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Dynamics of Opinion Polarization
Elisabetta Biondi , Chiara Boldrini , Andrea Passarella , and Marco Conti

Abstract—For decades, researchers have been trying to
understand how people form their opinions. This quest has
become even more pressing with the widespread usage of online
social networks and social media, which seem to amplify the
already existing phenomenon of polarization. In this work, we
study the problem of polarization assuming that opinions evolve
according to the popular Friedkin–Johnsen (FJ) model. The
FJ model is one of the few existing opinion dynamics models
that has been validated on small/medium-sized social groups.
First, we carry out a comprehensive survey of the FJ model
in the literature (distinguishing its main variants) and of the
many polarization metrics available, deriving an invariant rela-
tion among them. Second, we derive the conditions under which
the FJ variants are able to induce opinion polarization in a social
network, as a function of the social ties between the nodes and
their individual susceptibility to the opinion of others. Third, we
discuss a methodology for finding concrete opinion vectors that
are able to bring the network to a polarized state. Finally, our
analytical results are applied to two real social network graphs,
showing how our theoretical findings can be used to identify
polarizing conditions under various configurations.

Index Terms—Friedkin–Johnsen (FJ) model, opinion dynam-
ics, polarization.

I. INTRODUCTION

W ITH the rise of social media and online social
networks, online interactions have started playing an

increasingly important role in how people form their opinions,
to the point that news consumption itself is now often medi-
ated by social interactions [1], [2]. Social networks, though, do
not merely provide a transparent technological substrate that
facilitates interactions in the online dimension. Their algo-
rithmic personalization, aimed at highlighting content that
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is more interesting to each of us, effectively reinforces our
cognitive biases, reducing the cognitive discomfort we expe-
rience when exposed to opinions challenging our beliefs but
at the same time reducing the diversity and range of opin-
ions we are exposed to. By reinforcing consonant opinions
and downplaying, or even removing, discordant ones, social
networks cradle us into curated filter bubbles and comfortable
echo chambers. However, whether this leads to actual polar-
ization [3], [4], [5] is still debated. Some argue that the very
nature of social networks, i.e., the socialization of information
consumption, may counteract the above effects [6], others that
individual choices (to bond with similar others and to prefer
concordant information) are more predominant than algorith-
mic filtering [7], others again that exposure to opposing views
is more likely to actually backfire than to widen our perspec-
tives [8]. To make matter worse, information may not only be
partisan but it could also be blatantly fake [9].

This quest toward a better understanding of the impact
of the social algorithm [9] and misinformation on our soci-
eties is ingrained with a more general question that, even
when removing the cyber-dimension, still remains unsolved:
how do people form their opinions? This question has fasci-
nated sociologists and economists alike since much before the
advent of the Internet, but it has recently gained new momen-
tum, with computational sociologists and control theorists now
weighing in. The literature on opinion dynamics is vast, with
many models being proposed that aim at capturing a variety
of cognitive and social mechanisms that lead to forming an
opinion, such as social influence (which determines whose
opinion you are affected by), cognitive dissonance (which
triggers your willingness to adapt), anchoring to one’s own
opinion (which captures our prejudices). For an in-depth dis-
cussion, we refer the interested reader to recent surveys, such
as [10], [11], and [12].

So-called averaging models are one of the most popular
classes of such opinion dynamics models [13], [14], [15]. In
these models, the final opinions (also known as expressed
opinions) are a function of a repeated weighted averaging of
the opinions of neighboring (in the influence graph) nodes.
The strengths of averaging models lie in their mathematical
tractability [16], ability to capture strong1 opinion diversity [18],
and their general flexibility (e.g., they can capture the wisdom of
the crowd phenomenon [19] or include prominent agents [20],
such as media sources and politicians that may be systematically
biased and not willing to change their opinion at all).

The Friedkin–Johnsen (FJ) model [15] is the most popular
averaging model in the related literature. It is the only

1This is in contrast with the weak opinion diversity generated by models
like the Hegselmann–Krause model [17], where the final opinions form
clusters in which every opinion is the same.
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model that has been validated on small and medium-sized
groups [21], [22], and even in human-AI group experi-
ments [23]. Focusing on it, our first contribution is to provide
a comprehensive review of all the major variants of the FJ
model and of the polarization metrics described in the related
literature. For them, we will highlight their key features and
the differences between each other. We found that polarization
metrics are linked together through an invariant relationship.
As a second contribution, we derive the conditions under
which the FJ model yields polarization, for each of the polar-
ization metrics identified before. In addition, we also prove
that the polarizing opinion vectors can be found analytically
in most cases. All the results obtained are exploited to identify
polarizing conditions, under different configurations, with two
popular datasets of real social networks.

A. Background and Motivation

The simplest averaging model is DeGroot’s model [13],
whereby the opinion of a node is simply the average opinion
of its neighbors, weighted by the strength of their social influ-
ence. This model, however, is not considered realistic, since,
when it converges (i.e., if the nodes’ opinions stabilize), it
always leads to consensus, i.e., to a final state in which all
nodes have exactly the same opinion [24]. To overcome this
problem, Friedkin and Johnsen [15] proposed a variation on
Groot’s model that introduces a certain degree of stubbornness
in nodes. Their hypothesis is that a personal opinion always
remains at least partly anchored to the initial opinion (or prej-
udice), more or less so depending on the individual’s attitude
to be influenced by others. The FJ model does not lead to
consensus (except in very particular cases [25]) and has been
widely popular in the related literature [16], [22], [25], [26],
[27], [28], [29], [30], [31]. The FJ model has enjoyed two main
avenues of research: on the one hand, the derivation of the con-
ditions for convergence or consensus has been the main focus
of the research efforts from the control theory domain [16],
[31], [32], [33]. On the other hand, the graph-theoretical efforts
[26], [27], [29], [30], [34], [35], [36] have been focused on
understanding the effects of the underlying influence graph on
opinion formation, polarization, and on how to interfere with
the opinion formation process in order to obtain a desired
outcome, (e.g., shifting the opinion in a specific direction,
minimizing polarization and/or disagreement).

