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Interactive Inference: A Multi-Agent Model of
Cooperative Joint Actions

Domenico Maisto , Francesco Donnarumma , and Giovanni Pezzulo

Abstract—We advance a novel computational model of multi-
agent, cooperative joint actions that is grounded in the cognitive
framework of active inference. The model assumes that to solve a
joint task, such as pressing together a red or blue button, two (or
more) agents engage in a process of interactive inference. Each
agent maintains probabilistic beliefs about the joint goal (e.g.,
Should we press the red or blue button?) and updates them by
observing the other agent’s movements, while in turn selecting
movements that make his own intentions legible and easy to infer
by the other agent (i.e., sensorimotor communication). Over time,
the interactive inference aligns both the beliefs and the behav-
ioral strategies of the agents, hence ensuring the success of the
joint action. We exemplify the functioning of the model in two
simulations. The first simulation illustrates a “leaderless” joint
action. It shows that when two agents lack a strong preference
about their joint task goal, they jointly infer it by observing each
other’s movements. In turn, this helps the interactive alignment
of their beliefs and behavioral strategies. The second simulation
illustrates a “leader–follower” joint action. It shows that when
one agent (“leader”) knows the true joint goal, it uses sensori-
motor communication to help the other agent (“follower”) infer
it, even if doing this requires selecting a more costly individ-
ual plan. These simulations illustrate that interactive inference
supports successful multi-agent joint actions and reproduces key
cognitive and behavioral dynamics of “leaderless” and “leader–
follower” joint actions observed in human–human experiments.
In sum, interactive inference provides a cognitively inspired, for-
mal framework to realize cooperative joint actions and consensus
in multi-agent systems.

Index Terms—Active inference, consensus, joint action, multi-
agent systems (MASs), sensorimotor communication, shared
knowledge, social interaction.
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I. INTRODUCTION

ACENTRAL challenge of multi-agent systems (MASs) is
coordinating the actions of multiple autonomous agents

in time and space, to accomplish cooperative tasks and
achieve joint goals [1], [2]. Developing successful MASs
requires addressing controllability challenges [3], [4] and deal-
ing with synchronization control [5] formation control [6], task
allocation [7], and consensus formation [8], [9], [10].

Research in cognitive science may provide guiding prin-
ciples to address the above challenges, by identifying the
cognitive strategies that groups of individuals use to suc-
cessfully interact with each other and to make collective
decisions [11], [12], [13], [14]. An extensive body of research
studied how two or more people coordinate their actions
in time and space during cooperative (human–human) joint
actions, such as when performing team sports, dancing or lift-
ing something together [15], [16]. These studies have shown
that successful joint actions engage various cognitive mech-
anisms, whose level of sophistication plausibly depends on
task complexity. The simplest forms of coordination and imi-
tation in pairs or groups of individuals, such as the joint
execution of rhythmic patterns, might not require sophisti-
cated cognitive processing, but could use simple mechanisms
of behavioral synchronization—perhaps based on coupled
dynamical systems, analogous to the synchronization of cou-
pled pendulums [17]. However, more sophisticated types of
joint actions go beyond the mere alignment of behavior.
For example, some joint actions require making decisions
together, e.g., the decision about where to place a table
that we are lifting together. These sophisticated forms of
joint actions and joint decisions might benefit from cognitive
mechanisms for mutual prediction, mental state inference, sen-
sorimotor communication and shared task representations [16],
[18], [19]. The cognitive mechanisms supporting joint action
have been probed by numerous experiments [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], sometimes
with the aid of conceptual [31], computational [32], [33],
[34], [35], [36], [37], [38], [39], [40], and robotic [41],
[42], [43], [44] models. Despite this progress, there is a
paucity of models that implement advanced cognitive abili-
ties, such as the inference of others’ plans and the alignment
of task knowledge across group members. Furthermore, we
still lack a formal theory that explains the cognitive mech-
anisms of joint actions from first principles; for example,
from the perspective of a generic inference or optimization
scheme.
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Fig. 1. Schematic illustration of the “joint maze” task. The two (gray and
white) agents are represented as two hands. Their initial positions are L3
(gray) and L19 (white). Their possible goal locations are in blue (L12) and
red (L10). The agents can navigate in the maze, by following the open paths,
but cannot go through walls).

We advance an innovative framework for cooperative joint
action and consensus in MASs, inspired by the cognitive
framework of active inference. Active inference is a normative
theory that describes the brain as a prediction machine, which
learns an internal (generative) model of the statistical regu-
larities of the environment—including the statistics of social
interactions—and uses it to generate predictions that guide
perceptual processing and action planning [45]. Here, we use
the predictive and inferential mechanisms of active inference
to implement sophisticated forms of joint action in dyads of
interacting agents. The model presented here formalizes joint
action as a process of interactive inference based on shared
task knowledge between the agents [2], [46].

The main contribution of this article is showing that effec-
tive cooperative behavior and sensorimotor communication
can emerge in dyads of active inference agents that jointly
optimize their beliefs about the joint goal and their plans about
how to achieve it. We exemplify the functioning of the model
in a “joint maze” task. In the task, two agents have to nav-
igate in a maze, to reach and press together either a red or
a blue button. Each agent has probabilistic beliefs about the
joint task that the dyad is performing, which covers his own
and the other agent’s contributions (e.g., Should we both press
a red or a blue button?). Each agent continuously infers what
the joint task is, based on his (stronger or weaker) prior belief
and the observation of the other agent’s movements toward
one of the two buttons. Then, he selects an action (red or blue
button press), in a way that simultaneously fulfils a pragmatic
(i.e., utility maximization) and an epistemic (i.e., uncertainty
minimization) objective. Here, the pragmatic objective prior-
itizes policies that achieve the joint task efficiently (e.g., by
following the shortest route to reach the to-be-pressed button).
Rather, the epistemic objective prioritizes policies that help the
other agent inferring what the joint goal is (e.g., by selecting
a longer route that the other agent can easily associate with
the goal of pressing the red button).

The next sections are organized as follows. First, we intro-
duce the consensus problem (called “joint maze”) we will use
throughout this article to explain and validate our approach.

Next, we illustrate the main tenets of the interactive inference
model of joint action. Then, we present two simulations that
illustrate the functioning of the interactive inference model.
The first simulation shows that over time, the interactive infer-
ence aligns the joint task representations of the two agents and
their behavior, as observed empirically in several joint action
studies [18], [24], [47], [48], [49], [50]. In turn, this form
of “interactive alignment” (or “generalized synchrony”) opti-
mizes the performance of the dyad. The second simulation
shows that when agents have asymmetric information about
the joint task, the more knowledgeable agent (or “leader”)
systematically modifies his behavior, to reduce the uncertainty
of the less knowledgeable agent (or “follower”), as observed
empirically in studies of sensorimotor communication [16],
[18]. This social epistemic action ensures the success of joint
actions despite incomplete information. Finally, we discuss
how our model of interactive inference could help better under-
stand various facets of (“leaderless” and “leader–follower”)
human joint actions, by providing a coherent formal explana-
tion of their dynamics at both brain and behavioral levels.

