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Guest Editorial
An Overview of Biomedical Robotics and

Bio-Mechatronics Systems and Applications

I. INTRODUCTION

THE studies on bio-mechatronics systems and applica-
tions have been carried out for more than three decades,

to overcome the challenges raised from both theoretical and
experimental sides, especially those posed by the application of
mechatronics and robotics in healthcare and medical fields. The
research on biomedical robotics and bio-mechatronics covers a
diverse spectrum of rapid rising interdisciplinary areas includ-
ing bio-inspired robots for industrial, military, medical, and
rehabilitation applications. This special issue aims at showcas-
ing the most exciting and recent advances in the application of
robotics and mechatronics in various fields and brings together
a broad spectrum of topics covering various definition, devel-
opment, control, and deployment of bio-mechatronics/robot
systems, including social robots, wearable robot systems such
as exoskeleton, rehabilitation robot, tele-robot, and a numbers
of systems engineering approaches such as modeling, opti-
mization and control. This special issue is to give analysis
to the biological systems from a “bio-mechatronic” point of
view, and to investigate the engineering and scientific princi-
ples behind their remarkable performance. High-quality original
papers of innovative ideas and concepts have been included in
the special issue of biomedical robotics and bio-mechatronics
systems and application. While the design and development
of bio-inspired machines and systems with novel and high
performance in various applications have been investigated
as well. The recent development of multidisciplinary research
shall contribute to the promotion of the research on biomedical
robotics and bio-mechatronics systems and application, with
application to transportation, diagnosis, surgery, assistive tech-
nology, prosthetics, personal assistance, rehabilitation, health
care, in laboratory, hospital, and the real world.

In this issue, we bring our attention to two specific inter-
twined requirements which are necessary to achieve this
vision: one is the engineering and scientific principles underly-
ing the extraordinary performance of biomedical robotics and
bio-mechatronics; and the other is the application of the prin-
ciples to design the corresponding algorithms that purposively
operate in dynamic scenarios.

II. BIOMEDICAL ROBOTICS AND

BIO-MECHATRONICS SYSTEMS

Research activities in biomedical robotics and bio-
mechatronics systems tracks back to the 1970s and 1980s.
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With remarkable discipline crossing features, biomedical
robotics and bio-mechatronics systems nowadays become a
hot area for technological and scientific investigation. Their
methodological background originated from the biomedical
engineering and robotic sectors, while now their application
scope moves toward various engineering departments, as well
as fundamental and applied science including biology, neu-
roscience, medicine, and even toward humanities such as
sociology, ethics, and philosophy.

Acquisition of the knowledge of the working mechanism
behind the biological systems is the one of the main purposes
of the studies of biomedical robotics and bio-mechatronics
systems. As a result, analysis of the biological systems is
often performed from a “biomechatronic” point of view. The
knowledge is utilized to develop innovative technologies and
methodologies that could lead to design and building of bio-
inspired machines and systems by mimicking insects, animals,
humans, and various living beings. The combination of robotic
technology with in-depth biomedical sciences is also promising
for future generation of biomedical devices and applications.

A biomedical robotics and bio-mechatronics systems based
approach is of great interest, and its three main goals include:
1) enhancing the understanding of the underpinning mecha-
nisms of sensing and actuating in various creatures includ-
ing our humans; 2) building valid and useful mechatronic
and robotic systems of high performance; and 3) devel-
oping effective interactive biological systems, e.g., therapy
technology.

The interest of research toward this direction is evidently
increasing in the strong growth of activities in: 1) humanoid
robotics; 2) bio-inspired and bio-mimetic robotics; 3) human–
robot interaction and cooperation; and 4) bio-mechatronic
devices for endoscopy, surgery, assistance, and rehabilitation.
The large number of implementations of mechatronics and
robotics in various fields, as well as the increasing interest of
biological inspiring design in the progresses of artificial systems,
raise new challenges on both theories and technologies. It is very
important to deeply reconsidered the technologies and models
which used in the design and fabrication of biomechatronic
devices and bio-inspired robots for further progress.

These issues that impact on biomedical robotics and bio-
mechatronics systems are collected, organized in locomotion
principles (in terms of sensing, dynamics, control, and actu-
ation) of biological systems in underwater, land, and air; the
physical design of their bodies; and the organization of their
nervous and sensory systems.
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III. CHALLENGES

According to the above discussion, we see that there are
clearly a great deal of significant challenges that must be faced
in the studies of biomedical robotics and bio-mechatronics
systems and its applications.

