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Abstract—A gap still exists between complex discrete-event
systems (DESs) and the effectiveness of the state-of-the-art
diagnosis techniques, where faults are defined at component
levels and diagnoses incorporate the occurrences of component
faults. All these approaches to diagnosis are context-free, in as
much diagnosis is anchored to components, irrespective of the
context in which they are embedded. By contrast, since complex
DESs are naturally organized in hierarchies of contexts, different
diagnosis rules are to be defined for different contexts. Diagnosis
rules are specified based on associations between context-sensitive
faults and regular expressions, called semantic patterns. Since
the alphabets of such regular expressions are stratified, so that
the semantic patterns of a context are defined based on the
interface symbols of its subcontexts only, separation of concerns is
achieved, and the expressive power of diagnosis is enhanced. This
new approach to diagnosis is bound to seemingly contradictory
but nonetheless possible scenarios: a DES can be normal despite
the faulty behavior of a number of its components; also, it can
be faulty despite the normal behavior of all its components.

Index Terms—Artificial intelligence, decision support systems,
discrete-event systems (DESs), fault diagnosis, intelligent systems.

I. Introduction

IN THE LAST decades, automated diagnosis has become
increasingly important for the safety of society. It suffices

to consider the India major blackout in July 2012, the largest
power outage in history, occurring as two separate yet con-
tiguous events, which affected over 620 million people (half
of India’s population), across 22 states, with an estimated
32 gigawatts of generating capacity being taken offline. The
investigation committee concluded that among other factors
responsible for the blackout was the loss of a 400-V transmis-
sion line caused by misbehavior of the protection system [1].

Automated diagnosis of discrete-event systems (DESs) [2]
may play an important role in the prevention of harmful events
like a large power outage. A DES is a discrete-state, event-
driven system whose state evolution depends on the occurrence
of discrete events over time.1 A wide variety of techniques for
diagnosis of DESs have been proposed in the last years. How-
ever, after the seminal work of Sampath et al. [3], the basic
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1DESs are a special class of dynamic systems. In a dynamic system, a state

is a collection of real numbers, and the state evolution is determined by a
fixed rule that describes what future states follow from the current state.

notions of fault and diagnosis have been remaining conceptu-
ally unchanged until recent works [4]–[6]. Researchers have
mainly focused on relevant yet different aspects, including in-
crementality [7], [8], distribution/decentralization [9]–[16], un-
certainty/incompleteness [17]–[22], planning/SAT approaches
[23], [24], and time [25]–[27]. In [7], a technique for modular
diagnosis, amenable to parallel implementation, is presented.
The main goal of the technique is the reconstruction of the
behavior of the active system starting from a set of observable
events. The diagnostic process involves three steps: 1) interpre-
tation; 2) merging; and 3) diagnosis generation. Interpretation
generates a representation of the behavior of a part of the
active system based on observable events. Merging combines
the result of several interpretations into a new, broader inter-
pretation. The eventual diagnostic information is generated on
the basis of fault events possibly incorporated within the recon-
structed behavior. In [8], an incremental diagnosis technique
is proposed, assuming that observations are partially ordered
and represented by finite automata. The technique consists in
slicing the observation automaton and in computing diagnosis
slices to be eventually combined in the global diagnosis. In [9],
the diagnosis technique proposed in [7] is further extended by
a preliminary step called reconstruction planning, which draws
a hierarchical decomposition of the behavior reconstruction
problem. The modular approach is formally defined and ap-
plied to the power transmission network domain. In [10], a
general method for diagnosis of large DESs is proposed. The
method results from the combination of two diagnosis tech-
niques: diagnosers and simulation. Diagnosers are generated
based on local behaviors to compute local diagnoses. The diag-
nosis of the system is determined based on the coordination of
such local diagnoses. In [11], a coordinated decentralized ar-
chitecture is presented, which consists of local sites communi-
cating with a coordinator that is responsible for diagnosing the
failures occurring in the system. The notion of diagnosability,
originally introduced in [3] for centralized systems, is extended
for such an architecture. To realize the architecture, three pro-
tocols are specified and analyzed in terms of diagnostic proper-
ties. The decentralized diagnosis approach proposed in [10] is
further extended in [12] by means of incrementality to provide
online diagnosis and assist supervision operators. In [13],
the effect of the communication delays on the performance
of a coordinated decentralized architecture is studied, as a
refinement of [11]. Specifically, the assumption that messages
are received by the coordinator in the order in which they are
sent globally is relaxed. In [14], the decentralized approach to
diagnosis is extended to reconfigurable DESs. After modeling
the decentralized DES in terms of system topology and
component behavior, the notion of reconfiguration is formally
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defined: if reconfiguration fulfills a property called safety
then the decentralized diagnosis approach can be extended
to reconfigurable DESs. In [15], the problem of diagnosing
large DESs is addressed. Specifically, a formal framework for
online decentralized diagnosis (and relevant implementation)
is presented, which does not require the computation of the
global model of the DES. The framework is applied to the
monitoring of a real telecommunication network. In [16], a
technique for decentralized diagnosis of DESs is presented,
where multiple diagnosers exist, each possessing its own set
of sensors, without involving any communication among diag-
nosers or to any coordinators. The notion of codiagnosability
is introduced, that requires a failure to be detected by one of
the diagnosers within a bounded delay. Efficient algorithms
are provided for testing codiagnosability, for computing the
bound in delay of diagnosis, for offline synthesis of individual
diagnosers, and for online diagnosis. In [17], the notion of an
uncertain temporal observation of a DES is introduced, which
is independent of any specific diagnosis technique. Such an
observation is represented by an acyclic graph, where nodes
are marked by uncertain observable events while arcs define a
partial temporal ordering between nodes. In [18], a method for
similarity-based diagnosis of DESs is proposed: the solution
of a diagnosis problem is supported by the solution of another
problem, provided the two problems are somewhat similar.
In [19], a technique for model-based diagnosis of DESs with
an incomplete model is presented, that is based on the P-
synchronization product of automata, a generalization of the
classical synchronization product. In [20], the notion of mono-
tonic monitoring of DESs is introduced, which is supported
by specific constraints on the fragmentation of the uncertain
temporal observation, leading to the notion of stratification,
specifically, stratified observations support monotonic monitor-
ing of active systems. In [21], the diagnosis of a DES with an
incomplete model is performed with the support of a diagnoser
constructed using a learning technique, by forming hypotheses
that explain the discrepancies between the actual output and
the output derived from the model. In [22], a technique for
reasoning on partially ordered observable events based on two
temporal windows is presented. In [23], an exploration of the
use of planning technology for the automated generation of
diagnoses is studied. In [24], a conflict-based approach to
diagnosis of DESs is proposed, which does not require the
reconstruction of the system behavior, where test of consis-
tency is implemented by a SAT solver. In [25], diagnosis in the
context of time automata is studied. An algorithm for checking
diagnosability and a technique for constructing a diagnoser for
a diagnosable timed automaton are provided. In [26], a method
for fault detection and diagnosis of real-time DESs is pre-
sented, including diagnosability checking. In [27], a novel ap-
proach to diagnosis of complex systems modeled by communi-
cating timed automata is presented, where each component is
modeled by a timed automaton integrating different operating
modes, while the communication between components is car-
ried out by a control module. This modeling supports formal
verification of the complex-system model and its diagnoser.

However, despite this flourishing of techniques, a fault
is invariably associated with the occurrence of an event

(or transition) at component level within the evolution of the
system. Thus, diagnosing a DES amounts to uncovering the
set of component faults occurring during the system evolution.
This paper claims that anchoring faults at component levels is
too restrictive an approach when complex DESs are involved.
In fact, it is our belief that monitoring and diagnosing complex
systems, such as a nuclear plant or a large power network,
requires some sort of abstraction and separation of concerns.

The remainder of the paper is organized as follows.
Section II introduces the notion of context-sensitivity in di-
agnosis of DESs. Section III recalls the class of asynchronous
DESs called active systems. Section IV defines the notion
of diagnosis problem. Section V defines the notion of his-
tory projection. Section VI defines in declarative terms what
the solution of a diagnosis-problem is. Section VII presents
a technique for offline preprocessing diagnosis rules into
deterministic automata called semantic spaces. Section VIII
presents the diagnosis technique performed online. Section IX
formally proves the soundness and completeness of the di-
agnosis technique. Section X provides some discussion and
comparison about the state-of-the-art relevant approaches.
Section XI concludes the paper.

II. Context-Sensitivity

The topology of a complex DES is organized in a hierarchy,
where the root corresponds to the whole system, leaves to
components, and intermediate nodes to subsystems. Since in a
DES faults are traditionally defined at component levels, there
is no possibility to provide a hierarchy of diagnoses adhering
to the hierarchy of the system. Trivially, a sub-DES is faulty if
and only if it includes (at least) one faulty component. We call
this commonly-used approach context-free diagnosis. While
context-free diagnosis may be adequate for simple systems,
it is doomed to be unsatisfactory when applied to complex
DESs. The hierarchical structure of a complex DES suggests
to organize the diagnosis rules within a hierarchy that parallels
the hierarchical structure of the DES: each subsystem has its
proper set of diagnosis rules, which may or may not depend on
the rules of inner subsystems. We call this alternative approach
context-sensitive diagnosis.

