
146 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 2, FEBRUARY 2014

Development and Specification of a Reference
Architecture for Agent-Based Systems

William C. Regli, Senior Member, IEEE, Israel Mayk, Senior Member, IEEE, Christopher T. Cannon,
Joseph B. Kopena, Robert N. Lass, Student Member, IEEE, William M. Mongan, Member, IEEE,

Duc N. Nguyen, Jeff K. Salvage, Evan A. Sultanik, Member, IEEE, and Kyle Usbeck

Abstract—The recent growth of agent-based software systems
was achieved without the development of a reference architecture.
From a software engineering standpoint, a reference architecture
is necessary to compare, evaluate, and integrate past, current, and
future agent-based software systems. The agent systems reference
architecture (ASRA) advances the agent-based system develop-
ment process by providing a set of key interaction patterns for
functional areas that exist between the layers and protocols of
agent-based systems. Furthermore, the ASRA identifies the points
for interoperability between agent-based systems and increases
the level of discussion when referring to agent-based systems.
This paper presents methodology, grounded in software forensics,
to develop the ASRA and provides an overview of the resulting
architectural representation. The methodology uses an approach
based on software engineering techniques adapted to study agent
frameworks—the libraries and tools for building agent systems.
The resulting ASRA can serve as an abstract representation of the
components necessary for facilitating comparison, integration,
and interoperation of software systems composed of agents.

Index Terms—Agents, distributed artificial intelligence (AI),
multiagent, reference model, reverse engineering, software engi-
neering, software architecture.

I. Introduction

AGENT-BASED approaches for constructing complex dis-
tributed systems provide advantages over traditional soft-

ware and system design methods [1]–[3]. Unfortunately, the
software industry has been slow in adopting agent-oriented
paradigms. It is believed that this may be partially due to
the lack of integration, interoperation, and general-purpose
technologies [4]. Standards bodies such as the Foundation
for Intelligent Physical Agents (FIPA) [5]–[7] and IEEE
are leading efforts to standardize protocols and formats of

Manuscript received October 25, 2011; revised November 1, 2012 and
April 12, 2013; accepted April 26, 2013. Date of publication November 13,
2013; date of current version January 13, 2014. This paper was recommended
by Associate Editor L. B. Sheremetov.

W. C. Regli, C. T. Cannon, J.B. Kopena, R. N. Lass, W. M. Mongan,
D. N. Nguygen, J. K. Salvage, and E. A. Sultanik are with Drexel University,
Philadelphia, PA 19104 USA (e-mail: regli@drexel.edu; ctc82@drexel.edu;
jbk23@drexel.edu; rnl22@drexel.edu; wmm24@drexel.edu).

I. Mayk is with the U.S. Army Research, Development and Engineering
Command, Communications-Electronics Research, Development and Engi-
neering Center, Aberdeen Proving Ground, Aberdeen, MD 21001 USA
(e-mail: israel.mayk@us.army.mil).

K. Usbeck is with Raytheon BBN Technologies, Cambridge, MA 02138
USA (e-mail: kusbeck@bbn.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCC.2013.2263132

an agent-based system to facilitate interoperation of agents
within agent-based systems. However, a comprehensive ref-
erence architecture describing interactions among agents and
the infrastructure upon which agents execute does not exist.
Such a reference architecture would increase value among
agent framework developers, agent system developers and
architects, and further promote the use of agent-oriented
methodologies.

This paper presents an agent systems reference architec-
ture (ASRA) that describes infrastructure-level architectural
software patterns between functional components of an agent-
based software system. The paper is a product of a team
of interdisciplinary researchers working under the aegis of
the U.S. Army’s Networking Integrated Process/Product Team
(IPT) subteam on intelligent agents—a group that included
active participation of over fifty government, academic and
industrial researchers over a four year period.

The resulting ASRA is a set of architectural view docu-
ments, each representing the design considerations from the
perspective of particular stakeholders, in particular: 1) agent
framework designers, those developing the libraries and agent
middleware; 2) agent system developers and agent system
designers, those building systems based on or using agent-
based software; and 3) agent standards designers [8], [9]. The
architectural views of the ASRA are constructed using a serial
approach for identifying the interaction patterns among several
common agent system frameworks.

A unique contribution of this paper is the use of a
forensically-grounded methodology based on software en-
gineering analysis to identify a consensus reference archi-
tecture. By using software forensics across a number of
widely used agent framework implementations, the resulting
ASRA is representative of the current generation of agent
framework implementations. This differs from (and com-
plements) recent and related work aimed at defining and
improving software engineering practice for agent-based sys-
tems [10], [11], [13], [14] in a number of ways. Most signif-
icantly, in the forensically-grounded approach, we introduce
a quantitative methodology for assessing the adherence of
an implementation to a prescribed architecture. Additionally,
the results of our study objectively substantiate alternative
approaches of a more theoretical or abstract design nature
[15], [16].

2168-2216 c© 2013 IEEE



REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE ARCHITECTURE FOR AGENT-BASED SYSTEMS 147

The ASRA enables comparison and analysis of software
systems composed of heterogeneous agents by providing a
set of interaction patterns between functional components
present in agent systems. Moreover, the ASRA facilitates
interoperation by highlighting system integration points. Other
contributions of this paper include:

1) illustration of a serial approach for creating and doc-
umenting a reference architecture based on a domain
reference model (a reference model for agent-based
systems was presented previously in [17], [18]);

2) presentation of concrete architectures mapping spe-
cific components of representative agent frameworks to
functional components present in agent systems;

3) identification of similar and contrasting functional com-
ponent architectures among agent frameworks;

4) description of an abstract architecture for agent frame-
works as a set of patterns for functional components of
agent system architectures.

The primary contributions of this paper are the process for
creating the ASRA and the resulting ASRA. The serial process
uses software engineering analysis techniques and architec-
ture documentation models to derive concrete architectural
representations of functional concepts for agent systems. The
resulting concrete architectures for each functional concept is
compared to identify abstract patterns across the functional
concepts. The second result of our research is the reference
architecture for agent-based systems. The ASRA enables com-
parison and interoperation of agent-based systems through
identified patterns and paradigms of functional concepts found
in such systems.

The rest of this paper is organized as follows. Section II
provides a survey of reference architectures and relevant
systems, including our definition of a reference architecture for
agent-based systems. Section III describes the serial approach
for creating the ASRA with an example application of this
approach. Section IV gives an overview of the ASRA and
Section V provides some examples of how to make use of it
in practical situations. Section VI concludes the paper.

II. Background

This section provides background on software reference
architectures and their relationship to a software reference
model; it also gives an overview of related reference archi-
tectures and systems.

A. What Is Reference Architecture?

A reference architecture is a set of abstract architectural
elements of a family of systems or components independent
of specific technologies, protocols, and products [19]. A ref-
erence architecture describes patterns of how components of
a software system interact. A reference architecture drives the
creation of multiple designs for a particular system.

The consensus for describing the reference architecture is
through the use of standardized diagrams [e.g., UML and other
architecture description languages (ADLs)], and describing the
architecture through different viewpoints to cover the concerns
of stakeholders in the system [20]. UML [21] diagrams for

reference architectures abstract the implementation details of a
system and illustrate the relationships between the components
of a system [22]. The recent effort of Sturm et al. [13] creates
a similar methodology for agent-based systems that is highly
complimentary to the ARSA. Where ARSA quantitatively
grounds the different levels and structures in the overall
architecture for a heterogeneous agent system, their methods
provide improved formality at the design and implementation
level. Their paper has a case study with a fruit market scenario
that is similar to the detail case studies we performed. These
are described briefly in Section V.

What is a Reference Model? A reference model describes
the abstract functional elements of a system. A reference
model does not impose specific design decisions on a system
designer. APIs, protocols, encodings, etc. are standards that
can be used concurrently with a reference model. A reference
model does not define an architecture; rather, a reference
model can drive the implementation of multiple architectures
in the same way a reference architecture could drive multiple
designs, or a design could drive multiple implementations.
The reference model provides a common ontology, innovative
and practical system engineering techniques, and software
development guidance [17], [18].

A reference model differs from a reference architecture in a
way that a reference architecture further describes the relation-
ships and patterns of the functional elements and components
of a system. An example reference model is the ISO Open
Standards Interconnection (OSI) reference model [23]. This
model representing the seven layers of the network describes
only the functional layers of the network and does not impose
a specific protocol or implementation. Existing protocols such
as TCP/IP, and Appletalk fit in this model or one can create
their own for each layer.