A. Bio-Inspired Locomotion and Mechanisms

We could improve locomotion mechanism based on a thor-
ough understanding of the behavior characteristics of various
creatures, e.g., leg coordination mechanisms in the walk-
ing stick insect is used to control a hexapod robot walking
straightly in [1]. In [2], the so called whole skin locomo-
tion inspired by the movement of single celled organisms was
developed. It works with an elongated toroid to generate the
overall motion of the cytoplasmic streaming, and thus turns
itself inside out in a single continuous motion. And with more
capable and representative element and material models, it can
perform even more fluently. Zhou and Low [3] developed a
robotic manta ray as a biologically inspired underwater vehicle
for potential marine applications. In [4], a biomimetic fish-like
micro robot using novel actuator was developed for a micro
robot swimming structure in water medium with a buoyancy
adjuster and a propulsion tail fin. In [5], an autonomous robotic
fish was developed for 3-D locomotion, by employment of a
situated-behavior-based decentralized control structure on each
robotic fish according to its visual data.

Considerable effort has been devoted to improve the phys-
ical capabilities of legged mobile robots. For examples, elec-
trically driven humanoid (e.g., Honda’s ASIMO [6], Toyota
Humanoid [7], and HRP series [8]) with high control gains
have demonstrated impressive motion planning and execu-
tion. Highly elaborated quadrupedal robots like MUTANT [9],
Boston Dynamics’ Big Dog [10], MIT Cheetah Robot [11],
and the research platform HyQ [12] are hydraulically actuated
similar to some of the most advanced humanoid robots.

The exoskeleton robots are developed to particularly aug-
ment the our human natural muscular force for carrying
heavy loads. Compared with rehabilitation exoskeletons which
recover the neuro-musculoskeletal function of stroke or post-
surgical patients, assistive exoskeletons can assist the elderly
or individuals with mobility disorders. In recent literature, a
number of exoskeleton robotic legs have been developed and
investigated mainly focusing on two different applications. We
categorize these studies into two types: 1) enhancement of
walking over a long distance or increasing load capability to
carry heavy load repetitively [13], [14] and 2) rehabilitation
aids for gait disorder persons or aged people [15], [18], [19].
Elderly people or gait disorder patients may lose muscu-
lar strength in their legs and become bedridden. The lower
exoskeleton attached to their legs is hoped to enhance their
muscular strength and to restore their walking abilities as
normal people [20]. For example, in [16], the upper limb
exoskeleton robot was developed and adaptive backstepping
control using fuzzy approximation was designed to assist fore-
arm movement that would enable a human forearm to track any
continuous desired trajectory. In [17], considering the same

upper limb exoskeleton robot, fuzzy approximation and dis-
turbance observers was designed for compensating various
dynamic errors and uncertainties.

On the other side, robotic bionic arms and prosthesis
hands/legs become very useful for people with severe physi-
cal disabilities, as they are able to support disabled achieving
greater independence and thereby increase their quality of
life [21]–[23]. A compact bionic handling arm was developed
in [24], and it could reproduce biological behaviors of trunks,
tentacles, or snakes. In [25], a developed multifingered dexter-
ous hand with flexible tactile skin was presented, which has
five fingers with 6-degrees of freedom (DOFs), and each fin-
ger is equipped with a small harmonic drive gear and a fine
high-power mini actuator, and each fingertip is covered with
the tactile array sensors for determination of the force between
the finger and the grasped object. In [27], EMG signals were
decoded with a pattern recognition algorithm for a prosthe-
sis leg and combined with data from sensors to interpret the
patient’s intended movements.

Generally, the development of bio-inspired applications
should follow the development of biological mechanical
design, so that we can imitate the mechanisms more naturally.
On the other hand, we should obtain deeper acquaintance of
the behavior structure and characteristics of the imitated biol-
ogy, and perform more thorough analysis on the dynamics of
locomotion system. In addition, to improve the performance of
robotic locomotion, it is necessary to modify the existing the
models of the bio-inspired locomotion and apply optimization
techniques on them. Moreover, the new technology in practi-
cal applications will also generate new challenges, such as the
limited carrying ability and stability.

B. Bio-Inspired Sensing/Actuation

Human arm muscles are of highly hierarchical fibrillar struc-
tures with parallel and distributed actuation architecture, and
thus have advanced properties such as high power density,
high strain, high stresses, high efficiency, stiffness tuning capa-
bility, high strain rates, multifunctionality, high durability,
self-sensing capability, and self-repairing capability [26].

The purpose of investigating bio-inspired sensing/actuation
is to discover the underlying principles of the biological
sensing and actuating systems, to understand the architec-
tural design of human arm muscles, to develop graphical and
analytic models of tendons, muscles as well as the joints,
and to recognize the factors that affect strength recovery in
humans following surgical tendon transfer and the cellular
events associated with adaptation of muscle to manipulation.

