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Abstract—Ramp-up is a significant bottleneck for the intro-
duction of new or adapted manufacturing systems. The effort
and time required to ramp-up a system is largely dependent on
the effectiveness of the human decision making process to select
the most promising sequence of actions to improve the system to
the required level of performance. Although existing work has
identified significant factors influencing the effectiveness of ramp-
up, little has been done to support the decision making during
the process. This paper approaches ramp-up as a sequential
adjustment and tuning process that aims to get a manufacturing
system to a desirable performance in the fastest possible time.
Production stations and machines are the key resources in a
manufacturing system. They are often functionally decoupled
and can be treated in the first instance as independent ramp-
up problems. Hence, this paper focuses on developing a Markov
decision process (MDP) model to formalize ramp-up of produc-
tion stations and enable their formal analysis. The aim is to
capture the cause-and-effect relationships between an operator’s
adaptation or adjustment of a station and the station’s response to
improve the effectiveness of the process. Reinforcement learning
has been identified as a promising approach to learn from ramp-
up experience and discover more successful decision-making
policies. Batch learning in particular can perform well with little
data. This paper investigates the application of a Q-batch learning
algorithm combined with an MDP model of the ramp-up process.
The approach has been applied to a highly automated production
station where several ramp-up processes are carried out. The
convergence of the Q-learning algorithm has been analyzed
along with the variation of its parameters. Finally, the learned
policy has been applied and compared against previous ramp-up
cases.

Index Terms—Decision-making, learning systems, manufactur-
ing automation, Markov processes.

I. Introduction

TECHNOLOGY has been progressing at a very fast pace
in recent years, which has brought great pressure for

enterprises to incorporate it as soon as possible into new
products. This has led to shorter product lifecycles and has
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provided significant challenges for their manufacturing in a
timely manner. Within those lines ramp-up is constantly being
highlighted by industry as one of the production phases with
large potential for further improvement [1], [2]. This has led to
the significant attention from the research community which
provided interesting advances for the reduction of the ramp-up
time [3], [4]

Terwiesch and Bohn [2] have defined ramp-up as the period
between the end of product development and full capacity
production. In order to get a system in its full capacity, human
operators spend a lot of time tuning and debugging the pro-
cesses. During ramp-up, a manufacturing system is adjusted
and changed until it becomes sufficiently stable (disturbances
reduced to minimum) and its production output reaches the
desired level [5]. Ramp-up of modern manufacturing systems
has turned into a very complex process, which commonly
leads to long delays and an increased time-to-market. The
human involvement highly affects the required time and their
knowhow, and ability to make the correct decisions under
uncertainty can make the required time vary significantly.
Additionally, the human involvement in the decision making
process and the highly uncertain environment, make the pro-
cess both stochastic and unpredictable.

The knowledge is currently owned by the personnel in-
volved in the ramp-up phase, which often makes it difficult to
share and retain within an organization. Additionally, market
pressures to quickly deliver products and reduce cost restricts
the available time for experimentation. This hinders the com-
plete understanding of the individual ramp-up behavior of a
system. This paper focuses on capturing and analyzing the
technical decision making process of operators during the
ramp-up of automatic assembly workstations. The aim is to
develop an approach that can monitor ramp-up in terms of
the adjustment action taken and resulting process changes
to build up a sufficient understanding of the process to
later support operators with their decisions. Increased use of
sensors in automation systems combined with more powerful
embedded control systems make it plausible to investigate the
application of machine learning approaches to support the
ramp-up process and enable a more transferable knowledge
retention. The challenge for machine learning during ramp-
up is the limited similarity between different manufacturing
systems. This is the critical challenge for finding effective
ramp-up policies. The specific characteristics of each system
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Fig. 1. Level of experience against pragmatic information during ramp-up [1].

will generate unique disturbances, which make the acquired
knowledge case specific and not always possible to reuse.

Manufacturing systems are generally composed of stations
(subsystems) or machines, which are ramped-up independently
from each other. In addition, their ramp-up is sequential and
iterative. These characteristics allow the ramp-up process to be
formalized as a Markov decision process (MDP) where oper-
ator actions cause observable state transitions, which affect
the ramp-up status of a station. Capturing the dependencies
between actions and reactions allow machine learning methods
to be used to find good policies for the ramp-up of observed
stations.

Reinforcement learning (RL) is identified as a promising
approach that performs well for the specific characteristics
of the decision making process during ramp-up. This paper
reports an MDP model for a RL approach to reduce ramp-up
time. A literature review is carried out in the next section,
which supports the problem definition in Section III. The
RL approach for ramp-up is presented in Section IV, followed
by the experimental description and the results in Section V.
The paper is concluded along with proposed future work in
Section VI.

II. Ramp-up Problem

Ramp-up is a phase that can be potentially improved to
reduce the time to market for new products. A significant
amount of work relates the level of knowledge during ramp-up
to the time the process requires, which affects a companies’
revenues [1], [4], [6]. The significance of knowledge and the
problem of knowledge loss is also put forward as a bottleneck
in contemporary manufacturing systems [1], [2].

