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Abstract—Chemotherapy optimization based on mathematical
models is a promising direction of personalized medicine.
Personalizing, thus optimizing treatments, may have multiple
advantages, from fewer side effects to lower costs. However, per-
sonalization is a complicated process in practice. We discuss a
mathematical model of tumor growth and therapy optimization
algorithms that can be used to personalize therapies. The therapy
generation is based on the concept of keeping the drug level over a
specified value. A mixed-effect model is used for parametric iden-
tification, and the doses are calculated using a two-compartment
model for drug pharmacokinetics, and a nonlinear pharmaco-
dynamics and tumor dynamics model. We propose personalized
therapy generation algorithms for having a maximal effect and
minimal effective doses. We handle inter- and intra-patient vari-
ability for the minimal effective dose therapy. Results from mouse
experiments for the personalized therapy are discussed and the
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algorithms are compared to a generic protocol based on over-
all survival. The experimental results show that the introduced
algorithms significantly increased the overall survival of the mice,
demonstrating that by control engineering methods an efficient
modality of cancer therapy may be possible.

Index Terms—Impulsive system, min–max therapy, optimal
treatment, positive system, therapy generation, tumor model.

I. INTRODUCTION

CYBER-MEDICAL systems play an important role in
modern medicine, and their importance is growing. The

application of STEM in medicine offers prosperous results
in medical practice. For example, engineering methods can
be used for brain fatigue detection [1], [2], [3], prediction
of in-hospital death of trauma [4], skeleton maturity assess-
ment [5], [6], or Parkinson’s disease diagnosis [7]. System-
theoretic methods are used in several drug dosing problems,
like control of anesthesia [8], or control of blood glucose level
with artificial pancreas [9].

System-theoretic methods can also be utilized to optimize
drug dosing in cancer therapies. The therapies used in con-
ventional chemotherapy usually have a large resting time,
i.e., a long time between the injections and large injected
doses [10]. They use the maximum tolerable dose (MTD) in
order to achieve a maximal effect without killing the patient.
Another approach is the low-dose metronomic (LDM) ther-
apy, which applies lower doses with larger frequency. In some
cases, this approach was proven more effective against cancer
cells, which often become resistant to the treatment [11], [12].
LDM therapy can also be cheaper with fewer side effects. We
aim to provide algorithms for the mathematical model-based
generation of LDM therapies.

Scheduling LDM therapy and providing the required doses
is a challenging task. A promising engineering approach is
to use a mathematical model describing the effect of the
drug on tumor growth and use this model to generate an
optimal therapy. There are numerous models in the literature
(see [10], [13], [14], [15] and several therapy generation algo-
rithms [10], [16], [17], [18]). A specific characteristic of this
physiological problem is that the input is the injection, which
is positive, and the system is impulsive. Such systems are
rare in engineering practice, and thus handling them requires
unconventional solutions [19], [20], [21]. Besides therapy gen-
eration, the usage of nanorobots in cancer treatments is also
exploited by Shi et al. [22], [23], [24], while robotic capsules
are used for site-specific drug delivery in [25].
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Pérez-García et al. [10] used their model and heuristic
scheduling based on in silico tests. Tse et al. considered
multidrug optimization problems in [26]. Cacace et al. [18]
solved the therapy generation as an optimization problem to
minimize a quadratic cost function combined with a state
observer. They generate antiangiogenic therapy based on the
model created by Hahnfeldt et al. [27]. The authors of this
manuscript created an optimization algorithm for the antian-
giogenic therapy based on the Hahnfeldt model in [16], where
the aim was to track a reference path that results from max-
imal dosing with a predefined maximal deviation from that
path. The authors used an approach based on pharmacokinetic
(Section II-C) and pharmacodynamic (Section II-B) model to
optimize chemotherapy in [17] and [28], based on the results
of Kusuoka et al. [29]. Here, we develop the results further
and provide several model-based approaches for the therapy
generation problem.

The fundamental component of optimization is the under-
lying mathematical model. Our algorithm depends on the
pharmacokinetics and pharmacodynamics of the drug; how-
ever, several strategies discussed here also depend on the tumor
dynamics. The literature on tumor models is rich; see the
works of [30], [31], and [32]; in our work, we use a tumor
model described by ordinary differential equations.

We use a fourth-order model (Section II-A) created to
describe measurements from animal experiments first for
antiangiogenic therapy using bevacizumab [33], [34], and
later for chemotherapy using pegylated liposomal doxorubicin
(PLD) in [35] and [36] based on the experiments from [37].
The latest model has four state variables, two state variables to
describe the living and dead tumor volume dynamics, and two
state variables to describe the pharmacokinetics of the drug
as a two-compartment model. We formulate the optimization
problem as maintaining a predefined drug level during the ther-
apy with the lowest amount of injections, i.e., we carry out
optimal impulsive control of the two-compartment pharma-
cokinetic model and propose three strategies to calculate this
predefined drug level.

Impulsive control of compartment systems is not new in
the literature; e.g., the work of Pierce and Schumitzky from
1976 [38]. Kusuoka et al. [29] created an algorithm in 1981 for
finding minimal doses that keep the drug level over a specified
lower limit, discussed in Section II-D. Our work is based on
this algorithm and contributes by defining the lower limit for
the drug level, which we will call minimal inhibitory concen-
tration (MIC) after [39] (see Fig. 1). We test the algorithms
in vivo using mouse experiments discussed in Section IV-A.

