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A Lagrangian Relaxation Method for
an Online Decentralized Assignment of
Electric Vehicles to Charging Stations

Ludovica Adacher , Marta Flamini , and Federica Pascucci , Senior Member, IEEE

Abstract—This article addresses the issue of assigning electric
vehicles to charging stations, minimizing the maximum comple-
tion time. It envisions the interaction between electric vehicles
and the charging infrastructure to match supply and demand in
a decentralized and collaborative fashion. For this reason, the
assignment issue is regarded as a linear integer programming
problem and a Lagrangian relaxation heuristic is proposed to
solve it. Thus, each electric vehicle selects the charging station
and the most convenient path to minimize its own completion
time. The completion time of each electric vehicle is composed of
the travel time (TT), the waiting time (WT) at the station, and
the charging time. The Lagrangian relaxation heuristic results
are more effective compared to other local heuristic procedures
performances and demonstrate a fair allocation of the elec-
tric vehicles to the charging stations. The analysis of the time
components of the solution on a real urban network highlights
that the TT is negligible with respect to the WT and charging
time, that are comparable. Therefore, a reservation policy is also
considered.

Index Terms—Decision-making, discrete event systems,
simulation.

I. INTRODUCTION

NOWADAYS, the road transport system is still dominated
by traditional vehicles and pollution has become a major

issue: 73% of all oil consumed in Europe is used in transporta-
tion and road transport accounts for 25% of CO2 emissions of
the overall transportation activities. Although smart decision-
making systems have been proposed to properly dispatch
traffic to reduce the level of pollution [1], [2], there is still
room for improvement.

A major shift is represented by electric vehicles, which
have been proved to be eco-friendly. Even if electric vehicles
are already popular in many countries [3], some technolog-
ical barriers limit their usage. The major issues are related

Manuscript received 18 January 2023; accepted 28 April 2023. Date of
publication 11 May 2023; date of current version 18 August 2023. This
article was recommended by Associate Editor T. I. Strasser. (Corresponding
author: Ludovica Adacher.)

Ludovica Adacher and Federica Pascucci are with the Department of Civil,
Computer Science, and Aeronautical Technologies Engineering, University
Roma Tre, 00146 Rome, Italy (e-mail: ludovica.adacher@uniroma3.it;
federica.pascucc@uniroma3.it).

Marta Flamini is with the Faculty of Engineering, International Telematic
University UNINETTUNO, 00186 Rome, Italy (e-mail: marta.flamini@
uninettunouniversity.net).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TSMC.2023.3272828.

Digital Object Identifier 10.1109/TSMC.2023.3272828

with battery recharge that may result in vehicles congestion at
charging stations. On the one hand, the network of recharging
stations is limited; on the other hand, even super-fast chargers
spend a significant amount of time compared to the refuel-
ing of traditional vehicles. Although the customers can top up
their battery at any level of charge [4], a complete recharging
at slow rate (3.5 kW) can last between 4 and 30 h depend-
ing on the battery capacity of the vehicle. A faster dc charge
typically takes less than 1 h for a full recharge [5]. The main
drawback related to faster dc charger is the degradation of
the batteries, since the number of charge cycles is reduced.
Therefore, this recharging technique is generally avoided, due
to the large cost of the battery. The battery swapping (i.e., the
replacement of an exhausted battery with a fully charged new
one) takes only 5 min [6]. However, there are several con-
cerns related to battery swapping. The main one is the cost
of the necessary infrastructure [7]. Moreover, swapping raises
additional issues regarding battery design and compatibility,
battery degradation, and ownership.

Several solutions have been proposed in the literature to
cope with these issues. In [8], [9], and [10] the problem of
the deployment of the charging network is addressed. In [11],
the problem of vehicle-to-grid charging is addressed by con-
sidering cost-aware solutions; in [12], the vehicle-to-vehicle
energy trading is addressed and the eco-g is considered. These
solutions are promising, but cannot be viable in short-time,
since they foresee the exploitation of smart grid technologies
that are either not mature or not always available. Another
way to cope with the recharging time problem is represented
by the possibility of casting it into optimization problems. To
this aim, the optimization of the time to reach the charging
station (routing problem), the optimization of the scheduling of
the charging stations tasks (scheduling problem), and a com-
bination of them are considered. It is worth noticing that the
routing of electric vehicle in a real network considering all
the technological constraints and the scheduling of charging
tasks is complex and can be regarded to NP-hard problems.
Therefore, the solution proposed in the literature is mostly
represented by heuristics.

The method proposed in this article provides an online
decentralized assignment of the electric vehicles to the charg-
ing stations. The scope is reached by optimizing the routing
of each electric vehicle in terms of energy efficiency and
time consuming. Consequently, due to the online nature of
the problem, the assignment and the routing of each electric
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vehicle to a station result in a schedule for each charging
station.

