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Application of Generalized Inverses in the
Minimum-Energy Perfect Control Theory

Tomasz Feliks , Wojciech Przemysław Hunek , and Predrag S. Stanimirović

Abstract—Application of generalized inverses in solving the
inverse model control (IMC)-oriented minimum-energy per-
fect control design (PCD) problem for linear time-invariant
multi-input/multi-output systems governed by the discrete-time
d-state-space structure is presented in this article. For this rea-
son, an appropriate class of polynomial generalized inverses is
investigated. Moreover, it can be stated that the nonunique right
σ -inverse, based on properly selected so-called degrees of free-
dom (DOFs), outperforms the well-known unique Moore–Penrose
(MP) minimum-norm right T-inverse in terms of the energy con-
sumption of perfect control (PC) input signals. However, the
analytical confirmation of such an intriguing statement has only
been established for the special class of the single-delayed plants
with a zero reference value. Moreover, because of the complex-
ity of the IMC, the objects with a time delay d > 1 having a
nonzero setpoint have never been analytically explored in regard
to the PC energy context until now. Thus, the newly introduced
analytical methods defined in this article allow us to designate
the proper forms of σ -inverse-related DOFs that guarantee the
minimum-energy PCD for the entire set of LTI multivariable
nonsquare systems with the delay d ≥ 1. Moreover, the new orig-
inal results, supported by numerical examples, strongly contest
the well-established control and systems theory canons related
to the optimal minimum-energy-originated peculiarity of the MP
pseudoinverse.

Index Terms—Feedback control, generalized inverses, inverse
model control (IMC), linear multivariable systems, minimum-
energy design, Moore–Penrose (MP) inverse, optimal control
theory, static optimization problems, systems with time delays,
time-invariant systems.

I. INTRODUCTION

THE INVERSE model control (IMC) strategies have been
thoroughly investigated over the last decades due to

their employment in a number of scientific and engineering
tasks. In particular, the IMC-based explorations have discov-
ered miscellaneous properties, such as robustness [1], [2],
[3], minimum-energy maintenance [3], [4], [5], as well as
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speed and accuracy phenomena [6], [7], [8], [9], [10], [11].
The family of IMC-related algorithms constitutes the well-
known and broadly explored stochastic minimum variance
(MV) and deterministic perfect control (PC) formulas strictly
dedicated to the plants defined in both the transfer func-
tion [12], [13], [14], and state-space frameworks [4], [15], [16].
The special peculiarities of such unified control law, i.e., the
maximum-speed/maximum-accuracy and robust maintenance,
make it desirable in many industrial real-life implementations,
for example, in the quadruple tank process [9], wireless autopi-
lot of a quadcopter [17], control of a satellite system [18],
power system control [19], water distribution system [20],
linear/nonlinear servo control systems [21], [22], nonlinear
pendulum system [23], and refrigeration device [24]. However,
the main disadvantage associated with the high energy expen-
diture of the control input signals frequently prevents practical
applications of the discussed control strategy. It is obvi-
ous that for the square MIMO plants, including the SISO
ones, we cannot affect on the behavior of closed-loop PC
objects’ signals. Nevertheless, in nonsquare right-invertible
systems, i.e., full-rank plants with more input than out-
put variables, we can obtain the desirable object-originated
properties by involving nonunique generalized nonsquare
right inverses into the PC design (PCD) processes [4], [25],
[26], [27]. Nonetheless, in such a scenario, the broadly known
and unique minimum-norm right T-inverse, which satisfies
the four Moore–Penrose (MP) equations, has commonly
been used in the well-established worldwide scientific lit-
erature since it has been treated as the optimal one, in
general [28], [29], [30], [31], [32], [33], [34], [35].

Notwithstanding, following the heuristic studies in this
matter, it should be stated that the mentioned right T-
inverse does not guarantee the minimum-energy IMC-based
MV/PCD [11], [36]. Although the heuristic approaches could
be contested in some way, the novel authors’ analytical inves-
tigation undeniably confirms such an intriguing statement [4].
Thus, from now on, it is clear that the recently introduced
nonunique right σ -inverse, which encompasses proper degrees
of freedom (DOFs), outperforms the unique MP inverse in
terms of the energy of PC signals. Furthermore, because
of the exceedingly complex nature of this issue, the ana-
lytical confirmation of the above statement has only been
given for the single-delayed second-order LTI MISO discrete-
time state-space systems having a single nonzero pole with a
zero-reference value exclusively.