A. Role of Knowledge and Learning in Ramp-Up

The process of learning can generate knowledge, which can
later on support ramp-up. The role of learning, knowledge
acquisition, and knowledge sharing within an enterprise during
ramp-up has been studied and identified as the main cause for
prolonged ramp-up times in several works [1], [2], [4], [6]–[8].
Terwiesch and Xu [4] emphasized on the role of process
understanding and suggested the postponement of process
changes, since they lead to disruptions and systematic learning

cannot be achieved. The study is based on a copy-exactly
(CE) ramp-up approach [9], which is recommended when the
process understanding level is not high and the lifecycle is
short with a quick growth. The need to carry out systematic
experiments during ramp-up has also been highlighted in [2]
and [10]. Terwiesch and Bohn [2] emphasized the need for
learning during ramp-up and support the idea of reducing the
output in early production stages regardless of the increased
demand, and focused on the learning process. They stated that
it is nonetheless still the moment to further reduce output to
run engineering trials and work on yield and speed improve-
ment [2]. Haller et al. [10] indicated the need for knowledge
improvement while the yield is low. The way to achieve
that is through designed experiments and the accumulated
experience through yield increase. In a different approach,
Fjallstrom et al [1]. conducted a study on the role of informa-
tion during ramp-up. They classified the types of information
into domain, problem, and problem solving. The sources of
information are defined as other people, documentation, visits,
and experience. The aim of the source classification is to find
their effect on handling the critical events during the process.
One of the interesting outcomes is the use of information by
experienced and less experienced personnel. The former were
found to prefer domain knowledge information, opposite to
the latter, which preferred problem information. The authors
concluded by presenting a model showing the analogy between
the pragmatic information regarding the ramp-up problem and
the level of experience of the personnel, shown in Fig. 1.

The role of the personnel’s knowledge is characterized as
highly valuable across the literature [1]. Along with the critical
role of experienced technicians as a source of information,
show a need for knowledge and experience transfer between
the personnel involved in the ramp-up process.

B. Learning During Ramp-Up
The need for knowledge and its correlation to the ramp-up

progress is widely accepted. However, only few papers
study or propose ways of learning, which would lead to
knowledge regarding the process. Instead, they focus on the
correlation of the two. It is frequently stated that ramp-up is
a good opportunity for learning or that learning is a process
complementary to ramp-up [2].
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Fig. 2. Causes of learning and improvement [2].

Terwiesch and Bohn [2] in their work focused on the effect
of learning for process improvement during production ramp-
up and present different learning approaches. The authors
proposed a model that establishes the cost for experiment
design and learning highlighting its importance. Additionally,
they presented two of the main drawbacks of learning by ex-
perimentation, namely, the capacity consumption and the effect
of the deviation caused on the perception of optimal control.
Fig. 2 shows the flow of causality for learning during ramp-up.

An article, which explores the effect of learning during
ramp-up in a growing market demand environment with un-
steady production rates, is presented in [11]. It claims that
if the learning rate cannot be improved, a blind additional
assignment of worker to support ramp-up will show a direct
correlation between learning rate and result. It is important
to highlight that one of the proposed additions to current
models is a factor for forgetting the learned knowledge and the
use of different workers. This stresses the lack of knowledge
maintenance and transferability across ramp-up cases and
workers, respectively. Mannar and Ceglarek [7] pointed out
that generating a model in advance of the actual process
is difficult due to the lack of data. Therefore, the authors
proposed a methodology that learns a model based on training
data. The methodology uses the rough sets technique to
achieve self-learning and uses that to detect new faults during
the ramp-up adjustments. The outcome is an if then set of
rules, predicting hidden patterns of failure.

The literature reveals the significant role of factors like in-
formation, experience, learning, and knowledge during ramp-
up. These factors have been included in ramp-up models,
which aim to measure their effect and impact [2], [4], [12]. It
is also a common view that knowledge is not static information
but comes from process change and experimentation [6]. Vits
et al. [13] established that the investment in process changes is
unavoidable, otherwise performance improvement would never
occur.

C. Learning Through Process Change

The effects of process and equipment change are a signif-
icant part of manufacturing process models. Ramp-up is by

definition a change process, which is related to such models.
Winkler et al. [14] provide a quantifiable relation for change
by establishing cost and knowledge level reduction as a critical
factor. Other approaches capture the level of learning through
performance indicators and its effect is modeled in the overall
product cost [10], [12]. Especially for the ramp-up phase
where the knowledge level is very low, the learning rate
has been highly evaluated and shows significant performance
improvement. The process improvement tends to become
synonymous with the effectiveness of the learning process.

Three ramp-up models based on process change have gained
a lot of attention in the literature, proposed in [4], [6], and [13].
All three are developed to support decision making within a
process change environment, based on optimization criteria.
In the first model, the investment in learning is justified by in-
troducing a cost for learning and process change during ramp-
up. The model’s output is the financial outcome in a ramp-up
process by balancing four factors, the product’s revenue, the
costs of the process change, the knowledge creation rate, and
learning [4]. Both [6] and [13] proposed a profit-based model,
considering a balance between process change and learning.
In overall, the literature shows the importance of increasing
knowledge and how such efforts affect the decision making
process. All of the models in the literature, although they high-
light the significance of knowledge, appear not to address the
question of how to formalize or transfer it. Machine learning
(ML) techniques can provide a great tool in this direction [15].

D. Learning Approaches for Ramp-Up

In manufacturing, a lot of ML and data mining applications
have been reported in the past decades in several review papers
[16]–[20]. All of them advocate that ML and data mining
techniques are required for knowledge gathering. Pham and
Afify [18] for instance concluded that ML techniques will
help automating knowledge gathering, which is essential for
reducing the time of manufacturing operations.