With this objective, we develop a navigation system able to
compute which station should be visited by the electric vehi-
cle and when and how it should be reached also taking into
account traffic conditions. The envisioned navigation system
foresees the interaction between the network of charging sta-
tions and electric vehicles. The network of charging stations
provides the vehicle with the waiting time (WT) and availabil-
ity of resources. By providing this information, each vehicle
is able to properly select the charging station and to com-
pute the route to reach the station. This decision is delivered
by the electric vehicle to update the network. Moreover, this
decision results in a dynamic vehicles assignment to charging
stations. It is worth noticing that we consider an eco-routing.
The computation of the route takes into account dynamic traf-
fic congestion (according to both real-time and historical data)
and autorecharging mechanisms, such as availability of vehic-
ular energy networks [13] or the presence of suitable slopes
on the path. Indeed, the electric vehicles engines can switch
in generators while going downhill or while braking signifi-
cantly increasing the battery level [14] and producing energy
that can be stored and used later.

To further reduce the congestion at the charging station, a
reservation policy for the electric vehicles is also introduced.
In more details, the main contributions of this article with
respect to the state of the art are the following.

1) We formalize the problem of assigning electric vehicles
to charging stations as a linear integer programming.
In the system model, we consider some parameters
tightly related to electric vehicles, such as the state of the
charge, the final desired recharge level, the autorecharge
along the path, and the WT at the charging station.

2) We envision an assignment system based on Lagrangian
relaxation. It matches the requirements of the electric
vehicles and the availability of the charging stations in
a decentralized and collaborative fashion by minimizing
the maximum completion time of the charging stations.
As a side effect, the proposed solution is able to balance
the charging stations load, thus reducing the overall WT.

3) We solve an online problem. At each time instant, we
collect information about the electric vehicles enter-
ing the system that request to be recharged in that
instant. Moreover, the information exchanged between
each vehicle and the stations is the one known at the
requesting time and therefore before the requesting vehi-
cle is assigned to the station. Once the assignment
problem is solved using the Lagrangian decomposition,
all the problem parameters and variables are updated.
The assignment step and the following updating oper-
ations are repeated each time a new set of requesting
vehicles enter the system.

4) We test the proposed approach against data from a
real complex urban network using historical information
about traffic congestion to simulate a time-dependent
traffic network. To prove the effectiveness of the
proposed method, we compare it to several centralized
heuristics proposed in the literature.

This article is organized as follows: in Section II the
literature is reviewed, in Section III, the problem is for-
mally set; in Section IV, the solution method is detailed;
and in Section V, the Lagrangian decomposition approach
is presented. Section VI is devoted to introducing the com-
pared assignment heuristics; Section VII reports the numer-
ical results of the simulation; finally, in Section VIII, some
conclusions are drawn.

II. RELATED WORKS

As previously stated, the proposed solution envisages an
online decentralized assignment of a set of electric vehicles
(from now on EVs or EV) to charging stations.

The goal is reached by optimizing the routing of each
EV in terms of energy efficiency and time consumption.
Consequently, due to the online nature of the problem, the
routing and the assignment of each EV to a station result in
a schedule for each charging station. To this aim, we con-
sider appropriate to report the scientific literature about routing
optimization of EVs and scheduling optimization of charging
stations.

Many research efforts concerning the routing problem are
focused on energy optimization and/or time efficiency. It is
worth noticing that the routing problems by itself is com-
plex, therefore most of the solutions proposed in the literature
consider either energy-optimized or time-efficient routing.
Moreover, the majority of the authors proposes heuristic meth-
ods, such as [15], where an algorithm based on ant colony is
proposed or in [16], where a particle swarm optimization is
adopted. A complex vehicle routing problem performed by a
fleet of hybrid vehicles is described in [17]. The proposed solu-
tion combines a genetic algorithm with both local and large
neighborhood search. In [18], a genetic algorithm is used to
optimize the routing of shared EVs to minimize the user time
and rental costs. In [19], the problem of routing EVs to min-
imize both energy consumption and total travel time (TT) is
addressed. The problem is modeled using a graph represen-
tation and a multiobjective heuristic algorithm is proposed.
In [12], a navigation system that actively interacts with the
charging station is also considered; however, it assumes that
all the vehicles are fully recharged and the recharging time is
the same, despite of the initial level of charge and the type
of batteries. It does not consider the possibility of reserving
a recharging slot. The routing problem is also cast into pro-
gramming problem. An integer programming formulation is
adopted in [20]. Algorithms based on the graph theory are
proposed to solve the problem of energy-efficient routing by
considering both technological constraints and user prefer-
ences. In [21], a dynamic programming approach is adopted
to route EVs through deterministic and stochastic networks.
Although some of the proposed solutions consider a tradeoff
between energy-efficient and time-efficient routing, the major
concern of these approaches is related to the assumptions made
on the road network. Specifically, the road models adopted in
most of the literature assume that the EVs always travel on flat
surfaces, which is not realistic. Indeed, both energy consump-
tion and time requirement are different when traveling up or
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downhill. An energy-efficient routing has to take into account
this issue and select the path consuming the least amount of
energy, i.e., an eco-routing.

The vehicles assignment to charging problem is addressed
as optimal problem and several route guidance and information
systems are currently available on the market. The assignment
problem has been extensively addressed by Clemente et al. [9],
where a solution method to reduce the overall WT at the
charging station, cost, distance, and a penalty for incomplete
recharging has been presented.

To the best of our knowledge, an interesting paper on
scheduling problem at charging station is [22]. However, the
most promising papers consider both routing and scheduling
optimization problems. The scheduling problems addressed
regard either the EVs or the charging stations operations.