B. Other Work on Reference Architecture

In the software engineering community, architecture is an
abstract representation of a software system. The architecture
is composed of structures and components of the system, their
properties, and the relationships between them [20], [24]–[26].
A reference architecture for software systems are the variations
of relationships among components based on a reference
model [25]. Collins-Cope and Matthews [26] examine the
relationship between the reference model and a reference
architecture illustrating the relationships between layers com-
prising a reference model of object-oriented/component-based
systems. These relationships between objects and components
form the reference architecture.

IEEE 1471 [24] states that a software architecture is the
definition and relationships of a software system’s com-
ponents, subsystems, and interfaces for a particular set of
stakeholders—individuals or entities with interest to some
aspect of the software system. IEEE 1471 emphasizes each
stakeholder’s set of concerns in the system architecture; archi-
tectural views of the system address these concerns. Therefore,
the system’s architecture is a set of architectural views that
address the stakeholders’ concerns. The IEEE 1471 standard
is based on the rational/4+1 view model [8], [9] depicting
a software systems architecture using multiple architectural



148 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 2, FEBRUARY 2014

descriptions, or views, for stakeholders. The views in the
rational/4+1 view model are as follows.

1) The logical view describes the static structural layout of
the software system from the perspective of a software
developer.

2) The process view describes the runtime behavior of the
system, including concurrency relationships and ordered
tasks carried out by components of the system from the
perspective of a workflow designer or manager.

3) The implementation view describes the package layout
of the system from the perspective of the system archi-
tect.

4) The deployment view describes the hardware-software
configurations at a platform-level as viewed by system
administrators or deployment teams.

5) The scenario view is composed of narrative use cases to
provide an executive level view of the architecture. This
view crosscuts the other views by providing an overall
picture of the system useful for all stakeholders.

Other reference architectures also adopt presented architec-
tural descriptions as a set of view documents. The Reference
Architecture Foundation for Service Oriented Architectures
(RAF-SOA) [19] from the OASIS Foundation1 defines a
reference architecture as the set of concepts and relationships
defined by the OASIS reference model for service-oriented
architectures. The RAF-SOA provides a template solution for
which one type of SOA may be constructed. The RAF-SOA
provides multiple viewpoints. Each viewpoint has a set of main
concepts addressed in the architecture, the stakeholders, goals
for stakeholders by using the architecture, and the modeling
techniques for each viewpoint in the architecture. The RAF-
SOA addresses a SOA from a Service Ecosystem, a Realizing
SOA, and an Owning SOA viewpoint. These high-level to low-
level viewpoints cover concerns for stakeholders with various
business needs.

Within the agent-based systems literature, Weyns and
Holvoet’s Reference Architecture for Situated Multiagent Sys-
tems [27] focuses on the agent operating in an application envi-
ronment. This architecture was developed through an iterative
process of analysis and validation studying different agent-
based systems. In their reference architecture, the authors
constructed multiple documents from different views: the mod-
ule decomposition, the shared data, and the communicating
processes views. The reference architecture offered in this
paper is distinguishable from this prior art due to its basis
on source code analysis of fielded agent software.

The need for an ARSA is also clear from recent trends
in the literature. Gholami et al. [28] surveyed agent-based
systems as middleware infrastructure to support a wide va-
riety of applications. While this represents a more restricted
view than taken in the ASRA, their findings are consis-
tent with ours. Khalgui and Hanisch [10] examine com-
munications protocols among agents—work that is relevant
for the design and implementation of the messaging archi-
tectures present in the ASRA. Vokřı́nek et al. [11] look
at the infrastructure needs for coordination and distributed

1Available at http://www.oasis-open.org.

planning among agents, work that is relevant the design
and implementation of the functional concepts of the ASRA,
including the implementation of the agents themselves as
well as how agents communicate and manage conflicts. Seow
et al. [12] offers work in a similar vein, but focused on BDI
agents rather than on distributed planning.

Approaches for agent-oriented modeling, such as that de-
scribed in [14], also can benefit from the ASRA. Specifically,
Cao et al. [14] described an improved software engineering
approach to design of an overall agent-based system. This is
in contrast to ASRA, which focuses on the architecture for
the framework and infrastructure on which these agents will
be implemented.

C. Methods of Building Reference Architectures

A survey of methodologies and processes for creating ref-
erence architectures yields few processes grounded in forensic
analysis of software systems. Most work describing reference
architectures for various systems [26], [29] do not, however,
address the process and methodology for creating the reference
architecture. Research on the methodology for creating a
reference architecture is progressing. Eixelsberger’s case study
on recovering a reference architecture from an existing system
uses an architecture structure description language (ASDL)
and ADL to find commonalities of a system family [30]. This
case study acknowledges that a reference model drives the
creation of reference architectures and compares the ADL of
instantiated systems to create a reference architecture in ASDL
for the purpose of creating new systems.

The product line software engineering, domain-specific soft-
ware architecture (PuLSE-DSSA) [31] is a process for creating
reference architectures in an iterative fashion. PuLSE-DSSA
constructs a reference architecture by: 1) generating scenarios
from requirements; 2) categorizing the scenarios based on
variability, structure, and priority; 3) developing architectures
for the structure-based scenarios; 4) ranking the architectures
based on coverage of scenarios; and 5) repeat as necessary
until all scenarios are covered. PuLSE-DSSA is an iterative
process that yields a reference architecture from instantiated
architectures.

The real-time control system is a reference architecture for
hierarchical intelligent control. The RCS was a basis for a
number of reference architectures. Albus [32] describes a ref-
erence model for intelligent systems, including the controllers
of agents. The architecture was adapted by NASA for the
construction of telerobotic controllers [33] and many other
organizations.

III. Constructing the ASRA

The process for creating a reference architecture for agent
system frameworks starts with reference model functional con-
cepts and iteratively applies software analysis tools on agent
framework implementations to aid in creating architectural
views of the agent frameworks. This iterative process yields
four views, the scenario view, the process view, the logical
view, and the implementation view. These views provide an
abstract representation of the canonical patterns and paradigms
present in agent framework implementations and comprise the



REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE ARCHITECTURE FOR AGENT-BASED SYSTEMS 149

Fig. 1. Layered agent systems reference architecture model.

ASRA. The initial steps in this process rely on functional
concepts provided by the agent systems reference model
(ASRM) [17], [18]. Constructing the views from these func-
tional concepts require analyzing existing agent framework
implementations. The rest of this section provides a brief
description of the ASRM, explaining the criteria for selecting
the agent framework implementations, defining the scope of
the ASRA and the process for creating the ASRA.

A. Agent Systems Reference Model

The basis for constructing the ASRA is the ASRM [17],
[18], a description of software systems composed of agents.
The ASRM established terms, concepts, and definitions needed
for the comparison of agent systems. The ASRM also formal-
ized concepts and layers of organization in an agent-based
system. The layers, shown in Fig. 1, are: agents, frameworks,
platforms, hosts, and environments. An agent-based system is
the set of frameworks, the agents that execute in them, the
platform (other software, OS, etc.) that supports them and
the hosts (hardware) upon which they execute. The functional
concepts of an agent system support overall system execution.
They are defined as follows.

1) Agent administration facilitates and enables command
and control of agents and allocates resources to those
agents as needed.

2) Security and survivability prevents execution of unde-
sirable actions within an agent system while allowing
execution of desirable actions.

3) Mobility facilitates and enables the migration of agents
among framework instances (typically, but not necessar-
ily, on different hosts).

4) Conflict management facilitates and enables the man-
agement of interdependencies between agents activities
and decisions.

5) Messaging facilitates and enables information and data
transfer among agents in the system.

6) Logging facilitates and enables information about events
to be recorded occurring during system execution for
subsequent inspection.

7) Directory services facilitate and enables the locating and
accessing of shared resources.

The functional concepts are necessary in developing the
ASRA as they are the starting point for the analysis process.

B. Scope of Agent Systems Reference Architecture

The intent of the ASRA is not to define specific implementa-
tion details of an agent system, but rather to describe potential
interactions between the ASRM functional concepts. The
interactions between the functional concepts can be described
from multiple standpoints.

1) An agent-internals architecture describes the software
structure of the control-sense-effect mechanisms of an
individual agent.

2) An agent framework architecture describes the software
architecture and the functional components of an agent
framework.

