consumption. The experiments showed that AdaHS is robust,
adaptive, and highly accurate. It is especially suitable for dynamic
data in which patterns are changing, decision borders are com-
plicated, and instances with the same label can be spherically
clustered.

Index Terms—Adaptive algorithms, Nyström method, pattern
clustering, self-organizing feature maps (SOFMs).

I. INTRODUCTION

ADAPTIVE incremental learning, also called online learn-
ing, aims to handle dynamic data arriving in real-

time [1]. Data in the real world are not always processed
all at once, such as real-time financial data analysis, network
intrusion detection, and dynamic Webpages mining [2]–[4].

Zhou and Chen [5] proposed three types of incremen-
tal learning: 1) example-incremental learning; 2) class-
incremental learning; and 3) attribute-incremental learning
(A-IL). The first two types of incremental learning with
assumption that the attributes are fixed have been studied more
than A-IL [6]–[9].

With the availability of increasing amount of dynamic data,
a great deal of researches on incremental learning have been
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Fig. 1. Data points that are not linearly separable.

conducted in recent years [6]–[10]. Some of them categorize
the modeling strategies of online learning into statistical learn-
ing models and adversarial models. A latent assumption of
statistical learning models is that variables are “independent
and identically distributed.” However, patterns are evolving
and changing over time, and the statistical assumptions are
hard to be satisfied [10]. For example, fraudulent information
and censorship are adversarial in credit risk assessment. Fraud
and anti-fraud strategies are evolving interactively, which
results in changing patterns [11]. Analogous phenomenon can
also be found in stock market and network intrusion detection.
In practice, given the complexity of data sources, uniform pat-
terns do not always exist across the entire dataset. Specific
patterns only fit in certain parts of the datasets at a particular
time. So it is necessary for learning algorithms to adapt to new
patterns in dynamic data.

Fig. 1 shows an example of changing patterns in different
areas of a dataset.

Some feasible solutions to identify changing patterns in
dynamic data are described as follows.

1) Instance-Based Learning: A well-known instance-based
learning algorithm is k-nearest neighbors (k-NNs). But
the problem with k-NN is that the search time is usually
unbearable and the memory consumption is too high
in large-scale data applications [12]. Though indexing
technologies such as ball-tree, KD-tree, R-tree, locality
sensitive hashing, and other hashing technologies [13]
can make the search of the similar points faster, the
model of k-NN is too simple and lacks characterization
of the data distribution [14].

2) SVM and Kernel Methods: SVMs use hyper-planes
to divide space [15]. However, hyper-planes are not
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adaptive enough to divide space with highly complicated
data distributions (such as Fig. 1). In fact a decision bor-
der of hyper-plane is not realistic in most cases. SVMs
rely on kernel tricks to project instances into a repro-
ducing kernel Hilbert space [16]. The problem is that
kernel methods are hard to be applied for large-scale
datasets because the time cost of computing the kernel
matrix is O(n2). Furthermore, the search of the optimal
parameters for kernel functions is also time consuming.

Given the limitations of hyper-planes, a straightforward
intuition is to use hyper-spheres to divide the space [17]. Many
methods, such as support vector data description (SVDD),
ball trees, competitive learning, and clustering algorithms,
explicitly or implicitly, use hyper-spheres to divide the space.

SVDD is a representative model that uses mathematical
method to obtain an appropriate hyper-sphere. It builds a min-
imum radius hyper-sphere around the data. The primal form
of the optimization problem of SVDD [18] is

min R2 + C
n∑

i=1

ξi

s.t. ‖xi − α‖2 ≤ R2 + ξi, ξi ≥ 0 (1)

where xi ∈ R
m, i = 1, . . . , n, is the training data; R rep-

resents the radius; ξi is the slack variables; α is the center
of the hyper-sphere; and C is the penalty constant. SVDD
was first introduced for single class classification and outlier
detection [18] and then many improvements had been made
for multiclass classification by building one hyper-sphere for
each class [19]. The dual problem of SVDD can be expressed
as inner-product form. When the data distribution is com-
plex, SVDD also uses kernel methods to project the instances
into a reproducing kernel Hilbert space, in which instances of
a particular class are more likely to be enclosed by one single
hyper-sphere [18].

The main advantage of SVDD is that it can be solved
via mathematical optimization method and easy to use kernel
tricks. The limitations of SVDD include the following.

1) There is only one hyper-sphere for each class. If the
data distribution of the same class is complex, one
hyper-sphere is obviously not enough [19].

2) It is hard for SVDD to determine the number of hyper-
spheres adaptively.