Development of soft muscle-like actuators with similar
properties has been a long-term goal for a generation of
researchers. An actuator containing a pneumatic force gen-
erator was introduced in [28]. The force generator is on one
side in parallel with a nonlinear damping element and on the
other side in series with a nonlinear elastic “tendon.” An effec-
tive fabrication method for cylindrical ionic polymer metal
composite actuators was developed in [29] with application to
2-DOF bending, and a better performance could be obtained
by optimization of the model. Different from rigid actuators,
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the serial elastic actuator (SEA) contains an elastic element
series connect with the mechanical power source. There are
several unique properties of SEAs using elastic element com-
pared with rigid actuators, e.g., tolerance to impact loads, low
mechanical output impedance, passive mechanical energy stor-
age, and increased peak power output [30], [31]. The SEA
concept was extended by variable stiffness actuators with an
additional DOF, so it is capable to adjusting the stiffness of
passive elastic mechanically [32]–[36]. Other SEA implemen-
tations have experimented to maximize energy storage with
nonlinear spring stretching [37].

Muscle contraction causes motion of the corresponding
limb, while the muscle activity can be detected by EMG
device, from which the signals can be used to decode the
manipulation intention of the user. EMG signals can be uti-
lized in cases where an exoskeleton is need to fulfill daily
tasks. Therefore, the EMG signals might be chosen as control
interfaces for the robotic exoskeleton, moreover, the record-
ing method does not increase any bulky mechanisms on the
user [44], [45].

Our human muscular skeleton systems constantly receive
information from brain to govern the body motion. To detect
the neural control commands, brain signal acquisition system
based on electroencephalogram (EEG) systems was developed.
The function of the established brain machine interface (BMI)
is usually to detect a user’s motion intention, which can be then
sent to the controller. To augment the information gathered
from EEG-based systems, additional sensors may be utilized to
provide supplementary information, that can be fused together
to enable a better interpretation of the user’s intent. This is
especially important in times when the EEG-based system is
unable to provide sufficient information in a timely manner.
Recent studies on BMI-based control have achieved consider-
able progress, e.g., primates and humans are able to control
prosthetic devices via a BMI [38], [39], [40], [41], where
electroencephalographic (EEG) signals measured by noninva-
sive surface electrodes play an important role. The BMI has
been conventionally categorized as evoked and spontaneous. In
comparison to spontaneous BMIs that are far from application
to perform complex tasks, evoked BMIs reflecting the auto-
matic response to certain external stimuli [39], [40] are more
ready for complex tasks, especially for motion of multiple
DOFs.

To advance bio-inspired sensing and actuating technologies,
it is necessary to further develop new materials and biotech-
nology. In addition, some modification of the existing model
and application some optimization techniques on the control-
ling process is expected. Moreover, the implement of proposed
design is accompanied by unknown challenges.

C. Bio-Inspired Control Design

To develop new kinds of bio-inspired control systems, it
is critical to first understand the mechanisms by which the
efficiency, motion performance, and safety are obtained by
biological systems. Our neuromuscular control system enables
us to manipulate tinny objects skillfully, and to perform fast
movements. It also enables us to move using eight times less

energy when we walk than when we take the train, and to
move in the most efficient way using a bicycle. It is also worth
to mention that our humans or primates perform adaptive
motions naturally without considering their kinematic con-
figurations against unexpected disturbances or environment
changes. However, it remains a challenge to understand the
way in which the motion is controlled and learned by the
neuromotor system to exploit these underlying physical prop-
erties. Neuromotor experimental studies have shown that the
impedance of the human joints can be voluntarily adapted
during motion. If the delicate impedance adaptation skills
of human operator can be incorporated into robot control,
it would greatly benefit the physical human–robot interac-
tion [46]. It is well known that the limb endpoint visco-elastic
properties can be regulated by the relevant muscles and the
pose configuration in different ways. In [47], the regulation can
be achieved by co-contracting muscles acting on the limb, and
it can be acquired as well through the adaptation in the sensi-
tivity of reflex feedback [48], or the selective control of limb
configuration [49]. In [50] and [51], a position perturbation
was implemented to the hand, and the related forces and dis-
placement were acquired and recorded by the specified device.
Then, the impedance parameters were estimated by undergo-
ing a post-processing stage. In [52], the estimation of dynamic
impedance profiles using perturbation based methods in mul-
tijoint arm movements has been widely studied. However,
perturbation-based approaches are hard to implement in the
real-time manipulation, for the intrusion of the external distur-
bance. Consequently, some suitable human–machine interface
has been investigated for real-time applications [53]–[55].

IV. GUIDE TO THIS SPECIAL ISSUE

This special issue includes the papers at various levels
and in various forms, which try to find the solutions for
most challenges mentioned in the previous section, and we
believe they all contribute toward a better understanding of
bio-inspired mechatronic and robotic systems in the three
aspects mentioned above.