II. PROBLEM FORMULATION AND SCENARIO

To illustrate the mechanisms of the interactive inference
model, we focus on the consensus problem called “joint maze”
task, which closely mimics the setting used in a previous
human joint action study [34], see Fig. 1. In this task, two
agents (represented as a gray hand and a white hand) have to
“navigate” in a grid-like maze, reach the location in which the
red or blue button is located, and then press it together. The
task is completed successfully when both agents “press” the
same button, whatever its color (unless stated otherwise).

At the beginning of each simulation, each agent is equipped
with some prior knowledge (or preference) about the goal of
the task. This prior knowledge is represented as a probabilistic
belief, i.e., a probability distribution over four possible task
states; these are “both agents will press red,” “both agents
will press blue,” “the white agent will press red and the gray
agent will press blue” and “the white agent will press blue
and the gray agent will press red.” Importantly, in differ-
ent simulations, the prior knowledge of the two agents can
be congruent (if both assign the highest probability to the
same state) or incongruent (if they assign the highest prob-
ability to different states); certain (if the probability mass is
peaked in one state) or uncertain (if the probability mass is
spread across all the states). This creates a variety of coor-
dination problems, which span from easy (e.g., if the beliefs
of the two agents are congruent and certain) to difficult prob-
lems (e.g., if the beliefs are incongruent or uncertain). Each
simulation includes several trials, during which each agent
follows a perception-action cycle. First, the agent receives
an observation about his own position and the position of
the other agent. Then, he updates his knowledge about the
goal of the task (task goal inference) and forms a plan
about how to reach it (plan inference). Finally, he makes one
movement in the maze (by sampling it probabilistically from
the plan that he formed). Then, a new perception-action cycle
starts.
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Fig. 2. Generative model for multi-agent active inference. The circles
denote stochastic variables. The filled circles denote observed variables and
the unfilled circles denote hidden variables that are not observed and need
to be inferred. The squares indicate the categorical probability distributions
that parameterize the generative model. See the main text for an explanation
of the symbols A, B, C, D, G, S, and π . The plate notation indicates that
the structures held in a box are replicated, as a function of the indexes. Each
agent is denoted with an index of the outer box (from 1 to N) and executes
the process in the inner box, whose time horizon is t = 0, . . . , T − 1. During
execution, each agent sends his position and last action and receives the posi-
tions and the actions of the other agents. Each agent uses the information from
the other agents to infer the evolution of the entire scenario and to update its
model. Note that this scheme could be extended to multiple agents.

III. METHODS

Here, we provide a brief introduction to the active inference
framework for single agents (see [45] for details) and then we
illustrate the novel, interactive inference model developed here
to address multi-agent, cooperative joint actions.

A. Active Inference

Active Inference agents implement perception and action
planning through the minimization of variational free
energy [45]. To minimize free energy, the agents use a
generative model of the causes of their perceptions, which
encodes the joint probability of the stochastic variables illus-
trated in Fig. 2, using the formalism of probabilistic graphical
models [51]. The agent’s generative model is defined as
follows:

P(o0:T , s0:T , u1:T , γ |�)

= P(γ |�)P(π |γ,�)P(s0|�)

T∏

t=0

P(ot|st,�)P(st+1|st, πt,�) (1)

where P(ot|st,�) = A, P(st+1|st, πt,�) = B(ut = πt),
P(πt|γ,�) = σ(ln E − γ · G(πt)|�), P(γ,�) ∼ �(α, β),
and P(s0|�) = D.

The set � = {A, B, C, D, α, β} parameterizes the generative
model. The (likelihood) matrix A encodes the relations

between the observations O and the hidden causes of
observations S. The (transition) matrix B defines how hid-
den states evolve over time t, as a function of a control state
(action) ut; note that a sequence of control states u1, u2, . . . , ut,
. . . defines a policy πt (see below for a definition). The matrix
C is an a-priori probability distribution over observations and
encodes the agent’s preferences or goals. The matrix D is the
prior belief about the initial hidden state, before the agent
receives any observation. Finally, γ ∈ R is a precision that
regulates action selection and is sampled from a � distribution
with parameters α and β.

An active inference agent implements the perception-action
loop by applying the above matrices to hidden states and
observations. In this perspective, perception corresponds to
estimating hidden states on the basis of observations and of
previous hidden states. At the beginning of the simulation, the
agent has access through D to an initial state estimate S0 and
receives an observation O0 that permits refining the estimate
by using the likelihood matrix D. Then, for t = 1, . . . , T ,
the agent infers its current hidden state St based on the
observations previously collected and by considering the tran-
sitions determined by the control state ut, as specified in B.
Specifically, active inference uses an approximate posterior
over (past, present and future) hidden states and parame-
ters (s0:T , u1:T , γ ). Using the mean field approximation [52],
[53], namely, assuming that all variables are independent, the
approximate posterior can be factorized and described as

Q(s0:T , u1:T , γ ) = Q(π)Q(γ )

T∏

t=0

Q(st|πt) (2)

where the sufficient statistics are encoded by the expectations
μ = (s̃π ,π , γ ), with s̃π = s̃π

0 , . . . , s̃π
T . Following a variational

approach, the distribution in (2) best approximates the poste-
rior when its sufficient statistics μ minimize the free energy
of the generative model, see [45]. This condition holds when
the sufficient statistics are

sπ
t ≈ σ

(
ln A · ot + ln

(
B(πt−1) · sπ

t−1

))
(3a)

π = σ(ln E − γ · G(πt)) (3b)

γ = α

β − G(π)
(3c)

where the symbol “·” denotes the inner product, defined as
A ·B = ATB, with the two arbitrary matrices A and B. Action
selection is operated by selecting the policy (i.e., sequence
of control states u1, u2, . . . , ut) that is expected to minimize
free energy the most in the future. The policy distribution π

is expressed in (3b); the term σ(·) is a softmax function, E
encodes a prior over the policies (reflecting habitual compo-
nents of action selection), G is the expected free energy (EFE)
of the policies (reflecting goal-directed components of action
selection) and γ is a precision term that encodes the confi-
dence of beliefs about G. The EFE G(πt) of each policy πt

is defined as

G(πt) =
T∑

τ=t+1

DKL[Q(oτ |π)‖P(oτ )] + EQ̃[H[P(oτ |sτ )]] (4)
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where DKL[ · ‖ · ] and H[ · ] are, respectively, the Kullback–
Leibler divergence and the Shannon entropy, Q(oτ , sτ |π) �
P(oτ , sτ )Q(sτ |π) is the predicted posterior distribution,
Q(oτ |π) = ∑

sτ Q(oτ , sτ |π) is the predicted outcome, P(oτ )

is a categorical distribution representing the preferred out-
come and encoded by C, and P(oτ |sτ ) is the likelihood of
the generative model encoded by the matrix A.