We propose three strategies to define the lower limit of the
drug level: two personalized therapies and one robust ther-
apy created for a specific population. The first strategy is a
personalized therapy aiming to maximize the effect of the
drug using low dosages and only uses the pharmacokinetic and
pharmacodynamic model (Section III-B). The second strategy
is a personalized therapy, which finds the minimal effective
dosages that ensure that the tumor volume does not increase
during the therapy for constant and time-varying (but known)
parameters (Section III-C). This strategy requires knowledge
of the tumor dynamics as well. The third strategy is the robust

Fig. 1. Procedure of the therapy optimization: the MIC is specified based
on a chosen strategy, and the minimal doses are calculated, which ensure that
the drug level is over MIC.

version of the second one, which uses the minimal and max-
imal values of the parameters for a specific population and
finds the minimal dosages to ensure that the tumor volume
does not increase for the worst-case parameter combination
(Section III-D). This strategy is based on interval arithmetics,
briefly summarized in Section II-F. One can switch between
the strategies based on the tumor response automatically, or
the switching can be done manually by an expert (Fig. 1).

We carry out in vivo experiments with 29 mice with breast
cancer (Section IV) and show with a log-rank test, that our
algorithm significantly increases overall survival compared to
a generic therapy.

II. METHODS

The mathematical methods used for the therapy
optimization are based on the tumor model discussed in
Section II-A. The pharmacodynamics of the model is detailed
in Section II-B, which is needed to calculate the drug level
that has to be maintained during the therapy. The required
dosages are calculated based on the pharmacokinetics of the
model discussed in Section II-C. Based on the pharmacoki-
netic model, the minimal dosages required to keep the drug
level over a specified limit are calculated as a solution to an
optimization problem discussed in Section II-D. In order to
personalize the therapy, identification is carried out with a
mixed effect model given in Section II-E. Interval arithmetics
is reviewed in Section II-F, which will be used to design
robust therapy when only the model parameter ranges are
known.

A. Tumor Model

The therapy generation algorithm will be based on a fourth-
order model describing tumor dynamics, pharmacodynamics,
and pharmacokinetics [35], [36], defined by the equations

ẋ1 = (a − n)x1 − b
x1x3

ED50 + x3
(1)

ẋ2 = nx1 + b
x1x3

ED50 + x3
− wx2 (2)

ẋ3 = −(c + k1)x3 + k2x4 (3)

ẋ4 = k1x3 − k2x4 (4)

where x1, x2, x3, and x4 are the time functions of the living
tumor volume, dead tumor volume, drug level in the central
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TABLE I
NOTATIONS, NAMES, AND DIMENSIONS OF THE PARAMETERS

OF THE TUMOR GROWTH MODEL

compartment (the blood), and drug level in the peripheral com-
partment (the tissues), respectively. The unit of the volumes
is mm3, while the drug levels are in mg·kg−1, compatible with
the unit of the injected doses. The parameters of the model
are positive and are listed in Table I.

The injections are considered as impulsive effects on the
central compartment x3, i.e., let the K number of injections
take place at time instants tk ≥ 0, k = 0, 1, 2, . . . ,K − 1 with
t0 < t1 < · · · < tK−1 and injected doses uk ≥ 0, then there is
a discontinuity of the first kind in x3 at time tk, such that

x3
(
t+k

) = x3
(
t−k

) + uk. (5)

The output of the system is the total tumor volume

y = x1 + x2 (6)

since x1 and x2 cannot be measured separately in the
experiments, only the total tumor volume, which is their sum.

B. Pharmacodynamic Model

The pharmacodynamics of the drug is defined by the Hill
function x3(ED50 + x3)

−1 in (1) and (2), which is a common
function used to model the effect of the drug [8], [40]. This
function expresses that the effect of the drug is saturated, and
after a given limit, increasing the drug level yields a very
low increase in the drug effect. The median effective dose
parameter ED50 is the drug concentration where the effect is
50%, i.e., the value of the Hill function is 0.5.

The desired value of the drug level in the central compart-
ment that should be maintained by the therapy discussed in
Section II-D depends on the value of ED50. An important goal

of the therapy optimization will be to keep the drug level in
the central compartment over the MIC.

One possible strategy, described in Section III-B, is to
define the limit as a constant multiple of the ED50 param-
eter, i.e., MIC = κED50. If κ is sufficiently large, the value
of the Hill function is close to 1, i.e., close to the maximal
effect of the drug. For example, for the value of κ = 100, the
value of the Hill function is 0.99; thus, the drug has at least
99% effect during the therapy.

Another strategy is to calculate the MIC such that the drug
prevents the tumor from growing with the lowest dosages
during the therapy, which we discuss in Section III-C for per-
sonalized treatment, in the case of intrapatient variability for
known model parameters, and as a worst-case treatment for a
population to treat interpatient variability in Section III-D.