3) An agent-group architecture describes the structure and
interaction of a set of agents in a group of one or
more agents. The agent group architecture covers the
definitions of agent team, agent organization, agent
society, and agent agency.

4) An agent-systems interaction architecture describes the
structure and interaction of agents with other non-agent
software components within a larger system.

This paper focuses on the agent framework architecture.
The internals of an agent has been studied extensively and
furthermore has such wide diversity that creating a reference
architecture for internals would not be useful universally. The
agent-group architecture also is dependent on the domain and
applications of the agent system. Agent-system interaction
architectures are not directly addressed in this paper as inte-
gration and interaction of agent systems with external systems
is an engineering challenge addressed by systems research and
web service composition.

C. Serial Process for Architecture Discovery

The goal of the serial process is to produce overlapping
series of documents and diagrams detailing many views of a
system from different perspectives.

Agent frameworks analyzed: The serial process uses
existing agent framework implementations to produce the
architectural views of the ASRA [34]. As such, the ASRA
methodology examines three open source, mature agent frame-
works written in the Java language. Jade [35] aims to adhere to
FIPA specifications and standards and is used in research and
industrial applications. AGLOBE [36] is an agent framework
that facilitates agent communications focused on experimental
scenarios. It is used for a variety of applications such as airline
flight planning simulations [3]. Cougaar’s [2] design goal was
to support tasks, workflows, expansion, and aggregation in the
planning logistics domain.

During the course of this paper, the team examined over a
dozen different agent frameworks, eventually settling on these
three as an representative sample for detailed analysis for a
number of reasons. First, these frameworks are mature and
used in fielded agent-based systems with complete source code
available. Source code availability facilitates better analysis
and validation through source code inspection. Second, each



150 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 2, FEBRUARY 2014

Fig. 2. ASRA documentation process for constructing a reference architecture.

agent framework embodies most of the ASRM functional
concepts minimizing the number of frameworks under review.
Third, the process for creating the ASRA uses tools that
inspect software written in the Java programming language
requiring the agent frameworks under analysis to be written
in Java. Finally, each agent framework vary in design goals
and implementation. Jade and AGLOBE treat agents as a
computational process that maps almost directly to an exe-
cuting Java thread. Cougaar’s design goals lead to a different
implementation with emphasis on a common blackboard for
agent interactions.

For each functional concept defined in the ASRM apply the
following process illustrated in Fig. 2.

1) Construct the scenario view for a functional concept.
The scenario view consists of functional concept def-
initions from the ASRM represented as UML use-case
diagrams and/or descriptions depicting the use, role, and
functionality of the concept.

2) Construct the process view from the scenario view. To
illustrate runtime processes, a snippet of code exercis-
ing the functional concept for each agent framework
is created. Execute this snippet of code and use the
dynamic runtime analysis framework, Enterprise Java
Profiler (EJP),2 to generate trace data. With this trace
data, construct a UML process diagram to illustrate a
concrete architecture for the functional concept for a
particular agent framework. After constructing process
diagrams for each agent framework, create a new process
diagram from the common features across the agent
framework implementations while documenting differ-
ences as points of variation. This abstract architecture

2Available at http://ejp.sourceforge.net.

for the functional concept and the points for variation
comprise the process view.

3) Construct the implementation view using the static
analysis tools, BAT [37] on the agent frameworks and
code snippets from Step 2 to identify data flow and
package/class dependencies of each functional concept.
Focusing on the code snippets allows one to bypass
extraneous information such as dead code and common
library dependencies. From the package/class depen-
dencies, UML component diagrams are constructed to
depict concrete architectures for each agent framework
functional concept implementation. Components repre-
sent the modules and packages and connectors represent
interdependencies. From the concrete architectures, an
abstract architectural package representation is created
by identifying similar packages and modules across
implementations. Different packages are documented as
points of variation.

4) Construct the logical view using the Bunch clustering
system [38] and the static analysis data from the previous
step. The logical view consists of UML package dia-
grams of a functional concept. This abstract architectural
representation of a functional concept is created from
the concrete architectural views of the agent frame-
works. The clustered data, represented as a graph, illus-
trates interdependencies between components (edges),
and modules (nodes) within the agent framework im-
plementation. Highly-connected modules indicate com-
ponents and subsystems within an agent framework
implementation. UML package diagrams depict the the
concrete logical architecture of each agent framework
implementation where packages are the modules and the
connectors are interdependencies. Packages within other
packages represent interdependencies that do not travel



REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE ARCHITECTURE FOR AGENT-BASED SYSTEMS 151

Fig. 3. Mobility functional concept use case, showing interactions with
administration and directory services.

outside the enclosing package. From the concrete logical
architectures of the agent frameworks, an abstraction of
the logical package diagrams are created noting similar-
ities and differences where differences are documented.

The four steps are repeatedly applied for the seven ASRM
functional concepts. The resulting architectural views for the
functional concepts comprise the ASRA.

D. Demonstration of the Serial Process

To illustrate this mechanism for developing the reference
architecture, we provide a detailed example of how to apply
this serial process to understand how different frameworks
have implemented the Mobility functional concept. This pro-
cess is then repeated for each of the other functional concepts,
the complete details of which are available in [39].

1) Construct the Scenario View for Mobility: The scenario
view for each functional concept consists of UML use-case
diagrams and/or descriptions based on the ASRM definitions.
Mobility is the process by which the serialized, nonexecuting
agent leaves the source framework instance and arrives at
a destination framework instance. The mobility functional
concept is described by the following processes: decision
procedure, either active or passive; deregistration, halting,
serialization of the agent; migration; and deserialize, reregister,
and resume.

The UML use case diagram in Fig. 3 depicts the two
basic uses cases (ellipses) for the mobility functional concept:
moving an agent and cloning an agent. The move agent use
case entails moving an agent from one container to another,
while the clone agent makes a copy of an agent in another
container. The platform actor invokes these use cases. Note,
this figure also illustrates interactions between the Agent
Administration and Directory Services functional concepts.
For example, the clone agent use case utilizes the create agent
and modify agent state use case.

2) Construct the Process View for Mobility: The process
view documents the runtime behavior of a functional concept
based on code snippets for each agent framework (Fig. 4).
Executing EJP on code snippets yield runtime traces (Fig. 4)
showing a temporal view of the mobility functional concept,
the invocation points of the mobility functional concept, and
the percentage of time spent in the methods during execution.
From the runtime trace, a direct mapping to a UML activity

Fig. 4. (a) Runtime trace that drives the process view. (b) Jade mobility
process view activity diagram.

diagram exists (Fig. 4). The darkened circle is the starting
point when the feature slice is executed. Activities are ovals
depicting method invocations. Arrows represent flow between
activities and packages encompassing the activities represent
functional concepts. The resulting concrete architectures evoke
the abstract process architecture by combining common ac-
tivities and descriptions where and why activities may differ
across agent framework implementations.

Our software analysis showed subtle distinctions in how
these representative frameworks instantiated the mobility con-
cept. In Jade, when an agent moves to another container, it
invokes its own doMove method, supplying the target location



152 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 2, FEBRUARY 2014

Fig. 5. AGLOBE and Cougaar UML activity diagrams. (a) AGLOBE mo-
bility process view. (b) Cougaar mobility process view.

as an argument to the agent management service (AMS). This
target location container is obtained by querying the AMS
for available containers in the agent system or by querying
the AMS for a particular agent’s location. Invoking doMove
changes the state of the agent for transmission, pausing its
execution and allowing the Agent Mobility Service to move
the agent. The Jade container serializes the agent and sends
it to the destination container (while removing it from the
original container). The destination container deserializes the
object, yielding a copy of the agent; this new agent assumes
the name and identity of the old agent. When the move
is complete, the agent mobility service informs the agent,
and the agent’s state changes from paused to active. The
agent’s execution continues. Fig. 4 provides a temporal view
of the scenario showing method invocations and package
structures. In constructing the ASRA, one must choose method
invocations that highlight the mobility functional concept and
interactions with agent administration functional concepts,
resulting in the activity diagram (Fig. 4).