The idea of context-sensitivity in diagnosis was inspired by
the problem of (formal) language specification. The classical
hierarchy proposed by Chomsky [28] incorporates four types
of generative grammars of growing expressiveness. Within the
hierarchy, Type-2 and Type-1 grammars are means to specify
the syntax of context-free and context-sensitive languages,
respectively. For practical reasons, Type-2 grammars (in BNF
notation) have become the standard for the specification of the
syntax of programming languages. However, since, generally
speaking, the syntax rules of programming languages depend
on the context, production rules in BNF notation are unable to
force all the syntax constraints of the language.2 In compilers,
the check of these (context-sensitive) constraints is generally
left to semantic analysis.

2For example, the list of actual parameters in a function call shall match,
in number and types, the list of formal parameters.
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Fig. 1. Protected power transmission line (left). Context hierarchy (right).

Generally, the idea of context-sensitivity can be profitably
injected into diagnosis of DESs in three ways.

1) The transition of a component is not considered either
normal or faulty on its own: it depends on the context
in which such a transition is triggered.

2) The fault of a component is not necessarily ascribed
to one transition: it can be the result of a pattern of
transitions.

3) Normal or faulty behavior of a subsystem is not neces-
sarily determined by the normal or faulty behavior of its
components (or inner subsystems).

Context-sensitive diagnosis is bound to seemingly contra-
dictory but nonetheless possible results, called paradoxes.

A. Positive Paradox

The positive paradox states that a (sub)system may be nor-
mal despite the faulty behavior of a number of its components
(or inner subsystems). Example 1 aims to clarify this assertion.

Example 1: Shown in the left side of Fig. 1 is a simplified
representation of a power transmission line L. The line is
protected on both sides by a redundant protection hardware,
called W and W ′, respectively, involving one protection device
and two breakers. For instance, W incorporates protection
device p, and breakers l and r. When a lightning strikes the
line, a short circuit may occur on the latter. The protection
system is designed to open the breakers to isolate the line,
which eventually causes the extinction of the short. To this
end, when detecting a short circuit, a protection device is
expected to trigger both breakers to open. If this causes the
extinction of the short circuit, the protection device commands
both breakers to close to reconnect the line to the power
network. A protection device is faulty either when, upon the
detection of the short circuit it commands breakers to close
(instead of opening) or, after the extinction of the short circuit,
it commands breakers to open (instead of closing). A breaker is
faulty when, after receiving the command from the protection
device to change state, it remains in its state. A minimal
(nonredundant) protection hardware would incorporate one
single protection device and one single breaker on each side
of the line. Thus, when one of the two devices is faulty,
the line cannot be isolated. By contrast, in the redundant
protection hardware in Fig. 1, it suffices the normal behavior
of the protection device and of one breaker (for each side) to
guarantee the isolation of the line. Consider the following two
scenarios.

1) In W , l is faulty, while p and r are normal. In W ′, l′

is faulty, while p′ and r′ are normal. The diagnosis is
δ1 = {l, l′}. Owing to redundancy, the behavior of the

protected line is in fact normal, as the line is isolated,
despite the faulty behavior of the two breakers.

2) In W , l is faulty, while p and r are normal. In W ′, p′

is faulty, while l′ and r′ are normal. The diagnosis is
δ2 = {l, p′}. However, owing to p′, W ′ fails to open,
causing the failure of the whole protected line.

Albeit the two diagnoses δ1 and δ2 differ in one component
only (l′ versus p′), the behavior of the protected line in the
first scenario is normal, while it is faulty in the second one.
The point is, the given diagnoses do not explicitly account for
such a distinction. More generally, we can consider several
subsystems of the protected line within a hierarchy, and require
for each of them a diagnosis. Such a hierarchy is displayed in
the right side of Fig. 1, where L denotes the whole protected
line. According to such a hierarchy, the diagnosis of the first
scenario is {l, l′}, while in the second scenario the diagnosis
is {l, p′,W ′,L}. Comparing the two diagnoses, we conclude
that in the first scenario two components are faulty but their
misbehavior is not propagated to higher subsystems. By con-
trast, in the second scenario, besides two faulty components
(l and p′), W ′ and L are faulty too.

B. Negative Paradox

The negative paradox states that a (sub)system can be faulty
despite the normal behavior of all its components (or inner
subsystems). This is true also in systems other than DESs.

1) A software system can be faulty even if all its software
components are bug-free.

2) Injustice may occur even if all laws are respected.
3) A human society can be bound to dictatorship notwith-

standing all its democratic institutions.3

Example 2 instantiates the negative paradox to the referenced
application-domain of power transmission networks.

Example 2: With reference to Fig. 1, the isolation of the
line causes the extinction of the short circuit because the short
is no longer fed by any current. This is why the protection
system is designed to reconnect the line to the network once
the short is extinguished (by closing breakers). Suppose now
that, instead of a lightning, what causes the short is a tree
fallen on the line. In this case, the reconnection of the line to
the network presumably activates the short circuit again, as the
tree is likely to be still on the line, thereby causing the line to
be isolated anew (and, this time, permanently). Clearly, even
assuming that the behavior of protection devices and breakers
was normal, the behavior of the line is actually faulty.

3An anecdote about the Austrian logician, mathematician, and philosopher
Kurt Friedrich Gödel is told in [29]. In December 1947, Gödel went to his
American citizenship hearing in New Jersey. As his witnesses, Gödel brought
his two closest friends, Oskar Morgenstern and Albert Einstein. Gödel, in
his usual manner, had read extensively in preparing for the hearing. In the
course of his studies, Gödel decided that he had discovered a flaw in the U.S.
Constitution, a contradiction which would allow the U.S. to be turned into a
dictatorship. Gödel seemed to feel a need to make this known. However, his
friends Morgenstern and Einstein warned Gödel that it would be a disaster to
confront his citizenship examiner with visions of a Constitutional flaw leading
to an American dictatorship. The judge happened to remark how fortunate it
was that the U.S. was not a dictatorship, which Gödel took as a cue to explain
his discovery. This, however, did not compromise is citizenship hearing, which
he eventually obtained in April 1948.



LAMPERTI AND ZHAO: DIAGNOSIS OF ACTIVE SYSTEMS BY SEMANTIC PATTERNS 1031

Fig. 2. Behavioral model of protection device (left). Breaker (right).

Coping with negative paradoxes is essential when the be-
havior of a complex DES cannot be foreseen at design-time
(which is almost always the case for complex DESs). To face
this uncertainty, a set of constraints can be associated with
the nodes of the DES hierarchy, aimed at intercepting relevant
faulty behavior. These constraints parallel the requirements of
software systems, which need to be validated independently
of the correct behavior of software components.

III. Active Systems

Active systems [30] are a subclass of DESs, where behavior
composition is asynchronous (rather than synchronous as in [3]
and most other approaches). An active system is a network of
components that are connected to one another through links.
Each component is modeled as a communicating automaton
[31], that reacts to events either coming from the external
world or from neighboring components through links, and is
endowed with input and output terminals. When an event e is
ready at the input terminal of a component C that is in state
S, and there exists a transition T leaving state S upon event e,
transition T is said to be triggerable. As such, a transition is
triggered by an input event and generates a (possibly empty)
set of output events. The latters are thus made available as
input events at the input terminals of neighboring components,
while the input (triggering) event is consumed. However, a
transition can be triggered only if all links, toward which
output events are generated, are empty (no event in links). The
actual triggering of a transition may generate other events at
some output terminals of the same component. The mode in
which a system can behave is constrained by its topology and
the component models. The whole (even unbounded) set of
evolutions of an active system is confined to a finite automaton
representing the global model of the system. In principle, the
global model of a system can be generated automatically based
on the model of components and their connections. However,
in real large-scale systems, this becomes prohibitive because of
the huge number of states. Therefore, a strong assumption on
diagnosis of active systems is the unavailability of the global
model. Thus, the global model is intended for formal reasons
only. The global model of a system �, rooted at the initial state
�0, is called the behavior space of �, written Bsp(�, �0). A
state in Bsp(�, �0) is final when all links are empty (all events
have been consumed). A history in Bsp(�, �0) is the sequence
of component transitions marking the arcs of a path rooted in
�0 and ending at a final state. The component relevant to a
transition T of a history is denoted CT .

Example 3: With reference to Example 1, shown in Fig. 2
are the behavioral models of protection device and breaker.

TABLE I

Details for Transitions of Protection Device p

TABLE II

Details for Transitions of Breaker b

The automaton of the protection device includes two states,
idle and awaken, and four transitions, p1 · · · p4. Details for
transitions of the protection device are given in Table I.

Accordingly, p1 moves the protection device from idle to
awaken upon the detection of the short circuit (lowering of
voltage), thereby causing the output of op event (to open the
relevant breakers), while p2 moves the protection device from
awaken to idle upon the detection of the extinction of the
short circuit (voltage becomes normal), thereby causing the
output of cl event (to close the relevant breakers). However,
the protection device may be faulty in two ways: either it
outputs event cl instead of op at low-voltage detection (p3),
or it outputs event op instead of cl at normal-voltage detection
(p4). The automaton of the breaker includes two states, closed
and open, and six transitions, namely, b1 · · · b6. Details for
transitions of the breaker are given in Table II.