1) Clustering-Based Classification Models: Numerous
studies revealed that there is a connection between clus-
tering and classification [17], [20], [21]. Such studies
include radial basis function networks (RBFNs) [20]
and functional link neural network [21]. RBFN is
a clustering-classification style neural network classifier
and has its incremental version IRBFN, but the number
of clusters is fixed and this limits its adaptivity [20].
Adaptive resonance theory (ART) can use clusters for
classification, add clusters adaptively, and be trained
incrementally [22].

2) Competitive Learning: ART is a type of competitive neu-
ral networks. It tries to fit each new input pattern in an
existing subclass. If no matching subclass can be found,
a new subclass is created containing the new pattern.

Fig. 2. Causations of the proposed model.

In the past two decades, extensive research has been
conducted regarding ART, including ART-1, ART-2, ART-3,
fuzzy ART, and ARTMAP [23]–[25]. The primary goal of
ARTMAP, fuzzy ARTMAP, and Gaussian ARTMAP, is to
solve the plasticity–stability dilemma [25]. In general, the
structure of ART is too complicated for most cases.

ART, counter propagation network (CPN), [26], [27] and
learning vector quantization [28] are usually used for classi-
fication or supervised clustering. They are partially based on
self-organizing feature map (SOFM), namely “Kohonen learn-
ing” [29], which is an incremental clustering algorithm and
can be trained in linear time. Xiao and Chaovalitwongse [30]
proposed analogous model based on k-NN, and the hyper-
spheres are referred as “prototypes.” Valente and Abrão [31]
proposed a multi-input multioutput transmit scheme based
on morphological perceptron. Dai and Song [32] proposed
a supervised competitive learning algorithm for the generation
of multiple classifier systems.

The main criticism of competitive learning was that the
accuracy was not as high as mathematical optimization ones,
especially when the size of a dataset is small. In incremen-
tal learning, most mathematical optimization problems resort
to stochastic gradient descent (SGD) or its variants, as the
substitute for gradient descent methods, and SGD suffers
from “regret error” [33]. Other disadvantages of competitive
learning include the following.

1) They do not have a mechanism to minimize generaliza-
tion errors, which may cause over-fitting.

2) Unlike SVDD, they lack the explicit definition of each
hyper-sphere’s varying boundary, or “decision border.”

3) It is difficult to denote them in inner-product forms, and
thus hard to use kernel tricks.

Given the limitations of existing models, this paper proposes
a new model based on the following sequence of causations
(Fig. 2).

The purpose of this paper is to propose a new incremen-
tal learning model which can be used for the aforementioned
complicated dynamical scenario. Adaptability, locality, and
bounded memory consumption are the key requirements.

Assumption 1: In order to bind this paper within a specific
framework, we make the following assumptions.

1) Regarding Clustering: Data distribution is always com-
plex, with instances consisting of different labels
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TABLE I
COMPARISON OF THE HYPER-SPHERES-BASED MODELS

intertwined. There are usually a large number of clusters
containing instances with the same labels in local dense
areas. Local clustering is practical in most cases and
easy to accomplish using methods such as local distance
metrics learning [34].

2) Regarding Local Consistency: We assume that instances
near to one another tend to have the same label. This
assumption is used in many semisupervised learning
research studies [35] and conforms to basic theories of
local models, such as RBFN and k-NN.

Contributions: The main contributions of the proposed
model are as follows.

1) It utilizes the adaptivity of competitive neural networks
while recognizes decision borders of data points
like SVM.

2) It can be incrementally trained and does not require
retraining when new patterns emerge. It can be applied
to datasets that are not linearly separable and maintains
reasonable memory consumption.

3) It can apply feasible kernel methods on small- and large-
scale datasets.

The main differences of the proposed model with the
existing ones are summarized in Table I.

The remainder of this paper is organized as follows.
Section II describes the basic theory, including the analysis
of competitive learning and kernel methods. Section III repre-
sents the proposed algorithms. Section IV reports the results
and discussion of the experiments. Section V concludes this
paper with conclusion and future works.

II. BASIC THEORY

A. Basic Theory of Supervised Competitive Learning

We partially borrow the topological structure of CPN to
introduce our model. CPNs are a combination of competitive
networks and Grossberg’s [22] outstar networks. The topolog-
ical structure of CPN has three layers: 1) input layer; 2) hidden
layer; and 3) output layer (Fig. 3).

Suppose there are N elements in the input layer, M neurons
in the hidden layer, and L neurons in the output layer. Let
vector Vi = (vi1, . . . , viN)T denote the weights of neuron i in
the hidden layer connecting to each of the elements of the input

Fig. 3. Topological structure of CPN.

layer. Then V = (V1, . . . , VM) denotes weight matrix of the
instars. If the training in stage 1 can be viewed as a clustering
process, then neuron i is cluster ci and Vi is the centroid of
cluster ci.