While all the above works refer to the opinion dynam-
ics model they leverage as FJ, they are often relying on a
simplified version of it. Specifically, they use the more math-
ematically tractable version [which we refer to, later on, as
restricted FJ (rFJ)], which, however, is not able to capture
polarization (we discuss this point later in this article). This
has resulted in great confusion regarding which finding holds
under which hypothesis. The second gap in the related litera-
ture, and a direct consequence of the above confusion, lies in
whether the FJ model is actually able to capture polarization
or not. Indeed, despite being opinion polarization a funda-
mental feature of a realistic opinion formation process, only
Gionis et al. [26] and Dandekar et al. [35] have explicitly
tackled this problem. Analyzing the problem on undirected

social networks, they have proved that two variants of the
FJ model are neither capable of changing the average opin-
ion of the social network nor of increasing the weighted
difference of opinions among nodes of the same neighbor-
hood. However, what happens with the general FJ model and
with other polarization metrics is yet unknown.

II. MODELING FRAMEWORK

We explicitly differentiate between the social graph and the
influence graph. They both comprise the same set V of n
vertices and the same set of edges E , but the weights of the
edges are different and have different meanings. The social
graph, denoted with S , represents people (vertices) and the
social relationships between them (through the edge weights
ŵij). The strength of a social relationship is typically measured
in terms of the number of interactions that two people have [37]
and for this reason the few results on polarization in the related
works assume that the social graph is undirected [26], [35].
In this article, we will consider the general case of a directed
social graph, specifying how results change in the specific case
of an undirected one. The influence graph I describes how
a node’s opinion is influenced by that of its neighbors. The
existence of an edge from node i to node j in I implies that node
j exerts an influence on the opinion of node i, and the strength
of this influence is expressed by the edge weight wij. Lacking
additional information, the influence graph can be derived from
the social graph, leveraging the intuition that stronger social
relationships will influence more than weak ones. Specifically,
starting from the social weights ŵij, the influence wij can
be computed as wij = (ŵij/[

∑n
j=1 ŵij]). Please note that this

definition is the only one that allows a unique correspondence
between all the variants of the FJ model. The matrix W = (wij)

is called influence matrix and is assumed to be row stochastic
(because it captures how the influence a node is subject to is
split among its neighbors). The influence matrix is in general
asymmetric (corresponding to a directed influence graph), even
starting from a symmetric social matrix Ŵ = (ŵij), because the
influence weight wij expresses the relative importance of j with
respect to all i’s social relationships. Hence, the same social
relationship intensity can weigh very differently depending on
the strength of other relationships.

A. Friedkin–Johnsen Family of Opinion Dynamics Models

A discrete-time opinion dynamics model tracks the evolu-
tion of zi(k), the opinion expressed by a node i at time k.
Opinions are generally assumed to be real valued, i.e., con-
tinuous in a certain reference interval. Similarly to the related
literature [21], [26], [27], here we assume that opinions belong
to [−1, 1]. Thus, extremes −1 and 1 represent opposing view-
points on an issue. For a given configuration of its input
parameters, the model is said to be convergent if zi(k+1) → zi

for all i as k grows to infinity. A convergent model is said to
reach consensus if zi(k+1) → z for all i as k grows to infinity.
In the FJ model family, before the opinion formation process
starts, each node i has an initial opinion si, often referred to as
internal or fixed opinion (or prejudice). In contrast, the opin-
ion zi(k) is often referred to as the expressed opinion at time k.
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TABLE I
FJ FAMILY OF MODELS

In Table I we summarize the variants of the FJ models that
can be found in the literature and we discuss them separately
hereafter. We denote with N(i) the neighborhood set of node i.

1) Generalized Friedkin–Johnsen Model: Equation (1) in
Table I corresponds to the more general version of the model
originally proposed by Friedkin and Johnsen [15]. The outer-
most weighted average depends on parameter λi, correspond-
ing to the susceptibility of node i to the opinions of other
nodes. The innermost weighted average depends on the influ-
ence wij that node j exerts on node i. Two main mechanisms
are at play here: anchoring, to the node i’s internal opinion si,
and variable susceptibility λi, to other nodes’ opinions. Nodes
with zero susceptibility value are stubborn nodes and they
never change their opinion. A common matrix formulation of
the model is the following:

z(k + 1) = (I − �)s + �Wz(k) (4)

where � is a diagonal matrix containing the susceptibility val-
ues λi, while W is the influence matrix. Note that the opinion
of a node i depends both on its initial prejudice si (by a weight
1 − λi) and on its current opinion (by a weight λiwii). The
only case in which this does not happen is when the node
is stubborn (λi = 0) or when wii = 0. � and W are some-
times coupled via the condition 1 − λi = wii [16], however
we do not make this assumption here. The conditions under
which the generalized FJ (gFJ) model achieves convergence
and consensus have been thoroughly studied in the related
literature [16], [25], [32]. A sufficient condition for conver-
gence [31] is reported below, which we will use often in the
rest of this article.

Theorem 1 (Sufficient Condition for the gFJ): If �W is
stable (i.e., has eigenvalues inside the open unit circle {z ∈
C : |z| < 1}), the gFJ model is convergent and its only
stationary point z (i.e., steady-state solution) is given by the
following:

z = (I − �W)−1(I − �)s. (5)

We refer the reader to SI Appendix for a brief summary of
the main findings on the topic of opinion convergence.

2) Variational Friedkin–Johnsen Model:
Dandekar et al. [35] and Matakos et al. [34] used a
variant of FJ that we call the variational FJ model (vFJ),
whose update function can be found in (2) of Table I.
According to this model, the current opinion of a node is
the weighted average between its prejudice and the current
opinion of the other nodes. Thus, in this variant of the FJ

model, the current opinion of the node itself is not taken into
account. We can formulate the expressed opinion in matrix
form in the following way:

z =
(

D + Ã − A
)−1

Ãs (6)

where D is the diagonal degree matrix (
∑

j ŵij for the ith diag-
onal element), A is the adjacency matrix (whose i, j element
is ŵij and the diagonal is null), and Ã is a diagonal matrix
whose ith diagonal entry is equal to ŵii. To model stubborn
nodes, we can admit ŵii to be equal to ∞. In this case, matrix
Ã contains infinite values and (6) should be treated as dis-
cussed in SI Appendix. The relation between vFJ and gFJ
has never been explicitly discussed in the related literature,
where the two are implicitly treated as interchangeable and
generically referred to as FJ model. However, the two models
are not mathematically equivalent: the vFJ does not include
node i’s current opinion zi in the averaging process, while
gFJ pools both the initial opinion si and the current opinion
zi.2 The different flexibility of the two models becomes clear
when observing that while the vFJ only features the matrix
Ŵ = (ŵij) as parameters of the model (leading to a maximum
n2 degrees of freedom, with n = |V|), the gFJ includes also
matrix �, thus in total its degrees of freedom are n2 +n. From
a practical point of view, however, the only difference between
the two models is the parameter wii, which, in gFJ, takes into
account node i’s opinion zi in the averaging process, as we
will see in the proof of Corollary 8.