Accordingly, b1 moves the breaker from closed to open
upon the consumption of event op (sent by the protection
device), while b2 moves the breaker from open to closed upon
the consumption of event cl. The breaker may be faulty in
two ways: either it remains closed upon the consumption of
op event (b3) or it remains open upon the consumption of
cl event (b4). Finally, in transitions b5 and b6 the breaker just
consumes an event (either cl or op, respectively) which makes
the breaker to remain in the same state. Based on Fig. 1, active
system W consists of protection device p and breakers l and
r. The behavior space of W is outlined in Fig. 3, where arcs
are marked by indices of component transitions.4 It includes
57 states, with each state B being identified in range [0..56],
where 0 is the initial state W0, while final states are 0, 6, 7, 8,
9, 15, 16, and 17. The actual content of each state B is outlined
in Table III. It consists of two parts: a triple (S(l), S(p), S(r))
including states for breaker l, protection device p, and breaker
r, respectively, and a pair (Q(l), Q(r)) representing the queues
of events within links from p to l and from p to r, respectively.
We assume that each link can store at most one event.5

4A transition of the protection device is indicated by a single digit (its
number). A transition of a breaker are indicated by two characters: the number
of the transition and the identifier of the breaker (either l or r). For example,
1 stands for p1, 2l stands for b2(l), and 3r stands for b3(r).

5This means that a link can be either empty or store just one event.
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Fig. 3. Behavior space Bsp(W,W0) (node details are in Table III).

IV. Diagnosis Problem

When reacting, an active system performs a sequence of
transitions (history), that moves the system from the initial
state to a final state. Since a number of such transitions are
perceived by the observer as visible labels, such a history
generates a sequence of labels, called the trace of the history.
A diagnosis problem ℘ for a system � is a quadruple

℘(�) = (�0,V,O,R) (1)

where �0 is the initial state of the system, V the viewer, O
the observation, and R the ruler, as detailed below.

A. Viewer and Observation

The viewer maps each component transition to a label,
thereby establishing how transitions are perceived. If the label
is ε (null label) the transition is invisible, otherwise it is visible.
The observation is a directed acyclic graph where nodes are
marked by candidate labels and arcs denote partial ordering
between nodes. For each node, only one candidate label is

TABLE III

State Details for Bsp(W,W0) Outlined in Fig. 3

the one associated with a component transition by the viewer.
This is the actual label, which, however, is unknown to the
observer.

Example 4: With reference to system W defined in
Example 3 and models in Fig. 2, we assume a viewer V with
the following visible transitions and relevant labels: b1l: opl,
b1r: opr, b2l: cll, b2r: clr, p1: awk, p2: ide, p3: awk, p4: ide. In
the left side of Fig. 4 is an observation O relevant to viewer
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Fig. 4. Observation O (left). Relevant index space Isp(O) (right).

V , which is composed of four nodes, namely ω1· · ·ω4, and
three arcs, namely, (ω1, ω2), (ω2, ω3), and (ω2, ω4).

An observation implicitly embodies several candidate traces,
denoted ‖O‖, with each one being obtained by choosing one
label from each node of the observation based on partial or-
dering between arcs. Among such candidates is the (unknown)
actual trace generated by the system history, the one involving
actual labels only. For practical reasons, an index space of
O is generated [17], namely, Isp(O). This is a deterministic
automaton, where arcs are marked by the visible labels of O
(ε aside). The regular language of Isp(O) equals ‖O‖, that is,
the set of paths in Isp(O) equals the set of candidate traces
of O.

Example 5: Shown in the right side of Fig. 4 is the index
space of O, where �3 and �5 are the final states. Notice how
the language of Isp(O) equals the set of candidate traces of
O, where each candidate is generated by choosing from each
node of O one candidate label such that partial ordering is
fulfilled. For example, we can choose from the sequence of
nodes ω1, ω2, ω4, and ω3 labels awk, opl, ε, and ide, giving
rise to string [awk, opl, ide] (being invisible, ε does not count).
This string belongs also to the language of Isp(O), as it can
be generated by a path from the initial state �0 to final state
�3, namely, [�0, �1, �2, �3].

B. Ruler

The ruler R is a triple (�,H,S), where � is the context
domain, H the context hierarchy, and S the semantics. These
three elements are defined as follows.

1) The context domain � = {ξ1, . . . , ξn} is the set of
subsystems of �, called contexts, that are designated to
be relevant to the output of the diagnosis task.

2) The context hierarchy H defines a partition of each
context ξi ∈ �, i ∈ [1..n], in terms of other sub-contexts
(or components), namely, (ξi, {ξi1 , . . . , ξini

}) ∈ H (where
ξi1 , . . . , ξini

are the child nodes of ξi in H); as such H
implicitly defines a tree (more generally, a forest), where
leaf nodes are components.

3) Let N be a set of identifiers called the name space, F
a subset of N called the fault space, and I a subset of
N called the interface space. The semantics S is a set
of pairs (ξ,P), where ξ ∈ � and P = [P1, . . . , Pk] is
the list of semantic patterns, with each semantic pattern
Pj ∈ P , Pj = (Nj, Ej), being the association between a
name in Nj ∈ N and a regular expression Ej .

The alphabet of the regular expression Ej is inductively
defined as follows.

Fig. 5. Context hierarchy for protection hardware W .

1) The alphabet of a component is the set of transitions of
its model.

2) Let N be the set of names used for semantic patterns in
P̄ , where (ξ̄, P̄) ∈ S; let I be the subset of names in N
that are also in the interface space, namely, I = N ∩ I;
each symbol in the alphabet A of ξ̄ is a subset of I,
called an interface symbol, in other words, A(ξ̄) is the
powerset of I, namely, A(ξ̄) = 2I.

3) Let (ξ, {ξ1, . . . , ξm}) ∈ H, (ξ,P) ∈ S, Pj ∈ P ,
Pj = (Nj, Ej); the alphabet A of Ej is the union of the
alphabets of the subcontexts (possibly components) of ξ

and the semantic-pattern names defined up to Pj−1 ∈ P

A(Ej) =

(
m⋃
i=1

A(ξi)

)
∪

(
j−1⋃
i=1

{Ni}
)

. (2)

The plain form of the regular expression Ej is the iterated
macrosubstitution of each name in N (involved in Ej) by the
corresponding regular expression.

The syntax of the regular expression on alphabet A is
defined inductively as follows (assuming x and y to be regular
expressions denoting languages L(x) and L(y), respectively):

1) ε denotes the language {ε} (where ε is the null symbol);
2) if a ∈ A then a denotes the singleton language {a};
3) (x) denotes L(x) (parentheses are allowed as usual);
4) x? denotes L(x) ∪ {ε} (optionality);
5) x∗ denotes

⋃∞
i=0(L(x))i (iteration zero or more times);

6) x+ denotes
⋃∞

i=1(L(x))i (iteration one or more times);
7) xy denotes L(x)L(y) (concatenation);
8) x | y denotes L(x) ∪ L(y) (alternative);
9) x & y is a shorthand for (xy | yx) (free concatenation).

We assume that the plain form of each regular expression is
nonempty.

Example 6: A ruler R for protection hardware W defined
in Example 3 is specified as follows. Context domain: � =
{ξl, ξr, ξW}, where both ξl and ξr include just breakers l and
r, respectively. The context hierarchy H is outlined in Fig. 5.
N = F = {nol, ncl, nor, ncr, fop, fcp, fdw, fcw} (explanation
is in Table IV). I = {nol, ncl, nor, ncr}. S is defined in
Table IV. In the specification, bold symbols denote singletons:
for instance, nol is a shorthand for the interface symbol {nol}
(in our example, all interface symbols are singletons).

For breakers l and r, two semantic patterns are defined,
involving one transition, corresponding to failure either to
open or to close. For protection hardware W , four semantic
patterns are defined. The first two patterns, fop and fcp,
are relevant to the misbehavior of the protection device (by
sending breakers the wrong command). Semantic pattern fdw

indicates a failure in disconnecting the left-hand-side of the
line: either the protection device sends the wrong command
to breakers (fop) or it sends the correct command (p1), yet
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TABLE IV

Semantic Patterns

both breakers keep being closed (nol & nor). Finally, semantic
pattern frw indicates a failure in reconnecting the left-hand-
side of the line: either the protection device sends the wrong
command to breakers (fcp) or it sends the correct command
(p2), yet either l or r keeps being open (ncl | ncr).

V. History Projection

As a consequence of context-sensitivity, in order to define a
diagnosis we need to introduce the notion of history projection.
Intuitively, the projection of a history h on a context ξ, written
h[ξ], is the mode in which h is perceived by ξ in terms
of interface symbols (if ξ includes other contexts) and/or
component transitions (if ξ includes components).

If ξ includes components only, h[ξ] is simply the subse-
quence of transitions in h which belong to such components.
Instead, when ξ embodies other contexts, h[ξ] is bound to
include interface symbols of such contexts. Each of these
symbols corresponds to one or more matchings of relevant
semantic patterns.

We provide the precise definition of h[ξ] in operational
terms. Let ξ1, . . . , ξn be the set of contexts involved (either
directly or indirectly) in the context hierarchy rooted in ξ

(including the latter). Let Cξ denote the set of components
involved in that hierarchy. The operational specification, called
projection, generates all projections h[ξ1], . . . , h[ξn] in one
run as detailed below.