The EFE can be used as a quality score for the policies
and has two terms. The first term of (4) is the Kullback–
Leibler divergence between the (approximate) posterior and
prior over the outcomes and it constitutes the pragmatic (or
utility-maximizing) component of the quality score. This term
favors the policies that entail low risk and minimize the differ-
ence between predicted (Q(oτ |π)) and preferred (P(oτ ) ≡ C)

future outcomes. The second term of (4) is the expected
entropy under the posterior over hidden states and it repre-
sents the epistemic component of the quality score. This term
favors policies that lead to states that diminish the uncertainty
future outcomes H[P(oτ |sτ )].

After scoring all the policies using EFE, action selection
is performed by drawing over the action posterior expecta-
tions derived from the sufficient statistic π computed via (3b).
Then, the selected action is executed, the agent receives a
novel observation and the perception-action cycle starts again.
See [45] for more details.

B. Multi-Agent Active Inference

The key advancement of this article is extending the active
inference framework to a multi-agent setting [1], in which
multiple agents (here, two) perform a joint task consisting in
navigating in a “joint maze” (Fig. 1) to simultaneously reach
either the red or the blue location. The “joint maze” of Fig. 1
includes 21 locations L1, L2, . . ., L21. Two agents, gray (i)
and white (j), start from the locations L3 and L19 and their
goal is to reach either the red (L10) or the blue (L12) goal
locations simultaneously. While the two agents can be initially
uncertain about their joint goal, to be successful they have to
infer what the joint task is and what the best policy or plan
is. We refer to these two inferences as “Task goal inference”
and “Plan inference,” respectively, and we will discuss how
they can be realized updating beliefs both within trials (by
observing the other’s actions) and across trials (by observing
whether they were successful).

For each trial, each agent can choose between 25 action
sequences or policies π (see Fig. S1 in the supplementary
material for their full list), which can be divided into two
main types: 1) those that follow the shorter paths that pass
through the central corridor or 1) longer paths that go through
the maze perimeter. The shorter paths of the gray agent to
reach the red and blue goal locations are (L3, L7, L11, L10)
and (L3, L7, L11, L12), respectively. The longer paths of the
gray agent to reach the red and blue locations are (L3, L2, L1,
L6, L9, L10) and (L3, L4, L5, L8, L13, L12), respectively. The
shorter paths of the white agent to reach the red and blue goal
locations are (L19, L15, L11, L10) and (L19, L15, L11, L12),
respectively. The longer paths of the gray agent to reach the
red and blue locations are (L19, L18, L17, L14, L9, L10) and

(L19, L20, L21, L16, L13, L12), respectively. Below, we will
call the first type of policies that go through the shorter paths
“pragmatic policies” and the second type of policies that go
through the longer paths “social epistemic policies.”

Each agent has a separate generative model, whose struc-
ture is shown in Fig. 2. In simulation 1, the two agents
are equipped with identical generative models, except for a
different estimate of their starting locations, L3 or L19. In sim-
ulation 2, there are some differences in the A and D tensors of
the two agents (see below), reflecting the fact that the white
agent (the “leader”) knows the joint task to be performed,
whereas the gray agent (the “follower”) does not.

When the two generative models are considered together,
they can be defined as 〈Si, Oi, Ui,�i〉, with i = 1, . . . , N,
where N is the number of agents (see Fig. 2). Here, we assume
that N = 2, but it is possible to generalize the model to a
larger number of agents. The hidden states Si = Si

1 ⊗ Si
2 ⊗ Si

3
are obtained as a tensorial product of three vectors (note that
unlike the usual algebraic notation for tensors, the subscripts
and superscripts do not indicate covariance or contravariance).
The three vectors are: the location of the agent Si

1, the location
of the other agent Si

2, and the agent’s belief about the joint goal
context Si

3, or the goals that the agents can jointly achieve.
Since there are two potential goals, the agent has a belief about
four possible joint goal contexts: 1) blue-blue; 2) blue-red;
3) red-blue; and 4) red-red, encoded as one-hot vectors [1, 0,
0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1], respectively. Note
that the joint goal context cannot be unambiguously inferred
from a single observation and hence inferring it is the most
challenging part of the task. In sum, the size of the hidden
state is 21 × 21 × 4 = 1764.

The observations Oi = Oi
1⊗Oi

2⊗Oi
3⊗Oi

4 consist of the ten-
sorial product between the observed agents’ positions Oi

1, Oi
2,

the joint goal Oi
3, and the associated utilities Oi

4 (see Fig. S1
in the supplementary material). The first three vectors encode
the observations that correspond to the three sets of hidden
states Si

1, Si
2 and Si

3. Note that Oi
1 and Oi

2 correspond to the
real locations of the two agents; Oi

3 corresponds to a cue about
the joint goal that is sampled from Ai

3 (see below); and Oi
4

has always an uninformative value, except at the last time step
of the trial, where it corresponds to either a “win” or a “lose.”
The control states Ui = Ui

1⊗Ui
2 denote the joint actions avail-

able to the agents. Note that in this simulation, each agent has
beliefs about his own and the other agent’s control states, even
if he can only execute his own actions.

The set of tensors �i = {Ai, Bi, Ci, Di} defines the struc-
ture of the generative model (see Fig. 2). The tensors Di =
Di

1⊗Di
2⊗Di

3 and Ci = Ci
1⊗Ci

2⊗Ci
3⊗Ci

4 encode the priors of
the hidden states and the observations, respectively. The for-
mer factor reflects the agent’s prior knowledge about its initial
state. We assume that each agent knows his own and the other
agent’s initial locations (Di

1 and Di
2 are deterministic), but the

belief Di
3 about which goal the other expects is uncertain and

adjustable as a simulation parameter. Besides, Di
3 depends on

the agent’s role, “leader” or “follower.” The leader knows the
joint task goal and that the follower is uncertain about it; to
reflect this, the leader splits the probability mass of Di

3 equally
between blue-blue and blue-red (if he knows that the goal is
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blue) or between red-red and red-blue (if he knows that the
goal is red). Conversely, the follower only knows that, in order
to succeed, both agents have to achieve the same goal. Hence,
he splits the probability mass of Di

3 equally between blue-blue
and red-red. The factor Ci

4 (i.e., a prior over observations that
incentivizes preferred outcomes) depends on the agent’s role,
in the same way as Di

3. The (likelihood) mapping between Si

and Oi is specified through the tensor Ai, defined as the ten-
sorial product Ai = ⊗

k Ai
k, k = 1, . . . , 4, where each Ai

k, one
for each different factor of Oi, is a 4-order tensor defined on
the hidden states.