ML methods and semantic models have been used in manu-
facturing to formalize knowledge [17], [21]. The literature re-
ports on ML applications in manufacturing, which are mainly
focusing on controlling and optimizing specific processes
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Fig. 3. Learning during ramp-up, an overview.

rather than a whole manufacturing phase [17]. Ramp-up needs
to be approached as a phase independent of specific processes
and enables machine learning that is not process specific.
This can enable the generation of knowledge that can be used
repeatedly across different ramp-up cases. Additionally, ramp-
up is a process, which incorporates characteristics, such as
uncertainty of information and lack of data. These character-
istics provide a significant challenge for ML applications.

RL is a machine learning approach, which considers a
sequential environment response and emulates the process of
human learning [22]. Ramp-up requires practical characteris-
tics that can take advantage of RL properties, such as episodic
learning and efficient data utilization [22]. Additionally, it
is enabled through MDP models that can support learning
from humans [23]. Although the concept of RL is not widely
applied in manufacturing, it is still not entirely new. RL
techniques have been used in problems, such as scheduling
[24], [25], production goal regulation [26], and the concept
of biological manufacturing systems (BMS) [27]. Although,
these approaches are not directly applicable to the ramp-up
problem, they provide insight on how to model manufacturing
problems for ML. RL algorithms, such as batch learning (BL),
have been demonstrated to provide good results in limited
data scenarios [28]. This fact indicates that RL approaches
are very promising for ramp-up applications. Kalyanakrishnan
and Stone [28] presented BL algorithms which performed
better than others in complex domains with limited amount
of data. Algorithms like experience replay achieve maximum
data utilization and convergence. They can support learning
with limited data and learn quickly be replaying the acquired
data [29]

Only a few works have focused on promoting learning
during production ramp-up. Strictly classified ML application
have not been reported until recently [5], [30]. In [31], the
overall assembly lines are semantically mapped to define
attributes and characteristics during ramp-up. In that approach,
the ontology of the ramp-up process is defined, though without
including the correlations between the main concepts, namely,
the product, the process, and the equipment. Significant work
has been reported in the same direction by the collabora-
tive project EU FRAME [32]. In [32], the requirement of

learning during ramp-up has been highlighted. A combination
of semantics and ML algorithms is proposed and a nearest
neighbor’s-based algorithm is developed with promising re-
sults. However, the required amount of data is a drawback of
the algorithm. RL has been applied for ramp-up in [5] where
authors reported results on a model free Monte Carlo algorithm
applied for ramp-up time reduction under a Copy-Exactly
casestudy. Similar approach has been followed in [30] where
Q-learning algorithm shows time reduction with fast algorithm
convergence. In this paper, the framework proposed in [30] is
further explored. The MDP model for RL is formalized and
extensive algorithmic analysis is carried out. The model is also
tested against different types of algorithms.

III. Learning Process During Ramp-up

Ramp-up can be defined as a decision making process
where the decision maker observes the system behavior and
apply corrective actions to reach the desired target behavior.
Human decision makers are very well suited for this task as
they are very good at making decisions based on incomplete
information and continuously learn from experience. There
are, however, a number of challenges with human driven ramp-
up of systems. Humans tend to be overconfident when apply-
ing changes, which can lead to bad results [5]. Additionally,
knowledge transferring and sharing between individuals is a
time consuming process with no guarantee of results. The gen-
eralization of knowledge in terms of similar equipment is also
quite challenging, especially when the manufacturing system
is composed of several different processes. The problem lies in
the abstraction of not only the equipment but also the processes
the equipment performs.

The use of learning algorithms is a way of overcoming such
issues by supporting the human decision process. In order to
provide this support, it is crucial to be able to observe the
process, extract and capture experience in a structured way,
and link this to a formal model of the ramp-up process and
identify the most effective learning methods. To understand the
process, it is important to be able to capture the adjustment and
tuning actions of the operator and their effect on the system.
Figs. 3 and 4 present an overview of the learning cycle and the
different ramp-up cases, which are defined in more detail in
[30]. The acquired data from monitoring the process, namely,
sensor data or human observations, will serve as the basis
for the analysis of the ramp-up state. In practice, an operator
makes changes (actions) on the system and expects a reaction,
which indicates the system’s status. This needs to be stored
and processed to analyze and learn the system’s behavior. The
way ramp-up is approached can support different ways of data
processing and learning algorithms.

Current practices for system ramp-up can be summarized
as two main strategies. These are the single time ramp-up of
one-of-a-kind systems and the repetitive ramp-up processes
of similar systems. In the first case, ramp-up happens once
with generally little to no significant prior knowledge of the
system behavior (Fig. 4, Case 1). This means that learning
would have to occur online (during the actual ramp-up process)
with limited data and heavy restrictions on the exploration
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Fig. 4. MDP model for different ramp-up cases.

of the system behavior. In the second case, ramp-up of the
system has been achieved before, thus the aim is to replicate
the good practices from a previous ramp-up process (Fig. 4,
Case 2). This means that existing data can be feed to the
learning process in batches.