The problem of routing EVs and scheduling the operations
at the charging station is addressed in [23] and [24], where
mixed-integer programming is exploited to minimize the EVs
TT and the charging costs.

A centralized approach to solve routing and scheduling
problems is adopted in [25] and [26]. The proposed algorithm
requests a huge amount of data exchange between the central
coordinator and the EVs (e.g., the source and the destina-
tion, the initial charge level, the selected route). This approach
results heavy with regard to the information management and
raises privacy concerns.

To reduce the complexity of the problems, many authors
decompose the problem: in this way the routing and schedul-
ing problems are split into more tractable problems. In [27]
the pick-up and delivery problem performed by a EVs fleet is
addressed. The problem minimizes both costs (i.e., charging
costs and usage fees) and times (i.e., charging time and TT).
The problem is formulated by means of mixed-integer pro-
gramming and decomposed into several linear programming
problems.

A different way to reduce the complexity of routing and
scheduling problem consists in solving them separately, as
serial steps. In [28], a routing problem with a concurrent
request of the charging stations by a fleet of EVs is addressed.
The authors provide a nonlinear model and then introduce
a two-stage solution methodology by separating routing and
scheduling issues.

In [29], a routing optimization problem combined with a
scheduling charging problem in a urban network is analyzed.
The authors propose a mixed-integer nonlinear programming
and an approximate distributed algorithm to minimize the
energy charging cost and the EVs TT.

In this article, we consider the problem of assigning EVs
to charging stations. Unlike the approaches in the literature,
we propose an online decentralized solution able to optimize
the assignment of the EVs to the charging stations and,
at the same time, able to find an eco-routing for the EVs.
Since the assignment results in a schedule for each charging
station, we solve routing and scheduling problems in a paral-
lel fashion. Moreover, the online solution is able to cope with
different release date, i.e., the EVs can enter in the system and
ask for service at any time.

TABLE I
SYSTEM PARAMETERS

III. PROBLEM DESCRIPTION

In this section, we report a detailed description of the
system model and a formal definition of the urban network.
Furthermore, we provide a linear integer formulation of the
problem. The list of the symbols used in the notation is
reported in Table I.

We consider the scenario where a small number of charging
stations is available for a large number of EVs. The addressed
problem is to assign the EVs to the charging stations to reduce
congestion on the road and queue at the charging stations.
For this reason a smart navigation system is envisioned. It is
able to compute which station can be visited by the EV and
when and how it can be reached by taking into account traffic
congestion.

A. System Model

To tackle this problem, we model the urban road network U
as a directed graph U = (V, A). Each edge a ∈ A represents a
urban street, while the vertices v ∈ V the cross points. Since
the graph is directed, also the direction of travel is considered.
Each edge a ∈ A is labeled with three parameters.
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1) The edge length da (i.e., the geographical distance
between the vertices connected by a).

2) The edge TT tta (i.e., the time needed to travel the edge
in a time instant, depending on the traffic conditions).

3) The edge energy consumption eca (i.e., the energy used
to travel on the edge, depending on the traffic conditions
and slopes).

Concerning the edge energy consumption eca, it is worth notic-
ing that it can be either positive or negative, since it represents
the energy lost (consumption) or gained (auto recharge) by an
electric vehicle when traveling along the edge a.

Let us consider the set S of the charging stations, having
‖S‖ = n. Each charging station s is placed in a vertex of the
network U. It is characterized by its position (i.e., the position
of the associated cross points in the network U, vs ∈ V) and
its WT ws (i.e., the WT in line before the charging operation
starts) and its unit rate Re,s to charge the EV e.

Each e ∈ E has the following attributes: the starting posi-
tion ve (i.e., the position of the associated cross points in
the network U), the starting battery charge level Le, the final
desired recharge level Fe, and the release time re (i.e, the time
e starts the travel to s). Each s ∈ S can be reached by each
e ∈ E traveling along different paths, that can be modeled as
ordered sequences of edges of the network. It is worth noticing
that, in a given time slice δ, for each e, only a subset of the
paths between ve and vs are feasible. The set of the feasible
paths from ve to vs in the time slice δ is denoted as P(e, s)δ .
To slimline the notation we refer to P(e, s)δ as P(e, s). A path
pe,s belongs to P(e, s) if: 1) it starts in ve and ends in vs and
2) e has enough starting charge level to reach s traveling along
pe,s. Accordingly, a path is feasible in relation to the release
date re of e, that is depending on the traffic condition in a
specific time slice. The traffic congestion and the time an EV
leaves its position impact the total TT and the autorecharge
during the path. As a consequence, the selection of a path
pe,s effects both the time to reach the station and the time to
charge. Concerning an EV e, a charging station s, and a path
pe,s, the following parameters are considered: the consumption
of energy ε

p
e,s to travel from ve to vs along the path pe,s, the

autorecharge of energy ap
e,s gained by e reaching the charging

station s along the path pe,s, the TT tpe,s spent by e to reach
s traveling along the path pe,s, and the completion time Cp

e,s,
i.e., the time the EV e completes the charging operation at the
station s reached traveling along path pe,s.