AGLOBE’s approach is simpler, using an AgentMover
service that creates a clone of the current agent and moves it to
the specified container. AGLOBE uses Java’s Serialization API
and ObjectOutputStream to serialize and transmit the agent
information to the new container. If there is only a single
agent in the original container, AGLOBE removes the original
container. Lastly, Cougaar initializes mobile agents to inform

Fig. 6. Process view: mobility functional concept. (a) Serialization architec-
ture. (b) Shared object architecture.

the framework of their mobile status and their current location.
Copies of dormant mobile agents are initialized on every
remote container in the system. During execution, the state
of the agent is maintained on each platform via the Cougaar
blackboard. When an agent moves to another platform, it
creates a ticket with the new container location and publishes
this to the blackboard. The new container retrieves the ticket,
initializes the dormant agent, and resumes execution. Once the
dormant agent is started, it sends an acknowledgment back
to the sending node so the original copy can be stopped.
Fig. 5 presents the UML activity diagrams for AGLOBE and
Cougaar mobility.

Resulting mobility process view patterns: Comparing the
diagrams produced by analysis, two patterns for agent mobility
emerge. Jade and AGLOBE exhibit serialization mobility
(Fig. 6) in which an agent’s execution is paused, converted
into a transferable form, transmitted to a target platform,
converted into an executable form, and resuming agent’s
execution. Cougaar exhibits shared-object mobility (Fig. 6) in
which agents exist on all platform containers and the agent’s
state is synchronized across platforms during execution. Agent
mobility is achieved by changing the shared state to the new
platform location.

3) Creating the Implementation View: The implementation
view is the static view of the agent framework derived through
static analysis of source code and identifying components and
activities from the process view. As such, this correlates to
the actual software architecture approach to implementation
of the agent system. UML component diagrams in the Imple-
mentation View represents high-level components rather than
objects. Jade, AGLOBE, and Cougaar mobility concrete view
diagrams are shown in Fig. 7.

Agent mobility in Jade consists of four software components
shown in Fig. 7. The agent component depends and uses the
agent mobility service and the agent management service. The
agent mobility service converts the mobile agent into a trans-
ferable form (i.e., serialize the agent) using the agent mobility
helper component. The agent management service pauses
the agent execution and locates the destination container. In
AGLOBE, mobility consists of three components shown in
Fig. 7. The agent manager locates the destination platform,
pauses the agent, serializes the agent’s state, and passes the
agent information to the container service. The mover service
handles communication and transport with the destination
container component. Lastly, Cougaar mobility consists of



REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE ARCHITECTURE FOR AGENT-BASED SYSTEMS 153

Fig. 7. Implementation view of (a) Jade, (b) AGLOBE, and (c) Cougaar
UML package diagrams for mobility.

four components shown in Fig. 7. The MobilityFactory, in the
Cougaar core package, generates a ticket identifier. The ticket
can be created directly by invoking its constructor using this
identifier. Using this ticket, a MoveAgent object can be created
through the MobilityFactory. The MoveAgent is a unique
object identifier that represents the state of the agent to be
moved. When the MoveAgent is published to the blackboard,
the agent state is serialized and copied to the receiving agent
container.

Resulting mobility implementation view patterns: Based
on the software analysis results, there appear two canonical
patterns for mobility’s implementation view (Fig. 8): serial-
ization mobility and ticketing mobility. Jade and AGLOBE
mobility follow a serialization mobility pattern (Fig. 8). The
platform discovery component uses directory services to find
the destination platform. The agent encapsulation component
creates a representation of the mobile agent for transport.
The messaging component delivers the mobile agent to the
destination platform. Finally, the agent extraction component
receives the mobile agent, loads it in the platform, and resumes
its execution. In contrast, the Cougaar mobility follows a
ticketing system pattern (Fig. 8). The platform discovery
component uses the directory services component to find the
destination platform. A mobility factory component generates
a ticket ID to identify the destination platform of the mobile
agent. Finally, the mobile agent component uses messaging
functional concept to publish the ticket to the other hosts.

4) Construct the Logical View for Mobility: The logical
view expresses the high level component interactions among
functional concepts in an agent system. While software de-
signers and architects often use logical models to describe
intended system behaviors, the actual interactions present in
an implementation can often differ from those in an idealized

Fig. 8. Mobility UML diagrams. Implementation view of (a) serialization
mobility and (b) ticketing mobility.

Fig. 9. Logical view of (a) Jade, (b) AGLOBE, and (c) Cougaar mobility
UML package diagrams.

or abstract architecture. The logical view is constructed by
observing the clustered runtime data generated from EJP and
BAT and organizing the major objects into packages. This or-
ganization is represented with UML package diagrams (Fig. 9)
for the Jade, AGLOBE, and Cougaar mobility functional
concept. Mobility in Jade utilizes the agent administration
components (Fig. 9). The AMS package handles identifying
target platforms. The agent package depends on the AMS
package and is responsible for moving the agent to the target
platform.

AGLOBE’s mobility logical view consists of three pack-
ages: 1) agent manager; 2) agent mover; and 3) Java IO. When
an agent migrates to another container, it first uses the agent
manager package to initiate the procedure. Then, the agent
manager contacts the Java IO library to serialize and send the
agent to the specified container. Next, the agent mover package



154 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 2, FEBRUARY 2014

Fig. 10. Logical view: two paradigms for mobility. (a) Serialization logical
view: migration component depends on the agent execution manager and
serialization components of the agent controller component and the messaging
component. (b) Shared object paradigm: migration component depends on
directory services component, agent controller component, and messaging
component.

alerts the target container of the migrating agent. Finally, the
agent manager updates the target container with the migrated
agent and removes the agent from the source container as
seen in Fig. 9. In contrast, Cougaar’s mobility features allow
agents to move between different nodes (computers or Java
virtual machine instances) during execution. The package
decomposition of Cougaar mobility in Fig. 9 illustrates the
usage of the Mobility and Blackboard components in the core
packages of Cougaar.

Resulting mobility logical view patterns: The logical
view for mobility depicts two patterns: serialization mobility
and shared object mobility. Jade and AGLOBE follow the
serialization mobility pattern in which the agent is converted
to a transferable form before migrating the agent to its
destination. The mobility functionality (Fig. 10) depends on
the agent administration to pause and start the agent and
messaging components to transmit the agent. Cougaar follows
the shared object mobility pattern in which the agent repre-
sentation is shared among platforms. Agent mobility involves
synchronizing the state of the agent then halting the agent
on the source platform and initializing and executing the
agent on the target instance. Shared object mobility (Fig. 10)
depends on the agent administration component for halting
and initializing the agents, the messaging component for
synchronizing the state, and directory services for finding the
target platform.

IV. Summary of Resulting Architecture

This section summarizes the abstract architectural descrip-
tions of the six other functional concepts for agent systems,
the complete details of which are available in [39].3

Messaging functional concept: The messaging func-
tional concept specifies how agents communicate within an

3The complete document is available at http://edge.cs.drexel.edu/
people/regli/ACIN-reference architecture v1.0.pdf.

Fig. 11. Messaging architectural views. (a) Direct messaging process view.
(b) Reference messaging process view. There are separate activities occurring
asynchronously for the sender and receiver. (c) Logical view. (d) Implemen-
tation view.

agent-based system. The ASRM states, the messaging func-
tional concept involves a source, a channel, and a message.
Messaging does not necessarily involve recipient(s). For in-
stance, an agent broadcasting a message or modifying the
surrounding environment are examples of messaging without
designated receivers. There are many scenarios for the mes-
saging functional concept.

In the scenario view, the source agent first creates the
message and appends the destination agent’s address by re-
trieving it from the directory services component based upon
the destination agent’s name. The agent framework platform’s
message transport system delivers the message to the destina-
tion agent. The destination platform receives the message and
delivers it to the receiving agent. The message serialization
step encodes the message to be named, packaged, and deliv-
ered in some manner and awaits message retrieval, in which
messages may be processed synchronously or asynchronously,
either polling the queue at repeated intervals or by handling
events.

The process view for messaging consists of two abstrac-
tions: direct messaging and reference messaging. With di-
rect messaging (Fig. 11), agents directly send a message to
another agent (or agents). The architecture for direct messag-
ing requires seven steps.

1) The source agent creates the message.



REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE ARCHITECTURE FOR AGENT-BASED SYSTEMS 155

2) The source agent adds the destination agent’s address to
the recipient field of the message by using the directory
services component.

3) The source agent adds the content data to the message.
4) A function/method passes the message to the source

agent’s local container.
5) The source agent’s local container sends the message to

the destination agent’s container.
6) The destination agent’s container receives the message

and passes it to the destination agent.
7) A function/method of the destination agent is called and

the destination agent reads the message.