C. Pharmacokinetic Model

The pharmacokinetics of the model described by (3) and (4)
is a linear time-invariant system. The input of the system is
positive and impulsive and has an effect on x3 as described
by (5). Since the drug level in the central compartment (x3)

has a direct effect on the tumor as described by the term on
the right-hand side of (1), the output yp of the pharmacoki-
netic model is x3. Thus, the state-space representation of the
pharmacokinetic model is

(
ẋ3
ẋ4

)
=

(−c − k1 k2
k1 −k2

)

︸ ︷︷ ︸
A

(
x3
x4

)
+

(
1
0

)
u (7)

yp = x3 (8)

with u being the sum of impulsive inputs that is written using
Dirac-delta distributions δ [20], i.e.,

u(t) =
K−1∑

k=0

ukδ(t − tk) (9)

at t ≥ 0, where K is the total number of injections, tk ≥ 0,
k = 0, 1, . . . ,K−1 is the time of injections with doses uk ≥ 0,
k = 0, 1, . . . ,K − 1, and δ is the Dirac delta distribution, i.e.,

δ(t) = 0, if t �= 0 (10)
∞∫

−∞
δ(τ )dτ = 1. (11)

The output of the pharmacokinetic subsystem (7) produced
from the impulsive inputs (9) at time t can be written as the
sum of impulse responses w of the system as

yp(t) =
K−1∑

k=0

w(t − tk)uk. (12)

In order to avoid ambiguity, we note that from now on, we
use the letter w to denote the impulse response of the pharma-
cokinetic subsystem (and not the washout rate from Table I,
which we will not need in the remaining of this article). The
impulse response of the pharmacokinetic subsystem at time
t ≥ 0 is

w(t) = λ1 + k2

λ1 − λ2
eλ1t + λ2 + k2

λ2 − λ1
eλ2t (13)
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where λ1 and λ2 are the eigenvalues of the system matrix A
in (7) and can be expressed with the parameters as

λ1,2 = −(c + k1 + k2)±
√
(c + k1 + k2)

2 − 4ck2

2
. (14)

The pharmacokinetic subsystem is kinetic, thus it is posi-
tive [41], [42], [43], [44], which implies that the impulse
response of the system is also positive for all t ≥ 0.

Theorem 1: The pharmacokinetic subsystem (7) is asymp-
totically stable and nonoscillatory [28].

D. Optimal Impulsive Therapy

One way to optimize impulsive therapy is to find the
minimal injection doses in order to maintain a predefined
drug level in the patient, i.e., look for the optimal injection
doses uk given at time instants tk, k = 0, 1, . . . ,K − 1 such
that x3(t) ≥ MIC for all t ≥ 0. This problem has been
addressed by Kusuoka et al. [29], who formulated and solved
this optimization problem for compartmental systems with a
constraint that the input should also be positive.

Let u = (u0, u2, . . . , uK−1)
� and 1 = (1, 1, . . . , 1)� be a

column vector with elements of one and length K, and let �

be the matrix of impulse responses constructed as

� = {
w

(
ti − tj−1

)}
i,j (15)

where i, j = 1, 2, . . . ,K, and tK is a time instant after the last
injection, i.e., tK > tK−1. The purpose of tK is to maintain the
predefined drug level for a certain time after the last injection.

The goal is to have yp(t) ≥ MIC for all t ≥ 0, where MIC is
the desired lower limit for the drug level, with the constraint
that the injections are positive, and the goal of minimizing
the total amount of injections. Since the pharmacokinetic sub-
system is positive, asymptotically stable, and nonoscillatory,
yp(t) ≥ MIC for all t ≥ 0 is equivalent to yp(tk) ≥ MIC for
all tk, k = 0, 1, . . . ,K. Thus, the optimization problem can be
written as

minimize
u

1�u

subject to �u ≥ MIC · 1

u ≥ 0. (16)

The solution to this optimization problem [29] is

ũ = MIC · �−11. (17)

This constrained optimization problem minimizes the sum
of the drug dosages u (i.e., the cumulative dose) with the con-
straints such that the drug level in the central compartment is
not less than the MIC at the time of the injections (before the
drug is injected), and the drug dosages are non-negative.

E. Mixed-Effect Model

The application of the therapy generation algorithms
requires the knowledge of the model parameters, i.e., prior
parametric identification has to be carried out. If the mod-
eled population has similar intrinsic and extrinsic parameters,
then the mixed effect model is an efficient tool for paramet-
ric identification [45]. In brief, such models assume that actual

parameters for a subject—mouse—are random variates from a
distribution characterized by their mean and variance (and typ-
ically assumed to be normal), and the focus of the estimation
lies in these population parameters. These approaches cap-
ture the intraindividual correlations of repeated measured data
and can be considered as a middle ground between estimating
individual parameters and one global parameter set.

Individual variates are obtained similarly to residuals. In
fact, a mixed model can be written (with a single level of
grouping) as

yi = Xiβ + Zibi + εi

where yi is the response variable, Zi describes the grouping
structure, bi represents the so-called random effects, while
β is the vector of fixed effects, with Xi being the usual—
fixed effects—design matrix, and εi being the usual error term.
Typically, bi ∼ N (0,�) and εi ∼ N (0, σ 2I) is assumed [45].
In the present case, yi means the measured tumor volumes, Xi

and Zi contain the times of the measurements, while β col-
lects the parameters of the differential equations (with bi being
their associated random effects). The likelihood implied by the
above model can be calculated, and maximum-likelihood esti-
mation is readily possible (although often other variants are
used).