When an instance is coming, it will compute the proximity
between the instance and each Vi in the weight matrix, i.e.,
the centroid of cluster ci. Here, proximity can be measured
by computing inner product netj = VT

j x, (j = 1, 2, . . . , m). It
adopts a winner-takes-all strategy to determine which neuron’s
weights are to be adjusted. The winner is netj∗ = max{netj}. In
other words, the winner is cj∗ whose centroid is the closest to
the incoming instance. The winning neuron’s weights would
be adjusted as follows:

Vj∗(t + 1) = Vj∗(t) + α
[
x − Vj∗(t)

]
(2)

where α is the learning rate, indicating that the centroid of the
winning cluster will move in the direction of x. As instances
keep coming, the weights vector—i.e., the centroid of the
hyper-spheres—tend to move toward the densest region of
the space. This first stage of the CPN’s training algorithm is
a process of self-organizing clustering, although it is structured
using a network.

The second part of the structure is a Grossberg [22] learn-
ing. We will redesign a different hidden layer and different
connection from the hidden layer to the output layer.

B. Advantages and Disadvantages of the Original Model

To illustrate the advantage and disadvantage of original
model, a set of 2-D artificial data were created and visualized
in Fig. 4.

In Fig. 4(a), instances can be grouped into six clusters.
Setting the number of neurons in the hidden layer to six, the
first training stage of the model in Fig. 3 can automatically
find the centroids of the six clusters, which are represented
by the weights of the six neurons. The second training stage
can learn each cluster’s connection to the right class. The dis-
tance from each instance in Fig. 4(a) to its cluster centroid is
smaller than the distances to the centroids of other clusters.
The dataset shown in Fig. 4 is ideal for CPN to classify.

Data distribution in Fig. 4(a) is simplified and idealistic.
Data with distribution similar to Fig. 4(b) will cause two kinds
of problems to the original model.

1) First, the self-organized clustering process depends
on the similarity measures between data points and
hyper-sphere’s centroid. Points closer to one cluster’s
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(a) (b) (c)

Fig. 4. Artificial datasets and the proposed clustering solutions.

centroid may belong to another cluster. Therefore, every
cluster should have a definite scope or radius, and the
scope should be as far away from others as possible.

2) Second, the number of clusters in the hidden layer is
fixed in the original model. However, it is difficult to
estimate the number of clusters in advance. Given differ-
ent numbers of neurons in the hidden layer, the accuracy
varies dramatically. The training of the instar layer—
i.e., the clustering process—is contingent on this fixed
number.

C. Building of the DMZ

To solve the first aforementioned problem, we should have
a general knowledge of the scope of the clusters. For example,
points of cluster A [in Fig. 4(b)] near the border may be closer
to the centroid of cluster B, so these points will be considered
belong to cluster B in the original model. We must identify
the decision border that separates clusters according to their
labels. When two instances with conflicting labels fall into the
same cluster, it gives us an opportunity to identify the border
point that is somewhere between the two conflicting instances
(as long as the instance is not an outlier). To maintain the
maximum margin and for the sake of simplicity, the median
point of two instances could be selected as a point in a zone
called a demilitarized zone (DMZ), and clusters should be
as far away from the DMZ as possible. As the number of
conflicting instances increases, a general zone gradually forms
as the DMZ. This mechanism can find borders of any shapes
that are surrounded by many hyper-spheres.

To solve the second problem, the number of clusters
should not be predetermined. The clusters should be formed
dynamically and merged or split if necessary. The scope of the
hyper-spheres, represented by the corresponding radii, should
be adjusted on demand. As an example, consider the situa-
tion presented in Fig. 4(b): with instances of conflicting labels
found in the top cluster, the original cluster should tune its
radius. After training, a new cluster would be formed beneath
the top cluster containing instances of different labels from the
ones in the top cluster. The radii of the two clusters should be
tuned according to their distance to the borders.

One single hyper-sphere may not enclose an area whose
shape is not hyper-spherical [36]. However, any shape could
be enclosed as long as the number of the formed hyper-spheres

Fig. 5. Topological structure of the proposed model.

is unlimited. Consider the clusters represented by the 2-D cir-
cles in Fig. 4(c). All of the instances can be clustered no matter
what the data distribution is and what the shape of the border
is, as long as there are enough hyper-spheres of varying radii
and are properly arranged.

D. Proposed Topological Structure

Given the solutions above, the structure of our improved
model is shown in Fig. 5.

The first difference is that our model has an adaptive
dynamic hidden layer and the number of neurons in hidden
layer is adaptive. The second difference is that each neuron
Hi connects to only one particular neuron in the output layer,
and wij is used to record the radius of neuron Hi.