The minimum-energy IMC-related PCD problem
structurally comes down to the selection of the appropriate
σ -inverse-originated DOFs, in general. Accordingly, the
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plants possessing time delay d > 1 associated with a
nonzero reference value/setpoint have never been examined
analytically by the world control community regarding the
PC energy optimization. It is due to the extremely high
complexity related to the IMC methodology. However, a
breakthrough in this subject is presented in this article.
Through the newly defined analytical procedures it is possible
to calculate correctly a suitable set of σ -inverse-related
DOFs, which provide the minimum-energy PCD for the entire
class of LTI MIMO d-step systems. Henceforth, the newly
established methods allow us to consider the plants having
d ≥ 1 with a nonzero setpoint in terms of the control energy
minimization, which led to a new common minimum-energy
PC theory. A considerable potential of a practical use of the
presented results is also corroborated by the representative
numerical examples. The original observation covering the
d-PC law breaks down the well-established IMC paradigm
associated with the “pseudo-optimal” MP inverse, as a natural
extension of the usual inverse [37], [38], and opens a new
chapter in the control and systems theory canons.

The main contributions of this article are as follows.
1) A new concept of employing generalized inverses in the

minimum-energy IMC design tasks is offered.
2) Since generalized inverses are vital from both theoretical

and practical points of view, a newly introduced tool in
the form of the nonunique right inverse with arbitrary
selected DOFs is extensively explored.

3) A unified analytical approach to the minimum-energy
design of multivariable IMC systems with different time
delays is established.

4) The new solution outperforms the classical MP solution
in the energy consumption of PC inputs. This phe-
nomenon constitutes a solid background for reviewing
the commonly known MP literature.

5) Henceforth, the defined methodology can successfully
be employed regarding the energy optimization of phys-
ical systems.

This article is structured as follows. Fundamentals covering
the PC paradigm are presented in Section II. Related general-
ized inverses are investigated in Section III. The notion of the
PC energy problem is stated in Section IV. Section V extends
the possibility of obtaining the minimum-energy solution to
the single-delayed plants with zero and nonzero reference
values. The discovered results undermine the optimal prop-
erty of the MP inverse in Section VI. In the most important
Section VII, the general minimum-energy PCD solution for
LTI MIMO d-state-space systems is established, which is also
supported by a numerical example. Following the obtained
results, the progress in the minimum-energy-based IMC the-
ory is addressed in Section VIII. Finally, in the last section of
this article, the achieved outcomes are summarized, and the
open problems are accented.

II. STATE-SPACE PERFECT CONTROL PARADIGM

To present the new results perspicuously, the essential
abbreviations utilized in the manuscript are summarized in
Table I.

TABLE I
TABLE OF SYMBOLS AND ABBREVIATIONS

The set of right inverses of A is marked by A−1
{R} =

{X| AX = I}, while the dual set of left inverses of A is defined
as A−1

{L} = {X| XA = I}, where I denotes an appropriate
identity matrix.

Now, take into account an LTI MIMO plant S(A, B, C)

determined by the broadly known discrete-time d-state-space
framework

x(k + 1) = Ax(k) + Bu(k)q−d+1, x(0) = x0 (1a)

y(k) = Cx(k). (1b)

The system behaves in line with A ∈ R
n×n, B ∈ R

n×nu , and
C ∈ R

ny×n under the force of vectors x(k) ∈ R
n, u(k) ∈ R

nu ,
and y(k) ∈ R

ny . The notations n, nu, and ny denote the number
of state, input, and output variables, in that order. Naturally,
the whole system proceeds in discrete time k from the initial
condition x0 in regard to the backward shift operator q−1 and
time delay d of the considered object.

The IMC-oriented PC law composes the deterministic case
of the well-known MV control (MVC). Thus, in the particu-
lar case, the PC strategy guarantees that the system’s output
y(k) achieves the reference value/setpoint yref(k) after the time
delay d, such that

y(k + d) = yref(k + d). (2)
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To achieve such an interesting control algorithm it is
necessary to minimize the essential PC law model of the form

J = min
u(k)

{+∞∑
k=0

∥∥∥y(k + d) − yref(k + d)

∥∥∥2

2

}
(3)

which contains an arbitrary reference value yref(k + d) ∈ R
ny .

