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Sensor Deployments for UAV Localization in
Critical Areas via Computational Geometry
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Abstract—The increasing spreading of small commercial
unmanned aerial vehicles (UAVs, also known as drones) presents
serious threats for critical areas, such as airports, power plants,
and governmental and military facilities. In fact, such UAVs can
easily disturb or jam radio communications, collide with other
flying objects, perform espionage activity, and carry offensive
payloads, e.g., weapons or explosives. A central problem when
designing surveillance solutions for the localization of unautho-
rized UAVs in critical areas is to decide how many triangulating
sensors to use, and where to deploy them to optimize both
coverage and cost effectiveness. In this article, we compute
deployments of triangulating sensors for UAV localization, opti-
mizing a given blend of metrics, namely: coverage under multiple
sensing quality levels, cost-effectiveness, and fault-tolerance. We
focus on large, complex three-dimensional (3-D) regions, which
exhibit obstacles (e.g., buildings), varying terrain elevation,
different coverage priorities, and constraints on possible sensors
placement. Our novel approach relies on computational geometry
and statistical model checking and enables the effective use of off-
the-shelf AI-based black-box optimizers. Moreover, our method
allows us to compute a closed-form, analytical representation
of the region uncovered by a sensor deployment, which provides
the means for rigorous, formal certification of the quality of
the latter. We show the practical feasibility of our approach by
computing optimal sensor deployments for UAV localization in
two large, complex 3-D critical regions, the Rome Leonardo Da
Vinci International Airport (FCO) and the Vienna International
Center (VIC), using NOMAD as our state-of-the-art underlying
optimization engine. Results show that we can compute optimal
sensor deployments within a few hours on a standard workstation
and within minutes on a small parallel infrastructure.

Index Terms—Artificial intelligence (AI)-based black-box
optimization (BBO), statistical model checking, three-dimensional
(3-D) computational geometry, unmanned aerial vehicles (UAVs)
localization.
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I. INTRODUCTION

IN RECENT years, small unmanned aerial vehicles (UAVs),
or drones, have become widespread, given their increas-

ingly lower prices and useful features. Besides the use of
these devices for leisure (e.g., photography) and public service
activity like disaster monitoring, the public has become more
and more aware of the risks that drones pose in several
scenarios. A commercial drone, in fact, can disturb or jam
radio communications, collide with other flying objects, per-
form espionage activity, and even carry offensive payloads
like weapons or explosives. For these and other reasons,
drones are seen as a serious threat in critical areas, such as
airports, military bases, correctional centers, power plants, and
government sites. Fig. 1 shows two examples of critical areas:
1) the Rome Leonardo Da Vinci International Airport (FCO) in
Italy and 2) the Vienna International Center (VIC) in Austria,
which we have used as our case studies.

Many surveillance solutions, based on a variety of tech-
nologies, have been designed to quantify and reduce the risks
stemming from the presence of unauthorized drones in critical
areas. In general, an anti-drone system has one or more
goals, which may target both the drone and its controller:
detection, localization, identification, tracking, and countering.
In this article, we focus on deployments of sensors aiming at
localizing unauthorized (possibly malicious) drones.

Each technology has its advantages and limitations. We refer
the reader to [1] and [2] for a survey. In our setting, i.e., in the
case of critical areas, an anti-drone system must have certain
specific features, and this limits the suitability of most sensor
typologies. Namely, the system must be able to detect drones
over possibly large distances (e.g., up to several kilometers
within an airport); the localization must be reliable with
minimal to no false positives and false negatives; the system
must be safely employable in public areas and at close distance
to people. Such requirements rule out video and acoustic
sensors, due to their low detection reliability, and radar
systems for their high-power electromagnetic emissions, which
may produce adverse health effects. Radio frequency sensors,
which detect and localize drones based on the radio signals
they emit, are among the most used technologies for dealing
with the problem [1]. They operate over lower frequencies
than radars and can effectively isolate the signals emitted by
drones from other radio frequency signals originating from
other sources (e.g., WiFi). Direction-finding radio frequency
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Fig. 1. Satellite views of our case studies (Google c©). (a) Leonardo Da
Vinci Airport, Rome, Italy (FCO). (b) Vienna International Center, Austria
(VIC).

sensors are able to localize drones via triangulation and offer
high reliability over large distances (up to several kilometers
in ideal conditions), with low to no impact from light and
weather conditions.

A. Motivation

The choice of the right sensor typology or a mix of different
typologies only solves a part of the general problem. When
designing a system for drone localization, it is crucial to
deploy the sensors in the best possible way. The two main
factors that influence the quality of an anti-drone system are
its cost-effectiveness and its ability to cover the Region of
Interest (RoI). The latter is usually formalized as coverage,
a measure of the extent of the portion of the monitored
region where the deployed sensors can effectively localize
targets. Typically, higher coverage requires higher costs, which
stem from, e.g., the need of a higher number of sensors
or the necessity to deploy sensors in inconvenient positions
(e.g., on the roof or walls of a building, or where additional
infrastructures must be built), which increase installation costs.
We note that a single sensor, at the time of writing, may cost
several tens of thousands of dollars.

The problem of optimally placing a set of sensors (with
respect to a suitable blend of the conflicting objectives cov-
erage and cost) has been widely explored in the literature,
due to its relevance in many areas, e.g., sensor networks,
infrastructure security and safety, smart cities, and smart
homes. A discussion on related work is provided in Section II

Determining a deployment of sensors that shows good
coverage and cost-effectiveness measures may still not be

enough for many critical scenarios. For example, more elab-
orate coverage measures may need to be considered, which
take into account portions of the RoI with different priorities,
multiple sensing quality levels, and tolerance to sensor faults.
Also, in such settings, providing as output only aggregate–
although quantitative–quality measures (e.g., the ratio of the
volume of the RoI satisfactorily covered), is often not enough
to build trust in the quality of the deployment found, and
delivering compelling evidence about which portions of the
RoI are satisfactorily covered and which are not is crucial to
provide means for rigorous auditing and formal certification of
the quality of the deployment. It may be the case, for instance,
that a deployment which appears to well cover a critical
portion of the RoI is actually problematic, as it would not
withstand the failure of a single sensor. Or that a deployment
which covers most of the volume of the RoI still leaves drones
the sufficient amount of freedom to move undetected via,
e.g., narrow, worm-shaped corridors (which, e.g., could form
only after the sabotage of a single sensor), and approach,
still undetected, a critical target, thus causing serious damage.
Note that, being able to determine coverage point by point, as
in [3], [4], and [5] in a discrete space is not enough to study
this kind of properties of a deployment.

B. Contribution

In this article, we present a novel approach to the sensor
placement problem based on computational geometry and
artificial intelligence (AI) black-box optimization (BBO).