A formal model to capture ramp-up experience is required
to enable the learning of the most effective sequence of actions
to achieve the required system performance. An MDP model,
which correlates the state of a system with an adjustment
action and the resulting change is proposed to formalize the
ramp-up process. This model can be used as the basis for
different learning approaches, which apply model-based (in-
direct) and model free (direct) algorithms to generate system
transitions and state values, respectively. There are multiple
learning approaches that could be applied in the proposed
learning framework. Nevertheless RL has been identified as
one of the most promising due to its ability to solve MDPs
and the feedback based learning.

IV. RL Approach

RL is a learning method based on a feedback (re-
ward) coming from the environment. The idea is that the
learner (controller) interacts with the system by applying
changes (actions) while their effect is monitored through the
reaction of the environment. Based on this, a policy is gen-
erated which tries to maximize the received reward. The
described sequence of actions during ramp-up from a RL
perspective is summarized in Fig. 5, where the decision

making process is presented as a model identification adaptive
control (MIAC).

In practice, learning would take place as a complementary
process to ramp-up, while providing support to its decision
making process. In the first loop, in Fig. 5, the ramp-up process
is under the operator’s control without any support. The output
of the system (performance) is fed back to the controller,
which considers the overall aim and acts accordingly. The pro-
cess goes on until the system reaches in the desirable behavior.
In the second loop in Fig. 5, the RL process monitors the
decision making process and collects online data. Additionally,
data batches can be fed in the system identification (see Fig. 5).
These can be used to learn a model and the model’s state
values. Based on all the information (from the system and
batch data), a policy is generated (adjustment mechanism) that
targets reward maximization. The policy can then be used to
make recommendations to the operator who chooses the next
action. The recommendation is based on the current state of the
system and a forecast mechanism, which predicts the expected
result of an action. The quality of the policy depends on the
amount and quality of the experience data. In cases where no
information and no previous experience exist, a policy cannot
be suggested.

The sequential structure followed in RL matches the ramp-
up process and can support learning based on multicriteria,
which is also the approach followed by operators. An operator
usually considers several factors before a decision is taken
such as input/output signals, unexpected observations and
behavior of the system, product quality results, stability of
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Fig. 5. Reinforcement learning during ramp-up.

the process, etc. One of the advantages of RL is that to
export a policy, an explicit model is not necessarily required
since knowledge can be based on instant response. This is a
significant characteristic that helps to cope with the limited
amount of data during ramp-up. The MDP model is formally
defined in the next sections followed by the proposed learning
approach.

A. MDP Model

In order to define a formal model of the ramp-up pro-
cess that can be used to analyze and learn from previous
experiences, it is important to consider all the factors, which
are being considered by the human decision makers, their
chosen action and the effect of the action on the system. The
effect an action has on the system behavior is subject to the
complex interdependencies between its constituent equipment
components, their functional roles, and their individual inac-
curacies. This often makes the result of an action stochastic
and difficult to predict. Generally, ramp-up can be considered
to be a sequential process driven by environment response
with a limited amount of data. MDP modeling is a powerful
tool to formalize stochastic processes and combined with
reinforcement learning has the potential to deal with the
aforementioned ramp-up characteristics [33].

Ramp-up can be said to be a Markov process, since in
practice the information used to reach a decision about the
next action, usually only regard the current state of the system.
This is defined as the Markov property (1), and is a notable
assumption for the modeling of the ramp-up process. Even
if a process within ramp-up does not strictly incorporate the
Markov property, a model can be nevertheless designed as such
by choosing the right state variables. MDP further guarantees
convergence to an optimal solution for a range of algorithms.
An MDP for ramp-up consists of the ramp-up process states
S, a list of actions A, a reward R and the process horizon T

P
{

Xn = jn|Xn−1 = jn−1, Xn−2 = jn−2, . . ., X0 = j0
}

= P
{

Xn = jn|Xn−1 = jn−1
}

(1)

where {Xn, n = 0, 1, 2. . .} is a sequence of random variables
and jk ∈ S is a state.

Fig. 6. Ramp-up break down.

B. Ramp-up Process State

The state variables are those that describe the system’s
condition at every time epoch. The state variables are chosen
with the aim to support the learning process, while including
all the essential information of the process. An exhaustive
state description would generate a large state space, which
would require large amount of data for exploration. In fact,
during ramp-up a large state space would probably never be
explored and its policies would be case specific. Therefore,
it is proposed that the state parameters are chosen to be
similar to those a human operator would use to define the
system’s condition. These are descriptive variables that can
provide information in a more compact form. Following the
analysis of ramp-up in [34], a state st =

{
pt

1, pt
2 · · · , pt

m|P}
in time epoch t ∈ T is defined as a set of state vari-
ables pm ∈ P. A framework has been proposed in [34]
to define performance during ramp-up, which can serve as
the bases for the state definition. Ramp-up performance is
broken down to three main phases, functionality, quality,
and optimization (see Fig. 6), which can provide the state
parameters.