3) Restricted Friedkin–Johnsen Model: The vFJ model
with ŵii set to 1 as in (3) of Table I is very popular in the
related literature, mainly due to its mathematical tractability.
The model has been used in [26], [27], [29], [30], and [38].
The main difference between the rFJ and the vFJ model
is the absence of the weight for si, so the parameters are only
ŵij for all i �= j thus implying n2 − n degrees of freedom.
Note that, since the weights ŵij are free to vary (ŵij ≥ 0),
it is impossible to control the susceptibility (i.e., the impor-
tance of one’s own initial opinion), even indirectly. A common
matrix-formulation of the rFJ model is the following:

(D + I)z(k + 1) = s + Az(k) (7)

where D and A are defined as described for vFJ. The solu-
tion to the above problem can be written as z = (L + I)−1s,
where L = D − A is the Laplacian matrix. The formulation of
the rFJ model is particularly convenient from a mathematical
standpoint (since L + I is symmetric and many useful matrix
formulas leverage symmetry), and this is the reason why it has
been so often used in the related literature.

4) Matrix Representation of the FJ Model: In the whole
set of FJ models, the final opinion z of the opinion formation
process can be expressed as z = Hs, where H is a matrix that
varies depending on the specific FJ version considered, whose
formulas are summarized in Table II. In the remaining of this
article, we will see that those matrices will be the key to the
analysis of FJ polarization.

2Note that the coupling condition λi = 1 − wii makes no sense for vFJ
since the weight of node i’s current opinion is zero, so there is nothing to
couple.
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TABLE II
MATRIX H FOR THE DIFFERENT FJ MODELS

B. Polarization Metrics

In an opinion formation process, polarization is observed
when there is a variation in a target index � (any, e.g., of
the indices in Definition 2) between the initial opinion and
the final opinion of nodes. A rigorous definition is provided
in the following. Note that Definition 1 below is basically an
abstraction of the polarization definitions in the related litera-
ture. In fact, while related works typically focus on a specific
polarization metric and define polarization based on it, here
we abstract the metric into the variable � and we provide a
general definition that holds for all the polarization metrics
discussed later on in Definition 2.

Definition 1 (Polarization): For a polarization index �, we
say that the opinion formation model M is �-polarizing or
polarizing for � if it exists at least an initial opinion vector s
such that the corresponding final opinion vector z satisfies the
following inequality:

�(z) > �(s). (11)

In this case, we say that s yields to �-polarization and we
call it polarizing vector or polarizing prejudice; its induced
polarization is measured in terms of the polarization shift, i.e.,
by the function �� defined as follows:

��(s) = �(z) − �(s). (12)

If the model M is not polarizing, we say that it is
�-depolarizing or depolarizing for �.

Please observe that the definitions of polarizing and depo-
larizing model M are not symmetric: to depolarize, a model
M should let opinions evolve in such a way that, at the end of
the process, � is always decreasing for all possible choices of
internal opinions (si); instead, M is polarizing if � does not
decrease for at least one initial opinion vector s. The justifica-
tion of the asymmetry lies in the importance of determining
whether a model can capture the polarization phenomenon,
which means that it does it in at least one case. Please note
that, for the sake of brevity, in the following we may sim-
ply refer to the opinion vector as opinion, omitting the word
“vector.”

For the polarization index �, the related literature has
explored several different metrics, each capturing a differ-
ent property of an opinion vector. Below we have collected
the most popular definitions, for which we provide a short
discussion.

Definition 2: For an opinion x = (xi) ∈ [−1, 1]n the
following polarization indices are defined:

NDI(x) =
∑

(i,j)∈E
wij

(
xi − xj

)2 (13)

GDI(x) =
∑

i,j∈V :i<j

(
xi − xj

)2 (14)

P1(x) =
∑

i∈V
(xi − x̄)2 = ‖x − x̄‖2

2 (15)

P2(x) = 1

|V|
∑

i∈V
x2

i = 1

|V| ‖x‖2
2 (16)

P3(x) =
∑

i∈V
x2

i = ‖x‖2
2 (17)

P4(x) =
∑

i∈V
|xi| = ‖x‖1. (18)

The network-disagreement index (NDI) [27], [29], [30],
[34], [35] is the sum, over all nodes, of the weighted dis-
agreement in each node pair, which represents (except for the
division by n) the average disagreement in the network as
a whole. NDI is the only topology-dependent metric, in the
sense that the same opinions may give rise to a completely dif-
ferent NDI depending on how the vertices are connected. The
global disagreement index [35] (GDI) measures the conflict
between all the users in the network, regardless of whether
they share a social link or not. P1 [29], corresponding to the
mean-centered 2-norm of opinions, measures the polarization
as a deviation of the opinions from the average. The defini-
tions of P2 [34] and P3 [30], instead, intend the polarization
as the deviation from the complete neutrality, represented with
the value 0 (the middle ground between the two extremes -
1 and 1). Finally, P4 is referred to as total absolute opinion
and has been introduced by Friedkin and Johnsen [21]. While
all previous indices were related to 2-norms, the total opin-
ion is equivalent to the 1-norm. Similarly to P2 and P3, the
index P4 measures the “absolute total” opinion in the network
and has the same semantic: it measures the deviation from the
neutrality (represented by 0). While not directly a measure of
polarization, the concept of choice shift caused by the opinion
formation process (see definition below) is sometimes used in
the related literature as an intermediate step in gauging the
direction toward which opinion moves.

Definition 3 (Choice Shift): A choice shift occurs when the
mean attitude of the group at the end is different from the
mean attitude at the beginning

∑

i

zi �=
∑

i

si. (19)

The choice shift has been analyzed, for rFJ, by Gionis et al.
in [26], where it is found that, if the social graph is undirected
(wij = wji), changing the graph topology will not determine a
choice shift. In the following, we will discuss if this finding
carries over to gFJ and under which conditions.

1) Polarization Invariants: The above polarization indices
have been introduced in the literature mostly as standalone
metrics. In the remaining of the section, we establish equiv-
alence relationships among them (Lemmas 1 and 2) and we
derive a polarization invariant (Lemma 3).

Lemma 1: It holds that GDI(x) = |V| · P1(x), thus the two
metrics GDI and P1 are equivalent.
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TABLE III
CLASSES OF POLARIZATION

Proof: See SI Appendix.
Lemma 2: It holds that P3(x) = |V| · P2(x), thus the two

metrics P2 and P3 are equivalent.
Proof: Differently from Lemma 1, the proof is triv-

ial and the thesis can be derived straightforwardly from
Definition 2.