E. Kernelization

It is challenging for competitive learning models to
apply kernel methods because they cannot be denoted in
inner-product forms. Some previous studies use approx-
imation methods for the kernelization of competitive
learning [37], [38]. This paper uses Nyström method to ker-
nelize the proposed model [39], [40].

Let the kernel matrix written in blocks form

A =
[

A11
A21

A12
A22

]
. (3)

Let C = [A11 A21]T , Nyström method uses A11 and C to
approximate large matrix A. Suppose C is a uniform sam-
pling of the columns, Nyström method generates a rank-k
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Fig. 6. Artificial dataset 3 after Nyström and SVD transformation.

approximation of A(k ≤ n) and is defined by

Anys
k = CA+

11CT =
[

A11
A21

A21

A21A+
11AT

21

]
≈ A (4)

where A+
11 denotes the generalized pseudo inverse of A11.

There exists an Eigen decomposition A+
11 = V�−1VT , such

that each element Ak
nys

ij in Anys
k can be decomposed as

Ak
nys

ij =
(

CT
i V�−1VTCj

)

=
(
�−1/2VTCi

)T(
�−1/2VTCi

)

=
(
�−1/2VT(κ(xi, x1), . . . κ(xi, xm))

)T

•
(
�−1/2VT(

κ
(
xj, x1

)
, . . . κ

(
xj, xm

)))
(5)

where κ(xi, xj) is the base kernel function, x1, x2, . . . , xm are
representative data points and can be obtained by uniform
sampling or clustering methods such as K-means and SOFM.

Let
∼
φ
m
(x) = �−1/2VT(κ(x, x1), . . . , κ(x, xm))T (6)

such that

Ak
nys
ij = ∼

φ
m
(xi)

T
∼
φ
m

(
xj

) = ∼
κ
(
xi, xj

)
. (7)

With Nyström method, we can get an explicit approximation
of the nonlinear projection φ(x), which is

x → ∼
φ
m
(x). (8)

To justify why we use kernel methods for our model, we
first used Nyström method to raise the dimension of dataset
3 to 403, then used singular value decomposition (SVD) to
reduce the dimension to 2 for the purpose of visualization.
Fig. 6 illustrates the transformed dataset 3 from Fig. 4(c).

Compared with Fig. 4(c), the data in Fig. 6 can be cov-
ered with less hyper-spheres, or each hyper-sphere can enclose
more data points. Because the sampling points in Nyström
methods can be obtained dynamically, the projection of (8)
can be used for every single instance in competitive learning
and can be applied directly to our incremental model.

Without loss of generality, we use φ(x) to denote a potential
projection of x in the reminder of this paper. If it works in the
original space, the projection of x is to itself.

III. PROPOSED CLASSIFIER: ADAHS

The main characteristic of the proposed model is to adap-
tively build hyper-spheres. Therefore, we call the model
adaptive hyper-spheres (AdaHSs), and the version after
Nyström projection is called Nys-AdaHS.

A. Training Stages

Our algorithms are trained in three stages, which are
described below.

Stage 1 (Forming Hyper-Spheres and Adjusting Centroids
and Radii):

1) Forming Hyper-Spheres and Adjusting Centroids: Given
that instances are read dynamically, there is no
hyper-sphere at the beginning. The first instance inputed
forms a hyper-sphere whose centroid is itself and ini-
tial radius is set to a large value. When a new instance
is inputed and does not fall into any existing hyper-
spheres, a new hyper-sphere will be formed in the same
way. If a new instance falls into one or more existing
hyper-spheres, the winner is the one whose centroid is
the closest to the new instance. The winning cluster’s
centroid is recalculated as

ci(t + 1) = ci(t) + α[φ(x) − ci(t)] (9)

where x is the new inputed instance, c(t) is the original
centroid of the hyper-sphere, c(t+1) is the new centroid,
and α is the learning rate. When the number of instances
that fall within a particular hyper-sphere grows, its cen-
troid tends to move toward the densest zone. In order
to speed up the search of the winner, we build simple
k-dimension trees for all hyper-spheres. With the knowl-
edge of the radius, it is easy to figure out the upper and
lower bounds of the selected k dimensions. In this way,
it avoids extensive computation of all Euclidean distance
of instance and hyper-sphere pairs.

2) Building Decision Border Zone—DMZ: The goal of this
step is to find the DMZ’s median points that approximate
the shape of the DMZ. We find the points using the fol-
lowing technique. The first time a labeled instance falls
into a hyper-sphere, the hyper-sphere will be labeled
using the label of this instance. If another instance with
a conflicting label falls into the same hyper-sphere, it
indicates that the hyper-sphere has entered the DMZ. We
identify the nearest data point in the hyper-sphere to the
newly inputed conflicting instance, and let pi represent
the median point as follows:

pi = 1

2

(
φ(xconflicting) + ci

)
(10)

where φ(xconflicting), pi ∈ ci, and pi is recorded and used
in the posterior clustering process.