A state during ramp-up is defined as the combination of
functionality, quality, and performance optimization parame-
ters. Based on this definition a state si is formalized in (2) as
the union of the parameter sets of the three types of parameters
under this state

si = Fi ∪ Qi ∪ Ti. (2)

The parameter sets of functionality, quality, and
optimization are further broken down into system
parameters. The functionality set is defined as the
union F = {D ∪ Ob ∪ Se} of disturbance parameters
D =

{
d1, d2 · · · dj

}
, observations Ob =

{
ob1, ob2 · · · obj

}
and emergency signals Se =

{
se1 , se2 · · · sej

}
. The quality

parameter set is formalized as Q =
{
q1, q2 · · · qj

}
. Finally,

the performance optimization set To =
{
Tp ∪ Td ∪ Toc

}
is the

union of phase parameters Tp =
{
ph1, ph2 · · · phj

}
operation

duration, Td =
{
du1, du2 · · · duj

}
, and overall cycle time

Tc =
{
t1, t2 · · · tj

}
. The state parameters and their values are

further defined in Table I.
The state parameters are monitored during a ramp-up pro-

cess and are used to calculate a ramp-up state. The parameters
are further used to generate the system’s response through a
reward formula presented later in this paper.
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C. Actions

All the applied actions a ∈ A, |A| <∞ across the state
space of the MDP define the policy or decision rules. The ac-
tions during ramp-up cannot be generalized since the available
actions are case and domain specific. However, they should
comply with the following rules.

1) An action must incorporate one physical action at a
time and have a transparent definition. More than one
physical action can be considered as actions as long as
they are defined as one.

2) The way an action is applied is not a part of the action
definition but it is a matter of the operator who applies
the action. This provides the means to capture the differ-
ences between the operators in policies. The generated
policy will then be independent of how operators apply
actions.

3) There has to be at least one action affecting every state
parameter.

D. Policy

The policy is the outcome of the decision making process
to support. Its definition can differ according to the type of the
process behavior that needs to be captured (deterministic or
probabilistic). Assuming that the actions are Markovian and
not history dependent, the policy is defined as deterministic if
a decision at time t is ds (st) ∈ As and, hence, the policy can be
said to be Markovian deterministic �MD. Alternatively, if the
decision at time t is probabilistic qdt (st ) (.) ∈ ℘

(
Ast

)
, then, the

policy is said Markovian random �MR, where qdt (st ) (.) is the
probability distribution on a set of decisions dt . The definition
of the policy affects the accumulation of returns as well as the
transition probabilities of the decision process. In a determin-
istic case, the return is the result of a decision ds (st) under
a state st denoted as rt (s, dt (s)) and a transition probability
pt (j|s, dt (s)). In a probabilistic design, the return considers all
the possible state transitions based on the transition probability
pt (j|s, dt (s)) =

∑
a∈As

pt (j|s, a) qdt (s) (a) and is denoted as
rt (s, dt (s)) =

∑
a∈As

rt (s, a) qdt (s) (a). Although the nature of
the problem is rather probabilistic, a deterministic policy
should cope better with limited data. The policy is further
defined as stationary, since ramp-up is a process independent
of time and only dependent on the system’s state.

E. Learning Episodes, Horizon, and Reward

The horizon of the decision is the number of returns
considered from future states to take a decision. Learning
algorithms can be treated as either finite or infinite horizon
problem. A Finite horizon process is the one that looks ahead
only for a certain number of steps and aims for an optimal
action according to this horizon. An infinite process considers
infinite future returns normally until the end of the process to
define a reward.

Another distinction is in regard to the length of the learning
problem. It distinguishes between episodic and continuous
problems. A problem is episodic when there is a clear end
state and continuous when there is no end state but a constant
seeking and updating of the policy. In the second case, the

rewards received are infinite and a discounting factor (0≤γ≤1)
needs to be applied for each received reward to assure a
bounded return. In the episodic case, learning often happens
between episodes and the return is based on the accumulated
rewards received throughout an episode. The discounting
factor, although it may affect the decision maker’s choice, it
does not have any difference on the theoretical results of the
episodic case [33]. The reward can even be considered for only
one step ahead. A horizon longer than just the instant effect
reveals the longterm effect of an action. In this case, delayed
returns (rt) are considered, as well as the effect of combined
actions. The generic structure of a reward at time t is defined
as

Rt =
T∑

k=0

γkrt+k+1. (3)

Ramp-up can be seen as a continuous or episodic problem.
Referring to Fig. 3 and the two learning cases during ramp-
up, it is clear that in the first case, ramp-up needs to be treated
as a continuous learning task. In the second case, sequential
ramp-up phases are imported as batch data, which will improve
the learning. The model proposed in this paper is able to cope
in principle with both cases.

The reward used for ramp-up is based on a performance
measure proposed in [34], which is aligned with the state def-
inition. Three measures have been defined and can be weight
differently based on their significance. Equations (4)–(7)
present the model of performance during ramp-up

ff (j) = −
n∑

j=1

kjDj (4)

fq (j) = −
n∑

j=1

λjQj (5)

fq (j) = −
n∑

j=1

λjQj (6)

RPM =
1

st

w · fRU (7)

where w =
[
wf , wq, wo

]
is the weight vector and fRU =[

ff , fq, fo
]

is the performance metrics vector. Parameters
kj,λj, βj are weights and Dj, Qj, Toj

are as defined in Table I.
Although time reduction is the driving aspect of ramp-up, the
system’s performance can provide a more detailed insight in
the ramp-up process. Using a performance measure provides a
feedback of the effect a specific action has on the system and
whether it resulted in a positive trend to reach the desired final
system behavior. In the proposed performance model, the step
number can also be taken, into consideration if si becomes the
step number.