In contrast, reference messaging is an indirect method of
messaging in which three meta messages must be sent between
source and destination agents for one message to be sent.
However, this method allows asynchronous messaging since
destination agent(s) retrieve messages from a single loca-
tion (i.e., a publish/subscribe channel). Reference messaging
(Fig. 11) consists of six steps.

1) The source agent creates the message.
2) The source agent adds the destination agent’s address to

the recipient field of the message by using the directory
services component.

3) The source agent adds the content data to the message.
4) A function/method publishes the message on the source

agent’s local data store and then sends a reference of
that location to the destination agent.

5) The destination agent receives the reference, subscribes
to the source agent’s data store, and retrieves the mes-
sage from the source agent’s data source.

6) A function/method is called and the destination agent
reads the message.

Although this view only describes one-to-one messages,
agents can also send one-to-many messages. One-to-many
messaging consists of two abstractions: multiple one-to-one
messages and multicast. Multiple one-to-one messages is when
an agent sends a single message to each agent individually
using container or reference messaging. Multiple one-to-one
messaging is preferred if a reliable connection is required
and messaging overhead is not a factor. Multicast messag-
ing is when a framework utilizes the underlying platform
to send out a multicast message to the agents within that
group. From the implementation view, messaging consists
of a single abstraction (Fig. 11) with two components: an
agent service provider responsible for providing the messaging
functionality, and the messaging service provider to handle
transportation of the message for the agent platform. The agent
framework makes these components available as interfaces to
agent developers. Subsequently, the logical view is a single
abstraction (Fig. 11) in which the agent package encapsulates
the messaging functionality for the agent the message sending.
The agent package depends on the container package to find
the destination address of the recipient.

Agent administration functional concept: The agent ad-
ministration functional concept gives a notion of command
and control to agent frameworks to create, manage, and
terminate agents. This functional concept may depend on other

Fig. 12. Agent administration architectural views. (a) Process view: dynamic
agent creation. (b) Process view: static agent creation. (c) Implementation
view: dynamic agent creation. (d) Implementation view: static agent creation.
(e) Logical view.

functional concepts such as directory services and security
used to identify specific agents or agent populations. Security
is sometimes required to keep unprivileged agents from being
instantiated, modified, or terminated. A logging module may
be required to capture the agent administration tasks. Fig. 12
shows the agent administration functional concept views.

The scenario view for agent administration is defined by
three use cases: creating agents, managing agents, and termi-
nating agents. In create agent the framework or another agent
instantiates a new agent. Many other scenarios depend on this
use case, i.e., to name an agent as in directory services, an
agent must first be spawned. Similarly, the process of moving
an agent across platforms, as seen in the mobility functional
concept, also necessitates prior instantiation of an agent.
The manage agent use case enables prioritization of resource
usage, particularly, in environments when those resources are
constrained. Some frameworks offer functionality to control
how frequently or how intensely agents may access resources.



156 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 2, FEBRUARY 2014

In some cases, the delegation of resource usage is left to
the underlying platform (i.e., the operating system). Lastly,
terminate agent provides several mechanisms that terminate
agents: an agent can be terminated by itself, another agent, or
an external entity.

To illustrate the process view, this paper provides one
representative use case for dynamically or statically creating
and instantiating a new agent in an agent system. In dynamic
agent creation, administration API enable runtime viewing
and managing agents in an overall agent system. Fig. 12
shows the activity diagram in which commands are issued
through the administrative interface, sent via the messaging
component, and commands performed on the agent platform
to instantiate the agent. In static agent creation agents can
be instantiated via configuration files that specify the agent’s
behaviors. This approach can enable system initialization with
complex communities, groups, and societies of agents a priori.
Fig. 12 depicts the static agent creation process.

The implementation view for agent administration shows
two UML component diagrams describing the high-level
components and their dependencies. Dynamic agent creation
(Fig. 12) is accomplished through issuing commands to an
agent. The commands are issued as messages from the con-
troller component, delivered via the messaging component,
and consumed by the agent management component. This
pattern is followed for dynamic agent creation and consists
of three primary components. The controller depends on the
messaging component and the agent management component
depends on the messaging component. In static agent creation
(Fig. 12) an initializer component to read the configuration
files, a controller component to instantiate the agents and
their behaviors, and the platform component to hold the
instantiated agents. The controller depends on the initializer
and the platform depends on the controller.

Lastly, the logical view (Fig. 12) using a container package
to issue a command, and the agent package to receive and
execute the command. All agent frameworks examined had
similar package dependency structures for administration.

Directory services functional concept: The directory ser-
vices functionality facilitates locating and accessing shared
resources. Fig. 13 shows the abstract architectural process,
implementation, and logical view diagrams. From the sce-
nario view, the primary use cases for directory services are
publishing, advertising, removing, and querying of services
accessible to an agent. Processes within an agent framework
need a way to reference services. This is accomplished via a
naming scheme and a directory maintained by the framework
holding these service names, locations, descriptions, and meta-
data. When a service appears in the registry, it is available
for querying. When a service is no longer available, it must
be removed from the directory. The process view defines a
subscription-based process for directory services that provide
naming, notification, and query matching processes, illustrated
in the UML process diagram in Fig. 13 as having three key
steps: 1) an agent contacts the directory services manager
to request a resource; 2) the directory services manager
notifies the other agents subscribed to the resource; 3) agents
deliver the resources to the requesting agent. To illustrate the

Fig. 13. Directory services architectural views. (a) Process view. (b) Imple-
mentation view. (c) Logical view.

implementation view, a directory services element consists of
four components (Fig. 13). A request producer may be an
agent or other service. The directory services manager services
the requests by decoding, interpreting, and/or reasoning over
the query before sending to the Request Relay. The request
relay determines and transfers the request to the appropriate
request executor and the request executor executes the request.
Lastly, the logical view (Fig. 13) focuses on three key packages
in the agent framework, the agent definition, and messaging.
The package containing the agent components use the Com-
municator package to send a message to the directory service
manager package.

Conflict management functional concept: The conflict
management functional concept (Fig. 14) is an agent frame-
work’s systems to perform classification, avoidance, detection,
negotiation, and resolution of conflicts among agents. Conflict
management and coordination represent central elements of
distributed, autonomous agent-based systems, and hence this
functional concept was found as a common component of
the reference architecture. The literature in this area is quite
diverse and an in-depth discussion of various approaches that
might be included here is beyond the scope of this study.
Interested readers are referred to recent literature covering
topics in negotiation [40], conflict resolution [41], [42], and
multiagent coordination [43].

What is discovered in reviewing the existing frameworks
and related literature is that the approaches to conflict and
resolution are nearly always dependent on the application
domain. Hence, the presentation of this functional concept is
considerably more abstract than that of other agent framework
components.

From the scenario view, conflicts in multiagent systems
occur when agents vie for a limited environmental resource. At
an abstract level, such agent concepts such as goals, BDI, etc.
can also be viewed as instances resources.4 Conflicts can be
viewed as occurring in two categories: goal and plan conflicts.
A goal conflict occurs when the function or purpose of an

4This distinction is admittedly arbitrary, i.e., one could do the reverse and
represent resources and their consumption as goal or BDI concepts.



REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE ARCHITECTURE FOR AGENT-BASED SYSTEMS 157

Fig. 14. Conflict management architectural views. (a) Process view.
(b) Implementation view. (c) Logical view.

agent (or group of agents) directly opposes the purpose or
goal of another agent (or group of agents). Plan conflicts
result from scheduling resources at the same time, or any
post-condition of an agent conflicting with the precondition of
another agent. Each conflict category is detected and address
through different techniques that raise issues and problems.

There are many methods for managing conflicts. Conflict
avoidance allows agents to execute their plans until a conflict
occurs and deal with the conflict through appropriate actions,
conflict can also be avoided. By analyzing and monitoring
agent goals and plans before their execution, one can deter-
mine whether conflicts may exist. This can be accomplished
through planning algorithms or entities that monitor agent be-
havior to ensure that conflicts do not occur. Conflict detection
occurs by an entity observing the system to detect conflicts
in goals, actions, or resources. When a conflict is detected by
this entity, it is sent to the conflict resolution module. While
the instantiation of these architectural elements will be highly
domain dependent, the subject of conflict management in
agent systems is a well-studied problem. Kakehi [44] proposes
directly communicating agents’ plans to one another when
they think they may conflict. Another method, proposed by
Sugawara [45], utilizes an agent manager to analyze agent
plans in determining whether a conflict may occur.