The first factor Ai
1 is an identity tensor that maps the hidden

states that represent the agent’s positions in the maze into
their corresponding observations. Before defining the tensors
Ai

2 and Ai
3 we introduce a salience function, which scores the

evidence that an agent is pursuing a certain goal, given that
he is in a given location.

The salience of the location s1 with respect to the blue goal
is calculated as follows:

vDi

b (s1) =
(

d(s1, L10)

d(s1, L10) + d(s1, L12)

)
·
(

1 −
(

max
(

Di
3

)
− 0.5

))
. (5)

Equation (5) depends on two terms. The first term implies
that the smaller the Euclidean distance between the agent loca-
tion and the blue goal location (L12 in Fig. 1), the greater
the evidence that the agent is pursuing the blue goal (note
that we could have used a more complex measure that also
considers, for example, direction of movement, but we found
that Euclidean distance is sufficient in this setting). The sec-
ond term implies that the more peaked the mode of Di

3, the
smaller the salience. It could be interpreted as a simple form
of attention modulation or precision control [45], [54], which
prioritizes bottom-up observations if prior beliefs have low
precision. Note that it is possible to define the salience vDi

r (s1)

of the state s1 with respect to the red goal by swapping L10
and L12 in (5).

The tensor Ai
2 maps the hidden states of the agent into the

observations O2 that are relative to the other agent’s location.
We calculate Ai

2 in two steps:
1) We calculate the (absolute) difference between the

salience of one’s own and the other agent’s location,
with respect to the blue goal vDi

b (sk) and the red goal
vDi

r (sk), as 	vi
k = |vDi

b (sk)−vDi

r (sk)|, where sk is s1 when
considering one’s location and s2 when considering the
other’s location.

2) We define the likelihood p(o2|s1, s2) = sig(	vi
1 · 	vi

2),
where sig(x) = 1/(1 + σ · e−ρx) is the parametric
logistic function. We assume that p(o2|s1, s2) ranges in
the interval (0.75, 1), which we obtain by fixing the
parameters of the logistic function as σ = 10, ρ = 4.

This can be interpreted as a form of precision control, which
implies that when the agents’ locations unambiguously reveal
their joint task goals, the precision of the observation is high
and p(o2|s1, s2) = 1, while when the agents’ locations provide
poor information about their joint task goal, the precision of
the observation is low and p(o2|s1, s2) = 0.75.

The tensor Ai
3 encodes the likelihood of the joint goal con-

text of the two agents. Given the hidden state s = s1 ⊗ s2 ⊗ s3,
by assuming the saliences vDi

b (s1) and vDi

b (s2) as independent,

we define

Ai
3 1,2,3 = p(o3|s1, s2, s3) ≡ vDi

s3
(s1, s2) = vDi

s3
(s1) · vDi

s3
(s2).

Thus, Ai
3 1,2,3 represents the likelihood of the joint goal o3,

given that the two agents are in the locations s1 and s2,
respectively. The values of Ai

3 are shown in Fig. S2, in the
supplementary material. In the figure, the rows indicate the
values of the joint goal context s3 and the columns indicate the
values of the initial belief about the task goal (i.e., max(Di

3)).
Each matrix is a grid of size 21-21, where the rows and the
columns represent the locations s1 and s2, respectively, the col-
ors of the cells correspond to the values of the joint salience
vDi

s3
(s1, s2). The matrices in the first column (max(Di

3) = 0.5)

encode saliencies that are more peaked around the joint task
goals. The matrices shown in the next two columns encode
gradually more uniform and lower-valued saliencies—up until
only the goal locations are salient. Note that in the control sim-
ulation (described in the section on Simulation 1) in which we
prevent interactive inference to take place, we replace the Ai

3
tensor shown in Fig. S2, in the supplementary material with
a uniform tensor that does not allow inferring the goal of the
other agent from its location.

The tensor Ai
4 is responsible for modeling the relationship

between hidden states and outcomes, which can be positive,
neutral or negative. Ai

4 is a deterministic sparse tensor. For
any hidden state s corresponding to a joint position s1 ⊗ s2
that does not include any goal location, Ai

4 gives a “neutral”
outcome. The definition of “positive” and “negative” outcomes
varies depending on the joint task goal and the (leader or fol-
lower) roles of the agents. In Simulation 1, where both agents
are treated as “followers,” the outcome is positive if both the
agents are in the same goal location (e.g., both are in L10 or
both are in L12). Rather, the outcome is negative if only one
agent is on a goal location or if the two agents are in two
distinct goal locations. In Simulation 2, one of the two agents
(the “follower”) has the same tensor Ai

4 as in Simulation 1.
Rather, the other agent (the “leader”) receives a positive out-
come if both agents are in the correct goal location (e.g., L10
if the joint task goal is red-red) but a negative outcome if at
least one agent is in the incorrect goal location (e.g., L12 if
the joint task goal is red-red).

Tensor B encodes a deterministic mapping between hidden
states, given the control state u. Note that here the control state
u corresponds to a joint action, not to the action of a single
agent; hence it is specified as the tensorial product between
the vector of the five possible movements of one agent (“up,”
“down,” “left,” “right,” and “wait”) and the vector of the same
five movements of the other agent. The tensor B describes
how the spatial locations s1 and s2 of the agents change as
a function of the joint actions ui = ui

1 ⊗ ui
2, such as “up-

up,” “up-down,” “up-left,” etc. Note that the transitions regard
exclusively the spatial locations. The transitions among joint
goal contexts are not modeled explicitly. Rather, the agents
have to infer the current joint goal by observing O3.

The action-perception cycle of the multi-agent active
inference model is the same as the single-agent active infer-
ence (see Fig. 2), except that the two agents exchange obser-
vations between them. Specifically, agent i receives from the
agent j the outcome vectors Oj

1 and the action uj
1 and vice versa
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(for simplicity, we allow the agents to send actions to each
other; a slightly more complex generative model could have
included as inputs observations about others’ actions rather
than directly their actions). Each agent uses this information
(plus the observations Oi

2 and the actions ui
2 that they com-

puted) to update his beliefs about the hidden states and control
states and then to select a course of actions or policy π .

The two key mechanisms of the model are Task goal infer-
ence and Plan inference. Task goal inference corresponds to
inferring what the goal of the joint task is, i.e., updating the
belief about the four possible task goals (blue-blue, blue-red,
red-blue, and red-red). As the task goal is specified at the
level of the dyad, in order to infer it, each agent needs to
consider both his prior knowledge about the task goal and the
movements of the other agent, which are informative about the
other agent’s task knowledge. Specifically, task goal inference
follows a principle of rational action; namely, the expecta-
tion that the other agent will act efficiently to achieve his
goals [55]. Put simply, if an agent observes the other agent
moving toward the red (or blue) goal, he updates his joint
goal context, by increasing the probability that the goal is
red (or blue). Furthermore, both agents update their beliefs
about the task goal at the end of each trial, when they receive
feedback about success (“win” observation) or failure (“lose”
observation).