F. Batch Learning Approach

Batch reinforcement learning (BRL) is a RL approach,
which does not allow the learner to interact directly with the
environment [22]. In BRL, there is no option for the learner to
explore and the learning process is consequently independent
of the applied policy. BRL algorithms aim to discover the
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TABLE I

Ramp-Up State Variables

best policy within the set of observed policies rather than
seeking the optimal policy through interaction. Hence, two
questions arise regarding the learned policy; its convergence
and its quality. If the available data does not include a good
or optimal policy, then it is not possible to generate one
either.

The problem is how to find the best policy within the pro-
vided data. Batch reinforcement learning algorithms present
practical advantages for the repetitive ramp-up case since
they can guarantee a policy convergence. The fact that poli-
cies are applied by operators with some type of knowledge
enhances the exploration value. In addition, the experience
replay algorithm increases efficiency for small data batches
while guaranteeing convergence under certain criteria [22].
Additionally, the use of a temporal difference (TD) based
algorithm provides stable behavior

V ′ (s) = V (s) + a
[
r + γV

(
s′) − V (s)

]
(8)

V ′ (s) is the updated value of a state s based on the previous
state value V (s), and the temporal difference of the previous
value of state s and the following state s′, added to the
immediate return r. Parameters a and γ are the learning rate
and the discount factor, respectively.

Fig. 7. SMC HAS production station.

G. Batch Q-Learning Algorithm

For discrete small state spaces, traditional RL algorithms,
such as TD(0), Monte Carlo (MC), and Q-learning can be
aligned to match the batch learning framework. The main
difference between Q-learning and MC is that the update rule
of the former is based on bootstrapping while the latter does
not. Bootstrapping happens when the update of a state-value
is based on the value difference compared to the previous
state value. Hence, the result reflects the trend of a policy
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Fig. 8. Experimental process flow chart.

in addition to the final result, whereas, the nonbootstrapping
methods only consider state-action values independently from
each other. MC does not update on step-by-step bases but
only considers the averages reward at the end of an episode.
Bootstrapping is expected to provide a better data use. The
Q-learning algorithms is based on the TD update rule but
instead of estimating the state value V ′ (s), it estimates the state
action value Q′ (s, a) based on the temporal difference of the
current state action value and the maximum of the following
state:

Q′ (s, a) = Q (s, a) + a

[
r + γ max

a′
Q

(
s′, a′) − Q (s, a)

]
. (9)

For the case of ramp-up, RPM becomes the return and
RPM (s, a) is the Q value of a state s under an action a. More
advanced algorithms have also been proposed; however, they
mainly aim to operate on large continuous spaces using func-
tion approximation methods [22]. In this paper, a Q-learning
algorithm is applied within the learning framework, which
uses the proposed MDP model. The algorithm estimates all
the Q values of the state space based on a number of data sets
fed offline. The data sets are in the form of episodes and for
every episode the Q values are updated. In the end of every
episode, a policy is extracted and updated by finding those
actions that generated the biggest Q values. The same process

TABLE II

State Parameters and Values

Fig. 9. Reward variation during ramp-up episodes.

goes until the algorithm has converged and the policy does not
update any more. This is called experience reuse.

V. Experimental Setup and Results

In this section, the proposed model is used to learn the
best policy for a fully automatic production station. The
performance of the Q-learning algorithm will be assessed and
the resulting policy will be applied to test its impact on the
actual ramp-up process. The equipment used is a production
station, which is part of a ten station SMC highly automated
production system (SMC HAS-200). The production station
(see Fig. 7) is comprised of three independent processes, two
pick and place processes and one filling process. The station
operates through pneumatic actuators and is controlled by a
single PLC. The purpose of the station is to dispense and fill
a container with a predefined amount of material and place it
on a conveyor to transport it to the next station.

A simplified model was defined for the aforementioned
process to experimentally validate the proposed MDP and
analyze the Q-leaning algorithm in a batch mode. Seven func-
tionality (three operation durations, one cycle time and four
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Fig. 10. Learning iterations against the variation of the learning step and the discount factor.

disturbances), one quality, and four optimization parameters
were used for the definition of the MDP (see Table II). The
MDP is defined by the resulting 128 states.

In order to emulate a repetitive process, five ramp-up
processes were carried out independently from each other. All
experiments were conducted under the same environmental
conditions. The only allowed variation during the experimental
set-ups was the choice of actions for carrying out the ramp-up
process. The station was ramp-up from the same suboptimal
starting conditions by five different operations. None of the
operators had any prior knowledge of the station and had no
contact with the other people who had already participated in
the experiments. It is important to point out that the operators
were not expert system integrators but had a background in
manufacturing. Moreover, there was no time restriction in the
decision making process to allow each operator to carefully
consider the best action for the current condition of the station.
The initial state of the station was set to similar conditions
in all cases and a number of disturbances were induced to
emulate the ramp-up process. Three different disturbances
(observations listed in Table II) were identified during separate
experimentation and used during the ramp-up emulation. For
every ramp-up session, the system was initialized to start
from a randomly selected disturbance and the rest naturally
occur during the ramp-up process as a response of the station
being ramped up. The initial state of the system was randomly
generated to reflect the uncertainty of the system behavior after
its initial build or after a change. The more disturbances occur
during ramp-up, the wider is the exploration of the system and
therefore, better policies can be learned. The operators were
able to apply the following seven actions:

1) increase station pressure;
2) reduce station pressure;
3) barcode reader alignment;
4) increase weight acceptance limits;
5) reduce weight acceptance limits;
6) reset station;
7) none.