In recent years, AI-based BBO techniques have wit-
nessed exceptional improvements; new algorithms and tools
are now able to tackle large and hard optimization prob-
lems [6], [7], [8]. These optimizers make use of a black
box that implements the objective function and, possibly, the
problem constraints. Thanks to powerful AI heuristics and
surrogate models automatically learned during the search,
these tools are powerful enough to optimize the objective,
subject to the provided constraints, even if the black box is
computationally expensive to evaluate (our case).

We designed and developed a geometry-based sensor
deployment coverage analyzer (GD-Cover), a software tool
that efficiently computes (via computational geometry and
statistical model checking) quality metrics for a given sensor
deployment, as well as a closed-form, analytical representation
of the uncovered region which provides the means for rigorous,
formal certification of its quality.

We show that, using GD-Cover as a black box, the sensor
deployment problem can be efficiently tackled by off-the-shelf
AI-based BBO solvers (NOMAD [9] in our experiments). Our
method scales very well over large and complex scenarios with
many obstacles and over large numbers of sensors.

To the best of our knowledge, our approach is also the first
to enable the computation of a closed-form three-dimensional
(3-D) representation of the region not covered by a set of
sensors. Finally, thanks to our proof-of-concept visualization
Web app, such a representation can be navigated by the users,
so to precisely understand the characteristics of deployments
and to facilitate possible audits and certification.
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II. STATE OF THE ART

The problem of determining the optimal placement of sensors
inside a given region has been extensively studied in the
literature. An optimal placement is defined as a positioning
and configuration of a set of sensors that optimize given
key performance indicators (KPIs). Most studies consider the
coverage performance metric, which measures the quality of
a deployment based on the portion of the RoI that it can
monitor. The configurations may vary depending on the kind
of sensors; for instance, camera sensors can be configured
by, e.g., tweaking orientation, pan, tilt, and zoom. Due to the
complexity of the problem and the large size of the scenarios of
interest, exact optimization approaches are not generally viable,
and virtually all works in the literature exploit incomplete
(best-effort) optimization techniques, typically metaheuristic
methods (e.g., evolutionary algorithms and particle swarm
optimization) and various forms of gradient descent.

Sensor deployments are often very costly; therefore, many
existing techniques also minimize the overall cost of the
deployment. Other performance metrics have been studied,
such as least exposure coverage, fault tolerance, and minimum
overlapping (see [5], [10], [11], [12], [13], [14]).

Several works, e.g., [15], [16], [17], [18], [19], and [20],
investigate the related problems of computing deployments of
wireless sensor networks and of UAVs optimizing additional
KPIs, such as connectivity, energy efficiency, and reliability.

Many existing studies assume a very simplified environ-
mental setting, where the RoI is defined as a two-dimensional
(2-D) space [12], [13], [21], [22], [23], [24], [25], even if, in
some cases (e.g., [26]), sensors can be deployed at different
heights. These techniques cannot be applied in the case of
UAVs localization, where targets fly in a 3-D space, as the
coverage of a 2-D region cannot be easily generalized to that
of a large 3-D scenario with obstacles.

Several approaches consider the problem of monitoring
a 3-D space, but with significant limitations affecting the
applicability of these approaches to localizing small UAVs in
large critical areas, such as those considered here. In [5], [11],
[14], [27], [28], and [29], the candidate points for placement
all lie on a 3-D surface; in [3], [4], [30], [31], [32], and [33],
admissible sensor positions or points to be monitored (or both)
belong to finite sets in the 3-D space. In particular, in most
existing 3-D approaches, the RoI is discretized in cells. The
visibility algorithms work on the assumption that if a point in
the cell (e.g., the centroid) is visible, then the whole cell is
covered. This assumption becomes problematic in our setting.
Consider, e.g., our FCO case study: this environment has an
area of around 16 km2 and a height of 100 m. If we discretize
the space into 3-D cubic cells with edges of length 50 m, we
would obtain around 12 800 cells (or target points). Although
this number is still manageable by existing approaches, we
note that a sensor deployment covering the centroid of a
125 000 m3 cell does not guarantee that it can localize a 50-cm
long drone anywhere within the cell. Conversely, if we use
much smaller cell edge lengths, such as 1 m, we would obtain
approximately 1.6 billion cells. Such a large number would not
be feasible to handle by any existing method with reasonable
time and computational resources, even if exploiting graphical
processing units, as in [34].

In practical applications, not all sensor deployments have the
same economic cost. Typically, the cost depends not only on
the number of deployed sensors but also on their characteristics
and positions. The minimization of the number of sensors is
studied in [4], [21], [22], [28], [31], and [32]; however, it is often
the case that the available sensors have different prices due to
different characteristics, so minimizing the number of sensors
does not imply that the overall cost is minimized. Furthermore,
the cost of physically deploying a sensor also depends on its
position. For instance, mounting a heavy sensor on a wall costs
more than mounting it on a roof, which in turn costs more than
placing it on the ground. References [3], [5], [27], and [35]
assume sensors have a fixed cost, while [14] and [36] assign to
each sensor a cost based only on the altitude and the roughness
of the terrain in its position. Conversely, our approach handles
this issue as a first-class citizen.

Summing up, to our knowledge (see also the recap in
Appendix A in the supplementary material), no other available
approach optimizes sensor deployments for UAV localization
in large, complex 3-D regions with obstacles, varying terrain
elevation, and in the presence of constraints on admissible
placements, by simultaneously taking into account sensors of
different typologies, different placement costs, multiple sens-
ing quality levels, and fault tolerance. Also, no other approach
supports the computation of a closed-form 3-D representation
of the region not covered by a candidate deployment.

III. PROBLEM MODELING

In this section, we present our geometric modeling approach
to the computation of an optimal sensor deployment. In the
following, R,R0+, and R+ denote the set of all, non-negative,
and strictly positive real numbers, while N and N+ denote the
set of non-negative and strictly positive integers.

Although our forthcoming definitions are well posed for real
spaces of any number of dimensions, they will be given for
regions of the 3-D space R

3, since this is what we need for our
problem. We thus use the general term region to denote any
set of points in R

3. Also, given three points A, B, C ∈ R
3, we

define by AB the straight-line segment between A and B, by AB
its length (i.e., the Euclidean distance between A and B), and
by ∠BAC ∈ [0, π ] the angle formed by AB and AC. Finally,
given two regions R, R′ ⊆ R

3, the distance between R and
R′, notation dist

(
R, R′), is defined as min

{
XY | X ∈ R, Y ∈ R′}.

This notion naturally reduces to the Euclidean distance XY
between two points X and Y , if R = {X} and R′ = {Y} are
both singleton sets.

A. Region of Interest and Obstacles

The RoI, i.e., the region where the presence of unauthorized
UAVs is to be detected, is some R ⊂ R

3 having finite volume.
The RoI can exhibit obstacles, e.g., buildings, other artifacts,

or simply varying ground elevations, which can hinder the
radio visibility of some target points by a deployed sensor.
Being able to explicitly model the position and shape of such
obstacles is thus crucial to accurately evaluate the quality of
a sensor deployment. We assume that the space occupied by
obstacles in the RoI is defined as a (typically disconnected)
region O ⊂ R.
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B. Priorities

For certain kinds of environments, the coverage of some
portions of the RoI R is more important than that of others.
In an airport, for instance, being able to localize a UAV flying
above the runways could be more important than localizing
one close to the terminals.