The time is computed by considering discrete time slices.
Also the TT tpe,s is affected by traffic congestion, that is com-
puted at each time slice δ according to historical data and/or
real time information. Specifically, the completion time Cp

e,s

of e traveling the path pe,s and recharging at station s, is
computed as follows:

Cp
e,s = max{re + tpe,s, ws} + τ p

e,s (1)

where the charging time can be computed as follows:

τ p
e,s = (Fe − Le − εp

e,s + ap
e,s)/Re,s. (2)

The completion time Cp
e,s depends on the departure time,

the TT along the path pe,s, the time spent in the queue at the
charging station s, and the charging time. The charging time

depends on the starting and final levels of charge (Le and Fe),
the consumption and the autorecharge of energy to reach the
station traveling along path pe,s (cp

e and ap
e) and the unit rate

Re,s of station s to charge e. Notice that the value of Cp
e,s is

a lower bound, since the current requesting vehicles charging
times are not included in the value of ws. Further details about
this approximation are given in Section V.

B. Problem Formulation

The problem of selecting a charging station by an EV can
be regarded as an assignment problem. Therefore, it can be
modeled as a linear integer programming problem that we
denote by P. According to this approach, the decision variables
are

xe,s =
{

1, if the EV e is charged by the station s
0, otherwise.

The other variables are: Cmax, that indicates the maximum
completion time among all the charging stations

Cmax = maxs∈S{Cs}
where Cs indicates the completion time of the charging station
s; and τ

p
e,s that indicates the processing time of e at the station

s when e travels along the path pe,s (notice that it coincides
with the charging time).

Hence, problem P can be formulated as reported below,
where the maximum completion time Cmax is minimized and
the constraints are expressed by

min Cmax

Subject to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m

e=1
τ p

e,sxe,s ≤ Cmax s = 1, . . . , n (3a)

∑n

s=1
xe,s = 1, e = 1, . . . , m (3b)

εp
e,sxe,s ≤ Le, e = 1, . . . , m (3c)

xe,s ∈ {0, 1}, e = 1, . . . , m, s = 1, . . . , n (3d)

Cmax ≥ 0. (3e)

Specifically, the set of (3a) bounds the charge completion time
of each station to the maximum completion time; the set (3b)
imposes that each EV is recharged only by one station; the
set (3c) limits the energy consumption from ve to vs to the
starting charge of e; finally, the sets of (3d) and (3e) define
the variables domain.

IV. METHODOLOGY

The proposed method is sketched in Fig. 1. The solution of
the problem P is achieved by applying a divide and conquer
strategy. A preprocessing phase is devoted to precompute all
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Fig. 1. Navigation and assignment system.

the feasible paths Pδ
e,s and the parameters ε

p
e,s and tpe,s for each

path. The output of this step feeds the EV decision module,
that selects a charging station and a path in order to reach the
station.

The preprocessing phase takes the urban network U, the
set of vehicles E and the set of charging stations S and com-
putes the set of paths for each e toward each reachable station.
The urban network U is time-dependent, that is the TT of each
edge can change with respect to the time slices, depending on
the traffic conditions. Hence, all the values of the problem
which depend on the path are consequently time dependent.
It is worth noticing that to reduce the computational load, for
each pair (e, s), a subnetwork Ue,s is considered. The subnet-
work Ue,s covers only a limited area that involves the origin
ve of the paths and its destination vs. As a consequence, the
system does not compute all the possible paths among e and s,
but only a subset containing the most convenient ones in terms
of distance. Once the paths in Pe,s are defined, it is possible to
compute the power consumption ε

p
e,s and the TT tpe,s. The for-

mer can also be negative since it considers the autorecharge
of the EV due to the slopes along the path. The latter depends
also on the EV release date and on the traffic congestion in
the network.

We addressed the selection of the subnetwork and the com-
putation of Pe,s in [30]. One of the main novelty of the
proposed approach consists in solving the assignment problem
in a decentralized way. Information output by the preprocess-
ing routing phase is exploited by the EV decision module that
runs on the navigation system of the vehicle. It selects the sta-
tion in order to minimize its own completion time. This result
is achieved by solving the problem P in a decentralized fash-
ion. A Lagrangian relaxation is derived from the problem P, so
it can be decomposed into m subproblems, that can be solved
by each EV decision module. The decomposition approach
based on the Lagrangian Relaxation was adopted by sev-
eral researchers [31], [32], [33] to solve complex assignment

problems and to make them easier to address. Each vehicle
interacts with each charging station to compute the solution of
its own subproblem. Specifically, each charging station s pro-
vides e with the WT ws and the Lagrangian multiplier λ that
indicates the load level. The EV solves the subproblem and
selects the charging station. Each EV computes its estimated
completion time Cp

e,s as specified in (1) and communicates it
to the selected charging station.

It is useful to spend a few words to break down what
type of information is associated with ws. When a station
transfers to an EV the information about the WT ws, such
a value represents a lower bound with respect to the time
that the EV will actually spend at that station in line. In fact,
at each time instant, the value of ws is equal to the differ-
ence between the maximum completion time among all the
(already) assigned EVs to s and the current time instant. Its
value does not take into account the simultaneous requests of
other EVs and their possible assignment to s, that is the EVs
that are computing their own assignment. Once the assign-
ment of the EV e to s is set, ws is updated by adding to the
current ws the estimated charging time of e, and the eventual
idle time induced by the arrival of e to s. Such a compu-
tation is iteratively repeated for each EV that has selected
the charging station s, according to their increasing arrival
times. This value will be communicated to future assignment
requests. As a consequence, also the time the EV e completes
the recharging task at the station s, reached by taking the
path pe,s, Cp

e,s as in (1) is a lower bound, since the current
requesting vehicle charging time is not included in the value
of ws.