A further complication in such parameter identification
problems is that the model is specified through a system
of differential equations from which no explicit formula can
be derived for the response variable. The stochastic approx-
imation expectation–maximization (SAEM) approach can be
used, which is an extension of the classic EM algorithm [46],
widely used to carry out maximum-likelihood estimation
(locally) when the model depends on unobserved parameters,
as described by Delyon et al. [47]. This is widely used to esti-
mate models described by differential equations with mixed
effects [48].

Calculations in the in vivo experiments given in Section IV
of this study are carried out under R statistical environment
version 4.1.0 [49] using the nlmixr package version 2.0.4 [50].

F. Interval Arithmetics

Interval arithmetics is an efficient tool to analyze expres-
sions in which the variables are perturbed, but their lower and
upper limits are known. We will use interval arithmetics in
Section III-D to calculate the min–max therapy in the pres-
ence of parametric perturbations, i.e., calculate the minimal
doses that ensure that the drug has inhibiting/killing effect all
the time in the worst-case parameter combinations. We will
use the notations and definitions from the work of Alefeld
and Mayer [51].

Let a denote the lower limit of the variable a, and a denote
the upper limit of the variable a, and let [a] denote the closed
interval of the possible values of a, i.e.,

[a] = [
a, a

]
. (18)

Let ◦ be a binary operation on intervals, such that ◦ ∈
{+,−, ·, /} defined as the set

[a] ◦ [b] = {a ◦ b, a ∈ [a], b ∈ [b] } (19)



KOVÁCS et al.: POSITIVE IMPULSIVE CONTROL OF TUMOR THERAPY—A CYBER-MEDICAL APPROACH 601

where 0 /∈ [b], if the operation is division. The results of the
operations are the intervals

[a] + [b] = [
a + b, a + b

]
(20)

[a] − [b] = [
a − b, a − b

]
(21)

[a] · [b] = [
min

{
ab, ab, ab, ab

}]
. (22)

In the case if a > 0 and b > 0, we have that [a]·[b] = [ab, ab].
The multiplicative inverse is defined as

1

[b]
=

{
1

b

∣∣
∣∣b ∈ [b]

}
, if 0 /∈ [b] (23)

which can be calculated as

1

[b]
=

[
b
−1
, b−1

]
. (24)

The standard interval functions are ψ ∈ F =
{sin, cos, tan, arctan, exp, ln, abs, sqrt}, which are defined by
their range as

ψ([x]) = {ψ(x), x ∈ [x]}. (25)

Functions composed of standard interval functions and binary
operations can be used in interval arithmetics based on the
definitions.

If a function depends on an interval variable more than once,
then we should use interval variables defined as the convex
combination of their lower and upper limits [52], i.e.,

ã = αa + (1 − α)a, α ∈ [0, 1]. (26)

Let ψ be a function of a, then

[ψ] =
[
ψ,ψ

]
(27)

with the lower limit defined as the solution of

ψ = min
α
ψ(ã) (28)

and the upper limit as the solution of

ψ = max
α
ψ(ã) (29)

with α constrained to the interval [0, 1].

III. MAIN RESULTS

A. Tumor Dynamics

Consider the first two equations (1) and (2) of the tumor
model and denote the drug effect by E = bx3(ED50 + x3)

−1.
These equations describe the tumor dynamics

ẋ1 = (a − n)x1 − Ex1 (30)

ẋ2 = nx1 + Ex1 − wx2. (31)

The equilibrium points of this model are the solutions to

0 = (
a − n − E∗)x∗

1 (32)

0 = (
n + E∗)x∗

1 − wx∗
2. (33)

The solutions are as follows.
1) x∗

1 = 0 and x∗
2 = 0.

2) E∗ = a − n, and x∗
2 = (a/w)x∗

1.

Steady-state 1 is the origin, which is ideally the goal of
the therapy. Steady-state 2 is a nonzero equilibrium that is
achieved if the drug effect and the tumor dynamics are bal-
anced. Note that in steady-state 2, the variables can be zero,
but in this case, we get steady-state 1.

The Jacobian of (30) and (31) is

J =
(

a − n − E∗ 0
n + E∗ −w

)
(34)

with the eigenvalues

λ1 = a − n − E∗ (35)

λ2 = −w. (36)

Since the parameters are positive, we have that λ2 < 0. In
steady-state 2, we have λ1 = 0, thus the steady-state is on the
line x∗

2 = (a/w)x∗
1 �= 0, if initially x1(0) > 0. Steady-state 1 is

asymptotically stable if λ1 < 0, i.e., if E∗ > a − n. Note that
we are interested in the case when a − n > 0, i.e., the tumor
grows without therapy.

Theorem 2: If E(t) > a − n for all t ≥ 0, then the origin of
the model (30), (31) is asymptotically stable.