Leveraging the results above, we can classify the polariza-
tion indices into four main classes of equivalence (Table III),
in the sense that the behavior of a model is invariant in each
class.

The four classes capture four different concepts of polariza-
tion. However, they are correlated by the following important
invariant that will be used in the next section and whose proof
is given in SI Appendix.

Lemma 3 (Polarization Invariant): For all opinion vec-
tors x, the following inequality holds:

P1(x) ≥ P3(x) − P4(x)2

|V| . (20)

From this relation, the following corollary follow, whose
proof is provided in SI Appendix.

Corollary 1: When there is no choice shift the polarization
moves in the same direction for both P1 and P3.

Corollary 1 says that, when there is no choice shift, the
polarization with P1 implies the polarization with P3 and vice
versa. A straightforward remark is that, in all the cases when
the choice shift is null (for example when opinions are positive
and W is symmetric, as shown by Gionis et al. [26]), the
Dispersion and Absolute classes of polarization are identical
and represent the only global class of polarization.

III. GFJ IS GLOBALLY POLARIZING

BUT LOCALLY DEPOLARIZING

We start by focusing on the most general FJ model, the gFJ,
and we investigate whether in this case the dynamics of the
process lead to polarization or not.

A. Polarization Under NDI

The first result is about the local polarization captured by
the NDI index.

Theorem 2 [gFJ (Local Polarization With NDI)]: The gFJ
model is always depolarizing with respect to NDI, in the sense
that, for every prejudice s, we have that NDI(z) ≤ NDI(s).

Proof: As stated in Theorem 1, the gFJ model converges to
the vector z obtained from z = (I −�W)−1(I −�)s. For each
node i, consider the following cost function:

fi(zi) = (1 − λi)(si − zi)
2 + λi

n∑

j=1

wij
(
zi − zj

)2 (21)

which penalizes opinion zi if far from si (i’s initial prejudice)
and from

∑n
j=1 wijzj (the mean opinion of i’s neighborhood).

We can prove that the expressed opinion (zi)i of gFJ pro-
vided by (5) is the Nash Equilibrium of cost function (21)
(for details, please refer to the SI), i.e., zi minimizes fi for
all i, so that fi(zi) ≤ fi(si) for all i. Since NDI(z)λi ≤∑

i fi(zi) and NDI(s)λi = ∑
i fi(si), we obtain that NDI(z) ≤

NDI(s) and, as a consequence, it follows that the gFJ is
NDI-depolarizing.

The result described above is intuitive: by definition, gFJ
captures the willingness of each node to reduce the conflict
(weighted by the matrix W) caused by the discordance of
opinions with its neighbors, which is exactly what NDI mea-
sures. For this reason, the gFJ model is depolarizing in a
local sense, but this however does not imply anything about
global polarization. On the contrary, we will prove that gFJ
can be polarizing at the global level depending on the interplay
between the social network weights and nodes’ susceptibility
to the opinion of others. This is a key result, since it proves
that gFJ does capture the polarization phenomenon in social
networks.

B. Polarization Under P2, P3, and P4

We start by deriving the conditions under which gFJ is
polarizing for the global metrics P2, P3, and P4 (the proof
is provided in SI Appendix).

Theorem 3 [gFJ (Global Polarization With P2, P3, and
P4)]: gFJ is polarizing with P2, P3, and P4 if and only if
matrix Hg defined in Table I is not doubly stochastic (i.e., a
square non-negative matrix, each of whose rows and columns
sums to 1). Furthermore, we can distinguish the following two
cases.

1) If there are naive nodes (i.e., ∃i ∈ V : λi = 1), matrix
Hg is never doubly stochastic and thus gFJ is polarizing.

2) If there are no naive nodes (i.e., ∀i ∈ V, λi < 1),
matrix Hg is not doubly stochastic, and equivalently
gFJ is polarizing with P2, P3, and P4, if and only if
the following condition holds true for at least one node
i ∈ V:

∑

j∈V

λjwji

1 − λj
�= λi

1 − λi
. (22)

Intuitively, the fact that Hg is not double stochastic is a
measure of the presence of nodes that are more influential
than others. This is straightforward to see in the case of
naive nodes [Theorem 3 1)], where all the non-naive nodes
play the role of influencers (because they are always able
to sway the naive nodes’ opinions toward theirs), potentially
increasing the polarization. When there are no naive nodes, the
intuition behind Theorem 3 is more difficult to grasp. Let us
split the effect of social influence and individual susceptibility.
To isolate the former, let all nodes have the same suscep-
tibility λ. Since (22) is reduced to

∑
j∈V wji �= 1, W not

being double stochastic becomes the condition for polariza-
tion, which corresponds to the case where the social influence
out of any node i is equivalent to the incoming social influ-
ence. However, in the general case, pure social influence is
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dampened by individual susceptibility: stubborn nodes are not
swayed, regardless of the social influence they are subject to.
The condition in (22) exactly captures this interplay between
susceptibility and social influence.

When gFJ is depolarizing, it is also unable to produce choice
shift, as the following corollary states.

Corollary 2: When Hg is doubly stochastic and thus gFJ is
depolarizing with P2, P3, and P4, for all opinion vector s, it
holds that P4(z) = P4(s) and

∑
i zi = ∑

i si.
1) How to Find Polarizing Opinion Vectors: In Theorem 3,

we have derived the sufficient and necessary condition for gFJ
to be polarizing. We can give a first characterization of the
polarizing vectors with P2, P3, and P4: they can always be
chosen with concordant entries (i.e., sgn(si) = sgn(sj) ∀i, j).
For a vector x = (xi)i, we will indicate with xabs the vector
with positive entries given by xabs = (|xi|)i. This is what is
affirmed by the following theorem.

Theorem 4 (P2, P3, and P4 Polarizing Vectors Can be
Obtained With Concordant Entries): Whenever the model is
polarizing with Pi, i = 2, 3, 4, and s is a polarizing opin-
ion vector, ±sabs (that have concordant entries) are polarizing
vectors inducing greater or equal (than that of s) polariza-
tion. Furthermore, if the network has no naive nodes and
�W is irreducible (i.e., the graph induced by �W is strongly
connected), the polarizing opinion vector that maximises the
polarization has concordant entries.