Notice that at each iteration, the Lagrangian multiplier takes
into account the number of vehicles that select a certain station,
indeed an overloaded station will have a larger multiplier than
an unloaded one. The Langrangian multipliers are updated,
that way the EV will select the station that minimizes the
following product: λsτ

p
e,s, as specified in (4).
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V. LAGRANGIAN RELAXATION HEURISTIC

In this section, the Lagrangian relaxation of the problem
P is described. The Lagrangian decomposition is well known
in the literature as a useful technique to approach large scale
mixed-integer linear programming problems. In [34], [35], and
[36], the Lagrangian technique is adopted to decompose cen-
tralized problems into subproblems that can be solved locally
by exchanging a minimum amount of information. Lagrangian
relaxation has been successfully employed in the design of
heuristic methods aimed at finding appropriate feasible solu-
tions. Research on distributed decision paradigms is gaining
momentum because of the wide range of applications, from
biology to computer science, from logistics to manufactur-
ing. Several studies show that a distributed decision system
is competitive compared to a centralized system in terms of
robustness, modularity, and simplicity. On the other hand, the
major drawbacks are the communication congestion and sub-
optimality of the solution [30]. Here, the main idea is to
model the problem as a parallel machines job-shop scheduling
problem where the set E represents the set of jobs and the set
S corresponds to the set of machines. The aim is to minimize
the maximum completion time, that also implies the achieve-
ment of a certain load balancing (LB) among the machines
as side effect: the maximum completion time is lower when
all the machines work in parallel. Accordingly, the problem
addressed in this article is NP-hard since it can be consid-
ered as a generalization of the scheduling problem P2||Cmax

the NP-hardness of which was demonstrated by Lenstra et al.
in [37]. In order to decompose the problem P, the set of
constraints in (3a) is relaxed and the following Lagrangian
problem PR(λ) is derived:

PR(λ) = min Cmax −
n∑

s=1

λs

(
Cmax −

n∑
e=1

τP
e,sxe,s

)}

= min

(
1 −

n∑
s=1

λs

)
Cmax +

n∑
s=1

λs

m∑
e=1

τP
e,sxe,s

Subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
s=1 xe,s = 1, e = 1, . . . , m

cP
e,sxe,s ≤ Le, e = 1, . . . , m

xe,s ∈ {0, 1} e = 1, . . . , m, s = 1, . . . , n

Cmax ≥ 0 s = 1, . . . , n

where λs ≥ 0, s = 1, . . . , n, are the Lagrangian multipliers
associated with the relaxed constraints.

When solving PR(λ), we notice that the variable Cmax is
constrained to be not negative and it is multiplied in the objec-
tive function by the coefficient 1 − ∑n

s=1 λs. The relaxed
problem PR(λ) can be decomposed into m subproblems
PRe(λ), each one associated with an EV e

PRe(λ) = min
n∑

s=1

λsτ
P
e,sxe,s

Subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε
p
e,sxe,s ≤ Le s = 1, . . . , n

∑n
s=1 xe,s = 1

xe,s ∈ {0, 1} s = 1, . . . , n.

(4)

Hence, PR(λ) is treated in a decentralized way; in fact, each
EV selects the charging station by solving its own PRe(λ).
Given the values of λs, the problem PR(λ) provides a lower
bound on the original problem P, and, since any assignment
obtained by solving PR(λ), corresponds to the assignment of a
subset of EVs to the stations, it also provides a feasible solu-
tion for P. We assume a limited information exchange among
the stations and the EVs (see Fig. 1). Clearly, a more detailed
information exchange would lead to a more accurate esti-
mate of the parameters computed in the assignment algorithm
(see step [2] of Algorithm 1).

The steps of the assignment algorithm are reported in
Algorithm 1. Its input is the WT of each station ws and
the charging times τ

p
e,s. The output is the final assignment,

that is the set of vehicles assigned to each stations xa
s , the

updated WTs ws, and the maximum completion time Cmax.
Notice that the final assignment of the vehicles to the sta-
tions is the outcome of a cyclic procedure that exploits the
convergence property of the Lagrangian decomposition of the
problem [35].

In practice: the preprocessing phase computes the paths Pe,s

for each EV e toward each reachable station s, the charging
times τ

p
e,s, and the completion times Cp

e,s. Notice that the com-
pletion times Cp

e,s are calculated only in this phase before the
assignment algorithm.

Step (0): Each station communicates to the requesting EVs
its current ws and the value of the Lagrangian
multiplier λiter

s .
Step (1): Each EV selects a station [selecting the station

that minimizes λsτ
P
e,s, that is solving problem (4)]

and sends the resulting decision to the selected
station, communicating its Cp

e,s.
Step (2): Each station estimates its completion time

Citer
s = ws +

∑
e∈xs

a

(Cp
e,s − ws). (5)

The processing time of each EV e is estimated as
the completion time Cp

e,s minus the WT ws at the
station s. This is an upper bound of the charging
time since the completion time Cp

e,s could depend
on the TT instead of the WT at the station s.
Notice that, among all the vehicles requiring the
same station, only the TT of the first EV could
introduce an idle time on the station (in addition
the TT is negligible compared to the waiting and
charging time).