In developing new bio-inspired locomotion and mecha-
nisms, a wearable, portable, low-cost, and easy-to-use upper
extremity exoskeleton robot design for clinical and in-home
therapies of patients is presented in [56]. The robot has
5-DOFs with safe pneumatic muscles and the subjects also
expressed enthusiasm regarding the system. The clinical and
in-home trials of chronic stroke subjects has proved its validity.
In [57], considering the dynamics modeling and identifica-
tion of iLeg, the traditional methods are insufficient. For
solving this, in the work of, a method for recognition of
patients’motion intention is proposed. First, the coupling fac-
tors among the joints are described in the friction model by
using the empirical formulation. Then, an IRG strategy is
designed to efficiently search the valid initial solutions of the
optimization problem for the exciting trajectories. Finally, the
feasibility of the proposed methods is validated by several
experiments.

In designing bio-inspired sensing/actuation, He et al. [58]
proposed a wireless BCI-BMI system for an upper limb
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robotic arm. The EEG signals are processed via several
wavelet denoising methods, common spatial pattern algorithm,
and linear discriminant analysis algorithm. The extracted com-
mands are sent to BCI subsystems to control the robot
via a Bluetooth. The effectiveness of the methods have
been tested by comparative simulations and experiments.
Bhattacharyya et al. [59] investigated a BMI paradigm for con-
trol of a multijoint redundant robot system, which determines
the direction of end-point movement of a 3-DOF robot arm
using motor imagery EEG signal with co-adaptive decoder,
and a synergetic motor learning algorithm was proposed to
handle a redundancy in multi-DOF joints toward energy opti-
mality through tacit learning. Zhao et al. [60] proposed a
framework combining noninvasive EEG-based BCI with a
noninvasive functional electrical stimulation, which can poten-
tially enable the upper limbs to achieve more effective motor
rehabilitation.

In the development of bio-inspired control design, a bio-
logical control system for 3-D locomotion of a humanoid
biped robot is presented in [61], which involve four types of
neurons: 1) motor neurons; 2) sensor neurons; 3) command
neurons; and 4) gain neurons. A multiple-objective evolution-
ary algorithm was used effectively to construct the locomotion
pattern by manipulating the weight of synapse between the
motor neurons. In [62], a method for gait generation for
biped robots omnidirectional walking on inclined ground was
developed. The authors first built models for walking on an
inclined ground. In the models, the angle of walking direction
and the angle of elevation of the inclined ground were used
for describing the motion of walking on an inclined ground
uniformly. Their relationship between the sagittal and coro-
nal planes were analyzed. Then, the authors used a DSP to
generate gait. Then the motion trajectory of the robot center
of mass is generated. In [63], a comprehensive vision-based
crowd detection and GIS localization algorithm for a coop-
erative team of one unmanned aerial vehicle and a number
of unmanned ground vehicles (UGVs) is present. The UGVs
are used to convert the image locations of the detected tar-
gets into their GIS coordinates. And a testbed consists of real
UVs and an agent-based simulation model is developed to con-
duct experiments. The authors had altered the key parameters
of the system and studied their impacts on the system. The
experimental results has prove the effectiveness of the algo-
rithms. In [64], path planning problem for multi-AUV systems
was investigated. In the planning method, a measurable model
composed of multiple basis functions is defined to represent
the scalar field. A selective basis function Kalman filter is
developed to achieve model estimation through the information
collected by multiple AUVs. In addition,the multidimensional
rapidly exploring random trees star algorithm is proposed for
the multi-AUV system. Finally, the method is demonstrated by
simulation results and experiments in robotic fishes. In [65],
object classification and grasp planning were investigated. On
object classification, the authors use bag-of-system and deep
dynamical system to complete the tactile perception and SHOT
descriptor to model the shape of objects. Combining the tac-
tile and vision perception, the authors proposed a fast planning
method for grasping manipulation. Chan et al. [66] designed

a feedforward neural network to build an NN-based human-
pose estimation system. A mapping is first proposed that
converts a Bayesian network to a feedforward NN, and then
the system is built based on the proposed mapping that con-
sists of two steps: 1) structure identification and 2) parameter
learning. In [67], a kind of nonlinear biomechatronics system
which bases on adaptive ensemble fifth-degree iterated cuba-
ture information filter was proposed. The four classic nonlinear
fusion methods includes measurements fusion, weighted mea-
surements fusion, sequential filtering fusion, and distributed
filtering fusion. Their estimation performance are compared
in this paper. The result shows that the proposed information
filter can achieve higher level estimation accuracy and stability
than the previous cubature Kalman filters.
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