Plan inference corresponds to inferring the course of action
(or plan) that maximizes task success, on the basis of the
inferred joint task. In this model, each agent infers both his
own and the other agent’s plan—although, of course, he can
only execute his own plan. The inference about one’s own
and the other agent’s plans needs to consider the utility of
following different routes (which privileges the shortest route)
and the uncertainty about the goal (which prompts “pistemic”
behavior and the selection of informative routes). The balance
between utilitarian and epistemic components of planning will
become important in Simulation 2, see later.

A key thing to notice is that the perception-action cycles
of the two agents—and their inferential processes—are mutu-
ally interdependent, as the movements of one agent determine
the observations of the other agent at the next time step. Our
simulations will show that this interactive inference naturally
leads to the alignment of belief states and behavioral patterns
of the two agents, analogous to the synchronization of neu-
ronal activity and kinematics in socially interacting dyads [15],
[30], [49]. Furthermore, the simulations will show that “social
epistemic actions” that aim at reducing the uncertainty of the
other agent increase the alignment and task success, especially
in tasks with asymmetric knowledge.

IV. SIMULATIONS OF INTERACTIVE INFERENCE

We present two simulations of interactive inference using
the “joint maze” task of Fig. 1. The first simulation illustrates
the case in which both agents know that the goal can be either
the blue or the red button and the same goal should be reached
by both of them simultaneously. This simulation illustrates that
even if the two agents start with uncertain prior on joint goal
contexts, during time their beliefs (and behavior) gradually

align, which permits the agents to successfully complete the
task most of the time. The second simulation illustrates the
case of two agents that initially have asymmetric task knowl-
edge. One of them (the leader) knows which one of blue or
red is the goal. The other (follower) agent does not know
this, but knows that the same goal should be achieved with
the leader simultaneously. This simulation illustrates senso-
rimotor communication—and the importance for the leader
to select (epistemic) actions that reduce the follower’s uncer-
tainty, in order to complete the task successfully. Note that
in these simulations, the agent’s beliefs about hidden states
Si = Si

1 ⊗ Si
2 ⊗ Si

3 change over time, whereas the parameters
of the model are assumed to be fixed.

A. Simulation 1 (Leaderless Interaction)

The goal of Simulation 1 is testing whether and how
interactive alignment favors the alignment of behavior and
belief states of two agents engaged in the “joint maze” task.
This simulation comprises 100 trials. For each trial, two iden-
tical agents (apart for their prior on the joint goal context, see
later) start from two opposite locations of the “joint maze”:
the gray agent starts in location L3 and the white agent starts
in location L19. They can move one step at a time, or wait
(i.e., remain in the same location), until they reach one of
the locations that include colored goals (red in L10, blue
in L12). There are multiple sequences of actions (aka “poli-
cies”) that each agent can take to reach the goal locations,
which correspond to shorter or longer paths, with or without
“wait” actions, etc. The 25 policies used in the simulation are
specified in Section III. What is most important here is that
irrespective of the selected policy, a trial is only successful if
both agents reach the same goal / button location, red (L19) or
blue (L12). Specifically, if at the end of the trial both agents
are in the red (L10) or the blue (L12) button location, then the
trial is successful and the agents receive the preferred obser-
vation (“win”). Otherwise, if the two agents fail to reach the
same button location simultaneously (e.g., one is in L10 and
the other is in L12), the trial is unsuccessful and the agents
receive an undesirable observation (“lose”).

Fig. 3 shows the results of one example simulation. At trial
1, the agents start with the same prior on the joint context
goal. This uncertain belief assigns 0.5 to “both agents will
press red” (in short, red-red), 0.5 to “both agents will press
blue” (in short, blue-blue) and zero to the two other possible
states (red-blue: “the white agent will press red and the gray
agent will press blue” and blue-red: “the white agent will press
blue and the gray agent will press red”).

The first two panels of Fig. 3 show the prior beliefs about
the joint goal context of the white and gray agents, respec-
tively, at the beginning of each trial, from 1 to 100. In this
and the subsequent simulations, the agents’ prior beliefs for
the first trial are set manually, as discussed above. Then, the
prior beliefs are updated within trials, as a result of inference.
Furthermore, they are updated across trials: they are the poste-
rior beliefs at the end of the previous trial (as usual in Bayesian
inference), but multiplied by a fixed (volatility) factor. This
ensures that the prior probability of red-red or blue-blue cannot
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Fig. 3. Results of Simulation 1. The first two panels show the prior beliefs of
the white (first panel) and gray (second panel) at the beginning of each trial.
The vertical bars indicate moments in which we manually change the mind of
the white agent. We invert his belief about the joint goal context assigning a
higher value (0.7) to blue-blue (if its prior belief assigned higher probability
to red-red) or to red-red (if its prior belief assigned higher probability to
blue-blue). The third panel shows the outcome of the trials. These include
successful trials in which the agents press the blue button (blue bars) or the
red button (red bars) and failures (black bars).

be higher than 0.7. This is because in many trials, the posterior
beliefs reach the value of 1 for red-red or blue-blue, so the
agent is sure about the shared task goal. If this posterior value
were used as the prior value for subsequent trials, there would
be little place for changes of mind. Introducing the fixed fac-
tor amounts to assuming that the agents are not fully sure that
joint task goal would remain the same across trials—or in
other words, believe that the environment has some volatility.
From time to time (vertical bars) we manually “change the
mind” of agent 1 from red-red to blue-blue or vice versa, to
introduce variability in the simulation.

The third panel of Fig. 3 shows whether the agents com-
pleted successfully the trial by pressing the same button (the
blue bars indicate that both pressed the blue button, whereas
the red bars indicate that both pressed the red button) or unsuc-
cessfully (black bars). Finally, the gray vertical bars show trials
in which the white agent “changes mind” about the goal (e.g.,
from blue-blue to red-red or vice-versa). Following a “change
of mind,” the dyad usually requires one or a few trials before
realigning on the new joint task goal.

Fig. 3 shows that the two agents end up the trials with
aligned belief states most of the times, except in the first trials
(in which they started with uncertain beliefs) and immedi-
ately after the changes of mind (vertical bars). Furthermore,
the two agents are successful during most of the trials in
which their beliefs are aligned and unsuccessful when their
beliefs are not aligned. As shown in Fig. 3, the errors occur in
the very first trials, immediately after the gray agent changes
mind and in one trial afterward. The errors on the first tri-
als may occur because the agents are uncertain about what to
do and they assign the same (EFE) “score” to the two poli-
cies that go straight to the red button and the blue button;
see Section III for an explanation of EFE and Fig. S3 in the
supplementary material for an illustration of the EFE of the
policies of the white agent at the beginning of the first trials.
When the two agents are very uncertain, there are two possible
behaviors:

1) Both agents may select their task goals randomly, which
might or might not result in an error (see Fig. S4 in the
supplementary material for an illustration of the results

Fig. 4. Average results of 100 runs, with the same parameters as Simulation
1, for 15 trials. The top panel shows a measure of belief (dis)alignment of the
agents: the KL divergence between their joint goal contexts. The plot shows
the mean value of KL and the standard deviation of the mean (note that we
removed outliers whose KL fell outside a confidence interval of 95%). The
bottom panel shows a histogram of mean success rate.

of 100 replications of the same experiment, without
changes of mind).