3) Adjusting the Radii of Hyper-Spheres: Once a DMZ
point is found in a hyper-sphere, the radius of the
hyper-sphere should be updated such that it does not
enter the DMZ. The new radius of hyper-sphere ci

should therefore be set as

ri = d(pi, ci) − dsafe (11)
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Algorithm 1 Forming of Hyper-Spheres and the Adjusting of
the Centroids and Radii
Input:

x, the newly read instance;
Output:
C : A set of hyper-spheres whose centroids and radii are tuned properly;

DMZ : A set of points who shape the decision border approximately.
Method:
(1) ct = Null, len = −1;
(2) For Each ci in C
(3) If φ(x) falls into ci

//Find the winner of the hyper-spheres
(4) If label(x) = label(ci) and (len = −1 or dE(φ(x), ci) < len)
(5) ct = ci; //Store the present temporary nearest hyper-sphere
(6) len = dE(φ(x), ci);//Store the present temp nearest distance
(7) Else If label(x) �= label(ci) //Split the hyper-sphere
(8) pi = 1

2 (φ(xconflicting) + ci), φ(xconflicting), pi ∈ ci;
(9) Add pi to DMZ;
(10) ri = d(pi, ci) − dsafe; //Adjusting radii rj of hyper-sphere cj;
(11) Mark ci as “support hyper-sphere”;
(12) End If
(13) End If
(14)End For
(15)If ct �= Null

// Adjust the winning hyper-sphere’s centroid
(16) ci(t + 1) = ci(t) + α[φ(x) − ci(t)];
(17)Else
(18) Form a new hyper-sphere, and make φ(x) be the centroid;
(19) Let the label of the new hyper-sphere be label(x).
(20)End If

Algorithm 2 Merging of Hyper-Spheres
Input:

C : A set of hyper-spheres which are formed in stage 1;
Output:

C : The remaining hyper-spheres after merging.
Method:
(1)For Each ci in C
(2) For Each cj in C except ci
(3) cbig = maxradius(ci, cj), csmall = minradius(ci, cj),dt = d(cbig, csmall);
(4) If dt + rsmall <= rbig + θ × rsmall //θ is the merging coefficient
(5) Merge ci and cj;
(6) End If
(7) End For
(8)End For

where dsafe represents a safe distance at which a hyper-
sphere should be from the closest DMZ point.

The logics of this stage are outlined in Algorithm 1 below.
Stage 2 (Merging Hyper-Spheres): Hyper-spheres may over-

lap with one another or even be contained in others. Therefore,
after certain period of training, a merging operation should
be performed. Suppose that we have two hyper-spheres,
cA and cB, and the radii of them are not the same. Let
cbig = maxradius(cA, cB), csmall = minradius(cA, cB), dt =
d(cbig, csmall), and θ be the merging coefficient. If dt +
rsmall <= rbig + θ × rsmall, the prerequisite to merge is met.
Then let rtemp = dt +rsmall, and the new radius of the cbig will
be rnew = max(rtemp, rbig).

The details of this stage are outlined in Algorithm 2.
Stage 3 (Selecting Hyper-Spheres): Since the training pro-

cess is entirely autonomous, the number of generated hyper-
spheres could be large. Therefore, the final stage needs to
select hyper-spheres.

There are three types of hyper-spheres that are prominent,
which are described as follows.

Fig. 7. MapReduce computing model.

Algorithm 3 Selection of Hyper-Spheres
Input:

C : The set of hyper-spheres which are formed in preceding stages;
Output:

C : The remaining hyper-spheres after selection.
Method:
(1)For Each ci in C
// T is the threshold of the instances number which one hyper-sphere
must at least have.
// num(c) is a function computing the number of instances in a
hyper-sphere.
(2) If num(ci) < T
//Let d(ci, DMZ) be the distance from the centroid of ci to the nearest
data point in DMZ
(3) If ri < d(ci, DMZ)

(4) Discard ci;
(5) End If
(6) Else
(7) Mark ci as “core hyper-sphere”;
(8) End If
(9)End For

1) The first type of hyper-spheres includes large number
of instances. Because these are the fundamental hyper-
spheres that contain most data points, they are marked
as “core hyper-spheres.”

2) The second type of hyper-spheres has less instances but
locates near the border. They are marked as “support
hyper-spheres” because such hyper-spheres can be found
by measuring the distance between hyper-spheres and
the nearest DMZ points.