Step (3): The maximum completion time of the system is
computed among all the stations

Citer
max = max

s∈S
Citer

s . (6)

Step (4): The charging stations update their Lagrangian
multipliers. The charging station with the highest
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Algorithm 1 ASSIGNMENT

Input: max_iter = 200, ws ∀s = 1, . . . , n; τ
p
e,s ∀e =

1, . . . , m;
Output: the set of vehicles assigned to s xa

s , the waiting
time ws ∀s = 1, . . . , n and Cmax

Initialization
iter = 0; Cmax := ∞;
Ws = ∑

s ws;
xs

a = ∅
if (ws <> 0) then

λiter
s = ws/Ws

else
λiter

s = 1/n ∀s = 1, . . . , n;
end if
Begin ASSIGNMENT
while (iter ≤ max_iter) do

Step(0) Each station s communicates λiter
s and ws;

Step(1) Each vehicle e solves its own sub–problem
PRe(λ

iter) (4) selecting a station s and communicates Cp
e,s

Step(2) Each station s computes its xiter
s and the comple-

tion time Citer
s

Step(3) Citer
max is computed

Step(4) Each station s updates (λiter
s = ws/Ws) and

communicates its Lagrangian multiplier λiter
s

if (Cmax > Citer
max) then

Cmax := Citer
max

xa
s := xiter

s ∀s = 1, . . . , n;
end if
iter := iter + 1

end while
End ASSIGNMENT
UPDATE ws

Order each xa
s with reference to tpe,v ∀s = 1, . . . , n;

for ε = 1, . . . , |xa
s | do

ws = max(ws, tpxa
s [ε],v) + τ

p
xa

s [ε],v
Cmax := maxs(ws)

end for
Return xa

s , ws ∀s = 1, . . . , n; and Cmax

workload has associated the highest Lagrangian
multiplier

λiter
s = Citer

s∑
s∈S Citer

s
. (7)

Given the final assignment xa
s , each station updates its own

completion time. The EVs provide in addition to the comple-
tion time value CP

e,s, the TT tpe,s and the charging time τP
e,s

values. Each station updates its WT ws implementing a FIFO
priority rule.

Concerning the computational complexity of the procedure,
the overall load is O(n), given by step (1). In fact, in this
step, each EV computes independently the charging time at
each station s, so the computational load is, in the worst case
O(n). It is worth noticing that each EV computes the charging
time only for a subnetwork Ue,s.

TABLE II
ASSIGNMENT HEURISTICS POLICY

VI. COMPARISON OF ASSIGNMENT HEURISTICS

In this section, we describe four centralized heuristic pro-
cedures to assign the EVs to the charging stations with the
aim of comparing their performance with that of the decen-
tralized Lagrangian method. Their policies are summarized in
Table II where the EV selection and the station priority rule are
reported. The heuristic procedures consider the time instant in
which each e requests the recharge and the constraints due to
the release dates and to the initial charge level of each vehi-
cle. For each heuristic, the EVs are ordered in relation to the
increasing time of charge requests.

The closest station heuristic (CS) assigns to an EV the sta-
tion that can be reached in the minimum time to the e. It
takes into account the TT and ignores the waiting and charging
times.

The minimum processing time heuristic (MPT) assigns the
charging station which minimizes the sum of the WT and
charging time. If two stations are equivalent for any EV, the
EV is assigned to the closest one. The first EV that reaches
the station is the first to be processed (FIFO). When an EV
starts its recharge operations, the station updates its WT.

In the minimum completion time heuristic (MCT), each EV
is assigned to the charging station which minimizes its com-
pletion time that is computed by adding the TT, the WT and
the charging time. The charging station implements a FIFO
priority rule. Each station updates its WT once the charging
of an EV starts.

The load balancing (LB) heuristic can be simplified in
two phases that are iteratively repeated until all the EVs are
assigned. In the first phase, for each EV, the completion time at
each station is computed as the sum of the travel, the waiting
and the charging times. Each EV selects the station that mini-
mizes its completion time while the station processes only the
EV with the longest charging time. The WT at each station is
updated. In the second phase, the selection criterion of the EVs
does not change. The EVs that have not started the recharge
operations yet compute their completion time by considering
the updated WT and request the station which minimizes their
completion time. At this point, the stations give priority to the
EVs which minimize the difference between the maximum and
the MCT among all the stations, with the aim of balancing the
station loads.

VII. SIMULATION AND RESULTS

The simulations have been performed by using MATLAB
on a machine with 2 × 2.66-GHz 6-Core Intel Xeon pro-
cessors, 32-GB 1333-MHz DDR3 RAM, and OSX Mountain
Lion operative system. In the following the tested network and
the instances are described. The computational results refer to
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(a)

(b)

(c)

Fig. 2. Trend of TT with respect to the simulation time interval.
(a) Represents an edge congested for most of the time. (b) Refers to an edge
congested only in a certain interval between. (c) Shows the average TT trend
computed on all the edges of the network.

the comparison of the performances of the heuristics and to the
detailed benefit output by the Lagrangian Relaxation Heuristic
(from now on LRH).