This result is important and also pretty intuitive: since the
P2,3,4 polarization captures the shift from a neutral state (close
to 0) to an extreme state (close to 1 or −1), the polarization
calculated on the same vector with all the entries concordant
must be greater or equal, because it is easier for nodes to coop-
eratively move toward the corresponding extreme. Instead,
when entries are discordant, nodes have to mitigate between
discordant opinions and thus are less free to vary in one of the
two directions. This always occurs if the nodes are suscepti-
ble and nonstubborn, otherwise there would be disconnected
communities and the cooperation would be impossible (this is
what the conditions of the second part guarantee).

We can go one step further and provide (Theorems 5 and 6
below) concrete cases of initial opinion vectors under which
gFJ is polarizing with P2, P3, and P4. In the specific case of
P2 and P3, we prove that finding the prejudice vector that
yields maximum polarization, i.e., the maximum of function
�P2,3 defined in (12), is NP-hard, so we also discuss a possible
approximation algorithm (Corollary 3).

Theorem 5 [gFJ (Polarizing Initial Opinions for P2 and
P3)]: Whenever the model is polarizing for P2 and P3 (i.e.,
according to the conditions of Theorem 3), the polarizing
prejudices sB2(1), sB2(t), smaxP2,3

can be derived as follows.
1) Two polarizing prejudices ±sB2(1) correspond to the uni-

tary eigenvectors associated with the largest eigenvalue
of matrix HT

g Hg and they correspond to the point of local
maximum for the P2, P3-polarization on the L2-ball of
radius 1 B2(1) = {x ∈ [0, 1]n : ‖x‖2 ≤ 1}. In particular,
it holds exactly �P3(±sB2(1)) = σ 2

1 − 1 = ‖Hg‖2
2 − 1 =

|V|�P2(±sB2(1)), where σ1 is the greatest singular value
of the matrix Hg. Both these vectors have concordant
entries.

2) The opinion vectors ±sB2(t) that yield the local max-
imum for P2, P3-polarization on the L2-ball of radius
t B2(t) = {x ∈ [0, 1]n : ‖x‖2 ≤ t} are given by
±sB2(t) = ±t · sB(1), where t = 1/s(k)

B2(1), with s(k)
B(1)

denoting the largest entry of sB2(1). In particular, its
polarization is exactly t2 times the polarization of sB2(1).
Both these vectors have concordant entries.

3) The global maximum for P2, P3-polarization is achieved
for the initial opinion vectors ±smaxP2,3

= ±∑
i αivi,

whose components α = (αi) can be obtained as the
solution to the following optimization problem:

max
∑

i

α2
i

(
σ 2

i − 1
)

s.t. 0 ≤ Bα ≤ 1 (23)

where σ1, . . . , σn are the singular values of Hg, α =
(α1, . . . , αn)

T is the vector of the coefficients that
express smax with respect to the basis B = {v1,3. . . , vn}
composed of the unitary eigenvectors of HT

g Hg, and
B is the matrix whose columns are the vectors of B.
The constraint guarantees that the solution smaxP2,3

has
positive (and −smaxP2,3

has, respectively, negative) is a
proper opinion vector in [−1, 1] with concordant entries.
This optimization problem, being quadratic nonconvex
programming, is NP-hard.

Corollary 3 below tells us that, in case matrix Hg has more
than one singular value greater than one, it is possible to design
subproblems of the optimal problem described in (23) over
spaces larger than B2(t) but smaller than the entire domain.
These subproblems are convex-quadratic programming and
can be solved in polynomial time. Depending on the dimen-
sion of the network, numerical solutions may still not be found.
Thus, we have designed a heuristic that always finds a solution
±sheu

V>1
whose polarization is greater than that of ±sB2(t). The

corresponding derivations can be found in SI Appendix.
Corollary 3 [gFJ (Polarizing Initial Opinions for P2 and

P3 on the Subspaces V>1 and V≥1)]: When matrix Hg has
more than one singular value greater than one, it is possible
to design subproblems of the optimal problem in (23) over
V>1 (vector space generated by the eigenvectors associated
with the singular values strictly greater than 1) and over V≥1
(vector space generated by the eigenvectors associated with the
singular values greater or equal to 1). These subproblems yield
polarizing vectors sV>1 , sV≥1 , respectively, and they are convex-
quadratic programming (with polynomial time complexity). A
heuristic that always finds a solution ±sheu

V>1
is proposed.

With Theorem 5 and Corollary 3, we are able to identify
the initial opinion vectors ±smaxP2,3

, ±sB2(1), ±sB2(t), ±sV>1,
±sV≥1 leading to polarization maxima on the corresponding
subspaces. While computing the opinion ±smaxP2,3

yielding the
global maximum is an NP-hard problem [Theorem 5 3)], an
approximate solution could be obtained using standard numer-
ical solvers (not in all cases, as we discuss in the Experimental
Evaluation section). The local polarization maxima are found

3Please observe that v1 is the vector sB2(1) because it is the unitary
eigenvector corresponding to the largest singular value.
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reducing the problem on the subspaces corresponding to eigen-
vectors of HT

g Hg associated with singular values strictly greater
or weakly greater than one. In particular, the vectors ±sB2(t)

of Theorem 5 2) [which are a scalar multiple of ±sB2(1)

in Theorem 5 1)] are the vector that maximize the P2, P3-
polarization on the space generated by the eigenvectors ±sB2(1)

of HT
g Hg [also denoted with v1 in Theorem 5 3)] that corre-

spond to the singular value σ1 > 1. The vectors ±sV>1 in
Corollary 3 maximize the polarization on the larger subspace
V>1 generated by all the eigenvectors that correspond to the
singular values strictly greater than one. Finally, the vectors
±sV≥1 in Corollary 3 maximize P2, P3-polarization on the even
larger subspace V≥1 generated by all the eigenvectors that cor-
responds to the singular values weakly greater than one. Since
these vectors correspond to the maximum of polarization over
subspaces that are subset of each other, it is trivial to derive
the following inequality:

��

(±sB2(1)

) ≤ ��

(±sB2(t)
) ≤ ��

(±sV>1

) ≤
≤ ��

(±sV≥1

) ≤ ��

(
±smaxP2,3

)
(24)

for � = P2, P3.
While the results in Theorem 5 and Corollary 3 do not have

an immediate practical interpretation, we can get the gist of
them with a simple numerical example. Consider a network
composed of three nodes—a naive node A, a node B with
a susceptibility value equal to 0.5, and a stubborn node C—
with mutual weights equal to 0.5. Applying Theorem 5, we
obtain that sB2(1) = (0, 0.30, 0.95) and, dividing by 0.95 as
in Theorem 5 2), we obtain sB2(t) = (0, 0.31, 1), which leads
to a final opinion vector (0.8, 0.61, 1). The prejudice of the
naive node A is opposite to that of stubborn node C, and
A’s opinion shifts significantly (from 0 to 0.8). The opin-
ion of the intermediate node B is approximately doubled.
The opinion vector achieving maximum polarization smaxP2,3
is instead (0, 0.75, 1), whose corresponding final opinion is
(0.95, 0.89, 1). In this case, the combined effect of non-naive
nodes’ strong prejudices pushes A’s final opinion to the oppo-
site extreme. In some way, it is as if sB2(t) (which only takes
into account one singular value of H) selected the prejudice
that maximizes the shift leveraging only to the most influential
node (node C). Instead, the smaxP2,3

(which yields the global
maximum) is able to enforce a synergy between non-naive
nodes. In this simple case since H has only one singular value
greater than 1, we cannot obtain the vectors sV>1 and sV≥1 .