We assume that R is partitioned into a finite number of
regions having different priorities. Priorities are encoded as
elements in finite set H. The overall RoIR is hence partitioned
into {Rh | h ∈ H}, where Rh is the portion of R having
priority h. Being a partition, each point in R is assigned
exactly one priority value.

C. Sensor Deployments, Quality-Guaranteed Point Coverage
by Triangulating Sensors

The uncertainty in detecting a target provided by two
triangulating sensors is known to vary with respect to the
target–sensor distance and the angle θ between the target and
the sensors (see [37]).

Multiple Sensing Quality Levels: We support optimization
with respect to multiple sensing quality levels. To this end,
we assume that a finite set Q is defined to denote different
requested sensing quality levels. This set is ordered so that
higher values in Q denote higher quality levels.

Sensing Angles: For each q ∈ Q, we assume that a
sensing angle range

[
θmin,q, θmax,q

] ⊂ (0, π) is provided,
defining bounds to be respected (Definition 1) by the angle
θ between the target and the two triangulating sensors, to
ensure quality level q. For physical reasons, we can assume
that

[
θmin,q′ , θmax,q′

] ⊆ [
θmin,q, θmax,q

]
for q ≤ q′. Note

that sensing angle ranges are within (0, π) so that, to be
localized with any useful accuracy, the target must not be
collinear with the two sensors (as collinearity would hinder
triangulation [37]).

Sensors: Each sensor s is defined in terms of its admissible
positions As ⊆ R

3 (i.e., where it can be placed), the function
costs : As → R+ defining the cost to deploy the sensor in each
admissible position, and its technical capabilities. Admissible
positions may not correspond with R: indeed, there may be
portions of R where sensors cannot be deployed (e.g., bodies
of water or airport runways) or, conversely, it may be possible
to deploy sensors outside R. The technical capabilities of
s are available in the form of a set

{
rs,q, fs,q | q ∈ Q}

. For
each sensing quality level q, rs,q ∈ R+ and fs,q ∈ R+ are,
respectively, the maximum target distance and the radius of
the first Fresnel zone (FFZ) needed by s to detect a target
UAV with the accuracy required to satisfy quality level q
(Definition 1). The FFZ of sensor s when detecting a target at
position X ∈ R and ensuring quality level q is the 3-D ellipsoid
whose main axis is the segment connecting the position of s
and X and whose secondary axis has length 2fs,q. The FFZ
radius of s

(
fs,q

)
is the greatest value such that, if a stray

component of the signal transmitted by a UAV bounces off an
object within the FFZ and then arrives at s, the resulting phase
shift will be considered to have a negative impact on the signal
quality incompatible with sensing quality level q. Given the
ranges on the transmitting/receiving power of the employed

Fig. 2. 2-D q-coverage of point X by two sensors, with two obstacles (in
black); di = dist(XD(si),O) > fsi,q, i ∈ [1, 2].

antennas and on the band used, as well the maximum distance
rs,q for each q ∈ Q, upper bounds to the values of fs,q for each
s and q can be computed once and for all. Again, for physical
reasons, we assume that rs,q ≥ rs,q′ and fs,q ≤ fs,q′ for q ≤ q′.

Sensor Deployment: We finally define a deployment of a
set of sensors S a function D assigning an admissible position
D(s) ∈ As to each s ∈ S .

Definition 1 (see Fig. 2 for an illustration in 2-D) formalizes
our criterion to establish whether a point X is covered by two
sensors with quality at least q.

Definition 1 (Point q-Coverage by Triangulating Sensors):
Point X ∈ R − O is covered by two triangulating sensors s1
and s2 of deployment D with quality at least q (in short: X is
q-covered by s1 and s2) if:

1) X is within the ranges of s1 and s2 for quality level q:
dist(X,D(si)) ≤ rsi,q, i ∈ [1, 2];

2) the line of sight between X and each of the two sensors
lies at a distance higher than the radius of the sensor’s
FFZ for q from any existing obstacle: dist(XD(si),O) >

fsi,q, i ∈ [1, 2];
3) the angle θ formed by the points where the two sensors

are placed and X is within the sensing angle range for
q:∠D(s1)XD(s2) ∈ [

θmin,q, θmax,q
]
.

We write coverq(X, s1, s2) = 1 to denote that X is q covered
by s1 and s2, and coverq(X, s1, s2) = 0 otherwise.

D. Fault-Tolerant Quality-Guaranteed Coverage

In critical settings such as ours, tolerance to sensor faults is
an important issue. Hence, we will define quality-guaranteed
coverage even in the (limited) presence of sensor faults.
Namely, Definition 2 defines the whole portion of the RoI not
guaranteed to be covered by a sensor deployment D with a

required quality level q ∈ Q when in the presence of at most
j ≥ 0 (unknown) faulty sensors (in short: (j, q)-uncovered
region).

Definition 2 [(j, q)-Uncovered Region]: The set of points
X ∈ R − O( j, q)-uncovered by a deployment D is

U j,q = {
X ∈ R − O | coverj,q(X) = 0

}
(1)

where coverj,q(X) = minF∈2S ,|F|≤j max (s1,s2)∈(S−F)2,s1 
=s2

coverq(X, s1, s2). Namely, coverj,q(X) is 0 for those points X
for which there exists a set F of at most j sensors that, if faulty,
would prevent q-coverage of X by the others; coverj,q(X) is 1
otherwise.
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E. Objective

Given an RoI R with obstacles O, a partitioning of R
into priority regions {Rh | h ∈ H}, sets Q (sensing quality
levels) and S (sensors), and a maximum number k > 0 of
sensors which can be faulty, our goal is to find an (admissible)
deployment D∗ = S → R

3 of S that minimizes an objective
function of the form

D∗ = arg min
D

(Placem(D) + Uncov(D)) (2)

given as the linear combination of the following (possibly
conflicting) KPIs.

1) Placem(D) is the sensors placement cost of D, i.e., the
actual expense due to the chosen placement of the
sensors

Placem(D) =
∑

s∈S
costs(D(s)). (3)

2) Uncov(D) is the cost due to lack of coverage of
D, i.e., the weighted volume of R not (satisfactorily)
covered by D, under at most k faulty sensors

Uncov(D) =
k∑

j=0

∑

q∈Q

∑

h∈H
w(j, q, h)

× volume
(U j,q ∩ Rh

)
. (4)

Each weight w(j, q, h) denotes the implicit cost of not
ensuring (j, q)-coverage of a unit of volume in Rh.