1. procedure Projection(h, ξ)
2. input
3. h: a history for a system �,
4. ξ: a context in H (context hierarchy of �);
5. output
6. The history projections h[ξ1], . . . , h[ξn] for ξ and

all descendant contexts of ξ;
7. begin 〈Projection〉
8. Initialize each h[ξi], i ∈ [1..n], to the empty

sequence;
9. foreach T ∈ h such that CT ∈ Cξ do
10. Let ξp be the parent context of CT in the

hierarchy;
11. Shift T to h[ξp];
12. repeat
13. Let I be the set of symbols N ∈ I (interface)

such that (N, E) is a semantic pattern for ξp

and a suffix of h[ξp] matches E (in plain form);
14. if I �= ∅ and ξp �= ξ and ξp has a parent ξ∗

p

then

TABLE V

Tracing of Projection(h,R)

15. Append I to h[ξ∗
p];

16. ξp := ξ∗
p

17. endif
18. until I = ∅ or ξp = ξ

19. endfor
20. end 〈Projection〉.
Example 7: Based on Bsp(�, �0) outlined in Fig. 3, con-

sider history h = [p1, b3r, b3l, p4, b3r, b1l]. With reference to
the context hierarchy displayed in Fig. 5, traced in Table V is
the computation of h[W] by procedure Projection. For each
transition considered in the main loop, identified by i ∈ [1..6],
configurations of h, h[ξl], h[ξr], and h[W] are represented as
follows:

0) initialization (line 8);
1) p1 shifted to h[W]; I = ∅;
2) b3r shifted to h[ξr]; I = {nor}, nor appended to h[W];
3) b3l is shifted to h[ξl]; I = {nol}, nol appended to h[W];
4) p4 shifted to h[W]; I = ∅;
5) b3r shifted to h[ξr]; I = {nor}, nor appended to h[W];
6) b1l shifted to h[ξl]; I = ∅.

The configurations of the last line are the actual projections
of history h on clusters ξl, ξr, and W . In particular, we
have h[W] = [p1, nor, nol, p4, nor]. Instead, as expected, the
projections on clusters ξl and ξr include the subsequence of
transitions relevant to components l and r, respectively.

VI. Problem Solution

We now provide the definition of solution of a diagnosis
problem. The actual mode in which the solution is generated
by the diagnosis engine is described in Section VIII.

A. Diagnosis

First, we need to introduce the notion of a (candidate)
diagnosis. Let ℘(�) = (�0,V,O,R) be a diagnosis problem.
Assume ruler R = (�,H,S) and ‖E‖ denoting the language
of (the plain form of) a regular expression E. The diagnosis
of a history h based on ruler R, written h{R}, is the set of
fault symbols defined as follows:

h{R} = {F |F ∈ F, (F, E) ∈ P, (ξ,P) ∈ S,

e ∈ ‖E‖, e � h[ξ]}. (3)

In other words, the diagnosis h{R} is the set of faults F

involved in semantic-pattern list P of a context ξ, such that
there exists a string e, in the language of the (plain form
of) regular expression E relevant to F , that is a (contiguous)
substring (�) of the projection of history h on ξ.
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TABLE VI

Histories, Projections, and Diagnoses

Example 8: Let ℘(W) = (W0,V,O,R) be the diagnosis
problem for protection hardware W defined in Example 3,
where viewer V and observation O are defined in Example 4,
while ruler R is specified in Example 6. The behavior space
Bsp(W,W0) is outlined in Fig. 3, with W0 = 0 being the
initial state. Consider history h = [p1, b3r, b3l, p4, b3r, b1l]
defined in Example 7. According to (3) and based on the
semantic patterns specified in Table IV, to determine the
diagnosis of h based on R, we need to perform pattern
matching on the projections of h on contexts ξl, ξr, and W .

Considering h[ξl] = [b3l, b1l], since [b3l] � h[ξl], we have
nol ∈ h{R}. For h[ξr] = [b3r, b3r], since [b3r] � h[ξr], we have
nor ∈ h{R}. Finally, for h[W] = [p1, nor, nol, p4, nor], since
[p4] � h[W] and [p1, nor, nol] � h[W] (with [p1, nor, nol]
being a string in the language of p1(nol & nor)), both fault
labels fcp and fdw are in h{R}.

In summary, h{R} = {nol, nor, fcp, fdw}, meaning that both
breakers fail to open, the protection device sends the wrong
command (open) to breakers, and the protection hardware fails
to disconnect the left-hand side of the line.

B. Solution

The solution of a diagnosis problem is a set of candidate
diagnoses, where each candidate is a (possibly empty) set
of fault symbols. By denoting the trace of a history h (the
sublist of visible transitions in h) based on viewer V with h[V],
we can now define the solution of a diagnosis problem. The
solution of the diagnosis problem ℘(�), written 	(℘(�)), is
the set of candidate diagnoses of the histories of the behavior
space Bsp(�, �0), based on ruler R, that are consistent with
observation O

	(℘(�)) = { h{R}|h ∈ Bsp(�, �0), h[V] ∈ ‖O‖ }. (4)

In other words, the solution of a diagnosis problem ℘(�)
is the set of diagnoses of histories h of � whose trace is a
candidate trace in O.

Example 9: Let ℘(W) = (W0,V,O,R) be the diagnosis
problem for the protection hardware W defined in Example 3,
where viewer V and observation O are defined in Example 4,
while ruler R is specified in Example 6. The behavior space
Bsp(W,W0) is outlined in Fig. 3. The solution of ℘(W) can be
determined based on (4). First, we have to select the histories
in Bsp(W,W0) whose trace is in ‖O‖, in other words, whose
trace is a path in the index space of O (Fig. 4). Among the
six candidate traces in Isp(O), generated by paths from the
initial state �0 to a final state (either �3 or �5), only one trace,
namely [awk, opl, ide], is consistent with Bsp(W,W0). This
single trace is generated by five different histories: 1) h1 =
[p1, b3r, b1l, p2, b4l, b5r]; 2) h2 = [p1, b3r, b1l, p2, b5r, b4l]; 3)
h3 = [p1, b1l, b3r, p2, b4l, b5r]; 4) h4 = [p1, b1l, b3r, p2, b5r,

b4l]; and 5) h5 = [p1, b1l, b3r, p4, b3r, b6l]. According to
the context hierarchy outlined in Fig. 5, the projections on
such histories on contexts ξl, ξr, and ξW can be computed
as in Example 7, giving rise to the results displayed in
Table VI. Since histories h1 · · · h4 share the same projec-
tions, the corresponding diagnosis (based on ruler R) is
the same, namely, δ1 = h1{R} = {nor, ncl, frw}. Instead,
δ2 = h5{R} = {nor, fcp, frw}. Consequently, the solution
of the diagnosis problem includes two candidate diagnoses,
specifically, 	(℘(W)) = {δ1, δ2}, corresponding to these two
scenarios:

1) δ1: Breaker r fails to open, breaker l fails to close, and
protection hardware W fails to reconnect the line;

2) δ2: Breaker r fails to open, protection device sends the
wrong command to breakers, and W fails to reconnect
the line.

Albeit the solution includes two candidate diagnoses, since
δ1 ∩ δ2 = {nor, frw}, certainly r fails to open and W fails to
reconnect the line.

VII. Semantic Space

In the diagnosis process a distinction is made between
online and offline tasks. An offline task is accomplished before
the system becomes operating.6 By contrast, an online task
is performed while the system is operating, typically under
stringent time constraints. For instance, the modeling of the
system is an offline task, while the task performed by the
diagnosis engine, which is in charge of solving the diagnosis
problem, is carried out online.

Since diagnosing active systems (and, more generally,
DESs) is computational expensive, it is convenient to max-
imize the amount of processing performed offline [32], [33].
This provides the following two advantages.

1) Specific properties of the system, such as diagnosabil-
ity, can be checked (and possibly changed) before the
system becomes operating.

2) The speed of the diagnosis engine increases, as what is
performed offline is not to be performed online.

Typically, within the quadruple defining a diagnosis prob-
lem, only the temporal observation O is available on-line,
while the viewer and the ruler are defined at system-modeling
time (offline). In particular, the semantic patterns can be
analyzed and compiled into data structures which allow for
better (online) performances of the diagnosis engine.

As known, any regular expression can be transformed into
an equivalent deterministic finite automaton [34].

The compilation process involves the following steps.

1) For each semantic pattern (Fi, Ei) such that Fi ∈ F,
Ei is unfolded into its plain form and an equivalent
deterministic automaton Ai is generated, where final
states are marked by label Fi.

2) For each semantic pattern (Ij, Ej) such that Ij ∈ (I−F),
Ej is unfolded into its plain form and an equivalent

6Like in compilers, where tasks such as type-checking are performed before
the software becomes operating (at compile-time rather than at runtime).
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Fig. 6. Compilation of semantic space for breaker l. Deterministic automata
A1 and A2 (a). Nondeterministic automaton N (b). Semantic space Sem(ξl)
(c).

deterministic automaton Aj is generated, where final
states are marked by label Ij .

3) The so-generated deterministic automata A1, . . . , An

within the same list of semantic patterns P (and, as such,
relevant to the same context ξ) are merged to yield a new
deterministic automaton called the semantic space of ξ,
Sem(ξ), where each final state S is marked by a pair
(I,F), where I and F are the set of interface labels and
the set of fault labels, respectively, that are associated
with the states identifying S.7

The merging of automata in step 3 is performed as follows.