Theorem 6 [gFJ (Polarizing Vectors for P4)]: Whenever the
model is polarizing for P4 (i.e., according to the conditions of
Theorem 3), the following hold true.

1) Two prejudice vectors ±sB1(1) that yields to P4-
polarization are the jth vector of the standard basis
in R

n (i.e., a vector whose components are all zero,
except the jth that equals 1) and its opposite, where
j = argmaxj

∑
i hij (i.e., j corresponds to the index of

the column of Hg = {hij}ij with the greatest column-
sum). This prejudice vector is also the point of maximum
of P4-polarization on the 1-norm ball B1(1) = {x ∈
[0, 1]n : ‖x‖1 ≤ 1} and its polarization is exactly given
by �P4(±sB1(1))) = ‖Hg‖1 − 1.

2) With the same notations of Theorem 5, the global max-
imum for P4-polarization is achieved for the initial
opinion vectors ±smaxP4

= ±∑
i αivi with concordant

entries, whose components α = (α1, . . . , αn)
T can be

obtained as the solution to the following optimization
problem:

max
∑

i

αi

(
σ 2

i − 1
)
〈vi, 1〉

s.t. 0 ≤ Bα ≤ 1. (25)

This optimization problem is a linear programming
problem that can be numerically solved.

As observed for P2, P3-polarization, it is holds that

P4
(±sB1(1)

) ≤ P4

(
±smaxP4)

)
. (26)

C. Polarization Under P1 and GDI

We conclude the analysis of gFJ by studying the polariza-
tion under P1 and GDI. For this case, Theorem 7 asserts that
whenever gFJ does not polarize in P2, P3, and P4, it does not
polarize in P1, GDI either. Instead, when gFJ is polarizing in
P2, P3, and P4, we can guarantee that it also polarizes in P1,
GDI only if the sufficient condition in Theorem 7 is satisfied.
Again, the proof of the theorem below can be found in SI
Appendix.

Theorem 7 [gFJ (Global Polarization With P1, GDI)]: For
polarization indices P1 and GDI, the following results hold.

1) If gFJ is depolarizing for P2, P3, and P4, then it is also
depolarising for P1, GDI.

2) gFJ is polarizing in s if the following condition holds
true:

∑

i

α2
i

(
σ 2

i − 1
)

≥ 1

n

[
∑

i

|αi|
(
σ 2

i − 1
)
〈|vi|, 1〉

]

·
[
∑

i

|αi|
(
σ 2

i + 1
)
〈|vi|, 1〉

]

(27)

where α = (α1, . . . , αn)
T is the expression of s in terms

of the basis B of the unitary eigenvectors of HT
g Hg.

D. Role of Stubborn and Naive Nodes

We now show (Corollary 4 below, proof in SI Appendix)
a general result regarding stubborn nodes (i.e., nodes whose
opinion is not at all swayed by that of their peers, which
translates into λi = 0), whose role has not a direct impact
on polarization. In fact, we will see that even if their strong
anchoring attitude would intuitively suggest that they always
have an effect on the final opinion, the network structure can
instead invalidate it.

Corollary 4: While naive nodes tend to make polarization
easier, stubborn nodes do not have a clear directional effect
on the polarization with P2, P3, and P4.

Leveraging Theorems 3 and 7, we can also study a special
case involving naive nodes. This result, whose proof can be
found in SI Appendix of this article, emphasizes the role of
naive nodes (the ones with λi = 1), which essentially forget
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their prejudice and move their opinion toward the opinion of
the other nodes.

Corollary 5: Let us assume that the set of nodes V is
composed of two disjoint groups, I and J , such that all non-
naive nodes have the same opinion τ , while the naive nodes’
opinions are free to vary in [−1, 1], or equivalently

∀i ∈ I λi = 1, si ∈ [−1, 1] ∀j ∈ J λj < 1, sj = τ. (28)

Then, the final opinion z is exactly the vector z = τ1. In
addition, this configuration is never polarizing for P1 and GDI,
while, as long as |si| < 1 for at least one node i, it always
exists a τ value such that P2, P3, and P4 are polarizing.

IV. VFJ POLARIZES WHEN GFJ DOES

As already observed, in vFJ the opinion of a node i at step
k does not take into account its own opinion at step k − 1 (as
it happens, instead, with gFJ, which weighs it with wii). Thus,
from a mathematical standpoint, the two models are different.
However, apart from this specific contribution (i.e., in the case
wii is null), vFJ can be manipulated to exactly yield the same
polarization as gFJ, if in an indirect and less intuitive way.
In fact, in gFJ the susceptibility parameter directly captures
the innate tendency of a node to be influenced (and to which
degree) by others. In vFJ, instead, the rate at which a node is
influenced by its peers is captured by: 1) the social strength
of the node with all its neighbors ŵij and 2) the anchoring-
degree of the node itself ŵii, i.e., the importance it assigns to
its initial prejudice.

Theorem 8 below establishes a complete equivalence, in
terms of polarization properties, between gFJ and vFJ.

Theorem 8 [vFJ (Local and Global Polarization)]: For all
polarization metrics, the vFJ model yields polarization under
exactly the same conditions as gFJ. Specifically, if we replace
matrix Hg with the vFJ matrix Hv and we set ŵii = 0 for
naive nodes (if present), the results of Theorems 3–7 and
Corollaries 5 and 6 hold true. In particular, the condition
for Hv not being doubly stochastic reduces from (22) to the
following one:

∑
j �=i ŵij

ŵii
−

∑

j �=i

ŵji

ŵjj
�= 0. (29)

Proof: The proof consists in the derivation of vFJ from gFJ.
This can be done using the following mapping:

ŵii �= ∞ →
⎧
⎨

⎩

λi =
∑

k∈N (i) ŵik

ŵii+∑
k∈N (i) ŵik

wij = ŵij∑
k∈N (i) ŵik

(30)

ŵii = ∞ →
{

λi = 0
wij = 0.