The collected data was processed offline in a batch mode,
which reflects the second loop of the ramp-up process in

Fig. 5. The first loop was also implemented by processing the
data offline and applying the exported policy to a new ramp-
up case. More specifically, Fig. 8 shows a flow chart of the
learning cycle. The ramp-up process is first monitored and data
is collected as experience sets, which relate the current state
of the system (2) with an action and the state after the change.
The experience sets are collected in a database to compute the
reward (7) and for further analysis of the overall ramp-up pro-
cess. Once a complete batch of ramp-up experiences has been
collected, the batch Q-learning algorithm is applied (9) until
convergence has been achieved (Q-value change ∼ 0). Then,
a policy is extracted than can be used to recommend actions
for known states when a new ramp-up is being carried out.

A. Results

The conducted five ramp-up sessions presented very differ-
ent behavior by accumulating different rewards and following
different paths to achieve the system ramp-up. These paths are
presented in Fig. 9.

The operators were allowed to explore freely instead of
using a predefined exploration policy. Therefore, Fig. 9 also
reflects their learning curve in terms of the accumulated
reward. It shows the differences on their decisions and reveals
human learning under ramp-up. Those datasets are perceived
as very valuable since they provide a naturally followed
exploration. This is believed to compensate for the requirement
of RL algorithms for constant exploration in order to converge.
The datasets from the five ramp-up episodes are used to run the
Q-learning algorithm for several variations. In the next part, an
algorithmic analysis is carried out to demonstrate the validity
of the learning framework in the context of the batch learning
approach. Furthermore, the performance of the algorithm for
the characteristics of ramp-up will be analyzed.

B. Q-Learning Algorithmic Analysis
In this part, the results of a Q-batch learning algorithm

are presented applied on the proposed model. Fig. 10 shows
the variation of iterations for the learning step a and the
discount factor γ after running Q-learning in a batch mode.
The experience set is being reused until the algorithm is
considered to have converged. The algorithm’s convergence
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Fig. 11. Q-value change for different learning step and discount factor.

Fig. 12. Policy comparison and variation through iterations.

is checked through the absolute value of the relative Q-value
change. The algorithm is run for fairly small a and γ values up
to the extremes of a = 1 and γ = 0.9. As it is shown in Fig. 10,
while the learning rate increases the number of iterations also
increase for all the different discount factor values. This trend
only changes for the values of a = 0.7 and 0.8. Although larger
a values seems to be a much better option, a large learning rate
value can cause instabilities or might not even converge to an
optimum policy. For the boundary value of a = 1, the number
of iterations explodes and the output becomes unstable since
the algorithms never converges and keeps oscillating around
the same values.

Furthermore, Fig. 11 shows the variation of the Q-value
matrix throughout the iterations and the different settings for
the extreme cases of γ = 0.1 and γ = 0.9. For all the
intermediate values, the trend was the same. The algorithm
generates a peak in the beginning when the changes to the
Q-Value are big and then gradually slows down. Interesting
is the fact that although the required number of iterations for
convergence based on Fig. 10 is very high, Fig. 11 shows that
only small changes happen after a certain point. The algorithm
seems to generate a stable output relatively fast, in comparison
to the overall amount of required iterations.

Regarding the effect of the different γ values on the output
quality, it can be said that for a non-zero γ the update rule takes
one or more of the future rewards into consideration while for
γ = 0 it only takes the previous Q-value into consideration.
A zero gamma value brings results a lot faster since the
prediction only considers current state returns and becomes
short sighted. Such an approach though could be argued to
be very similar to a MC approach (nonbootstrapping method),
which is expected to give different results without getting the
advantaged of the experience reuse. A high γ value and a
fairly small a should allow the algorithm converge to a good
policy when less data are available and a large a when more
data exist.

C. Policy Comparison

Previous results show that Q-Value stabilizes after several
iterations. However, the convergence of the policy is achieved
a lot faster where the policies of the two extreme values
(γ = 0.1 and γ = 0.9) are presented (see Fig. 12). Although the
Q-Value stops updating after more than 600 and 2100 times
for the two presented cases, the policy seems to stabilize
after 57 and 105 iterations, respectively. Fig. 12 includes three
diagrams which from top to bottom show the policy change
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Fig. 13. Policy comparison.

for every iteration step, the policy change for every experience
replay iteration and finally, the change of the Q-Value matrix.

It has to be mentioned that every experience set is composed
of 85 steps, which generates one experience iteration. For the
policy comparison, a hash function (MD5) is used to generate a
unique identity for every policy matrix. The diagrams concern
the two extreme values γ = 0.1 and γ = 0.9, while a = 0.05.
In the first two diagrams, the policy stops updating after more
than 5100 and 6000 step iterations and after 57 and 105 ex-
perience iterations, for the two presented cases, respectively.
Although the policy oscillates a lot on the step by step iteration
it remains the same for every full experience iteration. That
shows how the policy varies during an experience set until
convergence. For different γ values, the algorithm exports a
different policy. This is due to the increased emphasis on the
next state-action value which becomes dominant for higher
γ values to the exported policy and, hence, the different
exported policies cannot be said to be wrong since the target
has changed. It is a matter of the problem interpretation
to define the horizon of prediction and the discount factor
of future returns. In principle, since ramp-up is an episodic
problem, the longer the prediction horizon, the better the
policy target.