1) A nondeterministic automaton N is created by generat-
ing its initial state S0 and one empty transition from S0

to each initial state of Ai, i ∈ [1..n].
2) In each Ai, i ∈ [1..n], an empty transition from each

noninitial state to S0 is inserted.
3) N is determinized, thereby obtaining Sem(ξ), with each

final state S of Sem(ξ) being marked by pair (I,F),
where I and F are the interface labels and the fault labels,
respectively, obtained by the union of the interface labels
and fault labels, respectively, that are associated with
states in S that are final in the corresponding Ai.

The rationale of the sequence of steps above is that, during
the reconstruction of the system behavior, the diagnosis engine
is supposed to uncover the matching of several (possibly
overlapping) semantic patterns. This means that after the
matching of any transition, the same semantic pattern, or even
a different one, may possibly start.

Example 10: With reference to ruler R specified in
Example 6, shown in Fig. 6 is the generation of semantic
space Sem(ξl) for the context involving breaker l. Based on
Table IV, semantic patterns relevant to fault labels nol and
ncl are defined by single transitions b3l and b4l, respectively.
For step 1 of the compilation process, the corresponding
deterministic automata A1 and A2 are represented in Fig. 6(a),
with each one being composed of two states (initial and
final) and one transition, which is marked by b3l and b4l,
respectively. Step 2 is not applicable, as fault labels nol and
ncl are also interface labels. For step 3, the nondeterministic
automaton N is outlined in Fig. 6(b), where empty transitions
are represented by gray arcs. Finally, the actual semantic space
Sem(ξl) is outlined in Fig. 6(c), where each final state is
marked by a pair (I,F), with (incidentally) I = F.

7A state of the determinized automaton is identified by a subset of the states
of the corresponding nondeterministic automaton [34].

TABLE VII

Transition Function of Semantic Space Sem(W)

The generation of the semantic space Sem(ξr) for breaker r

gives rise to an identical automaton, where labels b3l, b4l, nol,
and ncl are replaced by b3r, b4r, nor, and ncr, respectively.

The generation of the semantic space for protection hard-
ware W is carried out in a similar way, based on the semantic
patterns specified in the bottom section of Table IV. For space
reasons, we only report in Table VII the tabular representation
of the resulting automaton Sem(W). Each row defines the
transition function for states 0, 1, . . . , 8, where 3, 4, 7, 8 are
final. According to the semantic patterns defined in Table IV,
the alphabet of Sem(W) is {p1, p2, p3, p4, nol, nor, ncl, ncr}.
If defined, the state reached by pair (S, a), where S is a
state and a a symbol in the alphabet, is indicated in the cell
corresponding to row S and symbol a; for instance, the state
reached by (2, ncl) is 7. The last column outlines for each final
state the associated set of fault symbols; for instance, state 4
is marked by set {fcp, frw} of fault symbols.

Proposition 1: No transition enters the initial state of a
semantic space.

Proof: In the last step of the construction of a semantic
space, the deterministic automata A1, . . . , An are merged
by creating the initial state S0, and by inserting an empty
transition from S0 to the initial state of each Ai, i ∈ [1..n],
and from each noninitial state of each Ai to S0. As such, S0

is entered by empty-transitions only. Based on the algorithm
for determinization of finite automata [34], starting from the
initial state Sd

0 of the deterministic automaton, obtained as the
ε-closure of S0, each new state is generated as the ε-closure of
a nonempty subset of states of the nondeterministic automaton.
Hence, to generate Sd

0 , we need a nonempty transition entering
S0, which is not the case.

Proposition 2: If s is a string in the language of semantic
space Sem(ξ), generated by a path from the initial state to a
final state Sf , then the interface symbol associated with Sf

is the set of symbols N ∈ I such that (N, E) is a semantic
pattern relevant to ξ, and the language of E (in plain form)
includes a string e which is a suffix of s.

Proof: The specification of Sem(ξ) requires three steps. In
steps 1 and 2, a deterministic automaton Ai, i ∈ [1..n], is
generated for each semantic pattern (Ni, Ei) relevant to ξ,
where Ni ∈ F ∪ I, with each final state of Ai being marked
by label Ni. This means that each Ai recognizes the language
of Ei (in plain form). Then, in step 3, automata A1, . . . , An

are merged into a nondeterministic automaton N , for which
an initial state S0 is created and connected to the initial state
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of each Ai by an empty transition (see example in Fig. 6).
Furthermore, each noninitial state of each Ai is connected to
S0 by an empty transition. Based on this construction, each
string s in the language of N is generated by a set π of paths
from S0 to a final state. Due to the way in which automata
Ai are merged into N , each path in π ending at a final state
marked by symbol Ni necessarily has a suffix which is a string
in the language of Ai, and hence in the language of Ei (in plain
form). Eventually, Sem(ξ) is obtained by determinization of
N , with the latter sharing the same language of the former,
where each final state Sf is marked by a pair (I,F), with
F ⊆ F and I ⊆ I, where, in particular, I is the set of symbols
in I marking the final states of N within Sf . Therefore, since
Sem(ξ) is the result of the determinization of N , each string
s in the language of Sem(ξ) is generated by one path π, from
the initial state to a final state Sf . In N , the same string s is
generated by a set π of paths from S0 to the final states of N
included in Sf . Consequently, the interface symbol associated
with Sf is the set of symbols N ∈ I such that (N, E) is a
semantic pattern relevant to ξ, and the language of E (in plain
form) includes a string e which is a suffix of s.

Corollary 1: If s is a string in the language of semantic
space Sem(ξ), generated by a path from the initial state to a
final state Sf , then the set of faults associated with Sf is the
set of symbols N ∈ F such that (N, E) is a semantic pattern
relevant to ξ, and the language of E (in plain form) includes
a string e which is a suffix of s.

Proof: By analogy with Proposition 2, as the way the set
of symbols in F is associated with final states of the semantic
space is the same as that for the set of symbols in I.

VIII. Diagnosis Engine

The diagnosis engine takes as input a diagnosis problem
℘(�) = (�0,V,O,R) and outputs the solution 	(℘(�)),
as defined in Eqn. (4). In doing so, it needs to build the
behavior of � that conforms with the observation, namely,
Bhv(℘(�)). We assume that the semantic spaces generated
offline by preprocessing (see Section VII) be available to the
engine. Since pattern recognition is to be performed, states
of Bhv(℘(�)) will incorporate information not only on the
observation but also on the semantic spaces to maintain the
state of the matching.

Let B denote the set of states of Bsp(�, �0), � the set of
states of Isp(O), and P = P1 ×· · ·×Pn, where P1, . . . , Pn are
the set of states of all semantic spaces Sem(ξ1), . . . , Sem(ξn),
respectively. The behavior of ℘(�)

Bhv(℘(�)) = (S,T, S0,Sf ) (5)

is a deterministic automaton such that:

1) S ⊆ B × P × � is the set of states;
2) S0 = (�0,P0, �0) is the initial state, where �0 is the

initial state of Isp(O), and P0 = (P10, . . . , Pn0) is the
tuple of the initial states of Sem(ξ1), . . . ,Sem(ξn);

3) Sf = {(Bf ,P, �f )} is the set of final states, where Bf is
final in Bsp(�, �0) and �f is final in Isp(O);

4) T is the transition function: (B,P0, �)
T→ (B′,P′, �′) ∈

T, P = (P1, . . . , Pn), P′ = (P ′
1, . . . , P ′

n), iff the
following conditions hold:

a) B
T→ B′ is a transition in Bsp(�, �0);8

b) If T is invisible then �′ = � else �′ equals
the target state �̄ of transition � �→ �̄ in Isp(O),
where � is the label associated with T in V;

c) P′=(P ′
1, . . ., P

′
n) is such that, ∀i ∈ [1..n], P ′

i is
defined by the following (possibly recursive) rule:

if T is in the alphabet of a context ξi then
P ′

i : = if Pi
T→ P̄i ∈ Sem(ξi) then P̄i else Pi0

endif;
if the interface symbol I marking P ′

i is nonempty and
ξi has a parent ξj in the hierarchy then

reapply the rule replacing T with I and i with j

endif
else

P ′
i := Pi

endif.
As such, each state of Bhv(℘(�)) is a triple involving a

state of the behavior space, a state of the index space of O,
and a tuple of semantic-space states. A transition marked by T

is defined in Bhv(℘(�)) if a transition marked by T is defined
between the corresponding states of the behavior space. The
index �′ of the new state differs from the index � in the old
state only if T is visible (according to viewer V). Finally, P′ is
obtained from P by performing a state change in the semantic
space of the context ξi including the component relevant to T :
if the new state is marked by a nonempty interface symbol, a
state change is possibly propagated to the ancestors of ξi.

A. Behavior Building

In this subsection we provide a pseudo-coded algorithm
(listed below), called Build, for the construction of the be-
havior Bhv(℘(�)), as defined above. The algorithm takes
as input a diagnosis problem ℘(�) and two additional data
structures: Isp(O), the index space of the observation, and �,
the semantic spaces generated (offline) from R.