A. Urban Network Simulation Parameters

The real case of a portion of the urban network of Rome
has been considered, namely, the slice involving the city center
and the south part up to the Ring road.

The network has been modeled by a directed graph of 373
vertices and 766 edges. As already mentioned, each edge is
weighted with its TT, that is time-dependent. Fig. 2(a) and (b)
shows the TT trend of two different edges with respect to the
simulation time interval, set to 120 min. The edge of Fig. 2(a)
is congested for most of the time, while Fig. 2(b) refers to
an edge that is congested only in the interval between the
50th and the 60th min. In Fig. 2(c), the average TT trend is
reported, computed on all the edges of the network.

We remind that we assume that the charging stations loca-
tion (vs) and the EVs starting positions (ve) are located on
some of the network nodes.

B. Test Instances

The solution procedures have been tested on random
instances with different numbers of EVs and charging sta-
tions. Test instances have been generated by randomly setting
the locations of the charging stations and the positions of the
EVs on the network. The computational time increases with
the size of the instance, but the trend of the results does not
depend on it but on the ratio between the number of EVs
and of the charging stations, that is m/n. We tested different
classes of instances with respect to the value of the ratio m/n,
that is m/n ∈ {1.4, 2.8, 4.2, 5, 6}.

We have also considered different speeds of the charging
stations and different battery models for the EVs. The combi-
nation of these two features generates different charging times
associated with equal final recharge levels. We have consid-
ered 75, 40, and 13.8-kWh batteries and recharge speeds equal
to 7 and 22 kW.

The starting battery charge is uniformly distributed in the
interval [15%−25%].

We examine the cases of homogeneous and heterogeneous
distribution of the desired final battery charge. In the two cases
the desired final battery charge is uniformly distributed in the
two intervals [60% − 80%] and [20% − 80%].

In this article, we report the results related to the hetero-
geneous case since it is also representative of other scenarios
in which charging stations have different recharge rates and/or
EVs have different battery models. In fact, these technological
parameters only affect the charging time, like a fixed level of
final recharge does if unvarying recharge rates and/or battery
models are considered.

We have also differentiated the instances with respect to
the distribution of the release dates in the simulation interval.
Remember that the release date of an EV indicates the time
the EV leaves from its position to reach a charging station.
In the concentrated class of instances all the release dates fall
in the first 20 min of the simulation interval. In the sparse class
of instances the release dates of the EVs fall in the first 90 min
of the simulation interval. In the latter case, the WTs are lower
and the stations can be idle. For each class of instances the
results related to 100 runs have been collected. We report the
mean value of the maximum completion times calculated on
the 100 runs. The trend of the results and the effectiveness
of the algorithms with respect to all the parameters is similar.
So we report and analyze only the results associated to the
maximum value of the ratio, that is 6, since it requests an
actual assignment optimization. Moreover we have considered
a real network both in terms of topology and of traffic data.

In the following we will report the results related to the
instances with the following parameters.

1) Size is m/n = 6.
2) Homogeneous starting battery charge.
3) Concentrated and sparse release dates.
4) Real network.
In any case, the average computational time of each

procedure (both the LRH and the centralize heuristics) is less
than 1 min.

C. Computational Results

This section provides both a comparison of the performance
of the LRH and of the Assignment heuristics described in
Section VI and focuses on the LRH tested together with dif-
ferent preprocessing procedures and a procedure to optimize
the WT.

For each class of instances, the results related to 100 runs
have been collected. We report the mean value of the
maximum completion times calculated on the 100 runs.

1) Heuristics Comparison: In Fig. 3, a comparison
between the heuristics is reported. In all the cases the LRH
gives the best performances. The trends of the maximum
completion time (CMAX) and of the average completion time
(AC) are displayed for the concentrated and sparse release
dates cases. The average completion time is calculated on all
the charging stations.

In Fig. 4, the trend of the objective function is extracted
by the previous results. The aim is to show that the trend
is similar if we consider concentrated or sparse EVs release
dates, with the exception of the LRH which demonstrates a
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Fig. 3. Maximum and average completion times for concentrated and sparse
instances.

Fig. 4. Objective function trend in the concentrated and sparse cases.

Fig. 5. Difference between the charging stations with lowest and highest
loads.

slight improvement in the concentrated case. Fig. 5 shows the
difference between the completion times of the two charging
stations with lowest and highest loads for the concentrated and
sparse cases. In both cases, the LRH gives the best results by
providing an effective balance of the loads in the charging
stations.

Due to this similar trend for the concentrated and sparse
cases, from now on, we will focus only on the concentrated
class of instances.

Figs. 6 and 7 show the time components of the comple-
tion time output by the heuristics for the heterogeneous and

Fig. 6. Heuristic comparison for the heterogeneous instances.

Fig. 7. Heuristic comparison for the homogeneous instances.

TABLE III
RELATIVE PERFORMANCE DECREASE WITH RESPECT

TO THE LRH PERFORMANCE

homogeneous instances, respectively. They display the average
completion time over the number of EVs. The three time
components of the objective function are the TT, the WT, and
the recharge time (RT).