Proof: Let E1 and E2 be time functions that satisfy that
E2 > E1 > 0, i.e., E2(t) > E1(t) > 0 for all t ≥ 0, and let x(1)1
be the solution to (30) with input E1 and x(2)1 be the solution
with input E2 to (30) with initial condition x1(0) > 0. Due to
the positivity of x1 and E, we have that ∀t ≥ 0

(a − n)x1(t)− x1(t)E2(t) < (a − n)x1(t)− x1(t)E1(t) (37)

thus x(1)1 (t) > x(2)1 (t) whenever t > 0. Thus, the tumor dynam-
ics model is monotonous in E. Let E1 > a−n with E1 ≡ const,
and E2 be an arbitrary function with E2(t) > E1 for all t ≥ 0.
Since E1 > a − n, we have that a − n − E1 < 0, thus the
solution to (30) with initial condition x1(0)

x(1)1 (t) = e(a−n−E1)tx1(0), t ≥ 0 (38)

tends to zero; thus, the origin is asymptotically stable. Due
to the monotonicity, x(2)1 (t) < x(1)1 (t) for all t > 0, thus the
solution with E2 also converges to zero, since if E2 > E1, then

x(2)1 (t) < e(a−n−E1)tx1(0), t ≥ 0 (39)

where the right-hand side tends to zero whenever
E1 > a − n.

Thus, if the net effect E is kept over the limit a−n during the
whole therapy, then the total tumor volume tends to zero. For
impulsive systems with linear pharmacokinetics and nonlinear
pharmacodynamics, the effect of the drug can be kept over a
specified limit with the method discussed in Section II-D. The
following section will provide strategies to define this specific
limit. In the original model E = bx3(ED50 + x3)

−1, thus we
will provide limit for x3 denoted as MIC.

Since the maximum of x3(ED50 + x3)
−1 is 1, the direct

consequence of Theorem 2 follows.
Theorem 3: Suppose that a − n > 0. There exists x3 such

that the origin of the model (30), (31) is asymptotically stable
if and only if b > a − n.

Proof: Suppose that b > a−n. In the original model, we use

E(t) = b
x3(t)

ED50 + x3(t)
. (40)
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Thus, in the applied tumor model, the effect E is in the interval
[0, b), provided that x3 is always positive. Since

lim
x3→∞ b

x3

ED50 + x3
= b (41)

we can always find a function x3 which satisfies Theorem 2.
Now, suppose that the origin of the model is asymptotically

stable. We show indirectly that it implies b > a − n. Suppose
that b < a − n, and the origin is asymptotically stable. Thus,
we have the limits

lim
x3→∞ ẋ1 = lim

x3→∞

(
a − n − b

x3

ED50 + x3

)
x1

= (a − n − b)︸ ︷︷ ︸
>0

x1 (42)

lim
x3→0

ẋ1 = lim
x3→0

(
a − n − b

x3

ED50 + x3

)
x1

= (a − n)x1. (43)

Since the function x3(ED50 + x3)
−1 is strictly monotonously

increasing and a − n − b < a − n due to the positivity of the
parameters, the x1 solution to (1) with initial condition x1(0)
is bounded as

e(a−n−b)tx1(0) ≤ x1(t) ≤ e(a−n)tx1(0) (44)

where e(a−n−b)t tends to infinity due to (42); thus, the origin
is unstable, which leads to a contradiction.

Due to the nonlinearity of E, the fourth-order model
described by (1)–(4) can have rich dynamics; it was shown
in [53], that if the therapy is considered to be continuous,
i.e., we add u to the state x3, and the applied control method
is P-type control based on the total tumor volume x1 + x2,
which is

u = −k(x1 + x2) (45)

then the closed-loop system has a nontrivial equilibrium, and
the system can have bifurcations with realistic parameter val-
ues. Moreover, the qualitative property of the equilibrium is
independent of k.

B. Personalized Therapy With Maximal Effect

The critical parameter of the therapy design is the mini-
mal drug level (denoted by MIC) that has to be maintained.
If the MIC is known, the algorithm discussed in Section II-D
only requires the knowledge of the pharmacokinetic parame-
ters, and can be used to calculate the minimal doses. The value
of MIC can be acquired intuitively or based on the pharma-
codynamic parameters. For example, choosing MIC = κED50
with κ sufficiently large ensures high efficiency for the ther-
apy. The choice of κ = 100 results in 99% efficiency based
on the pharmacodynamic model.

The advantage of the maximal effect is that it is robust
against parametric perturbations due to oversized doses. The
other advantage is that we only need to know the pharmacoki-
netic (PK) and pharmacodynamic (PD) parameters and do not
require knowledge about the other tumor model parameters.
Thus, the method can also be applied to other tumor mod-
els with similar PK and PD models. The disadvantage of the

method is the high level of toxicity that may result from the
large doses. In order to avoid toxicity, the application of lower
doses that still have inhibiting/killing effect may be desirable.

C. Personalized Therapy With Minimal Drug Level

One can also calculate MIC as the minimal drug level that
ensures that the tumor volume does not increase between injec-
tions. This can be calculated in a personalized fashion if the
model parameters of the patient are known. After the MIC
is acquired, the algorithm defined in Section III-C is used to
generate the required doses.