Considering the body of build (lines 9–48), the set of states
S and the set of transitions T are initialized (lines 9–11). Then,
a loop is iterated until all states in S have been processed
(lines 12–46). At each iteration, starting from the initial state,
an unprocessed state (B,P, �) is chosen from S (line 13) and
its transitions are determined (lines 14–44). Each transition
T triggerable from B is first checked against the observation,
and the new index-space state �′ is computed (lines 15–22).
Then, the new state B′ is computed based on B and T (lines
23–26). Finally, the new tuple P′ of semantic-space states is
determined (lines 27–40). To this end, the state of the semantic
space ξi including T in its alphabet is possibly updated.
Besides, if the new state Pi is marked by an interface symbol
I �= ∅, then the semantic-space change is possibly propagated
to the ancestors of ξi. Eventually, the set of final states is
determined (line 47), and all (spurious) states and transitions,

8Since Bsp(�, �0) is assumed to be unavailable, operationally this means
that T is triggerable from state B.
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which are not within a path from the initial state to a final
state, are removed (line 48).

1. function Build(℘(�), Isp(O), �)
2. input
3. ℘(�) = (�0,V,O,R): a diagnosis problem,
4. Isp(O): the index space of temporal observation O,
5. � = (Sem(ξ1), . . . , Sem(ξn)): the tuple of semantic

spaces by R;
6. output
7. The behavior Bhv(℘(�)) = (S,T, S0,Sf );
8. begin 〈Build〉
9. S0 := (�0,P0, �0), where �0 is the

initial state of Isp(O), and P0 the tuple of initial
states of semantic spaces in �;

10. S := {S0};
11. T := ∅;
12. repeat
13. Choose an unmarked state S = (B,P, �) in S;
14. foreach component transition T which is trigger-

able in B do
15. Let (T, �) be the association in viewer V;
16. if � = ε then
17. �′ := �
18. elsif � �→ �̄ is a transition in Isp(O) then
19. �′ := �̄
20. else
21. continue
22. endif;
23. B′ := B;
24. Let CT be the component relevant to transition

T ;
25. Set state in B′ relevant to CT with the state

reached by T ;
26. Insert into links of B′ the output events of T ;
27. P

′ := P;
28. if CT is within the context hierarchy H then
29. Let ξi be the context whose alphabet

includes symbol T ;
30. I := T ;
31. repeat
32. Let Pi be the state in P′ corresponding

to Sem(ξi);
33. Let Pi0 be the initial state of semantic

space Sem(ξi);

34. Pi := if Pi
I→ P̄i ∈ Sem(ξi) then P̄i else Pi0

endif;
35. Let I′ be the interface symbol

marking Pi in Sem(ξi);
36. if I′ �= ∅ and ξi has a parent ξj in H then
37. ξi := ξj; I := I′

38. endif
39. until I′ = ∅ or ξi has no parent in H
40. endif;
41. S′ := (B′,P′, �′);
42. if S′ /∈ S then Insert S′ into S endif;
43. Insert transition S

T→ S′ into T;
44. endfor;

Fig. 7. Behavior Bhv(P(W)).

45. Mark S

46. until all states in S are marked;
47. Sf := {Sf |Sf ∈ S, Sf = (Bf ,P, �f ), both Bf and �f are

final };
48. Remove from S and T all states and transitions which

are not connected to a state in Sf

49. end 〈Build〉.
Example 11: Consider problem ℘(W) = (W0,V,O,R)

defined in Example 9. Depicted in Fig. 7 is the relevant
behavior Bhv(℘(W)), where observable component-transitions
are associated with corresponding viewer labels. According to
the definition, the initial state is S0 = (B0,P0, �0), where �0

is the initial state of Isp(O) (Fig. 4), while P0 = (0, 0, 0)
is the tuple of initial states of semantic spaces Sem(ξl),
Sem(ξr), and Sem(W), respectively. The following conditions
hold.

1) Bsp(℘(�)) includes a transition B0
p1→ B1 which is visi-

ble via label awk of viewer V .
2) A transition �0

awk→ �1 is included in Isp(O).
3) Component transition p1 is in the alphabet of Sem(W),

4) Transition 0
p1→ 1 is included in Sem(W).

A new transition (B0, 000, �0)
p1→ (B1, 001, �1) is created in

Bhv(℘(W)). Consider transition S5
b4l→ S7, where P = (0, 1, 2)

while P′ = (2, 1, 7). In fact, based on Fig. 6, Sem(ξl) includes

transition 0
b4l→ 2, whose target state 2 is marked by interface

symbol ncl. Since, based on Table VII, ncl is in the alphabet

of Sem(W) and a transition 2
ncl→ 7 exists in the latter,

the semantic-space state relevant to W is updated too. The
construction of the behavior continues until no new node
is generated by the application of the transition function.
In Fig. 7, final states are S10 and S11, as B16 is final in
Bsp(℘(W)), and �3 is final in Isp(O). The gray part of the
graph is inconsistent because it is not encompassed by any
path from the initial state to a final state. Hence, it is removed,
leaving Bhv(℘(W)) with twelve states, namely S0 · · · S11.

B. Behavior Decoration

Once reconstructed the behavior Bhv(℘(�)), the diagnosis
engine is required to generate the problem solution 	(℘(�))
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defined in (4) by means of a sound and complete technique.
This is carried out by decorating the nodes of the behavior
with sets of sets of faults (candidate diagnoses), resulting in
the decorated behavior of ℘(�), denoted Bhv∗(℘(�)).

To this end, we introduce the notion of the fault set of
a tuple of semantic-space states P, written F(P), which is
the union of the faults associated with each state of P in the
corresponding semantic space. We denote with 	(S) the set
of sets of faults decorating state S in Bhv(℘(�)). Each state
in Bhv(℘(�)) is decorated with a set of sets of faults based
on the following two rules:

(1) for the initial state S0 = (�0, �0,P0), 	(S0) = {∅};
(2) for each S

T→ S′ in Bhv(℘(�)), where S = (B,P, �),
S′ = (B′,P′, �′), if δ ∈ 	(S) then (δ ∪ F(P′)) ∈ 	(S′).

Operationally, the decoration algorithm starts by marking
the initial state with the singleton {F(P0)} = {∅} and all other
states with ∅. Then, starting from the decoration of the initial
state, it continuously applies the second rule for each transition
exiting a state S whose decoration has changed. The rationale
of rule (2) is as follows: if the current decoration of a state S of
Bhv(℘(�)) includes the set of faults δ and the reached state S′

involves the tuple P′ of semantic-space states with associated
faults F(P′), then the set of faults δ′ associated with S′ will be
the extension of δ by δ′, as the latter is the set of faults relevant
to the set of semantic patterns recognized in P′. The algorithm
stops when the decoration becomes stable (the application of
rule (2) will no longer produce further changes).

A pseudo-coded implementation of the decorating algo-
rithm, called decorate, is given below. It makes use of the
auxiliary (recursive) procedure Dec (lines 6–21). This takes
as input a state S of the behavior and a set D of diagnoses,
and propagates D to the neighboring states of S based on
decoration rule (2). In doing so, if new diagnoses D+ are
generated for a neighboring state S′, then Dec is recursively
called on S′ and D+. Dec stops when no further diagnosis
is generated. Within the body of decorate (lines 23–26), the
decorated behavior is initialized as a copy of the behavior
(line 23). According to decoration rule (1), the initial state is
marked by {∅}, while all other states are marked by ∅ (lines
24–25). The actual decoration based on rule (2) is performed
by calling Dec(S0, {∅}) at line 26.

1. function Decorate(Bhv(℘(�)))
2. input
3. Bhv(℘(�)): the behavior;
4. output
5. Bhv∗(℘(�)): the decorated behavior;
6. auxiliary procedure Dec(S,D)
7. input
8. S: a state of Bhv(℘(�)),
9. D: a set of candidate diagnoses;
10. side effects
11. Change in decoration of state S is propagated to

other states;
12. begin〈Dec〉
13. foreach transition S

T→ S′ do
14. Let 	′ be the current decoration 	(S′);

TABLE VIII

Fault Sets Relevant to States of Bhv(P(W)) (Fig. 7)

15. Extend the decoration 	(S′) by {δ′|δ ∈ D, δ′ =
δ ∪ F(P′)};

16. D+ := 	(S′) − 	′;
17. if D+ �= ∅ then
18. Dec(S′,D+)
19. endif
20. endfor
21. end〈 Dec〉
22. begin 〈 Decorate〉
23. Bhv∗(℘(�)) = Bhv(℘(�));
24. Mark initial state S0 with the singleton {∅};
25. Mark all other (non initial) states with the empty

set ∅;
26. Dec(S0, {∅})
27. end 〈Decorate〉.
Example 12: Consider the behavior Bhv(℘(W)) depicted

in Fig. 7. Based on the semantic spaces of l and r (Fig. 6),
and W (Table VII), fault sets relevant to states of Bhv(℘(W))
are outlined in Table VIII (where states with the same set of
faults are grouped together). Since, incidentally, Bhv(℘(W))
is acyclic, the decorations are generated top-down, from the
initial state to final states. Initially, S0 is marked by {∅} and all
other states by ∅. Then, the call to Dec(S0, {∅}) gives rise to
a tree of recursive calls. For instance, a path of the tree from
S0 to S10 gives rise to the following stream of computation.