3) The third type of hyper-spheres has small number of
instances and is far away from the border. These hyper-
spheres can be discarded.

To achieve high classification accuracy, both core hyper-
spheres and support hyper-spheres should be selected. The
logic of the third stage is outlined in Algorithm 3.

B. Mini-Batch Learning and Distributed Computing

To make it applicable in large-scale applications, we encap-
sulate the proposed algorithms into a MapReduce framework.
We can collect the incoming instances as mini-batch set and
then train them in MapReduce tasks. The computing model of
the algorithms is illustrated in Fig. 7.

The collected mini-batch instances can be encapsulated in
key-value pairs and mapped into mapper tasks.
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Fig. 8. Convergence test on all of the datasets. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3. (d) Iris. (e) Seeds. (f) Segment. (g) Wholesale. (h) Glass.
(i) Diabetes. (j) Wine. (k) Credit-g. (l) Credit-rating. (m) Phishing websites. (n) Credit card. (o) Pendigits. (p) Shuffle. (q) Occupation. (r) HAPT. (s) Loans.
(t) URLs.

In each mapper tasks, the operations are based on instances.
It queries local cache for every instance to find out in
which hyper-spheres the instance falls, marks the winning
hyper-sphere and the conflicting ones, and sends the hyper-
spheres along with the description of the needed operations in
another form of key-value<id, hyper-sphere> pairs.

In each reducer task, the operations are based on every
hyper-sphere, which is aggregated according to the hyper-sphere
id emitted from mapper tasks. The competitive learning can
be conducted collectively with the aggregated instances. The
tuning of a radius can be performed for only once with the
closest conflicting instance, and it should find out the orphan
points and return the tuned hyper-sphere at the end.

After a turn of the MapReduce tasks, the merging and selec-
tion of the hyper-spheres should be performed. After all of
the operations, the tuned hyper-spheres should be saved to
the cache. The orphan points should be retrained in the next
turn. In the whole MapReduce process, subtasks do not coor-
dinate with each other. Thus the hyper-spheres and DMZ are
not updated in real time in a mini-batch turn, and they are
updated collectively after all reducer tasks return.

C. Predicting Labels

Just like other supervised competitive neural networks,
AdaHS must determine the winning hyper-sphere in the hid-
den layer to predict the label of a new instance. There are

two situations. In the first situation, the new instance falls
into an existing hyper-sphere and the label of the instance
is determined by the label of the hyper-sphere. In the sec-
ond situation, the new instance does not fall into an existing
hyper-sphere, and the label of the new instance is coordinated
by the k nearest hyper-spheres’ labels

y = arg max
lj

∑

ci∈Nk(x)

wjI
(
yi = lj

)
(12)

where wj = exp(−([dE(φ(x), cj)
2]/[2r2

j ])); i = 1, 2, . . . , L;
j = 1, 2, . . . , k; Nk(x) is the k nearest hyper-spheres; and I is
the indicator function. The default value of k is set to 3.

IV. EXPERIMENTS

We implemented our classifier using Java, with the help of
third-party Jars including common-math3, weka, joptimizer,
and a local caching framework. The distributed MapReduce
implementation of AdaHS was built upon Hazelcast [41],
which also provides distributed caching system. Most exper-
iments were conducted on computer of i7-4560U (4CPU,
2-GHz), 8-GB RAM, and Ubuntu OS. The distributed deploy
of AdaHS was conducted on a cluster of two and four
machines, respectively, using the same configuration.

A. Benchmark Datasets

To evaluate the AdaHS, we used 20 datasets as the bench-
marks. Among them, three were the 2-D artificial datasets
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TABLE II
DETAILS OF THE DATASETS

mentioned in Section II; “loans” and “URLs” were real
datasets that we collected from other real projects; the other
datasets were sourced from the University of California at
Irvine, Machine Learning Repository [42] and LibSVM [43].
All attributes were numeric and the details of datasets are
summarized in Table II.

B. Kernel Approximation With Nyström Method

As shown in (6), two types of elements need to be deter-
mined. The first is the sampling points and the second is the
kernel function.

For datasets with less than 500 dimensions, we select all
data points as the samples. For datasets with more than
500 fields, we use SOFM, which can be viewed as an indepen-
dent parallel process of AdaHS, to obtain 500 cluster centers
and use the centers as the representative points in (6). Previous
research showed that sampling with clustering can enable
Nyström method to have a much better approximation than
uniform sampling [36].