Such two (possibly conflicting) KPIs are defined as to
represent an amount of money, and this allows us to sum them
up into a single objective value (2), the overall deployment
cost (ODC) of D. Thus, the objective function would consider
both the actual expense for the envisioned placement of the
sensors in the chosen locations and the implicit costs due to
their lack of (satisfactory) coverage.

IV. BLACK-BOX OPTIMIZATION

We cast the problem of finding an optimal sensor deploy-
ment as a constrained optimization problem, where the
objective function is (2), the search space is the set of
assignments of 3-D coordinates to each available sensor s, and
where constraints enforce each sensor s to be positioned within
its admissible region As and to triangulate with at least one
other sensor (i.e., all sensors contribute to the coverage).

The complexity of computing the regions U j,q [see (4)]
needed to evaluate the objective function and their
volumes hinders the possibility to exploit symbolic
approaches (e.g., mixed-integer linear programming, constraint
optimization, and the like) for scenarios of practical relevance,
even those approaches explicitly aimed at solving very large
instances, such as, e.g., [38] and [39].

We thus exploit AI-based BBO to solve realistic instances
of the problem. BBO solvers make use of a black box that
implements the objective function and the problem constraints.
Thanks to powerful AI heuristics and surrogate models auto-
matically learned during the search, these tools are powerful
enough to optimize the objective, subject to the provided
constraints, even if the black box is computationally expensive
to evaluate (our case). In particular, state-of-the-art BBO

Fig. 3. High-level architecture of our BBO-based approach.

solvers aim at reducing as much as possible the number of
invocations of the (expensive) black box.

A BBO solver (we experimented with the state-of-the-art
NOMAD [9] optimizer) repeatedly invokes our simulator (GD-
Cover, see Section V) as a black box on multiple, intelligently
chosen candidate deployments. GD-Cover is in charge of
computing both the objective value of the input deployment
D and how much D violates the problem constraints (or,
conversely, how robustly D satisfies such constraints). This
combined feedback is then provided back to the BBO solver,
which is in charge to find a better candidate deployment to
submit to GD-Cover, also building and exploiting a local
surrogate model of the solution space.

Given that our problem is highly nonlinear and realistic
instances are very large, finding a global optimum is an
unviable option. BBO solvers like NOMAD are intrinsically
incomplete, but guarantee global convergence to local optima
and include sophisticated AI-based heuristics and random
restarts to drive the search toward high-quality optima.

To exploit the availability of highly parallel computational
infrastructures, possibly concurrently used for many tasks, we
designed the two-level loosely coupled parallel architecture
shown in Fig. 3. The overall system is assumed to work on
overall n computational nodes. An orchestrator process (left)
samples a high number N of random deployments (step 1) and
asks GD-Cover (a highly parallel process itself, see below)
to evaluate their objective values (steps 2 and 3). These N
random deployments are then sorted from the best to the worst
by the orchestrator (step 4) and then used (step 5) as initial
assignments to launch, in parallel, n1 ≤ N BBO solvers,
where random deployments are assigned to the available
solvers in the order defined earlier (best initial deployments
first), as soon as they become idle (this is equivalent to the
sequentially repeated invocation of a single optimizer using N
restarts, where the best random deployments are used first).
Each of the n1 solvers uses GD-Cover as its black box.
The best deployment found is given as the final solution.
However, during the process, the current optimal deployment
can be returned at any time, should the available time budget
be over. GD-Cover itself (see Section V) is deployed as a
highly parallel computational service consisting of a front-end
process for each of the n1 BBO solvers, a centralized task
dispatcher, and n2 parallel helper processes, running on the
remaining nodes (thus, n2 = n − n1 − 2).

V. GD-COVER

In this section, we present GD-Cover, a highly parallel tool
written in Java that, given a description of the geometry of the
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RoI R and of its obstacles O (Section III-A), a partitioning
{Rh | h ∈ H} of R in priority regions (Section III-B), a
deployment D of a set of sensors S with known properties
for a given set of sensing quality levels Q, an angle interval[
θmin,q, θmax,q

]
for each q ∈ Q, the maximum number k of

sensors that can be faulty offers the following services (one
or more services can be requested at the same time).

1) Computes a quantitative measure of how much problem
constraints are violated by D (thus proving that D is not
admissible), or of how robustly they are satisfied (thus
certifying that D is admissible).

2) Computes a closed-form representation of the region
(j, q)-uncovered by D for any j ∈ [0, k] and q ∈ Q.

3) Efficiently estimates, by means of statistical model
checking, the value of the objective function
(Section III-E) with user-specified precision and
statistical confidence.

GD-Cover has been designed to serve as a black box for our
pool of BBO solvers seeking an optimal sensor deployment for
a shared scenario. Hence, it is deployed as a highly distributed
system, with each process being configured with a copy of
the scenario of interest (e.g., RoI, priorities, and obstacles)
and problem parameters. In particular, n1 parallel processes
are deployed, one per BBO solver, which act as front-ends
(see Fig. 3), and delegate the most intensive computations to a
pool of n2 helper processes, orchestrated by a centralized task
dispatcher which guarantees adequate load balancing among
the n1 optimization processes. The following sections describe
the computations carried out by GD-Cover in more detail.

A. Polyhedral Geometry-Based Reasoning

GD-Cover performs its computations exploiting concepts
from computational geometry. The key observation of the
suitability of geometric reasoning to perform the computations
above is forthcoming Proposition 1, which shows how a repre-
sentation of the (j, q)-uncovered region U j,q (Definition 2) can
be provided in geometric terms, by relying on the following
geometric notions: 1) the β-bloating of region R, which is
the set of points having distance at most β ∈ R+ from R:
bloat(R, β) = {

X ∈ R
3 | dist(X, R) ≤ β

} ⊇ R and 2) the
projection of point X onto region R, which is the region of
points Y such that the segment XY intersects R: proj(X, R) ={
Y ∈ R

3 | XY ∩ R 
= ∅}
(this is a specialized version of the

projection defined in [40]). Note that, given point X and
region R, the set of points Y such that the segment XY has a
distance from R at most a given threshold β can be defined
as proj(X, bloat(R, β)).

Proposition 1 (Geometric Representation of the (j, q)-
Uncovered Region): The (j, q)-uncovered region of
Definition 2 can be equivalently defined as

U j,q =
⋃

F∈2S|F|≤j

⋂

(s1,s2)∈(S−F)2

s1 
=s2

Uq
s1,s2

− O (5)

with

Uq
s1,s2

= [U range ,q
s1

∪ U range, ,q
s2

] ∪
[
UO,q

s1
∪ UO,q

s2

]
∪ Uangle q

s1,s2

(6)

where, for i ∈ [1, 2]:

Fig. 4. 2-D example of region Us1,s2 uncovered by sensors s1 and s2 [gray
region, (6)]. Different elements of the union (6) are highlighted with different
tones of gray. The figure assumes, for simplicity, fs1 = fs2 = f .

1) U range, q
si is the region out of range of si

U range, q
si

= {
X ∈ R | dist(X,D(si)) > rsi,q

}

i.e., the complement of a sphere of radius rsi,q centered
in the position of sensor si,D(si).