1) 	(S1) is extended to {∅}.
2) 	(S2) is extended to {nor}.
3) 	(S4) is extended to {{nor}}.
4) 	(S5) is extended to {{nor}}.
5) 	(S7) is extended to {{nor, ncl, frw}}.
6) 	(S10) is extended to {{nor, ncl, frw}}.
Eventually, focusing on final states, S10 is decorated by

{{nor, ncl, frw}}, while S11 by {{nor, fcp, frw}}.

C. Solution Generation

Given the decorated behavior Bhv∗(℘(�)), the solution
of the diagnostic problem ℘(�) can be straightforwardly
determined as the union of the decorations of final states

	(℘(�)) = {δ|δ ∈ 	(Sf ), Sf is final in Bhv∗(℘(�))}. (6)

Example 13: With reference to the behavior Bhv(℘(W)) in
Fig. 7 and the relevant decorations determined in Example 12,
the solution of ℘(W) is the union of the decorations of final
states S10 and S11, namely

	(℘(W)) = {{nor, ncl, frw}, {nor, fcp, frw}}.
As a matter of fact, the set of candidate diagnoses equals

the solution of the same problem determined in Example 9
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based on the formal definition of diagnosis-problem solution
stated in (4).

The equality of the solutions for the same diagnosis problem
determined in Example 9, based on (4), and Example 13, based
on (6), is not a coincidence, as formally proven by Theorem 1
in Section IX.

IX. Correctness

We formally prove the soundness and completeness of the
diagnosis technique in determining the solution of a diagnosis
problem. Theorem 1 states how the actual solution of ℘(�)
can be distilled from the decorated behavior Bhv∗(℘(�)).

Theorem 1: Let Bhv∗(℘(�)) be a decorated behavior. The
union of the set of sets of faults decorating the final states of
Bhv∗(℘(�)) equals the solution of ℘(�).

Proof: Grounded on Lemmas 1–7, where Bs and Bv denote
Bsp(�, �0) and Bhv∗(℘(�)), respectively.

Lemma 1: If history h ∈ Bv then h ∈ Bs.
Proof: This derives from the fact Bv differs from Bs in the

additional fields � and P, which are irrelevant to the triggering
of transitions. By induction on h, starting from the initial
state, each new transition applicable in Bv is applicable in Bs

too.
Lemma 2: If history h ∈ Bv then h[V] ∈ ‖O‖.
Proof: Recall that h[V] is the sequence of observable labels

associated with visible transitions in viewer V . Based on the
definition of Bv, h[V] belongs to the language of Isp(O), which
equals ‖O‖. Thus, h[V] ∈ ‖O‖.

Lemma 3: If history h ∈ Bs, h[V] ∈ ‖O‖, then h ∈ Bv.
Proof: By induction on h, starting from the initial state, each

new transition T applicable in Bs is applicable in Bv too. In
fact, if T is invisible, no further condition is required. If T is
visible, based on the assumption h[V] ∈ ‖O‖ and on the fact
that the language of Isp(O) equals ‖O‖, the label associated
with T in viewer V matches a transition in Isp(O).

Lemma 4: Let π be a path in Bv, from the initial state to S =
(B,PS, �), with PS = (P1, . . . , Pn). Let h be the sequence of
transitions marking arcs in π. Let Si = (Bi,PSi

, �i), i ∈ [1..n],
be the state in Bv corresponding to the nearest ancestor of S in
π such that the ith element of PSi

is the initial state of Sem(ξi).
Let hi be the prefix of h ending at Si. Then, each Pi in PS

is the recognition state of h[ξi] − hi[ξi], where the sequence
difference denotes the suffix of h[ξi] obtained by removing
from the latter its prefix hi[ξ].

Proof: (Sketch) By induction on h. In the following, for
k ≥ 0, π(k) denotes the prefix of π up to the kth arc, while
h(k) denotes the prefix of h composed of k transitions.9

(Basis) For h(0) = [ ], Lemma 4 is trivially fulfilled.
(Induction) If Lemma 4 holds for h(k) then it holds for

h(k + 1) too. Let Tk+1 be the last transition in h(k + 1). Two
cases are possible, depending on whether or not there exists
a context ξ whose alphabet includes Tk+1. If not, P′ equals P,
thereby making Lemma 4 still true. Instead, if ξ does exist (this
being the parent of the component performing transition Tk+1),
then, based on the recursive rule introduced in the definition of

9In other words, h(k) is the prefix of h corresponding to π(k).

Bhv(℘(�)) (specifically, for the computation of P′, point 3),
the new state P ′ of Sem(ξ) is either P̄ , if Sem(ξ) includes
P

Tk+1→ P̄ , or the initial state of Sem(ξ), if such a transition
does not exist.10 In either case, P̄ is the recognition state
of h(k + 1)[ξi] − hi[ξi]. Afterward, if the interface symbol I
marking the new state P ′ is not empty and ξ has a parent
ξp in the hierarchy, then the rule is reapplied, with Tk+1 and
ξ being substituted by I and ξp, respectively. In fact, if I
is not empty, P ′ is a final state of Sem(ξ). Consequently,
based on Proposition 2, the induction assumption, and line 13
of Projection specification (see Section V), I is the set of
symbols N ∈ I such that (N, E) is a semantic pattern for
ξp, and a suffix of h(k + 1)[ξp] − hi[ξp] matches E (in
plain form). The possible reiteration of the rule mimics the
operational definition of projection (Section V), specifically,
the loop within lines 12–18. Eventually, the condition stated
by Lemma 4 is still true when h is replaced by h(k + 1).

Lemma 5: Let π be a path in Bv ending at a final state. Let
h be the sequence of transitions marking arcs in π. Let π{R}
denote the set of faults relevant to π, namely

π{R} =
⋃

(B,�,P)∈π

F(P). (7)

Then, h{R} = π{R}.
Proof: (Sketch) According to Section VIII-B, F(P) is the

union of the faults associated with each state Pi of tuple P in
Sem(ξi), i ∈ [1..n]. We denote the subset of F(P) relevant to
the ith state of P by F(Pi). We denote the prefix of h up to the
kth transition by h(k). Hence, h(k){R} denotes the diagnosis of
h(k) based on R. Likewise, π(k) denotes the prefix of path π

up to the kth arc. Hence, π(k){R} denotes the set of faults in
π(k). The proof is by induction on h.

(Basis) h(0){R} = π(0){R} = ∅. In fact, h(0) = [ ], hence,
based on (3), h(0){R} = ∅. On the other side, π(0) is only
composed of the initial state of Bv, namely, (B0,P0, �0), where
F(P0) = ∅, hence π(0){R} = ∅.

(Induction) If Lemma 5 holds for h(k) then it holds for
h(k + 1) too. In other words, we assume that substituting h

with h(k) (and hence π with π(k)) Lemma 5 is true. Based
on this assumption, we have to show that Lemma 5 is still
true when h is substituted by h(k + 1) (and hence π with
π(k + 1)). To this end, let Tk+1 be the last transition in h(k + 1),
and (B,P, �)

Tk+1−→ (B′,P′, �′) the corresponding arc in π(k+1).
Based on Lemma 4, each Pi in P is the recognition state of
the suffix h(k)[ξi] −hi(k)[ξi], where hi(k) is the prefix of h(k)
ending at a state where the ith semantic-space state is the initial
state of Sem(ξi). Considering each ξi, i ∈ [1..n], comparing
h(k) and h(k + 1), two cases are possible: either h(k + 1)[ξi] =
h(k)[ξi] or h(k + 1)[ξi] is the extension of h(k)[ξi] by a new
symbol in the alphabet of ξi, namely I.

If h(k + 1)[ξi] = h(k)[ξi] then, on the one hand, no state
change is performed in Sem(ξi), in other terms, the ith element
of tuple P′ equals the corresponding element in P, that is,
P ′

i = Pi. Hence, F(P ′
i) = F(Pi), in other words, the

10According to Proposition 1, the initial state P0 of a semantic space cannot
be entered by a transition. Thus, setting P ′ = P0 makes the nearest ancestor
of S in h, namely Si, to the the actual initial recognition state of a string in
the language of the corresponding regular expression.
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contribution of P ′
i to F(P′) is empty. On the other hand,

since h(k + 1)[ξi] = h(k)[ξi], no additional match can fulfill
e � h(k+1)[ξ] in (3). Hence, the contribution of the new transi-
tion Tk+1 to h(k + 1){R} is empty. Therefore, both in h(k + 1){R}
and π(k + 1){R}, no additional fault relevant to ξi is generated.

If instead h(k)[ξi] is extended into h(k + 1)[ξi] by a new
symbol I (in the alphabet of ξi), then two cases are possible,

depending on whether a transition Pi
I→ P̄i is matched in

Sem(ξi) or not.
If matched, two cases are possible, depending on whether

or not P̄i is final in Sem(ξi).
If P̄i is not final then F(P̄i) = ∅, and no contribution to

F(P′) comes from P ′
i. On the other hand, since P̄i is not

final, the extension of h(k + 1)[ξi] by I does not provoke any
new match relevant to ξi in (3), in other words, no further
fault relevant to ξi is generated.