2) One agent might simply follow the other and be suc-
cessful. This “follower effect” is particularly apparent
when the agents’ prior beliefs are weak, as in the first
trials.

Rather, in trials in which the agents’ prior beliefs are strong,
such as after a change of mind, they do not simply follow one
another, but try to fulfill their prior belief—and this explains
why we observe several errors after only one of the agents
changes mind. These examples illustrate that it is the strength
(or the precision) of the beliefs about the joint goal context that
determines whether or not an imitative response takes place;
see also [41] for a robotic demonstration of the importance of
prior beliefs in enabling imitative responses. Finally, note that
some errors can occur randomly, with low probability, since
action selection is stochastic.

To better quantify the interactive alignment of belief states
between the agents across trials and its effects on performance,
we executed 100 runs of Simulation 1 and plotted a measure of
the belief alignment of the dyad—the KL divergence between
the joint goal contexts—and their performance, during the first
15 trials. The top panel of Fig. 4 shows that at the begin-
ning of the simulation, the KL divergence between the prior
beliefs of the two agents is small, as they are both equally
uncertain about their joint task. While their beliefs are appar-
ently aligned, the alignment regards an uncertain state—and
this is why their performance is initially low (see the bottom
panel of Fig. 4). During the next few trials, the agents con-
sider different hypotheses about the joint task goal. This leads
to a transient increase in the KL divergence between their
beliefs (and its variance). After a few trials, the two agents
converge to a shared belief about the joint goal and hence
the KL divergence decreases. During this process, the success
rate increases from 50% (random) to above 90%, within a few
trials, see the bottom panel of Fig. 4.

Note that in this simulation the initial choice of a particular
joint goal context (red-red or blue-blue) is random, but its per-
sistence across trials depends on a process of interactive belief
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alignment between the agents. The alignment of behavior and
of beliefs about task goals might occur in two ways:

1) It might occur thanks to interactive inference within tri-
als, namely, because each agent monitors the movements
of the other agent and uses this information to update his
estimate about the joint task goal and the other agent’s
plan, following a principle of rational action (i.e., the
expectation that the other agent will act efficiently to
achieve his goals [55]).

2) The alignment might occur because at the end of each
trial, the agents receive a feedback about their success
(“win” observation) or failure (“lose” observation) and
use this feedback to update their beliefs. Second align-
ment might be the byproduct of a standard reinforcement
learning approach to learn behavior by trial and error,
without interactive inference within trials (but note that
using reinforcement learning would require updating the
model parameters, whereas we keep them fixed in our
simulations).

To understand whether the first mechanism based on
interactive inference is actually useful for alignment and task
success, we replicated the same experiment, but by preventing
interactive inference to take place. We did this by remov-
ing any useful information from the likelihood matrix that
maps the others’ positions into task goals (i.e., by making
the Ai

3 tensor uniform; see Section III for details). This con-
trol simulation shows that without interactive inference, the
performance decreases drastically and there is little alignment:
the agents keep switching between red and blue goals and
their beliefs do not become increasingly aligned over time
(see Figs. S5 and S6 in the supplementary material). This con-
trol simulation shows that despite the task could be addressed
using (reinforcement-based) feedback from successes and fail-
ures, the interactive inference is key to achieve alignment.
Increasing the weight assigned to feedback information could
potentially increase success rate and alignment, but this does
not seem necessary when interactive inference is in place.

In sum, Simulation 1 shows that two agents that engage in
interactive inference can align both their joint goal contexts
and their plans to achieve the joint task goal, forming shared
task knowledge [18], [56], [57]. The alignment at both the
belief and behavioral levels is made possible by a process of
interactive, reciprocal inference of goals and plans. The two
agents initially have weak beliefs about the goal identity and
therefore they can “follow each other” until they settle on some
joint goal—and successively stick to it.

B. Simulation 2 (Asymmetric Leader–Follower Interaction)

The goal of Simulation 2 is testing the emergence of
“leader–follower” dynamics observed in human studies using
the “joint maze” setup [34] and other related studies in which
the agents have asymmetric preferences (or information) about
the joint task goal [25], [58], [59], [60]. This simulation is
similar to Simulation 1, but the two agents differ in their
prior beliefs about the task goal [25], [34], [58], [59], [60].
Specifically, the white agent (the “leader”) knows the task
to be accomplished—for example, red-red—whereas the gray

agent (the “follower”) does not. In other words, while in
Simulation 1 both agents had initially weak beliefs (or pref-
erences) about the joint goal and can be therefore considered
two “followers,” in Simulation 2 one of the two agents is a
“leader” and has a strong initial preference about the joint task
goal.

The generative model of the follower is identical to the one
used in Simulation 1, whereas the generative model of the
leader differs from it in two ways. First, the (likelihood) tensor
Ai

4 of the white agent reflects his knowledge of the true task
contingencies; namely, that the preferred “win” observation
can only be obtained by achieving the joint task red-red, but
not blue-blue (or the opposite when the true task goal is blue-
blue). Furthermore, the prior belief of the white agent is 0.5
for red-red, 0.5 for red-blue and 0 for the two other joint
goals (or the opposite when the true task goal is blue-blue).
This prior belief is updated both within and across trials. as
in Simulation 1.

Several studies [25], [34], [58], [59], [60] showed that when
leaders and followers have asymmetric information, the leaders
modify their movement kinematics to signal their intentions
and reduce the uncertainty of the followers [16], [35]. For
example, consider that in the scenario of Fig. 1 the leader
(white agent) has a choice between two kinds of action
sequences or policies to reach the red goal location. The first,
“pragmatic policies” follow the shortest and hence most effi-
cient path to the goal: L15, L11, and L10. However, if the
leader selects the pragmatic policy, he does not offer any cue
to the follower about the joint task goal, until the last action (to
L10). This is because passing through L15 and L11 is equally
likely if the intended goals are red or blue and hence does not
provide diagnostic information about the goal location. The
second, “social epistemic policies” follow the route through
L18, L17, L14, L9 and L10, which, despite being longer, pro-
vides to the follower early information to the intended goal
location. This is because passing through L18, L17, L14, L9
is rational only if the goal is the red button—and hence it
provides diagnostic evidence that the to-be-pressed button is
red. The above studies [25], [34], [58], [59], [60] show that
leaders often select “social epistemic policies”: they sacrifice
efficiency to reduce the follower’s uncertainty.