2) UO,q
si is the region not covered by si because of obsta-

cles. It is the set of points X ∈ R such that the distance
between an obstacle (a point in O) and the straight-line
segment connecting X with D(si) is at most the FFZ
radius of si for quality level q, fsi,q

UO,q
si

= proj
(D(si), bloat

(O, fsi,q
)) ∩ R.

3) Uangle
s1,s2 is the region not covered by s1 and s2 because

of excessive sensing error. It is the set of points X ∈
R such that the angle ∠D(s1)XD(s2) formed by X
with the positions of the two sensors is outside range[
θmin,q, θmax,q

]

Uangle,
s1,s2

= {
X ∈ R | ∠D(s1)XD(s2) /∈ [

θmin,q, θmax,q
]}

.

Proofs are delayed to Appendix B in the supplementary
material. Fig. 4 illustrates Proposition 1 in 2-D and under no
faults (i.e., j = 0), by showing the region uncovered by the
sensors in Fig. 2.

To carry out its tasks efficiently, GD-Cover approximates the
environment, i.e., the RoI and obstacles thereof, and performs
all its computations in terms of bounded and unbounded
convex polyhedra in R

3. Polyhedral representations are indeed
standard when handling data about geographic areas, terrain
asperities, buildings, and other kinds of artifacts and shapes
(e.g., the geometry of the runways at an airport) within
geographic database systems and computer-aided design tools.
Such a representation has several advantages: 1) every 3-D
region can be (both over- and under-) approximated with
arbitrary precision by a set of convex polyhedra (typically a
small number of polyhedra guarantees good approximations)
and 2) since convex polyhedra can be defined via linear
constraints, they are easy to manipulate efficiently using
standard computational geometry techniques and libraries.

A union of convex polyhedra, in general, is not a con-
vex polyhedron. However, there are well-known techniques
to manipulate unions (i.e., sets) of convex polyhedra very
efficiently (some are briefly outlined in Section V-C).

Being able to represent arbitrary regions with unions of
polyhedra yields a very convenient framework to perform
complex operations. In fact, the union or the intersection
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of unions of polyhedra can still be efficiently computed as
a union of polyhedra. In the case of the difference and
complement operations, the result is a union of nonclosed
polyhedra; however, for our purposes such regions can be
safely over- or under-approximated with unions of closed
polyhedra with arbitrary precision. In the sequel, we will refer
to convex closed polyhedra simply as polyhedra, and use the
term polyhedral representation of a region to signify that the
region is defined as a union of closed convex polyhedra.

Although the GD-Cover primary inputs are polyhedral,
some of the computed regions (mainly those described in
Proposition 1) are nonpolyhedral. GD-Cover computes poly-
hedral (under- and over-) approximations for them accurate
up to a user-specified error threshold ρ ∈ R+. This will be
the maximum Euclidean distance between a nonpolyhedral
region (e.g., U range, q

s , bloat
(O, fs,q

)
, and Uangle,

s1,s2 as defined in
Proposition 1, with s, s1, s2 ∈ S, q ∈ Q) and its computed
polyhedral (under- and over-) approximations.

B. Evaluation of Constraints

The sensor positioning requirements outlined in Section IV
break down to a number of problem constraints. GD-Cover
evaluates each of them to a positive value when violated (in
which case the resulting value is an indication of how much the
constraint is violated), and to a zero-or-negative value when
satisfied (in which case the resulting value is an indication
of how robustly the constraint is satisfied with respect to
perturbations of the candidate deployment).

Let q0 be the lowest sensing quality level in Q. For each
sensor s ∈ S , constraints are as follows.

1) Sensor Is Placed Not Within or Too Close to Obstacles:
If D(s) ∈ bloat

(O, fs,q0

)
(i.e., if s is within an obstacle or

too close to an obstacle even for the lowest sensing quality
level of interest), then the constraint is declared violated with
cost dist

(D(s),R − bloat
(O, fs,q0

))
. Otherwise, the constraint

is declared satisfied with robustness value: − dist(D(s) , bloat(O, fs,q0

))
.

2) Sensor Is Placed Within Its Admissible Region: If
D(s) /∈ As (i.e., if s is positioned outside its admissibility
region), then the constraint is declared violated with
cost dist(D(s),As). Otherwise, the constraint is declared
satisfied with robustness value: − dist(D(s),R − As).

3) Sensor Is Not Isolated: The constraint evaluates to
d = mins′∈S−{s}

(
dist

(D(s),D(
s′)) − rs,q0 − rs′,q0

)
. Thus, if

d > 0, then the constraint is declared violated with cost d,
which is an indication of how much s must be moved to
become nonisolated. Otherwise, if d ≤ 0, then the constraint
is declared satisfied with robustness value d, which is an
indication of how much s should be moved to become too far
with respect to all sensors with which s could now triangulate.

C. Computing Closed-Form Polyhedral Approximations of
the Uncovered Region

Here, we show how GD-Cover computes polyhedral repre-
sentations of U j,q, the regions (j, q)-uncovered (for j ∈ [0, k]
and q ∈ Q) by the specific deployment D of sensors S given as
input, as defined in Proposition 1. From this representation, it

will be easy to compute any kind of additional quality metrics
of the input sensor deployment, hence also any (computable)
objective function. This makes our approach extremely flexible
(see Section V-D).

Proposition 1 defines region U j,q as unions of intersections
of a number of regions, Uq

s1,s2 , one for each pair of distinct
sensors s1 and s2, from which the region occupied by the
obstacles (O) must be removed. Each Uq

s1,s2 in turn is defined
by a union of five regions: U range

s1 ,U range, q
s2 ,UO,q

s1 ,UO,q
s2 , and

Uangle,
s1,s2 , which are not polyhedral (see Proposition 1). GD-

Cover thus computes polyhedral approximations for them.
To overcome the possible errors in such approximations,
the tool can compute both polyhedral under- and over-
approximations of such regions, using the value ρ given as
input (see Section V-A) as tolerance. Such under- and over-
approximations in turn allow the tool to compute both a
polyhedral under-approximation

⌊U j,q
⌋

and a polyhedral over-
approximation

⌈U j,q
⌉

of the entire uncovered region U j,q.
Hence,

⌊U j,q
⌋ ⊆ U j,q ⊆ ⌈U j,q

⌉
.