Instead, if P̄i is final, then F(P̄i) is the contribution in F(P′)
relevant to ξi. That is, F(P ′

i) = F(Pi) ∪ F(P̄i). On the other
hand, based on Corollary 1, since P̄i is final, in (3) additional
matches for condition e � h(k + 1)[ξ] hold, precisely, those
relevant to faults in F(P̄i). In other words, the contribution
relevant to ξi to h(k + 1){R} equals F(P̄i).

If Pi
I→ P̄i is not matched in Sem(ξi) then P ′

i = Pi0 , and no
contribution to F(P′) is given by F(P ′

i ).
11 On the other hand,

in (3), the mismatch in Sem(ξi) results in the impossibility of
further matches for condition e � h(k + 1)[ξ], in other words,
no additional diagnosis relevant to ξi is generated.

In summary, applying the reasoning on all contexts ξi, i ∈
[1..n], we conclude that h(k + 1){R} = π(k + 1){R}.

Lemma 6: If history h ∈ Bv ends at final state Sf , then
h{R} ∈ 	(Sf ).

Proof: According to Lemma 5, h{R} = π{R}, where π is the
path in Bv corresponding to h, with π{R} being defined in (7).
Thus, it suffices to show that π{R} ∈ 	(Sf ). Based on the two
rules for decoration of Bv (Section VIII-B), the proof is by
induction on h. In the following, h(k) denotes the prefix of
h up to the kth transition, π(k) the prefix of π up to the kth
transition, and Sk the last state in π(k).

(Basis) Based on (7), π(0){R} = ∅. According to decoration
rule (1), ∅ ∈ 	(S0). Hence π(0){R} ∈ 	(S0).

(Induction) If π(k){R} ∈ 	(Sk) then π(k + 1){R} ∈ 	(Sk+1).
In fact, let Tk+1 be the transition marking the last arc in
π(k + 1). On the one hand, according to (7), π(k + 1){R} =
π(k){R} ∪ F(Pk+1), with Pk+1 being relevant to Sk+1. On the

other, according to decoration rule (2), for Sk
Tk+1−→ Sk+1, if

δ ∈ 	(Sk) then (δ ∪ F(Pk+1)) ∈ 	(Sk+1). As, by assumption,
π(k){R} ∈ 	(Sk), it follows that π(k + 1){R} ∈ 	(Sk+1).

Lemma 7: If Sf is a final state in Bv and δ ∈ 	(Sf ) then
there exists a history h ∈ Bv ending at Sf such that h{R} = δ.

11Based on Lemma 4, successive states in Sem(ξi) represent the recognition
of a suffix of h[ξi] starting from a successive state in π. At a first sight, this
might cause the loss of completeness for π{R}, specifically for the matches
in (3) where string e is extended by I. The fact is, if I introduces a discontinuity
in the matching of e, then no string e including symbol I (in that position) will
match any regular expression E. Thus, completeness is actually preserved.

Proof: Based on the decoration rules for Bv, diagnosis δ is
incrementally generated by a path π starting from the empty
diagnosis initially associated with S0, specifically

δ =
⋃

(B,�,P)∈π

F(P) (8)

which, based on (7), equals π{R}, which on its turn, according
to Lemma 5, equals h{R}, with the latter being the history
generated by π. On the one hand, in order for h to be a history,
π must be finite. If π is infinite then π must include (at least) a
cycle in Bv traversed an infinite number of times. On the other,
once a cycle is traversed, all associated F(P) are inserted into
δ: successive iterations of the cycle do not extend δ because of
duplicate removals caused by set-theoretic union in decoration
rule (2). In other words, δ can be always generated by a finite
path π and, hence, h is finite.
To prove Theorem 1, we show δ ∈ 	(Bv) ⇔ δ ∈ 	(℘(�)).
On the one hand, if δ ∈ 	(Bv) then, based on Lemmas 1, 2,
and 7, there exists history h ∈ Bs such that h[V] ∈ ‖O‖ and
h{R} = δ, in other words, based on (4), δ ∈ 	(℘(�)). On the
other, if δ ∈ 	(℘(�)) then, according to (4) and based on
Lemmas 3 and 6, there exists a history h ∈ Bv ending at final
state Sf such that δ = h{R} and δ ∈ 	(Sf ), in other words,
δ ∈ 	(Bv). �

X. Discussion

The contribution of this paper is both scientific and practical.
From the scientific viewpoint, it provides diagnosis with
context-sensitivity, thereby allowing for viewing a system
at different levels of abstractions, the contexts, each one
characterized by its own set of faults, which cannot be simply
inferred from the faults of lower-level contexts.

From a practical perspective, the proposed method may be
applied to real systems in which different levels of diagnosis
are required. Consider the operator in a control room respon-
sible for the monitoring of a large power network. When a
short circuit occurs on a transmission line and some devices
are faulty, the extent of the isolation may involve several lines.
In order to minimize the misbehavior, the operator is required
to perform some actions on the network within stringent time
constraints. These actions are safe only if the operator has
a clear picture of what is happening (including the location
of the short circuit). Otherwise, an inappropriate action may
result in the loss of additional lines, which may lead to a
blackout. If the diagnosis provided by the supervision system
is at levels of components (breakers and protection devices)
and context-free, it may be difficult for the operator deciding
the correct actions. By contrast, providing a context-sensitive
diagnosis at different levels of abstraction is bound to result in
a clear understanding of the risks associated with the actions.

Compared with context-free diagnosis of active systems
[30], context-sensitive diagnosis requires more computational
resources. In both approaches, the uncertainty of the tempo-
ral observation requires the generation of the index space.
However, once the index space is available, the field � in
the nodes of the reconstructed behavior is simply a scalar
value (the identifier of a state of the index space).12 In

12Remember that a node of the reconstructed behavior is a triple (B,P, �).
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context-sensitive diagnosis, in order to trace pattern-matching
of semantic spaces, nodes of the reconstructed behavior need
the additional tuple P of semantic-space states. This may result
in a considerably larger reconstructed behavior.

However, a strong point of the proposed method is that,
unlike [3] and related approaches, no global model of the
system must be generated (not even off-line), as no diagnoser
is required by the diagnosis engine. As remarked in Section III,
the behavior space is introduced for formal reasons only, as the
reconstruction of the behavior is carried out based only on the
models of components and their connections. Depending on
the degree of information in the temporal observation, only
a (possibly small) portion of the behavior space is actually
generated. This provides support to scalability for relatively
large scale systems.

This paper is built upon [6], where pattern stratification is
only apparent, as, after macrosubstitution, the regular expres-
sion is invariably defined on component transitions. In this
paper, instead, pattern stratification is real, since alphabets of
regular expressions are stratified based on interface symbols
of nested contexts.

A related approach is proposed in [4], where the notion of
supervision pattern is introduced, which allows for a flexible
specification of the diagnosis problem, and for a uniform
solution of different classes of problems. However, three points
are to be highlighted. First, supervision patterns are specified
by automata. In this paper, instead, fault patterns are specified
by regular expressions. Second, a supervision pattern specifies
which system evolutions are to be considered as faulty (or,
more generally, significant to the supervision process), based
on specific occurrences of fault (and repair) events. In this
paper, instead, a fault pattern specifies a (complex) fault within
a system evolution. Finally, and more importantly, [4] does
not provide any hierarchical abstraction to diagnosis: since a
diagnosis is an evolution identified by a supervision pattern,
the notion of diagnosis invariably refers to the system as a
whole. In this paper, instead, the interpretation of the system
behavior is based on the context hierarchy, where diagnosis
rules are defined for each subsystem in the hierarchy.

This paper also differs both from hierarchical diagnosis of
static systems [35], [36], which are based on structural de-
composition, without any concern with context-sensitivity, and
from diagnosis of hierarchical finite state machines (HFSMs),
which are inspired by state-charts [37], [38]. The most im-
portant feature of an HFSM is hierarchical state-nesting: if
a system is in a nested state (sub-state), it is also in all
its surrounding states (super-states). Moreover, transitions are
defined at each level of the hierarchy. HFSMs were considered
for solving a class of control problems in [39]. Recently, diag-
nosis of HFSMs has been considered in [40], [41]. However,
no patterns are involved and diagnosis is context-free.

XI. Conclusion

The state-of-the-art diagnosis techniques for DESs inherit,
in one way or another, the approach introduced in the seminal
work of [3]: diagnosis is anchored to components, irrespective
of the context in which they are embedded, in other words,

diagnosis is context-free. When the DES is complex, a shift
of modeling is needed, as the DES involves several contexts,
each one being qualified by its own diagnosis rules, which may
or may not depend on the diagnosis rules of its subcontexts
completely. This way, rather being tightly tied to components,
faults are anchored to contexts: diagnosis is context-sensitive.
Diagnosis rules are specified by semantic patterns, where faults
are associated with regular expressions. When the context is
made up of components only, the regular expression defines
a pattern of transitions for such components. In the general
case, when the context is made up of subcontexts, the regular
expression defines a pattern of interface symbols associated
with its subcontexts, with each interface symbol being asso-
ciated with a regular expression in the subcontexts. However,
we do not consider the proposed notation for semantic-pattern
specification as final: different formalisms can be envisaged
to fit different classes of DESs. It is our belief that separation
of concerns and enhancement in expressive power of context-
sensitive diagnosis may be exported to diagnosis of complex
systems other than DESs, from static systems to general
dynamic systems [42].
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