In order to further realize the effect of α and γ to the
policy, Fig. 13 presents the hash ID of the exported policies
for the variation of γ from 0.5 to 0.9 and the variation of α

from 0.05 to 1. For all γ< 0.5, the policy follows the exact
same trend as forγ =0.5. There are two conclusions that can
be drawn from Fig. 13. For all γ≤ 0.5, the exported policy
remains the same and stable. For higher values, the policy
changes until γ becomes big enough that the following state-
return becomes dominant. The variation of the output policy
for the values between 0.5 and 0.9 shows the slow convergence
to the domination of that return. Furthermore, different policies
appear to be exported for larger α values, which is due to the
instabilities these can cause. Large a values should be only
being chosen when the luxury of time and computation is
not an option. Furthermore, the fact the algorithm changes
target for γ≥ 0.6 also justifies the drop on the number of
iterations, taken for convergence, as shown in Fig. 10. As
a derived rule, it can be said that large a creates faster
convergence while it can cause instabilities overall and on

Fig. 14. Exported policy evaluation.

small number of iterations, which can directly impact the
results when RL is applied in an online bases. The γ value
should be chosen to be either higher that 0.6 or a lot smaller
depending if the following state value is considered or not,
respectively.

D. Policy Evaluation

Finally, to evaluate the policy is applied in a new ramp-up
case for the same station. The extracted policy for the values of
γ = 0.1 and a = 0.01 was given to an operator and it was fully
followed. Fig. 14 shows the accumulated reward of the policy
against previous ramp-up cases. The aim of the application
is not to find the best policy for the ramp-up of the station
but find the best join policy between all recorded ramp-up
experiences. A couple of interesting remarks are that in 8 out
of 10 states, the proposed action was followed by the operator.
In two of the cases, the states were unexplored. Finally, the
policy shows overall time reduction by 4 to 8 steps, comparing
to all of the initial ramp-up processes.

VI. Conclusion

In this paper, the first formal MDP model and RL approach
have been reported for production ramp-up time reduction.
A formal MDP model was presented for the capture and
analysis of the ramp-up process. The MDP states, action
characteristics, and feedback reward were defined based on
the technical characteristics of a production station. An offline
batch reinforcement learning algorithm has been developed,
which utilizes the MDP to find the most optimal ramp-up
policy from a small number of previous ramp-up experience
cases.

The proposed approach has been experimentally evaluated
using a production station to emulate ramp-up and applying
a Q-learning algorithm. The focus was placed on Q-learning
since bootstrapping algorithms were generally expected to
perform better for the ramp-up case. Detailed results have
been presented regarding the quality of the algorithm and its
results. The Q-learning algorithm showed very good behavior
when applied in batch mode. The approach demonstrated the
ability of finding a stable policy under certain characteristics.
The challenge to achieve good convergence with lack of data
has been addressed by replaying the experience. Convergence
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was achieved after a short number of iterations highlighting
the general suitability of the proposed reinforcement learning-
based decision support approach. Further work is required to
assess the efficiency of reinforcement learning and the effect
of experience replay on ramp-up data. It would be interesting
to explore how the policy changes throughout the experience
replay and the operating characteristics curve of the algorithm.

To further improve convergence, future approaches should
investigate initializing the algorithm’s policy or Q-values.
This could improve the effectiveness of the offline learning
approach and also enable the development of online learning
during ramp-up. Further work needs to be carried out to
formally identify the advantages of a RL/Q-learning approach
over to other methods.

Furthermore, an interesting observation was made when
the horizon of the reward prediction was changed. Gradu-
ally increasing the horizon of consideration in the algorithm
incorporates the idea of eligibility traces algorithms (Q (λ)-
learning) with a horizon up to the end state. Such algorithms
are expected to have good performance in online learning
during a ramp-up episode. However, their specific performance
will require further investigation. The development of an
effective online learning approach for ramp-up is the crucial
next step since it is often a luxury to have several consecutive
ramp-up episodes. Hence, this approach should be explored
further.

The experiments in this paper have been carried out on an
automatic assembly station. The complexity of this ramp-up
scenario is typical for the automation of individual assembly
steps, which often have a high level of functional decou-
pling within larger assembly systems. It is expected that the
proposed approach can be applied sequentially or in parallel
to all the workstations in a system. In cases of functional
dependencies among workstations, these will need additional
analysis to be incorporated into the approach. Hence, further
research should be carried out to investigate codependent
parallel ramp-up processes for more complex multistation
assembly systems.

The proposed method requires some initial data to export a
good policy. It is better suited generally for either repetitive
ramp-up of similar or the same stations or for the reramp-up
of the same stations after a disturbance or change. Another di-
rection to overcome such cases for future developments would
be to investigate model-based approaches (indirect learning). It
would be important to understand the amount of data required
to learn a sufficiently complete model. In such a case, targeted
exploration and predefined experimentation could reduce the
required data and allow learning better policies. An indirect
learning approach could provide a model that is easier to
transfer and make it easier to incorporate existing expert
knowledge during the initialization of the model, which could
further reduce the number of required iterations and increase
the quality of the policy.
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