Conflict negotiation, which differs from avoidance, is the
one-on-one interaction of agents to resolve a conflict. While
this is used in some systems, it is not universal to all methods
of conflict management. An example from the literature is
Lopez [46], which generalizes a structure for agent negotia-
tion to resolve one-on-one conflicts between agents. Lastly,
conflict resolution fixes unavoidable conflicts that occur in the
system by altering the system or agents’ state to resolve the
conflict while preserving the integrity of the agents and system
execution. If agents’ goals conflict, the goals are redefined or
constraints and conditions are relaxed. An example of this
case is the work of Oliveira [47], that incorporates the use of
a cooperation layer that is assigned agent tasks.

The process view of conflict management features (Fig. 14)
in an agent framework must support some internal model of

resources, which agents can collaboratively manage. Other
agents, responsible for conflict management, adjust the state
of the resource model to remove the conflict, as defined by
the model. From the process view, since there is no particular
requirement about the model of resources and conflicts except
that it exists and that agents resolve conflicts, the process
view depends entirely on the model and the user-implemented
means of conflict management. The system is only responsible
for giving the user the ability to construct the model and
agents responsible for conflict management. The implemen-
tation view must include structures (e.g., classes) that allow
system designers to define a model of resources. It must also
contain an interface that allows running agents to monitor and
manipulate these resources (Fig. 14). The framework should
provide sufficient resources for dynamic planning applications.
Lastly, the logical view (Fig. 14), like the process view, is
specific to the agent application the user wishes to build.

Security and survivability functional concept: From a
scenario view (Fig. 15), the security and survivability func-
tional concept covers an agent framework’s ability to perform
authentication, authorization, and enforcement. Authentication
is accomplished by verifying the source of an agent. Autho-
rization is the process by which an agent framework decides
if an agent has the privilege to perform a task. Authorization
depends on the authentication of the agent. Enforcement is
the mechanism to permit a trusted resource to execute a task.
A framework utilizes authorization to grant/deny access to
an agent’s request. In many cases, some of these capabilities
may be handled by the underlying platform (OS or runtime
environments on hosts), hence a full discussion of how to
provide security features involves many domain-specific and
implementation-specific details and is thus is beyond the scope
of the ASRA.

From a process view (Figs. 15 and 15), when an agent sends
some kind of secured or private message it must acquire and
sign some kind of security certificate. The receiving agent
verifies the certificate and then begins to send trusted mes-
sages. This also affects agent migration. The implementation
view (Fig. 15) notes that every security function consists of
a service, proxy, and implementation component, following a
proxy design pattern. Lastly, the logical view can be archi-
tecturally broken into one or more modules providing these
features. For instance, if authentication is supported, there
should be a module that allows the framework to create users,
allow them to supply credentials, and authenticate them for the
agent application. From there, another module may be used to
encrypt communications using keys that belong to users on the
system, and another might be used to provide enforcement,
disallowing users from performing actions that they are not
permitted to perform.

Logging functional concept: Lastly, the logging func-
tional concept covers an agent framework’s ability to perform
log generation, storage, and access. Designers specify system
events that triggers log messages to be recorded corresponding
to that event. These events can correspond to actions in any
functional area and with any action an agent takes. The process
view produced by runtime analysis of the agent frameworks
under review shows that when an event is logged, the agent



158 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 2, FEBRUARY 2014

Fig. 15. Security architectural views. (a) Process view: message security. (b) Process view: mobility security. (c) Development view for security. (d) Logical
view for security.

framework exposes logging through a facade pattern to an
underlying logging facility. When an agent logs an event,
the agent makes a call to the agent framework log wrapper,
which passes the call to the underlying log facility. From
an implementation view, the process of logging an event
passes through two components, the logging service and
the underlying logging facility. The logical view for these
systems revealed that the agent frameworks were utilizing the
underlying platform implementations for logging.

V. Using the ASRA

The ASRA is an elaboration of the ASRM [17], [18]. The
goal has been to further establish relationships between the
ASRM functional concepts in agent frameworks and define
the architectural patterns for these concepts. As a reference
architecture, the ASRA does not address design or implemen-
tation specifics—focusing on the possible interactions between
functional concepts.

For the ASRA, stakeholders are agent system architects
and developers, (i.e., those building systems-of-systems that
include agent technology) the individuals involved in creating
designing agent frameworks and agent systems and imple-
menting agent systems. Software architects and developers
are concerned with individual agent behaviors and how they
contribute to overall system behavior. Additionally, these
stakeholders need to concern themselves with implementation
or selection of agent framework architectures. Agent system
architects are concerned with the high-level purpose and scope
of functional concepts, their interaction with other functional
concepts and their greater involvement in an agent-based
system. Conversely, agent system developers are concerned
with the functionality of each concept’s implementation details
and how each concept contributes to the capabilities of the
overall agent system. The ASRA provides value to these
stakeholders including the following.

1) Agent system developers: The ASRA helps system de-
velopers by explaining the abstract features of agent sys-
tems, thus documenting the capabilities of a particular
agent framework at a high-level.

2) Agent system designers: The ASRA helps agent system
designers explain how agents’ functional concepts can

be best integrated for a specific application. For ex-
ample, one might choose Cougaar’s agent framework
for its Blackboard messaging functionality rather than
AGLOBE’s more conventional Direct messaging design.

3) Agent framework designers: The ASRA illustrates best
practices for implementing functional concepts, thus,
helping agent framework designers decide how to best
design their frameworks.

4) Standards developers: The ASRA provides interconnec-
tion blueprints between standardized functional concepts
and layers from a reference model.

In the course of this paper, the authors used the ASRA to
develop an overall architecture for system for network-centric
command and control. This underlying design and implemen-
tation for the tactical information technologies for assured
network operations (TITAN) program [48], [49] was based
on heterogeneous agents and web services that provided in-
formation management and dissemination services in support
of military planning and operations. The ASRA provided the
overarching methodology for making architectural decisions as
to how to design and implement various functional concepts at
the overall, systems-level. In some functional areas, decisions
were left to the scope of agent providers (i.e., agents were
responsible for managing their own resources and conflicts);
in others, shared functionality was provided (e.g., a common
message infrastructure).

VI. Conclusion

This paper presented a process, based on forensic software
analysis, for creating reference architectures and demonstrated
the application of this process to create an agent systems
reference architecture. The process used software analysis
techniques and presented the architecture as a set of views that
address the analytic and developmental needs of architects,
developers, and managers. The basis of the ASRA were the
functional concept definitions of the ASRM [17], [18] and was
presented as a set of architectural views for each functional
concept. The resulting ASRA was a reference architecture
for systems composed of agents and created by current agent
software frameworks. This stance does not prescribe how one
should create an agent system, but rather, allows architects,
designers, and developers to make informed decisions on



REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE ARCHITECTURE FOR AGENT-BASED SYSTEMS 159

which architectural components are necessary for their partic-
ular system needs. It was the authors’ belief that the ASRA,
coupled with standards from FIPA and others, provided a basis
for improving software engineering practice for heterogeneous
agent-based systems. In addition, the ASRA will facilitate
adoption of agent system development processes by providing
blueprints for constructing agent systems and improving their
interoperability.

References

[1] N. R. Jennings, “An agent-based approach for building complex software
systems,” Commun. ACM, vol. 44, no. 4, pp. 35–41, 2001.

[2] A. Helsinger, M. Thomas, and T. Wright, “Cougaar: A scalable dis-
tributed multi-agent architecture,” in Proc. IEEE Int. Conf. Syst., Man,
Cybern., Oct. 2004, pp. 1910–1917.

[3] M. Pěchouček and D. Šišlák, “Agent-based approach to free-flight
planning, control, and simulation,” IEEE Intell. Syst., vol. 24, no. 1,
pp. 14–17, Jan.–Feb. 2009.

[4] D. Weyns, H. V. D. Parunak, and O. Shehory, “The future of software
engineering and multi-agent systems,” Int. J. Agent-Oriented Softw. Eng.,
vol. 3, no. 4, pp. 369–377, 2009.

[5] The Foundation for Intelligent Physical Agents. (2002) [Online]. Avail-
able: http://www.fipa.org

[6] Foundation for Intelligent Physical Agents. (2002, Dec.). Abstract ar-
chitecture [Online]. Available: http://www.fipa.org/specs/fipa00001/

[7] Foundation for Intelligent Physical Agents. (2002, Mar.). FIPA agent
management specification [Online]. Available: http://www.fipa.org/
specs/fipa00023/

[8] P. Kruchten, “Architectural blueprints: The ‘4+1’ view model of software
architecture,” IEEE Softw., vol. 12, no. 6, pp. 42–50, Nov. 1995.