We used radial basis function as the base kernel function
for Nyström method

κ
(
xi, xj

) = exp
(
−γ ‖xi − xj‖2

)
. (13)

The optimal values of parameter γ were obtained by grid
search on [2−12, 2−11, . . . , 212]. By comparison, we also per-
formed grid search for kernelized SVM in the same way.
The optimal values, which make the classifiers perform best
on each dataset with regarding to accuracy, were recorded in
Table III.

It can be observed that the optimal values for SVM and our
model were not the same.

C. Training: Clustering With Classes Constraints

AdaHS uses labels of instances during the clustering phase.
Training AdaHS consists of a clustering process, a monitoring

TABLE III
OPTIMAL VALUE FOR γ IN KERNEL FUNCTION

TABLE IV
NUMBER OF HYPER-SPHERES

process that watches boundary points, and a building process
to construct DMZ. Thus, training is a process of adaptive clus-
tering, with the constraints that all instances in a hypersphere
must have the same label.

Both AdaHS and Nys-AdaHS record the number of hyper-
spheres after training. Table IV showed the number of hyper-
spheres for all datasets. It could be observed that the Nyström
method generated much less number of hyper-spheres than the
original model.

D. Convergence Tests for AdaHS

We use “distortion error” to monitor the training process
and test for convergence. The distortion error is defined as
follows [37], [38]:

error =
n∑

i=1

‖φ(xi) − ci‖2 (14)

where ci is the centroid of hyper-sphere to which xi belongs. If
AdaSH converges, it should find the globally optimal solution.
In such a situation, both number of hyper-spheres and distor-
tion error should be stable and converge to a particular value.
Otherwise, the value of distortion error oscillates and does not
converge. As long as the constraints on the same dataset are
satisfied, the smaller the distortion error, the better the qual-
ity of clustering. We performed this test on the 20 benchmark
datasets.

On datasets that could be easily clustered, such as dataset 1,
the distortion error decreases to the bottom of the curve in only
a few iterations and remains stable. On datasets that could not
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TABLE V
DETAILS OF THE ACCURACY(%) IN SITUATIONS I AND II

be easily hyper-spherically clustered, such as dataset 2, dis-
tortion error values converge to the minimum after relatively
more iterations of training. As it is shown in Fig. 4(b), the bor-
ders are relatively complex, so it took more hyper-spheres to
enclose the entire set of instances and more time to converge.
On some datasets, such as iris, segment, wholesale, credit-
rating, and HAPT, the classifier converged after several small
oscillations.

Results of the convergence tests on all 20 datasets showed
that, given enough hyper-spheres and with the constraints that
all instances in the same cluster have the same label, the com-
petitive learning was able to provide a clustering solution no
matter how complex and irregular the decision border is and
what the data distribution is.

E. Performance Evaluation

Tenfold cross-validation was used to test the accuracy of
AdaHS. To examine the details of the resulting predictions,
performance on the two types of prediction was studied
separately.

1) Two Types of Prediction: As discussed in Section III, our
algorithm may be confronted with two situations in prediction,
i.e., there is an explicit winning hyper-sphere or an instance
does not fall into any existing hyper-sphere. Experiments on
the 20 datasets showed that prediction accuracies of the two
situations varied. Accuracies of the first situation were much
higher than the second situation, as shown in Table V.

2) Accuracy and Time Cost Comparison: To evaluate the
relative performance of AdaHS, we selected several other
well-known algorithms, including naïve Bayes, LDA, SVM,
C4.5, RBFN, and other incremental learning algorithms for
comparison. Both accuracy and time cost were recorded. The
comparative results are shown in Tables VI and VII.

Indices in Tables VI and VII show that C4.5 performed
best on datasets phishing_sites and loans whose attributes were
mostly nominal. LDA and L-SVM performed well on datasets
with a globally consistent pattern, such as iris, seeds, wine, and

wholesale, but perform poorly on datasets 1–3, segment, glass,
and URLs. k-NN, k-SVM, and LWL were slow on large-scale
datasets such as loans and URLs. Kernel methods improved
the performance on most datasets, both in Nys-AdaSH and
k-SVM.

AdaHS fit quite well for specific datasets, such as
datasets 1–3, shuttle, occupancy, loans, and URLs, while main-
tained an acceptable accuracy on other datasets. As a local
model, AdaHS works well on datasets which are linearly
inseparable. In addition, because of the build-in clustering
mechanism, its accuracy is comparable to k-NN and even SVM
using kernel methods, but free from slow searching speed and
excessive memory consumption.

We observed slightly lower performance of AdaHS and k-
NN on diabetes, wine, credit-g, and credit-rating. This is due
to the “bad distance metrics” noted in [31], which is crucial
to distance-based models and implying that the features are
not selected or scaled properly. Besides, one assumption of
AdaHS is that instances in local areas can be clustered well.
If this assumption is violated, such as in occupancy and loans,
AdaHS will retrogress like k-NN. There will be too many
clusters and DMZ points in the memory, and the searching
speed will drop accordingly.