Thus, points in R belonging to
⌊U j,q

⌋
are certainly (j, q)

uncovered by the given sensor deployment, points outside⌈U j,q
⌉

are certainly (j, q)-covered, while points lying in⌈U j,q
⌉ − ⌊U j,q

⌋
are possibly (j, q)-uncovered, with the uncer-

tainty due to the possible errors introduced when computing
polyhedral approximations of U range, q

s1 ,U range, q
s2 ,UO,q

s1 ,UO,q
s2 ,

and Uangle,
s1,s2 for all pairs of distinct sensors s1 and s2. Priorities

of R ({Rh | h ∈ H} , Section III-B) can be straightforwardly
considered on top of

⌊U j,q
⌋

and
⌈U j, q

]
: the uncovered portion

of the RoI with priority h is sandwiched between
⌊U j,q

⌋∩Rh

and
⌈U j,q

⌉ ∩ Rh.
GD-Cover exploits the C++ Parma Polyhedra Library [41]

for the efficient manipulation of convex polyhedra.
Unfortunately, most of the needed computations suffer from
combinatorial explosion in the worst case. To this end,
GD-Cover takes clever countermeasures to handle realistic
scenarios efficiently (see Appendix C in the supplementary
material for details). For example, when performing operations
on intersections of unions of polyhedra (which could need
to consider all tuples of polyhedra, one per union being
considered, and could result in an algorithm whose time
complexity in the worst-case is exponential in the number of
such polyhedra) and to efficiently seek polyhedra of interest
for the various computations, GD-Cover implements a spatial
indexing method based on AABB Trees [42], which greatly
reduces the number of operations needed in most cases (see
Algorithm 1 in Appendix C in the supplementary material).

To keep the size of the unions of polyhedra manipulated
by the algorithm small, and to mitigate the quadratic explo-
sion arising when considering all possible pairs of sensors,
GD-Cover performs parallel computation exploiting helper
processes via a centralized task dispatcher aimed at keeping
load balancing (see Fig. 3 and Algorithm 2 in Appendix C
in the supplementary material). Also, GD-Cover partitions the
RoI in m identical cells (R1, . . . ,Rm) and delegates again
the available helper processes to compute the (j, q)-uncovered
portion of each Rc (c ∈ [1, m]),U j,q

c . Indeed, computing
each single U j,q

c is way faster than computing the entire U j,q,
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because, on average, the sizes of the unions of polyhedra
manipulated by the algorithm are smaller and the distances
involved (much higher than the range of each sensor) imply
that several sensors (and sensor pairs) are too far to possibly
contribute to the coverage of the considered cell and can
be excluded upfront. As a consequence, the computation of
several of the U j,q

c s, also thanks to the AABB Tree-based
spatial indexing, takes negligible time. Dynamic load balanc-
ing is dealt with by taking m much larger than the number of
helper processes, an approach which is trivial to implement
(see [10], [43], [44]). Section VI-C2 experimentally evaluates
the scalability of this parallelization technique for the problem
at hand.

We also implemented a proof-of-concept Web app which,
given the output of GD-Cover (e.g., the uncovered region
for the optimal deployment computed by the BBO solver),
allows the user to visually and interactively navigate the RoI
as a 3-D space, see where sensors are actually planned to
be deployed and which portions of the RoI are (un)covered,
together with their priorities (details are delayed to Appendix E
in the supplementary material). All this enables any interactive
analyses of the results, e.g., visually inspecting any dangerous
uncovered regions, e.g., worm-shaped corridors which could
be used by an attacker to move across the RoI undetected.

D. Statistical Model Checking-Based Estimation of the
Objective Value

By computing closed-form polyhedral representations of the
uncovered regions U j,q, any objective function can be evalu-
ated by analyzing such regions. However, this computation is
an intensive task (see Section VI-C2) and is not strictly needed
to effectively guide the optimization process, when only the
objective value and an evaluation of the problem constraints
are needed by the BBO solvers.

GD-Cover uses statistical model checking techniques
(see [45] for a survey) to estimate the value of the objective
function (2) efficiently via Monte Carlo sampling while offer-
ing statistical guarantees on the accuracy of the approximation.
Note that sampling points on a 3-D fixed-step grid, instead
of that in the whole (continuous) RoI, would not yield any
guarantees on the accuracy of the estimation beyond the grid
step length, and would not be as effective in guiding the
optimization. In Section VI-C1, we show that the approxi-
mation of the objective value requires only a tiny fraction
(� 1% in our case studies) of the time required to compute
the uncovered regions in closed form, and so the objective
function exactly. Hence, GD-Cover computes the uncovered
regions in closed form only for the final (optimal) deployment
and upon explicit user request.

To compute such an approximation of the objective value,
GD-Cover uses a Monte Carlo-based algorithm along the lines
of [46]. Namely, it combines the EBGStop approximation
algorithm [47] and the hypothesis testing technique from [48].
Given values for two parameters, ε, δ ∈ (0, 1), the algorithm
computes an (ε, δ)-approximation of the mean value μ of a
bounded random variable Z, i.e., a value μ̂ guaranteed to lie
within μ(1∓ε) with probability at least (1−δ). The algorithm
iteratively generates (again exploiting the available pool of

parallel helpers, via the intercession of the task dispatcher to
handle load balancing among the n1 optimization processes)
i.i.d. samples of Z until the termination condition of [46] is
satisfied, which implies that the objective value estimated from
the samples is a (ε, δ)-approximation of the true value.

This approach can be used whenever the objective value
for a candidate deployment can be expressed as the expected
value of a bounded random variable Z. Definition 3 and
Observation 1 show that this is the case for the objective
function in (2) The complexity of (2) (which considers
multiple sensing quality levels as well as fault tolerance) also
indirectly shows that such an approach is very flexible, and
many other objective functions fall in this class (if not, our
BBO-based approach can still be used, but GD-Cover must be
asked to compute the uncovered regions in polyhedral form
on each candidate deployment to enable the computation of
the objective values, leading to longer optimization times).

Definition 3: Given R,D,H,Q,U , and Rh(h ∈ H) as in
Section III-E, let VR = volume(R) (a constant).

Let also
(
�j,q,F j,q, Prj,q

)
(j ∈ [0, k], q ∈ Q) be the

probability spaces such that:
1) �j,q = {⊥} ∪ {h | h ∈ H} is the space of outcomes (⊥/∈

H);
2) F j,q = 2�j,q

is the space of events;
3) Prj,q : F j,q → [0, 1] is the following probability

measure.
a) Prj,q(⊥) = 1 − ([volume

(U j,q
)
]/VR).

b) Pj,q(h) = ([volume
(U j,q ∩ Rh

)
]/VR) for h ∈ H.

c) Prj,q(E) = ∑
ω∈E Pj,q(ω) for any E ⊆ �j,q.