Theorem 4: The therapy ensures that the tumor does not
grow using minimal doses if the drug level is kept over
MIC = κED50, where

κ ≥ a − n

b + n − a
. (46)

Proof: The drug level ensuring that the tumor does not grow
can be calculated based on (1), by considering that with the
optimized therapy x3(t) ≥ MIC for all t ≥ 0, thus the net
growth rate is

a − n − b
x3(t)

ED50 + x3(t)
≤ a − n − b

MIC

ED50 + MIC
(47)

which implies that if we ensure that the net growth rate is
smaller or equal to zero at the time of the next injection (prior
to the injection), then the net growth rate is smaller than zero
between the injections since the PK model is asymptotically
stable without oscillatory behavior by Theorem 1 [29]. Thus,
the tumor volume does not increase if we have

a − n − b
MIC

ED50 + MIC
≤ 0. (48)

From this equation, we can express

MIC ≥ ED50

b

a − n
− 1

(49)

and calculate the minimum value of κ by dividing the right-
hand side with ED50.

This result can be used to generate the minimal dose therapy
that ensures that the tumor does not grow during the therapy.
However, this approach only works if the parameters do not
change during the therapy.

Now consider the case of intrapatient variability of the
parameters, i.e., when the tumor model parameters change
during the therapy. Suppose that the parameters are con-
stant between injections and can only change at the time of
injections. Let ai, ni, bi, and EDi

50 denote the value of the
parameters a, n, b, and ED50 prior to the ith injection with
i = 0, 1, . . . ,K − 1, respectively. Let wi denote the impulse
response function of the PK model with the PK model param-
eter values prior to the ith injection, and xi

3(0
−) be the drug

level at the time of the ith injection, without the injected dose.
Note that we will use t = 0 as the time of the ith injection.

Let di denote the dose of the ith injection and Ti denote the
time between the ith injection and (i+1)th injection. The drug
level in the central compartment at time Ti is composed of the
drug level due to the ith injection with a value of diwi(Ti)
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and the drug level due to the previous injections, denoted by
x̃3(Ti), which can be calculated as

x̃3(Ti) =
i−1∑

j=0

djw
j

⎛

⎝
i∑

k=j

Tk

⎞

⎠ (50)

if i > 0, and x̃3(T0) = 0. Thus, the drug level in the central
compartment at time Ti is

x3(Ti) = diw
i(Ti)+ x̃3(Ti). (51)

Theorem 5: The therapy ensures that the tumor does not
grow with minimal doses in the case of changing parameters
if the drug level is calculated as

di ≥
(
ai − ni

)
EDi

50 − x̃3(Ti)

wi(Ti)
(
bi + ni − ai

) . (52)

Proof: Between the ith and (i + 1)th injections, we have to
ensure that the net growth rate is not positive, which can be
ensured if we have

ai − ni − bi x3(Ti)

EDi
50 + x3(Ti)

≤ 0 (53)

for all i = 0, 1, . . . ,K − 1. Substituting (51) yields

ai − ni − bi diwi(Ti)+ x̃3(Ti)

EDi
50 + diwi(Ti)+ x̃3(Ti)

≤ 0 (54)

from which we can express di to get (52).

D. Min–Max Therapy for Uncertain Parameters

In the case of unknown parametric perturbations, we pro-
vide the minimal drug level dosing described in Section III-C,
considering the worst-case scenario of parameter changes. This
way, the therapy can handle interpatient variabilities in a robust
manner. Let a, b, n, and ED50 be the lower limits, while a, b, n,
and ED50 be the upper limits of the parameters a, b, n, and
ED50, respectively. Let c, k1, and k2 be the lower limits, while
c, k1, and k2 be the upper limits of the parameters c, k1, and
k2, respectively. Let di denote the drug dose of the ith injection
and Ti denote the time between the ith injection and (i + 1)th
injection.

The time evolution of the drug level is characterized by
the impulse response of the PK system, which has to be ana-
lyzed with interval analysis to calculate the worst-case value
of the impulse response at time Ti. Let this worst-case value be
denoted by w(Ti), which is the lowest value considering all the
parameter combinations. Since the variables appear more than
one time in the expression (13), we must define the interval
variables

c̃ := cαc + c(1 − αc) (55)

k̃1 := k1αk1 + k1
(
1 − αk1

)
(56)

k̃2 := k2αk2 + k2
(
1 − αk2

)
(57)

as the convex combinations of the lower and upper limits of
the parameters, i.e., we have αc, αk1 , αk2 ∈ [0, 1]. Then, the
first eigenvalue of the system matrix is

λ̃1 =
−

(
c̃ + k̃1 + k̃2

)
+

√(
c̃ + k̃1 + k̃2

)2 − 4c̃k̃2

2
(58)

while the second eigenvalue is

λ̃2 =
−

(
c̃ + k̃1 + k̃2

)
−

√(
c̃ + k̃1 + k̃2

)2 − 4c̃k̃2

2
(59)

and the impulse response in the new variables is

w̃(Ti) = λ̃1 − k̃2

λ̃1 − λ̃2
eλ̃1Ti + λ̃2 − k̃2

λ̃2 − λ̃1
eλ̃2Ti . (60)

In the worst-case PK parameter combination, the drug depletes
fast thus we need the w(Ti) lower limit for the impulse
response at time Ti after the ith injection, which can be
calculated by solving the minimization problem

minimize
αc,αk1 ,αk2

w̃(Ti)

subject to αc, αk1 , αk2 ∈ [0, 1]. (61)

This problem can be solved using numerical optimization
for systems with nonlinear PK equations as well by replac-
ing the impulse response function with the solution of the
nonlinear differential equations depending on the uncertain
parameters.