The tradeoff between pragmatic and epistemic components
of policy selection is automatic in active inference, because
the EFE functional used in active inference to score policies
includes two components: 1) a “pragmatic component” that
maximizes utility and prioritizes the shortest paths to the goal
and 2) an “pistemic component” that minimizes uncertainty
(see Section III). We therefore expected the leaders to select
“social epistemic policies” most often when the followers were
uncertain—and select “pragmatic policies” when uncertainty
was reduced.

The results of an example leader–follower simulation last-
ing 30 trials are shown in Fig. 5. The first and third panels of
Fig. 5 show the prior beliefs of the leader (white agent) and
the follower (gray agent), respectively, at the beginning of each
trial. These are largely aligned, except in the very first trials.
The second and fourth panels show the policies selected by the
leader and the follower, respectively. As discussed above, we
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Fig. 5. Results of Simulation 2: example of leader–follower dyadic
interaction, for 30 trials. The first two panels show the prior beliefs of the
leader at the end of each trial and the policy he selects (shorter red bar:
pragmatic policy that follows the shortest path to the goal; longer blue bar:
social epistemic policy that follows the longer but more informative path to
the goal). The third and fourth panels show the prior beliefs of the follower
at the end of each trial and the policy he selects. The fifth panel shows the
outcome of the trials. These include successful trials in which the agents press
the red button (red bars) and failures (black bars).

divided policies into two categories: 1) “pragmatic policies”
(S: shorter red bars) that follow the shortest path to the goal
and 2) “social epistemic policies” (L: longer blue bars) that
follow longer but more informative paths. The second panel of
Fig. 5 shows that the leader tends to select “social epistemic
policies” in the first trials, to reduce the follower’s uncertainty
(see also Fig. S7 in the supplementary material for a visualiza-
tion of the EFE of the leader’s policies). Rather, the follower
has no benefit from selecting epistemic policies and selects
pragmatic policies across almost all the trials. Finally, the bot-
tom panel of Fig. 5 shows that in all but the first two trials
(short black bars), the agents successfully achieve the red-red
goal (long red bars).

Fig. 6 shows the results of 100 repetitions of the same sim-
ulation (see also Fig. S8 in the supplementary material). The
first panel shows that the beliefs of the agents, measured as
the KL divergence between their prior beliefs about the task
goal, align over time. The second panel shows that the average
performance of the dyads, measured as the number of times
they select the correct red-red goal, increases over time. The
third panel shows the percentage of “social epistemic policies”
selected by the leaders. Initially, the leaders have a strong ten-
dency to select “social epistemic policies,” but this tendency
decreases significantly across trials, as the followers become
increasingly certain about the joint task goal, as shown empir-
ically [25], [34], [58], [59], [60]. This result emerges because
in the EFE (used in active inference to score policies), the
decrease of uncertainty lowers the epistemic value of policies,
hence lowering the probability that they will be selected [61].

Fig. 7 permits appreciating how the leader balances epis-
temic and pragmatic policies over time. The first panel shows
the negative EFE (averaged across 100 repetitions) that the
leader selects the most useful social epistemic policy (red line)
and the most useful pragmatic policy (green line). It shows that
the social epistemic policy has a very high probability during
the first five trials, then its probability decreases until the prag-
matic policy becomes the most likely, starting from trial 10.
The second panel shows the probability (averaged across 100

Fig. 6. Average results of 100 runs, with the same parameters as Simulation 2.
The format of the first two plots is the same as Fig. 4. The third plot shows the
percentage of policies selected by the leader that we label as “social epistemic
actions” and prescribe signaling behavior. See the main text for explanation.
For example, if the gray agent is the leader, he can select an epistemic policy
that passes through L3, L2, L1, L6, L9, and L10 (to reach the red button) or
through L3, L4, L5, L8, L13, and L12 (to reach the blue button).

Fig. 7. How the leader balances epistemic and pragmatic policies in
Simulation 2. Top panel: negative EFE of the most useful epistemic (red)
and pragmatic policy (green), in the first ten trials. Bottom panel: frequency
of the most useful epistemic policy as a function of the entropy of the leader’s
joint goal context. This entropy provides a measure of the (leader’s estimate
of the) follower’s uncertainty.

repetitions) that the leader selects a social epistemic policy
as a function of his uncertainty about the task goal, quanti-
fied as the entropy of his belief about the joint goal context
(please remind that this is a shared representation that encodes
both the leader’s and the follower’s contributions). The entropy
over this variable reflects an estimate of the follower’s uncer-
tainty, not of the leader’s uncertainty (as the leader knows
the goal) and decreases over time, as the follower becomes
less uncertain. Notably, the results shown in Fig. 7B in the
supplementary material closely correspond to the findings of
a study that uses the “joint maze” setting [34]. The study
reports that the probability that a (human) participant selects a
pragmatic policy is high only when (his or her estimate of) the
follower’s uncertainty is very low (see [34, Fig. 8A]), which
is in good agreement with the pattern shown in our Fig. 7B
in the supplementary material.

In sum, Simulation 2 shows that in leader–follower
interactions with asymmetric knowledge, leaders select “social
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epistemic policies”—and therefore sacrifice some efficiency
in their choice of movements—to signal their intended goals
to the followers and reduce their uncertainty. This signaling
behavior is progressively reduced, when the followers become
more certain about the joint action goal. This form of signaling
was shown in previous computational models that used goal
and plan inference, but the models used ad-hoc formulations
to promote social epistemic actions [16], [35]. In contrast,
social epistemic actions emerge naturally in our model, for two
reasons. First, the EFE functional used to score policies bal-
ances automatically pragmatic and epistemic components. This
means that when uncertainty resolution is necessary, the EFE
functional automatically promotes epistemic behavior [45].
To illustrate this point, we performed a control simulation
(Fig. S9 in the supplementary material) that is the same as
Simulation 2, except that we removed the “epistemic compo-
nent” from the EFE (see Section III). In the control simulation,
the leader selects significantly less social epistemic policies,
the behavioral alignment process is slower and the success
rate grows more slowly compared to the case in which the
EFE is used. This control simulation shows that EFE affords
social epistemic actions and these promote leader–follower
interactions.

The second reason why social epistemic behavior emerges
in our model is because the leader’s generative model includes
beliefs about the shared task goal. When scoring his policies
(via the EFE functional), the leader considers the uncer-
tainty (or the entropy) of the shared task goal and it assigns
high probability to “epistemic” policies, regardless of the fact
that they lower his own uncertainty (as shown in previous
studies) or the follower’s uncertainty [34]. This illustrates
that active inference agents endowed with shared represen-
tations behave in socially oriented ways, even without ad-hoc
incentives.