[9] P. Kruchten, The Rational Unified Process: An Introduction, 3rd ed.
Reading, MA, USA: Addison-Wesley Professional, 2003.

[10] M. Khalgui and H. Hanisch, “Reconfiguration protocol for multi-agent
control software architectures,” IEEE Trans. Syst., Man, Cybern. C, Appl.
Rev., vol. 41, no. 1, pp. 70–80, Jan. 2011.

[11] J. Vokřínek, A. Komenda, and M. Pěchouček, “Abstract architecture
for task-oriented multi-agent problem solving,” IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 41, no. 1, pp. 31–40, Jan. 2011.

[12] K. T. Seow, K. M. Sim, and S. Kwek, “Coalition formation for resource
coallocation using BDI assignment agents,” IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 37, no. 4, pp. 682–693, Jul. 2007.

[13] A. Sturm, D. Dori, and O. Shehory, “An object-process-based modeling
language for multiagent systems,” IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev., vol. 40, no. 2, pp. 227–241, Mar. 2010.

[14] L. Cao, C. Zhang, and M. Zhou, “Engineering open complex agent
systems: A case study,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.,
vol. 38, no. 4, pp. 483–496, Jul. 2008.

[15] C. Bernon, M. Cossentino, M. Pierre Gleizes, P. Turci, and F. Zam-
bonelli, “A study of some multi-agent meta-models,” in Proc. 5th Int.
Workshop Agent-Oriented Softw. Eng., 2004, pp. 62–77.

[16] G. Beydoun, G. Low, B. Henderson-Sellers, H. Mouratidis, J. Gomez-
Sanz, J. Pavon, and C. Gonzalez-Perez, “FAML: A generic metamodel
for MAS development,” IEEE Trans. Softw. Eng., vol. 35, no. 6, pp.
841–863, Nov.–Dec. 2009.

[17] W. C. Regli, I. Mayk, C. J. Dugan, J. B. Kopena, R. N. Lass, P. J.
Modi, W. M. Mongan, J. K. Salvage, and E. A. Sultanik, “Development
and specification of a reference model for agent-based systems,” IEEE
Trans. Syst., Man, Cybern. C, vol. 39, no. 5, pp. 572–596, Sep. 2009.

[18] W. C. Regli, I. Mayk, C. J. Dugan, J. B. Kopena, R. N. Lass, P. J.
Modi, W. M. Mongan, J. K. Salvage, and E. A. Sultanik. (2006,
Nov.). “Agent systems reference model,” Applied Communications and
Information Networking Program, U.S. Army CERDEC and Drexel
University, Camden, NJ, USA, Tech. Rep. V1a [Online]. Available:
http://www.fipa.org/docs/ACIN-reference\ model-v1a.pdf.

[19] K. Laskey, J. A. Estefan, F. G. McCabe, and D. Thornton. (2009). “Ref-
erence architecture foundation for service oriented architecture,” OA-
SIS, Tech. Rep. [Online]. Available: http://docs.oasis-open.org/soa-rm/
soa-ra/v1.0/soa-ra.html.

[20] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Reading, MA, USA: Addison-Wesley Professional, 2003.

[21] M. Fowler and K. Scott, UML Distilled: A Brief Guide to the Standard
Object Modeling Language, 2nd ed., Boston, MA, USA: Addison-
Wesley Longman, 2000.

[22] Y. Zhou, Y. Chen, and H. Lu, “UML-based systems integration modeling
technique for the design and development of intelligent transportation
management system,” in Proc. IEEE Int. Conf. Syst. Man Cybern.,
Sep. 2004, pp. 6061–6066.

[23] H. Zimmerman, “OSI reference model—The ISO model of architecture
for open system interconnection,” IEEE Trans. Commun., vol. COM-28,
no. 4, pp. 425–432, Apr. 1980.

[24] ANSI/IEEE. (2009). Recommended practice for architectural descrip-
tion of software-intensive systems [Online]. Available: http://www.
iso-architecture.org/ieee-1471

[25] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and
R. Little, Documenting Software Architectures: Views and Beyond.
Reading, MA, USA: Addison-Wesley Professional, 2002.

[26] M. Collins-Cope and H. Matthews, “A reference architecture for compo-
nent based development,” in Proc. 6th Int. Conf. Object Oriented Inform.
Syst., 2000, pp. 225–237.

[27] D. Weyns and T. Holvoet, “A reference architecture for situated multi-
agent systems,” in Proc. 3rd Int. Conf. Environ. Multi-Agent Syst. III ,
vol. 4389, 2006, pp. 1–40.

[28] N. Cai, M. Gholami, L. Yang, and R. W. Brennan, “Application-oriented
intelligent middleware for distributed sensing and control,” IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev., vol. 42, no. 6, pp. 947–956,
Nov. 2012.

[29] P. Avgeriou, “Describing, instantiating, and evaluating a reference archi-
tecture: A case study,” Enterprise Architect J., San Mateo, CA, USA:
Fawcette Tech., Jun. 2003.

[30] W. Eixelsberger, “Recovery of a reference architecture: A case study,”
in Proc. Third Int. Workshop Softw. Architecture, 1998, pp. 33–36.

[31] J.-M. DeBaud, O. Flege, and P. Knauber, “PuLSE-DSSA—A method
for the development of software reference architectures,” in Proc. 3rd
Int. Workshop Softw. Architecture, 1998, pp. 25–28.

[32] J. S. Albus, “Outline for a theory of intelligence,” IEEE Trans. Syst.,
Man, Cybern., vol. 21, no. 3, pp. 473–509, May–Jun. 1991.

[33] J. A. Albus, H. McCain, and R. Lumia, “NASA/NBS standard reference
model for telerobot control system architecture (NASREM),” Natl. Inst.
Standards Technol., Tech. Rep. 1235, 1989.

[34] W. M. Mongan, C. J. Dugan, R. N. Lass, A. K. Hight, J. Salvage, W. C.
Regli, and P. J. Modi, “Dynamic analysis of agent frameworks in support
of a multiagent systems reference model,” in Proc. Int. Conf. Intell. Syst.
Agents (Part MCCSIS), 2007, pp. 11–18.

[35] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, “Jade: A white
paper,” Telecom Lab., TILAB, Torino, Italy, Tech. Rep. 3, Sep.
2003.

[36] D. Šišlák, M. Rehák, M. Pěchouček, and D. Pavlı́ček, “Deployment of
A-globe multi-agent platform,” in Proc. AAMAS, 2006, pp. 1447–1448.

[37] M. Eichberg, “BAT2XML: XML-based Java bytecode representation,”
in Proc. 1st Workshop Bytecode Semantics, Verification Anal. Transfor-
mation, vol. 141, no. 1. Dec. 2005, pp. 93–107.

[38] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, “Bunch:
A clustering tool for the recovery and maintenance of software system
structures,” in Proc. IEEE Int. Conf. Softw. Maintenance, Aug. 1999,
pp. 50–59.

[39] I. Mayk and W. Regli, “Agent systems reference architecture,” Applied
Communications and Information Networking Program, U.S. Army
CERDEC and Drexel University, Camden, NJ, USA, Tech. Rep. V1.0,
Jun. 2011.

[40] J. Archibald, J. Hill, F. Johnson, and W. Stirling, “Satisficing negotia-
tions,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 36, no. 1,
pp. 4–18, Jan. 2006.

[41] J. Archibald, J. Hill, N. Jepsen, W. Stirling, and R. Frost, “A satisficing
approach to aircraft conflict resolution,” IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 38, no. 4, pp. 510–521, Jul. 2008.

[42] D. Sislak, P. Volf, M. Pechoucek, and N. Suri, “Automated con-
flict resolution utilizing probability collectives optimizer,” IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev., vol. 41, no. 3, pp. 365–375,
Jan. 2011.

[43] P. Beaumont and B. Chaib-draa, “Multiagent coordination techniques
for complex environments: The case of a fleet of combat ships,” IEEE
Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 37, no. 3, pp. 373–385,
May 2007.

[44] R. Kakehi and M. Tokoro, “A negotiation protocol for conflict resolution
in multi-agent environments,” in Proc. Int. Conf. Intell. Cooperative
Inform. Syst., May 1993, pp. 185–196.