The worst-case value of the drug level in the central
compartment Ti time after the ith injection is

x3(Ti) = diw
i(Ti)+ x̃3(Ti) (62)

with

x̃3(Ti) =
i−1∑

j=0

djw
j

⎛

⎝
i∑

k=j

Tk

⎞

⎠. (63)

Theorem 6: The tumor volume does not grow during the
therapy for the worst-case parameter combination if the
applied dose is

di ≥
(
a − n

)
ED50 − x̃3(Ti)

w(Ti)
(
b + n − a

) . (64)

Proof: In order to guarantee that the tumor does not grow
between two injections, we must have

a − n − b
x3(Ti)

ED50 + x3(Ti)
≤ 0 (65)

where we supposed that the current injection takes place at
t = 0, and the next injection occurs at t = Ti. Then, the value
of the left-hand side of (65) is in the interval

[a] − [n] − [b]
[1, 1]

[1, 1] + [ED50]

[x3(Ti)]

(66)

= [a, a] − [n, n] − [b, b]
[1, 1]

[1, 1] +
[

ED50

x3(Ti)
,

ED50

x3(Ti)

]

:=
[
ϕ, ϕ

]
. (67)

The therapy ensures that the tumor does not grow in the worst
case if

ϕ ≤ 0. (68)
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Application of interval arithmetics discussed in Section II-F
yields that

ϕ = a − n − b
x3(Ti)

x3(Ti)+ ED50
. (69)

Substituting (62) into (69) yields

ϕ = a − n − b
diwi(Ti)+ x̃3(Ti)

diwi(Ti)+ x̃3(Ti)+ ED50
. (70)

Rearranging this equation to di and combining it with the
inequality (68) yields the result.

IV. IN VIVO TEST OF THE RESULTS

A. Experimental Setup

The results were tested on a clinically relevant, geneti-
cally engineered mouse model of breast cancer. In this model,
Brca1, a DNA repair gene, and p53, a regulator of cell cycle
and genome stability, were knocked out in breast epithe-
lial cells. The resulting mammary tumors highly resemble
the Brca1-linked, triple-negative, hereditary breast cancer in
humans: the molecular, immunohistochemical, morphological,
and genetic characteristics are almost indistinguishable from
their human counterpart [54].

Moreover, these tumors respond to chemotherapy very
similarly; initial treatment with doxorubicin, docetaxel, or cis-
platin significantly reduces tumor size and induces remission.
However, long-term therapy often fails due to the emergence
of drug resistance [55]. Despite we showed that PLD increases
relapse-free and overall survival by 6- and 3-fold, respectively,
these tumors cannot be cured using conventional chemother-
apy regimens [37]. Findings obtained by using this model
are frequently translated to human cancer clinics due to their
similarity to human breast cancer.

The ideal therapy is personalized therapy, which is tailored
to the specific patient. This requires knowledge of the patient-
specific model parameters. However, the identification of the
parameters requires several measurements, which is a large
drawback of the method. The measurements can be used to
carry out the parametric identification using a mixed-effect
model described in Section II-E. The acquired parameters
can be used to design optimal therapy using the algorithm
described in Section II-D.

There were 29 mice divided into three groups.
1) Control group (C): Eight mice were treated with a

standard protocol.
2) Group S1: Eleven mice, received 4 mg·kg−1 drug when

the tumor first reached 200 mm3, then the therapy was
generated using the methods in Section III after tumor
relapse.

3) Group S2: Ten mice, received 6 mg·kg−1 drug when
the tumor first reached 200 mm3, then the therapy was
generated using the methods in Section III after tumor
relapse.

The control group (C) treated with the standard protocol
received 6 mg·kg−1 PLD, when the tumor reached 200 mm3

volume, and the injections were repeated every 10 days if the

Fig. 2. Overall survival of the mice (in days). Time is calculated from the
second injection, and the survival probability is calculated as the ratio of the
living mice. The p value is the significance resulting from the log-rank test
of the control group and the groups S1 and S2.

tumor volume was still over 200 mm3. Otherwise, the treat-
ment stopped until the tumor trigger, i.e., when the volume
reached 200 mm3 again. This protocol uses large doses (the
maximal tolerable dose of PLD is 8 mg·kg−1) with relatively
large resting times (i.e., not less than ten days).

The mice in the experiments are genetically identical; thus,
similar model parameters are expected. They were implanted
tumor pieces derived from the same tumor, and their treatment
started when their tumor first reached 200 mm3. The tumor
width and length were measured using calipers three times
a week (on Monday, Wednesday, and Friday), and the tumor
volume was approximated using the formula [33]

V = π

3
(width · length)(2/3). (71)

B. Results of the Experiment

The tumors reacted well to the first dose (4 mg·kg−1 in the
case of group S1, and 6 mg·kg−1 in the case of group S2),
and they shrank to a small volume (tumor remission). When
the tumors started to grow back (tumor relapse) and reached
200 mm3 again, we initiated a protocol based on our results
presented here in groups S1 and S2. The mice received two
injections per week, one on Tuesday and one on Friday. We
set 6 mg·kg−1 as the maximal dose that can be given in one
single injection.