(31)

Thus, the thesis follows from the results obtained for gFJ.
Equation (29) simplifies when the social graph is undirected

(which corresponds to the matrix Ŵ being symmetric). As
stated in Corollary 6 below, in that case, when the self-weights
are identical for all nodes (i.e., ŵii = ŵ ∀i) vFJ is never polar-
izing in any metric and the average opinion is invariant to the
opinion formation process.

Corollary 6 (vFJ on Undirected Social Graphs): When the
social graph is undirected (i.e., matrix Ŵ is symmetric), vFJ
is polarizing with P2, P3 and P4 if and only if ŵii are not
identical for all i. When ŵii = ŵ ∀i, vFJ is never polarizing in
any metric and it holds that

∑
i zi = ∑

i si, i.e., there is never
a choice shift in the network and the average final opinion is
the same as the average initial opinion.

V. RFJ MODEL IS NEVER POLARIZING

IN UNDIRECT NETWORKS

In this section, we derive the results of polarization on the
rFJ model. We already know from Bindel et al. [27] that rFJ
does not polarize according to the local definition NDI, and,
from Gionis et al. [26], that in the specific case of the undi-
rected social graph it does not polarize according to the global
definition P4. Here, we generalize these findings. To this aim,
note that rFJ is equivalent to vFJ after setting wii = 1. Thus,
Theorem 8 also applies in this case. The condition for Hr

(the equivalent of Hg but for rFJ) not being doubly stochastic,
simply reduces from (29) to the following one:

∑

j �=i

ŵij −
∑

j �=i

ŵji �= 0. (32)

And when the social graph is undirected, we obtain an even
stronger result, summarized in Corollary 7 below.

Corollary 7 (rFJ on Undirected Social Graphs): The rFJ
model is never polarizing, in any polarization metrics, for any
initial opinion vector. In addition, it holds that

∑
i zi = ∑

i si,
i.e., there is never a choice shift in the network and the average
final opinion is the same as the average initial opinion.

Remark: While polarization was still possible under vFJ
on undirected social graph, with rFJ polarization never hap-
pens. The practical implication of this result for undirected
social graphs is that polarization (in all its variations) can
never be induced “naturally” by an opinion formation process
following rFJ. Even more interestingly, polarization cannot
be induced by altering the social graph (as long as it stays
symmetric). Thus, when an initial state s is given, the final
state z with rFJ can only naturally evolve toward nonpolariza-
tion. Vice versa, when the social graph is directed, the above
result does not hold since, in a directed graph, the opinion of
nodes with stronger social power tends to steer the opinion of
the others. While relationship-oriented online social networks,
like Facebook, tend to feature undirected graphs, directed
social graphs are common in information-driven online social
networks like Twitter.

VI. EXPERIMENTAL EVALUATION

In this section we analyze the theoretical results on two real
social network graphs: 1) the Karate Club graph [37] and 2) a
Facebook graph [39]. The Karate Club dataset corresponds to
an unweighted graph composed of 34 members. The Facebook
dataset is a Facebook snapshot comprising 4039 users. Also
in this case the graph is unweighted. After discarding isolated
nodes (since they do not contribute at all to the opinion for-
mation process), we end up with a network of 1519 nodes.
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With these datasets we obtain the values ŵij that describe the
social links between different users.

For both graphs, we obtain the influence matrix from
the social matrix Ŵ normalizing by rows, i.e., wij =
(ŵij/[

∑
k ŵik]). To proceed with the analysis we should set

the susceptibility values of nodes, which are not fixed by the
social network. To this aim, since both networks have a few
very central nodes, as displayed in SI Appendix, we decided
to use a centrality measure to set them. In the following, we
will show the results obtained considering the PageRank cen-
trality, which is the centrality measure that better captures the
influence among nodes [16], but similar results hold with other
centrality measures (betweenness, degree, eigenvector, and k-
shell centrality). In our experiments, if the Pagerank centrality
of a node i is Ci, we assign λi the value of Ci (and C−1

i )

rescaled to (0, 1), so that the more central the nodes (and,
respectively, the less central), the higher their susceptibility
values. Furthermore, we will also show the case in which all
nodes have the same susceptibility, set to 0.8. In SI Appendix,
we provide a visualization of the social networks we consider
and of the susceptibility values obtained in this way for both
datasets.

We can now search for the initial opinion vectors that yield
polarization in the social network, by applying Theorems 5
and 6 and Corollary 3. For the sake of brevity, in the fol-
lowing we will consider only the positive polarizing vectors
but analogous results can be obtained for negative ones, as
stated in the corollaries. We compute the polarizing vectors
sB2(1), sB2(t), smaxP2,3

, sV>1, sheu
V>1, sB1(1), smaxP4

as described
in Theorems 5 and 6 and Corollary 3, and we compare their
polarization with the one of an opinion vector sunif with
entries randomly drawn from a uniform distribution in [0, 1].
Table IV shows the polarization induced by the above vec-
tors on the Karate social network, for the three susceptibility
configurations we are considering. Recall that the polariza-
tion shift ��(s) for a given polarization metric � (with
� = P1, . . . , P4, NDI, GDI) and initial opinion s is derived
as �(Hs) − �(s). When ��(s) is positive, then gFJ polar-
izes in s. We can see in Table IV that the theoretical results
are confirmed (this is not surprising, since our theorems are
obtained without any approximation). A random prejudice
vector sunif leads to depolarization for all the polarization met-
rics. Instead, the prejudices from Theorem 5 and Corollary 3
yield to P2, P3-polarization. As expected, according to (24),
their corresponding P2, P3-polarization shifts are progressively
increasing moving from sB2(1) to smaxP2,3

(because the solu-
tion is searched for into a larger domain). Note that, since the
network is small, the numerical solver is able to find the solu-
tions smaxP2,3

and sV>1 (the latter is not applicable to the case
λi = 0.8, because its Hg has only one singular value greater
than 1). It is interesting to observe that the solution sheu

V>1
found

with the heuristic is, in one case, exactly equal to the one
obtained numerically (sV>1) and, in the other case, extremely
close to it, which confirms the heuristic validity. The prejudice
vectors found according to Theorem 6, instead, yield to P4-
polarization, and satisfy the inequality in (26). With respect to
P1, GDI-polarization, while Theorem 7 cannot tell us whether
polarization is achieved in general, we can use it to predict

TABLE IV
GFJ IN THE KARATE NETWORK: VALUES OF �� FOR ALL POLARIZATION

METRICS, FOR THE THREE λi CONFIGURATIONS. THE SHADOWED AREA

HIGHLIGHTS WERE THE CORRESPONDING OPINION VECTORS

s ARE EXPECTED TO YIELD POLARIZATION

whether P1, GDI-polarization is achieved with the same prej-
udices that yield P2, P3, or P4 polarization. We find that the
condition (sufficient for polarization) of Theorem 7 is veri-
fied only for the P2, P3-polarizing prejudices and λi ∝ C−1

i .
The columns �P1 and �GDI of Table IV confirm polarization
in these cases. Finally, as expected from Theorem 2, gFJ is
always depolarizing in NDI.