Since {Rh | h ∈ H} is a partition of R, Prj,q
(
�j,q

) = 1.
Observation 1: For every j ∈ [0, k], q ∈ Q, let Zj,q be

a real-valued random variable defined on probability space(
�j,q,F j,q, Pj,q

r

)
(Definition 3) as: Zj,q(⊥) = 0; Zj,q(h) =

VR × w(j, q, h) (for h ∈ H).
The value of the objective function (2) evaluated for deploy-

ment D is Placem(D) + ∑k
j=0

∑
q∈Q E

(
Zj,q

)
, where E(Zj,q)

is the expected value of Zj,q.
Observation 1 is proved in Appendix B in the supplementary

material. Random variables Zj,q, being bounded, clearly meet
the requirements for the application of the statistical model
checking algorithm described above. To generate i.i.d. samples
for Zj,q, each delegated helper (running in parallel) samples
points X ∈ R uniformly at random. For each sample X, the
helper determines whether X is (j, q)-covered for every j and
q (or falls within an obstacle, notation coverj,q(X) = 1

)
or not(

coverj,q(X) = 0
)

by deployment D. This is implemented by
exploiting standard polyhedral geometry operations (note that
all conditions of Definitions 1 and 2 can be checked in this
way, simply by looping through the set of pairs of sensors).
Value for each random variable Zj,q is computed from X as
follows: Zj,q = VR × w(j, q, h) × (

1 − coverj,q(X)
)
, where h

is the (single) priority value of point X.

VI. EXPERIMENTS

We exercised our parallel system by computing optimal
anti-drone sensor deployments on two real-world case studies,
the FCO in Rome, Italy, and the VIC in Vienna, Austria,
described below, having complementary properties: while the
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former consists in a large environment with wide open spaces
and relatively low obstacles, the latter presents several tall
buildings condensed in a small area. In all experiments, we
used NOMAD v. 3.9.1 as our BBO solver.

A. Experimental Setting

1) Sensors: For each case study, we considered sensors of
two types (namely, T1 and T2), with different characteristics
(chosen in accordance to reference values from the literature,
e.g., [1]), and costs. For generality, we normalized all costs
for each case study to the price of a single sensor of type T1
(the cheapest type) simply installed on a pole on the ground,
at a height between 5 and 10 m (the cheapest installation). We
sought for optimal fault-tolerant quality-guaranteed coverage
with two sensing quality levels (Q = {q0, q1} , with q0 < q1)

and one possible sensor fault (i.e., k = 1).
2) Priority Regions: The RoI of each case study was

partitioned into two priority regions (low and high priority).
3) Weights of the Objective Function: Values of w(j, q, h)

(the cost of not (j, q)-covering a unit of volume of the region
having priority h, Section III-E) are reported in Appendix
D-A2 in the supplementary material. For example, in FCO,
weights model indifference criteria such as: an increase of
one volume unit of the (0, q1)-covered high priority region
(w(0, q1, high) = 20) is equally exchanged with an increase
of two volume units of the (0, q0)-covered low priority region
(w(0, q0, low) = 10).

4) Approximation Thresholds and Initial Deployments:
The thresholds ε and δ used by GD-Cover to estimate the
objective value for each candidate deployment produced dur-
ing optimization were both set to 1%, thus guaranteeing that,
with probability at least 99%, the estimated objective value is
within a 1% error margin from its true value. Threshold ρ used
to compute polyhedral under- and over-approximations of the
regions mentioned in Section V-A was set to 10 m. Finally, the
number of random deployments generated and fed as starting
points to the multiple BBO solvers was set to N = 100.

5) Computational Infrastructure: Experiments were per-
formed on a cluster of identical machines, each one equipped
with 2 AMD EPYC 7301 CPUs (overall 64 cores) and 256-GB
RAM. Our loosely coupled architecture (Fig. 3) is particularly
suited for off-premise clusters as ours, which are shared among
a high number of competing processes (a common paradigm
aimed at keeping the cost of running parallel software low).
Below, we present the completion times that would be obtained
in three reference infrastructures, namely, if fully reserving
the following number of machines: 1) 1 machine (n = 64
nodes, using n1 = 5 BBO solvers and the remaining n2 = 57
nodes as GD-Cover helpers); 2) 10 machines (n = 640 nodes,
n1 = 20, n2 = 618); and 3) 50 machines (n = 3200 nodes,
n1 = 100, n2 = 3098). A full scalability analysis is delayed to
Appendix D-B in the supplementary material.

B. Case Studies

1) Leonardo Da Vinci International Airport: This is a
prototypical example of a critical area, with a total surface of
approximately 16 km2, most of which is taken by the three

4-km long runways. We created a simplified 3-D model of
the RoI as the union of 11 polyhedra with a height of 100 m.
The total volume to be monitored is thus 1.6 km3. The case
study presents many obstacles, modeled with 52 polyhedra,
ranging from large buildings, such as hangars and terminals
to small service buildings. Section I shows an aerial view of
FCO, while Fig. 6 shows screenshots of our visualizer with
our 3-D model.

Sensor costs are 1 (for type T1, reference cost) and 1.5 (T2).
Sensors can be placed everywhere on the ground (except for
the runways), and over the walls and roofs of (most of) the
obstacles (in the latter cases with cost overheads of 10% and
20%, respectively). Sensors of type T1 (respectively, T2) can
detect targets distant up to 1000 m (respectively, 1250 m) with
quality level q0, and up to 900 m (respectively, 1110 m) with
quality level q1. Sensing angle ranges for any sensor pair are
[25◦, 155◦] (for q0) and [30◦, 150◦] (for q1). All sensors have
the same FFZ (5 m) for both q0 and q1. The high-priority
portion of the RoI includes the runways and the space above
them, while the remaining region is low priority.

2) Vienna International Center: This is a complex of
several buildings that hosts the headquarters of important
organizations of the United Nations. Its political and economic
relevance makes this environment a critical area. VIC has
a substantially different structure than FCO: while the total
volume is only a fraction of the volume of FCO, the RoI is
much more densely occupied by tall buildings. This makes
the optimal placement problem harder, since each sensor will
only cover a small portion of the region, regardless of its
position, due to lack of line-of-sight visibility. Our 3-D RoI
model is a cube with edges of length 400 m containing sim-
plified shapes for all the relevant buildings (modeled with 51
polyhedra).

Sensor costs are 1 (type T1, reference cost) and 1.17 (T2).
All sensors can be placed on the ground, and T2 sensors also
over the roofs and on the concrete walls of the towers, i.e., not
on the glass façades (in the latter cases with cost overheads of
5% and 10%, respectively). Sensors of type T1 (respectively,
T2) can detect targets up to 500 m (respectively, 700 m) with
quality level q0, and up to 400 m (respectively, 600 m) with
quality level q1. Sensing angle ranges for any sensor pair are
[25◦, 155◦] (for q0) and [30◦, 150◦] (for q1). All sensors have
the same FFZ (5 m) for both q0 and q1.

The high-priority portion of the RoI is composed of two
parts: the first one is a portion of a spherical shell on top of
the buildings, constituting a sort of dome on the RoI; such
region is deemed as highly important because, in such a small
environment (densely occupied by buildings), it is crucial to
detect the arrival of a UAV as quickly as possible. The second
portion includes the area at ground level, that is the busiest
area where people walk to enter the buildings.

Section I shows an aerial view of VIC, while Fig. 6 shows
screenshots of our visualizer with our 3-D model.