F. Discussion

1) Time Complexity and Space Complexity: It is obvious
that the time costs of Algorithms 1–3 are n × m, m2, and m,
where n is the number of data points and m is the number of
clusters. The original form of the time complexity is O(nm +
m2 + m). If the number of clusters m is constant, the total
computational cost is O(n). That means if the assumption of
“clustering” holds, AdaHS runs in linear time. Data kept in
memory are clusters and DMZ information, so the space cost
is O(m + l), where l is the data size in DMZ.

In Nys-AdaHS, the time cost of SOFM is O(nk), where
k is the cluster number of SOFM and the target dimension
of Nyström method. The time cost of SVD on A+

11 in (4) is
O(rk2), where r is the rank of A+

11 [40] and the multiplication
with the vector in (6) also takes O(nk). So the total time cost is
O(rk2 +2nk+nm+m2 +m). With the cluster center of SOFM
kept in memory, the space cost of Nys-AdaHS is O(k+m+ l).

It can be observed from Table VII that the time cost of
Nys-AdaHS is far less than that of k-SVM, especially on the
last 7 datasets. Because the computation of kernel matrix in
k-SVM takes O(n2), which makes it hardly feasible in real
applications. For example, on URLs, k-SVM took 6.085E5 s
(about seven days), and that is not realistic in practice. Nys-
AdaHs only took 894 s.

2) Significance of Nyström Methods for AdaHS: Our moti-
vation to apply kernel methods to AdaSH is not exactly the
same as SVM’s. Based on the data in Tables IV, VI, and VII,
the benefits of Nyström method for AdaHS are summarized
as follows.

a) Improving classification accuracy: On datasets 1–3,
segment, wholesale, glass, and loans, kernel methods improved
the accuracy of SVM dramatically. That is because RBF kernel
brings the local learning ability to SVM, and improves the
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TABLE VI
ACCURACY (%) COMPARISON WITH OTHER ALGORITHMS

TABLE VII
TIME COST (SECONDS) COMPARISON WITH OTHER ALGORITHMS

accuracy of SVM on datasets that are not linearly separatable.
AdaSH does not rely heavily on kernel methods like SVM
in terms of accuracy. AdaSH is a local model. Nevertheless,
if kernel method can make the dissimilar points apart and
linearly separable in the new space [16], it can make the hyper-
spheres more easily to enclose the points and classify. The
effect of this benefit can be observed on most of the dataset
in Table VI, for most accuracies were improved slightly.

b) Increasing hyper-spheres’ ability for data definition:
It can be observed from Table IV that the number of clus-
ters was reduced significantly on all datasets with Nyström
method. That means each hyper-sphere in the new space
can enclose more data points. In SVDD, this phenomenon
was stated as “kernel methods increase the hyper-sphere’s

ability for data definition” [18]. The reason is that AdaHS
is a clustering-based method and now each cluster contains
more information. It is especially useful when we analyze the
evolving trends or the similar instances contained in the same
cluster.

c) Improving the training speed: Nyström method does
increase a time cost of O(2nk+rk2). By projecting data points
to a new space of simpler distribution, the number of clusters
can be reduced significantly, and the time cost saved from
this benefit is O((m1 − m2)(n + m1 + m2 + 1)), where m1
and m2 refer to the number of clusters in AdaHS and Nys-
AdaHS, respectively. So there is a tradeoff between the two
terms. On large-scale datasets of complex data distribution
(i.e., the original number of clusters is very large, like credit
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card, occupancy, loans, and URLs), the total learning time of
Nys-AdaHS could be reduced.

V. CONCLUSION

To deal with dynamic data and changing patterns, this paper
proposed a new algorithm AdaHS, which incorporates the
adaptivity of competitive neural networks and the idea of
building a border zone. It has a strong capability for local
learning. By keeping only cluster and DMZ information in
memory, it avoids the problem of excessive memory con-
sumption and improves the searching speed dramatically. The
experiments using 20 datasets showed that AdaHS is especially
suitable for datasets whose patterns are changing, decision bor-
ders are complex, and instances with the same label can be
spherically clustered. AdaHS has great potentials in fields like
anti-fraud analysis, network intrusion detection, stock market,
and credit scoring.

AdaHS is proposed as a classifier to deal with
changing patterns, which is a subtopic in system
uncertainties [44]–[47]. System uncertainties theory has
great significance to many important applications such as
“actuator dynamics” [46], “multiagent-based systems” [47],
and “nonlinear systems” [47]. One of our future works
will take these problems into consideration and explore the
potential applications to those areas.
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