At the time of the first relapse, we carried out para-
metric identification for the mice in groups S1 and S2
based on the previous measurements using the algorithm in
Section II-E. We generated maximal effect therapies as given
in Section III-B using κ = 100, i.e., the minimal drug level
was 100 times the median effective dose, resulting in 99%
effect of the drug.

We repeated the parametric identification on day 82 of
the experiment. Based on expert knowledge, we changed the
treatment strategy based on the following heuristics.

1) If the tumor volume was still over 200 mm3, we contin-
ued applying the maximal effect therapy. If the resulting
doses were larger than 6 mg·kg−1 with the new param-
eters, then we decreased the parameter κ to 10, i.e., the
new minimal drug level was ten times the median
effective dose, resulting in 90% efficiency.
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Fig. 3. Tumor volume measurements, weight measurements, and the injected
doses for mouse 6 from group S1. The measurements are denoted with x-es,
which are linearly interpolated for visualization.

Fig. 4. Tumor volume measurements, weight measurements, and the injected
doses for mouse 1 from group S2. The measurements are denoted with x-es,
which are linearly interpolated for visualization.

2) If the tumor volume was under 200 mm3, we switched
to minimal drug level therapy described in Section III-C.

For comparison, we calculated the survival time of each
specimen starting from the second injection since this is the
time when the different treatment protocols started. The overall
survival is shown in Fig. 2 for the three groups. The sur-
vival curves were estimated with the nonparametric method of
Kaplan and Meier [56]. The equality of survival curves among
different groups was tested with the nonparametric log-rank
test [57], which resulted in a p-value of 0.031. This analysis
showed that the strategies described in this article significantly
increased the overall survival of the mice.

We show measurements for four selected mice in Figs. 3–6.
The figures show the approximated tumor volumes, mea-
sured mouse weights, and injected doses. Two mice are

Fig. 5. Tumor volume measurements, weight measurements, and the injected
doses for mouse 1 from group C. The measurements are denoted with x-es,
which are linearly interpolated for visualization.

Fig. 6. Tumor volume measurements, weight measurements, and the injected
doses for the mouse 5 from group C. The measurements are denoted with x-es,
which are linearly interpolated for visualization.

selected from groups S1 and S2, and two from the con-
trol group C. Compared to the control group, the injections
are more frequent in groups S1 and S2 and have smaller
doses.

In these examples, the maximal tumor volumes were larger
after relapse for the mice from groups S1 and S2, possibly due
to the lower dosages of the drug. However, after the tumor
remission, the tumor volume was kept at a low value with
small dosages, while in the case of the control group, there
were no injections after remission; thus, the tumor grew back
after a short time. The results illustrate that the tumor can be
kept at a low size with more frequent but smaller doses.

Based on these results, a suggestion for the application of
the results is as follows.

1) Collect measurements.
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2) Carry out parametric identification using the algorithm
presented in Section II-E.

3) If the parameters of a specific patient are known,
calculate the maximal effect therapy discussed in
Section III-B. If toxicity is an issue, either decrease the
effect by decreasing κ , or use the minimal dose therapy
discussed in Section III-C.

4) If the patient-specific parameters are not known, but
we have a priori measurements from a population with
similar characteristics, we can use the ranges of the
parameters to calculate the worst-case therapy discussed
in Section III-D.

V. CONCLUSION

Cyber-medical systems in therapy generation may revolu-
tionize the treatment of numerous diseases, including cancer.
We proposed therapy generation algorithms based on a tumor
model, supposing that the parameters of the model are known
from an identification procedure.

The algorithms are based on an optimization that calculates
the minimal injection doses, ensuring the drug level is kept
over a specified limit based on personalized pharmacokinetic
model parameters. We proposed strategies to determine this
limit.

The maximal effect therapy is used to keep the drug level
over a constant multiple of the median effective dose param-
eter to ensure that the drug has a predefined efficiency all the
time. The advantage of this method is that it only requires
extra knowledge of the pharmacodynamics, and by choosing
a large multiplier, the robustness can be increased at the cost
of toxicity.

We provide a formula for the minimal drug level that
ensures that the tumor volume does not increase during the
therapy. These results were generalized for the cases when
intrapatient and interpatient variability of the parameters are
present, providing a robust impulsive therapy solution.

The results were tested in in vivo experiments using
29 mice. The therapy generated with the proposed methods
was compared to a generic protocol used in clinical practice.
The superiority of our results was proved with a log-rank test,
which showed a significant increase in overall survival.

The combination of the strategies given in Section III was
carried out using heuristics in the experiments. This can
be developed further by using feedback of the tumor vol-
ume, which can change the MIC after every sampling, or
one can track the parameter changes and use the strategy in
Section III-C to personalize the therapy and track intrapatient
variability.
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