C. Experimental Results

1) Optimization: We ran multiple experiments for each
case study, and with various configurations, where each
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Fig. 5. Up: Best ODC found for different numbers of T1 versus T2 sensors (configurations). Down: Time course of the objective value during optimization,
when fully reserving 640 nodes (i.e., ten machines, infrastructure 2) in Section VI-A5; one line per configuration; the blue lines refer to optimal configurations).
(a) FCO. (b) VIC.

configuration defines an overall number of sensors and the
relative numbers of T1 versus T2 sensors. We used between
10 and 20 sensors for FCO and between 3 and 10 for
VIC. Indeed, preliminary experiments showed that higher
numbers of sensors would not bring any significant further
improvement of the coverage, while fewer sensors would
simply be ineffective.

Fig. 5 (up) shows the ODCs of the best deployments found
for each configuration (T1 versus T2 sensors). The darker
a cell in the heat maps, the better the quality of the final
deployment found for that configuration. Numbers in cells
denote the objective value (2) of the optimal deployments
found. Values in parenthesis denote the best solution for each
number of sensors. The value with a “*” (in the darkest cell)
denotes the best solution overall.

Our system achieved a final (optimal) deployment yielding,
on average across the various configurations, an expected
reduction of the ODC of 27.37% (FCO) and 26.69% (VIC),
where the expectation is computed with respect to the N
initial random generated admissible deployments (time zero).
Expected ODC reductions on the best configurations are of
31.89% (FCO) and 32.01% (VIC).

Fig. 5 (down) shows, for each configuration and each
timepoint t, the objective value of the best deployment that
our system (when running on infrastructure 2), i.e., on 640
nodes fully reserved for the job) would have found if halted at
time t. The bold curves refer to the configurations of T1 versus
T2 sensors yielding the overall optimum, namely, 13 T1 and
3 T2 sensors for FCO, and 4 T1 and 3 T2 sensors for VIC
(see Fig. 5, up). The objective values for each configuration
have been normalized as percentages of the objective value of

the final deployment found for that configuration. The system
terminated in 11m45s (FCO) and 18m18s (VIC), and found
a solution whose objective value is just 10% above the final
optimum in only 34 s (FCO) and 6 s (VIC).

An analysis of the scalability of our parallel system on fully
reserved infrastructures of various sizes is delayed to Appendix
D-B in the supplementary material. Here, we just mention that,
on infrastructure 3) (i.e., using 3200 nodes), it would have
terminated in only 3m5s (FCO) and 3m40s (VIC), and would
have found a solution whose objective value is 10% above the
final optimum in only 9 s (FCO) and 5 s (VIC). Conversely, on
infrastructure 1) (i.e., using 64 nodes, i.e., just one machine),
it would have required 2h2m36s (FCO) and 3h16m23s (VIC)
to terminate, and 2m29s (FCO) and 22 s (VIC) to get to 10%
above the final optimum.

The time required by GD-Cover to estimate, via statistical
model checking, the objective value yielded by each candidate
deployment ranges within 1.8–8.5 s (FCO, 10–20 sensors)
and 2–32 s (VIC, 3–10 sensors), and grows with the number
of pairs of sensors that might triangulate. The higher times
measured in VIC (which has a smaller RoI than FCO, although
with more obstacles) are indeed due to the fact that each sensor
can in principle cooperate with most of the others. Hence,
the number of pairs of sensors which might triangulate is
much higher, and determining the coverage of each sampled
point requires more effort. However, deploying GD-Cover
using a high enough number of helper processes successfully
mitigates this issue. Details are delayed to Appendix D-D in
the supplementary material.

Finally, Appendix D-C in the supplementary material
evaluates the effectiveness of launching the parallel optimizers
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Fig. 6. 3-D models of our case studies and computation of optimal deployments at different states of search (green: RoI; red: uncovered region under no
sensors faults).

starting from the best initial deployments. This step greatly
helps when in the presence of tight time budgets and small
computational infrastructures. Namely, for both case studies, the
first deployment within 110% of the final optimum was achieved
from a parallel NOMAD run starting from one of the 4 best
random initial deployments, and the final optimum from one
of the 20 best initial deployments (with one single exception).

2) Computation of Uncovered Region in Closed Form: This
job is computationally way more intensive than estimating the
objective value of a candidate deployment via statistical model
checking. This is why such computation is performed only at
the end of the optimization process, or on user demand.

We ran GD-Cover to compute the uncovered region for the
final (optimal) deployments. As explained in Section V-C, we
enabled parallel computation also for this job, by splitting
the two RoIs in different numbers of identical cells, which
were processed in parallel by the available helper processes.
A full scalability analysis for this job is delayed to Appendix
D-B2 in the supplementary material. Here, we just mention
that, differently from what happens during optimization, the
geometric reasoning required by the computation of the
uncovered region is somewhat hindered when using large
infrastructures. This is unsurprising, since processing too many
small cells may yield duplication of efforts, because some of
the computed polyhedra (those needed to represent the regions
of Proposition 1 would span a high number of cells. The
optimal splitting of each RoI appears to be in a few thousands
of cells. This yields the computation terminate in 31m33s
(FCO, 6400 cells of size 100 × 100 × 10 m3) and 14m5s
(VIC, 6498 cells of size 21 × 21 × 22 m3) on infrastructure
1) (64 nodes). By comparing these durations with those of the
statistical model checking-based estimation of the objective
value (which is also much more suitable to be massively
parallelized), we see that driving the optimization with such
approximations is extremely beneficial.

Finally, Fig. 6 shows, for each case study, the computed
positions of the sensors and the uncovered region at three
milestones of the optimization process (when using the best
number of sensors): the initial deployment (time zero), the
first deployment whose objective value is 10% above the final
optimum, and the final (optimal) deployment. The pictures are
taken from our 3-D visualizer.

VII. CONCLUSION

In this article, we proposed a novel approach to
the computation of optimal (with respect to coverage,
cost-effectiveness, multiple sensing quality levels, and tolerance
to sensor faults) deployments of triangulating sensors for
unauthorized UAV localization in large, complex critical 3-D
regions exhibiting obstacles (e.g., buildings), varying terrain
elevation, portions with different coverage priorities, and in the
presence of constraints on where sensors can actually be placed.
Our approach relies on computational geometry and statistical
model checking, effectively exploiting off-the-shelf AI-based
BBO solvers and enables the computation of a closed-form,
analytical representation of the region uncovered by a sensor
deployment, which provides the means for rigorous, formal
certification of the quality of the latter. To our knowledge, no
other method is available which addresses all such aspects (see
also the recap in Appendix A in the supplementary material).

We have demonstrated the practical feasibility of our
approach by computing, in a few minutes on a small parallel
infrastructure (or a few hours on a single workstation),
optimal sensor deployments for UAV localization in two large,
complex regions, FCO in Rome and VIC, using multiple
instances of the NOMAD state-of-the-art AI-based BBO solver
as the underlying optimization engine.

Future work includes the evaluation of other (e.g.,
derivative-free) optimization techniques and the improvement
of GD-Cover to further reduce its computation time.
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