[45] T. Sugawara, S. Kurihara, T. Hirotsu, K. Fukuda, and T. Takada,
“Predicting possible conflicts in hierarchical planning for multi-agent
systems,” in Proc. 4th Int. Joint Conf. Autonomous Agents Multiagent
Syst., 2005, pp. 813–820.



160 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 2, FEBRUARY 2014

[46] F. Lopes, N. Mamede, A. Q. Novais, and H. Coelho, “Towards a generic
negotiation model for intentional agents,” in Proc. 11th Int. Workshop
Database Expert Syst. Appl., 2000, pp. 433–439.

[47] E. Oliveira, F. Mouta, and A. Rocha, “Negotiation and conflict
resolution within a community of cooperative agents,” in Proc. Int.
Symp. Autonomous Decentralized Syst., 1993, pp. 421–427.

[48] I. Mayk, W. Regli, D. Nguyen, M. Mai, A. Chan, T. Urness, B. Goren,
S. Kizenko, S. Randles, Z. Jastrebski, J. Ruschmeyer, Lex Lehman, M.
McCurdy, D. Millar, I. Simmons, C. Cannon, J. Kopena, A. Patwardhan,
G. Tassone, J. Lindquist, G. Jewell, R. Forkenbrock, M. Nicholson,
F. Koss, R. Wray, J. Bradshaw, and J. Lott, “Tactical information
technology for assured network operations (TITAN) information dissem-
ination and management (ID&M) for battle command support services,”
presented at 27th U.S. Army Sci. Conf. Orlando, FL, USA, Dec. 2010.

[49] I. Mayk, W. Regli, D. Nguyen, M. McCurdy, I. Simmons, M. Mai,
A. Chan, T. Urness, B. Goren, S. Kizenko, S. Randles, Z. Jastreb-
ski, J. Ruschmeyer, L. Lehman, D. Miller, C. Cannon, J. Kopena,
A. Patwardhan, G. Tassone, J. Lindquist, G. Jewell, R. Forkenbrock,
M. Nicholson, F. Koss, R. Wray, J. Bradshaw, and J. Lott. “Net-
centric information knowledge management and dissemination for
data-to-decision C2 applications using intelligent agents and service-
oriented architectures,” in Proc. Military Commun. Conf., Nov. 2011,
pp. 1568–1573.

William C. Regli (A’03–M’03–SM’06) received the
B.S. degree in computer science and mathematics
from Saint Joseph’s University, Philadelphia, PA,
USA, in 1989, and the Ph.D. degree in computer
science from the University of Maryland, College
Park, MD, USA, in 1995.

He is currently a Professor of computer science
at Drexel University, Philadelphia, PA, USA, with
joint appointments at the Department of Mechanical
Engineering, Electrical and Computer Engineering,
and Department of BioMedical Engineering and

Health Systems. His research has been sponsored by a wide variety of
organizations. He holds five patents and has authored or co-authored more
than 250 technical publications. His current research interests include several
computer science and engineering fields such as artificial intelligence, solid
modeling and graphics, computer-aided design/computer-aided manufacturing
integration, mechanical design, and wireless networks.

Dr. Regli was a recipient of many awards, including the National Science
Foundation CAREER Award, the National Research Council Post-Doctoral
Award, the National Institute of Standards and Technology Special Service
Award, and the Drexel College of Engineering Research Award. He was a
co-recipient of the Army’s 2006 International Collaboration and the Institute
for Defense and Government Advancement’s Best Network-Centric Warfare
Program Award. He is a Life Member of the Association for the Advancement
of Artificial Intelligence and Sigma Xi. He is a Senior Member of the
Association for Computing Machinery.

Israel Mayk (S’80–M’80–SM’88) received the B.A.
degree in physics from Rutgers University, Newark,
NJ, USA, in 1970, the M.Sc. degree in nuclear
physics from the Weizmann Institute of Science,
Rehovot, Israel, in 1973, and the Eng.Sc.D. degree in
electrical engineering from the New Jersey Institute
of Technology, Newark, NJ, USA, in 1985.

He is currently an Electronics Engineer/Research
Scientist and a Technical Manager with the Com-
mand, Power and Integration Directorate, U.S. Army
Research, Development and Engineering Command,

Communications-Electronics Research, Development and Engineering Center,
Aberdeen Proving Ground, Aberdeen, MD, USA. He is responsible for re-
search and development of battle command-knowledge-based decision support
systems demonstrations and prototypes, as well as for technology integration
and architectures.

Dr. Mayk is a member of the Armed Forces Communication and Electronics
Association, the Association of the United States Army, and the U.S. Naval
Institute.

Christopher T. Cannon received the B.S. and M.S.
degrees in computer science from Drexel University,
Philadelphia, PA, USA, in 2010.

He is currently a full-time Research Engineer at
the Applied Informatics Group, Drexel University.
His current research interests include multiagent
systems, distributed systems, test and evaluation, and
knowledge representation.

Joseph B. Kopena was previously a Graduate in
computer science at Drexel University, Philadelphia,
PA, USA.

He is currently the Founder of Bellerophon Mo-
bile, a company focusing on intelligent decision
making in tactical wireless environments. His current
research interests include knowledge representation
and wireless networking.

Robert N. Lass (S’06) received the Undergraduate
degree from Drexel University, Philadelphia, PA,
USA, in 2003, where he is currently pursuing the
Ph.D. degree.

He is a Graduate Research Fellow at the Applied
Informatics Institute, Drexel University. His current
research interests include constraint reasoning, dis-
tributed systems, and mobile ad hoc networks.

William M. Mongan (S’06) received the Under-
graduate degree in computer science from Drexel
University, Philadelphia, PA, USA, in 2005, the
M.Sc. degree in science of instruction from the
School of Education, Drexel University, in 2008, and
the M.Sc. degree in computer science from Drexel
University, in 2008.

He is currently with the Department of Computer
Science, Drexel University. He was engaged in com-
puter science education and engineering education.
He has taught and volunteered with students in

grades five through 12. He is an Instrument-Rated Private Pilot of single- and
multiengine airplanes. His current research interests include software archi-
tecture and composition, service-oriented architectures, agent-based systems,
and program comprehension through software engineering.

Mr. Mongan was a fellow of the National Science Foundation GK-12
for two years. He holds a Secondary Mathematics Teaching Certification in
Pennsylvania, and has been a member of the School Board Technology and
Grant-Writing Committees.

Duc N. Nguygen received the B.S. degree in mathe-
matics from Carnegie Mellon University, Pittsburgh,
PA, USA, and the M.S. degree in computer science
from Drexel University, Philadelphia, PA, USA.

He is currently a Research Engineer with the
Applied Informatics Group, College of Information
Science and Technology, Drexel University. His cur-
rent research interests include artificial intelligence,
computer networks, and software engineering.



REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE ARCHITECTURE FOR AGENT-BASED SYSTEMS 161

Jeff K. Salvage received the B.S. and M.S. de-
grees in computer science from Drexel University,
Philadelphia, PA, USA.

He is currently a Senior Lecturer at the Department
of Computer Science, Drexel University, Philadel-
phia, PA, USA. His expertise is in database systems
and software design. He is the author or co-author of
many books on a variety of subject matter within and
outside of computer science. He has been involved
in both academia and the corporate world.

Evan A. Sultanik (S’05) received the B.S. and M.S.
degrees in computer science and the B.S. degree in
mathematics from Drexel University, Philadelphia,
PA, USA. He is currently pursuing the Ph.D. degree
in the Drexel Applied Communications and In-
formation Networking Program, Drexel University,
Philadelphia, PA, USA.

His current research interests include distributed
artificial intelligence, ad hoc networking, metrics,
approximation algorithms, mobile and multiagent
systems, simulation, and constraint reasoning.

Dr. Sultanik was a recipient of a number of fellowships and awards,
including the Hill and Koerner Fellowships.

Kyle Usbeck received the B.Sc. and M.Sc. degrees
in computer science from the College of Engineer-
ing, Drexel University, Philadelphia, PA, USA. His
thesis, Network-Centric Automated Planning and
Execution, investigates a novel method of generat-
ing, executing, and monitoring automated plans in
dynamic, heterogeneous network environments.

He is with Raytheon BBN Technologies as a
Software Engineer at the Distributed Systems Group.
There, he has contributed to projects involving qual-
ity of service over airborne networks, spatial com-

puting, and electro-mechanical system design modification. His current re-
search interests include artificial intelligence, automated planning, multiagent
systems, networking, HCI, and mobile computing.