The mean completion time is mostly affected by the WT
and by the charging time, while TT is quite insignificant. The
LRH performs better in the heterogeneous case (compared to
the homogeneous one) since they can balance the load among
the charging stations. In the homogeneous instances case, the
total improvement performed by the LRH with respect to the
other heuristics is significant and varies between 8% and 33%.

In Table III, the relative performance decrease of the
heuristics results in relation to the LRH are reported. The rel-
ative performance decrease (�) is calculated by comparing
the heuristic solution (Sol(H)) with the Lagrangian solution
(Sol(L)) as in the following equation:

� = 100
Sol(H) − Sol(L)

Sol(L)
. (8)
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TABLE IV
IMPROVEMENT WITH RESERVATION

The second and the third columns of Table III report
the results related to the heterogeneous and homogeneous
instances. It is evident that the LRH gives the best perfor-
mances with a relative performing improvement ranging from
2.3% to 33.5%.

2) Detailed Results of the Lagrangian Relaxation Heuristic:
In this section, the LRH has been tested and combined with
different algorithms that further improves the solution. The
two approaches are:

1) the preprocessing routing phase that proposes different
paths to reach the stations;

2) the reservation policy that reduces the WT at the station.
We remind that a feasible path for an EV is a path that

can reach the station considering the starting battery charge,
the consumption of energy during the path and traffic condi-
tions. The preprocessing routing phase has been developed by
implementing the following heuristics.

1) Maximum recharge (MR) which outputs the feasible
path that provides the MR and minimizes its own com-
pletion time, limiting the increasing of the idle time of
the station as much as possible.

2) Shortest distance (SD) which outputs the feasible short-
est path in terms of distance (ignoring the total TT).

3) Shortest time (ST) which outputs the feasible shortest
path in terms of time, considering traffic conditions.

Although the previous results highlight that the TT is neg-
ligible compared to the two other completion components, it
will become critical once the charging time decreases thanks
to the technological improvement.

The completion time of each vehicle is affected by the tech-
nological characteristics of the batteries. Even a few vehicles
in line lead to a remarkable WT. For this reason, we have intro-
duced a reservation policy that reduces the WT at the charging
stations. Therefore, EVs can reserve the charging time interval
and postpone the departing time that, in this case, cannot coin-
cide with the release date. The reservation time coincides with
the recharge starting time provided by the LRH solution. To
guarantee that each EV arrives at the station at the reserved
time, the algorithms fix a buffer time and evaluate the effects
of traffic conditions to estimate the departure time.

The previous three algorithms are, then, improved to
MRRES, SDRES and STRES where the suffix _RES stands for
“reservation.”

In Fig. 9, the results of the heuristics with reservation is
compared to those without reservation. In all cases, WT is
highly reduced and can be now compared to the TT.

In Table IV, the percentage improvement due to the
reservation with respect to the same preprocessing heuris-
tic without reservation is reported. Column Cmax(%) refers
to the objective function while AC(%) refers to the average

Fig. 8. Preprocessing heuristics with/without reservation: objective function
values.

Fig. 9. LRH performance with/without reservation.

completion time calculated on the number of the charging
stations.

The preprocessing heuristic MR gives the best
performances, since it outputs the solution that maxi-
mizes the autorecharge during the path and consequently
reduces the charging time. This heuristic also outputs the
departing time and the path that do not increase the idle time
of the charging station. This improvement is more evident
as the completion time decreases. In fact, the MR reduces
the charging time by about 7–10 min, leading to a total
reduction of about 2%–4% that reaches 10%–12% when the
reservation is applied. If the completion time is reduced by
applying a reservation policy, then the MR should give more
advantages. When a further reduction of the charging time is
possible thanks to the evolution of technology the three time
components of the objective function will be comparable.
The completion time will substantially decrease and the effect
due to a smart selection of the path will be more evident,
over 10%.

VIII. CONCLUSION

This article addresses the optimal assignment of a set
of electric vehicles to a set of charging stations, with
the objective of minimizing the maximum completion time.
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We have implemented an online decentralized assignment
heuristic based on the Lagrangian relaxation of a mathematical
formulation of the problem. Then we have compared its
performance to other assignment heuristics. The LRH gives
the best results in all cases, considering different classes of
instances; it also induces the side effect of balancing the
charging stations workload. We have decomposed the time
spent by each EV into three components, namely, the TT,
the WT at the charging station, and the charging time. We have
observed that the TT component is negligible with respect to
the other two. Moreover, we have proposed some solution pro-
cedures which aim to reduce the maximum completion time by
opportunely affecting the three time components and we have
integrated them into the LRH, with the effect of improving
its performance. The best performance is given by a heuristic
which assigns a path to each EV which provides the maximum
autorecharge (during the path) and implements a reservation
policy that drastically reduces the WT at the charging station.
The heuristics have been tested on a real network.

Future work will be addressed to investigate the improvement
given by the information sharing among EVs and stations.
We have assumed a limited information exchange among the
stations but an higher amount of information flow would lead
to a more accurate estimate of the parameters computed in the
assignment algorithm. For example, the system could become
crowdsensing [20], [27] if the EVs communicated spatial and
temporal details about their routes that can affect the traffic
conditions of the network. Moreover, a more sophisticated
reservation policy could provide pricing reduction policy and
penalties for on-time and late EVs, respectively.
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