V. CONCLUSION

Joint actions are ubiquitous in our lives and engage sev-
eral cognitive abilities, such as mutual prediction, mental state
inference, sensorimotor communication, and shared task rep-
resentation. However, we still lack a comprehensive formal
model that explains these abilities from first principles. Here,
we proposed a computational model of interactive inference,
in which two active inference agents coordinate around a joint
goal “—pressing together either a red or a blue button”—that
they do not know in advance (Simulation 1) or that only one
of them knows in advance (Simulation 2).

Our results show that the interactive inference model can
successfully reproduce key behavioral and neural signatures
of dyadic interactions. Simulation 1 shows that when two
agents have the same (uncertain) knowledge about the joint
task to be performed, they spontaneously coordinate around a
joint goal and align their behavior and their task knowledge
(here, their beliefs about the joint goal) over time. This result
is in keeping with a large number of studies showing the
synchronization of neuronal activity and kinematics during
joint actions, perhaps as a way to enhance coordination and
the sense of joint agency [15], [30], [49], [62]. Furthermore,
interactive inference is robust to sudden changes of mind of

one of the agents, as indexed by the fact that the alignment of
behavior and task knowledge is recovered fast. While simple
joint tasks, such as the “joint maze,” that we adopted could be
in principle learned by trial and error and without inference,
our control simulation shows that interactive inference within
trials promotes better performance and alignment of behavior
and of belief states (see Figs. S5 and S6 in the supplementary
material).

Simulation 2 shows that during dyadic interactions in which
only one agent (the “leader”) knows the task to be performed
but the other agent (the “follower”) does not, the leader sys-
tematically selects “social epistemic policies” in early trials.
The social epistemic policies sacrifice some path efficiency to
give the follower early cues about the task goal, hence reduc-
ing his/her uncertainty and contributing to optimize the joint
action. The results of this simulation are in keeping with a
large number of studies of sensorimotor communication during
dyadic interactions with asymmetric information [25], [34],
[58], [59], [60]. Specifically, our model reproduces two key
phenomena of leader–follower interactions:

1) In all these tasks, leaders select an apparently less effi-
cient path, which however provides early information
about the intended task goal.

2) The selection of these more informative (or social
epistemic) policies is dependent on the follower’s uncer-
tainty and it is abolished when the follower is (estimated
to be) no longer uncertain, as reported in a study that
uses our “joint maze” setup [34] and other studies
in which the uncertainty of the follower varies across
trials [25], [60].

Different from previous models, here the leader’s
social epistemic behavior does not require ad-hoc mecha-
nisms [16], [35]. Rather, it is a necessary consequence of the
fact that the agents have shared task knowledge and select
actions using the EFE functional, which considers epistemic
actions on equal ground with pragmatic actions. In other
words, active inference agents who cooperate in uncertain con-
ditions and have beliefs about their shared goal can natively
select “epistemic” policies that reduce their own uncertainty
(as shown in [45]) and the uncertainty of the other agents (as
shown in our simulations).

Another important feature of our model is its flexibility.
Simulations 1 and 2 use exactly the same computational
model, except for the fact that in Simulation 2 only the
“leader” knows the goal. This implies that active inference is
flexible enough to reproduce various aspects of joint action
dynamics, without ad-hoc changes of the model. In our
simulations, the differences between standard, “leaderless”
(Simulation 1) and “leader–follower” (Simulation 2) dynam-
ics emerge as an effect of the strength (and the precision)
of the agents’ beliefs about the joint goal to be performed.
When the agents’ beliefs are uncertain, as in Simulation 1,
they tend to follow each other to optimize the joint goal—and
update (and align) their beliefs afterward. In this case, the joint
outcome (e.g., red-red or blue-blue) can be initially stochas-
tic, but is successively stabilized thanks to the interactive
inference. This setting therefore exemplifies a “peer-to-peer”
or a “follower–follower” interaction. Yet, it is possible to
observe some “leader–follower” dynamics, in the sense that
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one of the two agents drives the choice of one particular
joint task goal. However, in Simulation 1, the role of the
leader is not predefined, but rather emerges during the task,
as one of the joint goals is stochastically selected during the
interaction—and then the two agents stick to it (note however
that the situation is different during changes of mind, because
the goal is predefined by us rather than being stochastically
selected during the interaction). Rather, Simulation 2 exempli-
fies the case of a “leader–follower” setup in which the role of
the leader is predefined—because the leader has a strong pref-
erence for one of the goals. The comparison of Simulations 1
and 2 shows that what defines leaders and followers is sim-
ply the strength of the prior about the joint goal context (and
of its associated outcomes). Our results in Simulation 2 are in
keeping with previous active inference models that showed the
emergence of behavior synchronization and leader–follower
dynamics in joint singing [63] and robotic dyadic interac-
tions [41]. These studies nicely illustrate that several facets
of joint actions emerge when two agents infer each other’s
goals and plans. However, the results reported here go beyond
the above studies, by demonstrating the emergence of senso-
rimotor communication and social epistemic actions when the
agents have asymmetric information.

In sum, our simulations provide a proof-of-concept that
interactive inference can reproduce key empirical results of
joint action studies, such as the interactive alignment and syn-
chronization of behavior and neuronal activity (which, in our
model, correspond to the belief dynamics) during standard
joint actions [15], [30], [49] and the “sensorimotor com-
munication” during dyadic leader–follower joint actions with
asymmetric information [25], [34], [58], [59], [60]. An open
objective for future research is extending the empirical valida-
tion of this framework by adopting it to model more cases of
joint action, beyond the “joint maze” scenario of [34]. Another
objective for future research is exploiting this framework to
design more effective agents that exploit sensorimotor com-
munication to enhance human–robot joint actions. The ease
of human–human collaboration rests on our advanced abil-
ities to infer intentions and plans, align representations and
select movements that are easily legible and interpretable by
our agents [16]. Endowing robots with similar advanced cog-
nitive abilities would permit them to achieve unprecedented
levels of success in human–robot collaboration and plausi-
bly increase the trust in robotic agents [44], [64], [65], [66].
Scaling up the approach from the current grid-world simu-
lation to noisy continuous space robotic experiments would
require more effective methods to learn sophisticated genera-
tive models (using for example deep learning methods [67],
[68], [69]) and to plan in large state spaces (using for exam-
ple tree search methods [70], [71]). Another challenge consists
in scaling up the approach to groups of agents. In principle,
each agent could maintain beliefs about each group mem-
ber. However, a more parsimonious alternative is maintaining
beliefs over the “average group member’s mind”; this latter
approach remains to be evaluated in our setting [72]. Finally,
a key challenge for future research is extending this framework
beyond cooperative joint actions, to also cover competitive and
mixed cooperative-competitive interactions, which are frequent
in multi-agent settings [73].
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