Similar results are obtained with the Facebook network
(Table V). Two points are worth emphasizing. First, the cen-
trality of nodes in the Facebook graph is extremely skewed,
with one very central node dominating the graph. Thus, when
λi ∝ Ci, there are very few susceptible nodes and polariza-
tion is harder to achieve. The opposite effect is observed when
λi ∝ C−1

i , and the polarization shifts are higher. Second, note
that since the Facebook network size is large, the global solu-
tions (smaxP2,3

and smaxP4
) could not be found numerically and

sV>1 could only be obtained for λi ∝ Ci. This example show-
cases the importance of the heuristics derived in the previous
section, which can always return a polarizing vector.

We conclude this section by having a closer look at how
polarizing prejudices are structured. In Fig. 1(a), each arrow
corresponds to one node in the Karate graph, and it starts at its
prejudice and ends at its final opinion. For P2, P3, and P4, an
increase in polarization is linked, intuitively, to some opinions
moving from more neutral states (close to 0) to more extreme
states (close to 1). Indeed, this is what happens in all the cases
presented in the figure. In particular, the vectors smaxP2,3

and
smaxP4

that maximize the polarization feature the maximum
number of components with initial opinion equal to 1 (with
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(a)

(b)

Fig. 1. Polarizing opinions versus nodes centrality. Each arrow corresponds to one node in the graph. An arrow starts at the initial prejudice and ends at the
final opinion. The color of the arrow corresponds to the susceptibility assigned to the node. (A) λi ∝ Ci, (B) λi ∝ C−1

i , and (C) λi = 0.8. In each panel, on
the left the opinions yielding P2, P3-polarization, on the right the opinions yielding P4-polarization. With the dotted and dashed line we denote the average
initial and final opinion, respectively. (a) gFJ on the Karate network. (b) gFJ on the Facebook network.

respect to the other opinion vectors): in this way, the nodes
with more extreme opinions work synergistically to push the
others’ opinions closer to theirs. For selecting such an optimal

“cooperative” group of extreme nodes, one should be able to
search for a solution to the optimization problem within the
entire domain of opinions. When this is not the case, only
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TABLE V
GFJ IN THE FACEBOOK NETWORK: VALUES OF �� FOR ALL

POLARIZATION METRICS, FOR THE THREE λi CONFIGURATIONS.
THE SHADOWED AREA HIGHLIGHTS WERE THE CORRESPONDING

OPINION VECTORS ARE EXPECTED TO YIELD POLARIZATION

suboptimal polarization is achieved. For example, the vectors
sB2(1), sB2(t), sB1(1), only manage to select one single extreme
node responsible for pushing the more neutral opinions of oth-
ers, while sV>1 is in an intermediate position, being able to
select more extreme nodes than sB2(t) and fewer than smaxP2,3

.
We can also observe that in panels A and B of Fig. 1(a), where
the susceptibility varies across nodes, the nodes with initial
opinion 1 are always the most stubborn, so that they create a
field of attraction for more susceptible nodes. Effectively, the
susceptibility assigned to nodes overrides their centrality in
the network, hence very central nodes can become attractors
or attractees depending on how stubborn they are. Vice versa,
when the susceptibility of all nodes is the same [panel C of
Fig. 1(a)], we observe the unfiltered effect of centrality: the
most polarizing prejudices are those in which the most central
nodes have initial opinions close to 1, and their final opinion
changes much less than the others’ opinions. This also con-
firms that the PageRank centrality is able to capture the ability
of nodes to convince the others, and thus it identifies the most
influential nodes.

In Fig. 1(b) we can see the results obtained with the
Facebook network. In this case, since the network is large, it
is not possible to find the global solutions smaxP2,3

and smaxP4
.

However, the considerations we made for the Karate graph
hold also in this case. In particular, the polarizing vectors
assign to more stubborn nodes initial opinions closer to 1,
so that they can influence susceptible nodes to which they
are connected. In the Facebook network, though, due to the
scale-free topology with just a few hubs and many poorly con-
nected nodes, we also observe very susceptible nodes that do
not change their opinions (Fig. 1(b), panel B). These nodes
have typically a single edge toward a stubborn node sharing
its opinion.

VII. CONCLUSION

In this work, we have investigated under which conditions
the popular FJ model yields polarized opinions. The first con-
tribution of the work has been to systematize the variety of
FJ models used in the literature, and the many definitions of
polarization. Then, as the main contribution of the work, we
have derived the conditions under which the FJ models yield to
polarization, for each of the polarization classes identified from
the related literature. Moreover, we have identified a method-
ology for obtaining polarizing prejudices in most cases. When
exact solutions could not be found (because the corresponding
problem was NP-hard), we have defined heuristics to find a
suboptimal solution. Our theoretical results have then been
tested on two real-life social networks. We have seen that both
the centrality of nodes in the social network as well as their
individual susceptibility to the opinions of other nodes play a
key role in defining their influence power, hence their ability
to polarize.

The results presented in this work can be used to understand
under which conditions polarization of opinions will emerge
for a given social network. While the application to online
social networks immediately comes to mind (as showcased
in Section VI, the social graph can be collected from online
social network platforms, such as Twitter, Facebook, Reddit,
etc.), other applications can be foreseen, such as failure mode
and effect analysis in reliability engineering [40]. In addition,
the results presented in this article can be exploited to design
interventions to bring polarization under control. More in gen-
eral, since opinions in the FJ model are actually abstracted as
values in the [0, 1] or [−1, 1] domain, the FJ model could
be used to study information propagation, the evolution of
decision processes, and consensus/polarization on networks,
as long as the mapping in the same unidimensional domain
remains appropriate.
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