After the solution of defined performance index (3), the
general d-state-space-related PC formula is obtained [1] with
any time delay d ≥ 1

u(k) = (CB)R

⎡
⎣yref(k + d)

− C

⎛
⎝d−1∑

j=1

AjBu(k − j) + Adx(k)

⎞
⎠
⎤
⎦ (4)

where (·)R denotes any (non)unique right inverse.
Remark 1: For the left-invertible plants (ny > nu), the pri-

mary requirement (3) does not hold, in general [4]. Therefore,
such situations are excluded from our investigation.

Remark 2: It also should be noted that the PC strategy has
been defined recently for the nonfull rank objects with a zero
reference value yref(k) = 0. In such a scenario, the unique MP
T-pseudoinverse, supported by the so-called skeleton factoriza-
tion, has to be employed in PC, or rather perfect regulation,
design process. More details are available in [1] and [35].

Remark 3: The MVC procedure can also be provided
by (4) iff the so-called expectation operator is engaged in the
performance index (3).

Remark 4: Naturally, the general MVC algorithm operates
under the structure blurred by the zero-mean Gaussian-based
uncorrelated white noise sequence. However, due to the com-
plex nature of the presented issues, we exclude this awkward
instance. This is because the deterministic (PC) and stochastic
(MV) scenarios can be considered interchangeably in the con-
text of energy-oriented control results. Hence, we still proceed
with intricate IMC-related PC methodology.

III. RELATED GENERALIZED INVERSES

As usual, notations rank(A), R(A), N (A), and AT denote
the rank, image, null space, and transpose, respectively, of
A ∈ R

m×n, where R
m×n stands for m × n real matrices. In

addition, R
m×n
r = {A ∈ R

m×n| rank(A) = r}. The notation
R[t] stands for the set of polynomials with real coefficients in
the unknown variable t, while m × n matrices with elements
over R[t] are termed as R[t]m×n. Moreover, PU,V signifies
a projector onto U along V and PU denotes the orthogonal
projector onto U.

The MP inverse of A ∈ R
m×n is the unique matrix A† ∈

R
n×m defined by

1 AA†A = A, 2 A†AA† = A†

3
(

AA†
)T = AA†, 4

(
A†A

)T = A†A.

For given A ∈ R
m×n, if the equation 1 is satisfied with

respect to unknown X ∈ R
n×m, then X is an {1}-inverse of

A and it is denoted by A(1). The matrix X satisfying 2 is a

{2}-inverse (or outer inverse) of A and signified by A(2). The
outer inverse X is uniquely determined by the image T and the
null space S and is marked with the standard notation A(2)

T,S if

XAX = X, R(X) = T, N (X) = S.

The following notations will be useful: A{2}T,∗ = {X ∈
A{2}| R(X) = T}, A{2}∗,S = {X ∈ A{2}| N (X) = S}. For γ ⊆
{1, 2, 3, 4}, a γ -inverse of A is any matrix satisfying the equa-
tions contained in γ , and A{γ } represents the set of γ -inverses
of A, regarding canons 1 , 2 , 3 , and 4 . Particularly, the
sets A{1} and A{2} involve inner and outer inverses of A,
respectively. Further, the set of γ -inverses of A with predefined
rank are defined by A{γ }s = {X| X ∈ A{γ }, rank(X) = s}. A
particular γ -inverse of A of prescribed rank s is denoted by
A(γ )

s ∈ A{γ }s.
In Sections III-A and III-B we investigate extensions of

right and left inverses which play an important role in the
minimum-energy PCD. These generalized inverses are subsets
of {2, 3} and {2, 4} inverses and are defined by appropriate
matrix polynomial terms.

A. Nonsquare Polynomial Right σ -Inverses

In the available literature, it is possible to find a large
number of different (non)unique generalized inverses devoted
to nonsquare parameter/polynomial matrices [32], [39]. The
most famous is the unique MP T-inverse. Still, the Smith
factorization-oriented polynomial S-inverse and the SVD-
based parameter H-inverse with its polynomial instance in
the form of PSVD are also commonly utilized [10], [32],
[40], [41]. However, the most intriguing generalized inverse
is the latterly proposed polynomial matrix right σ -inverse,
defined on the matrix CB as follows.

Definition 1: Consider B ∈ R
n×nu and C ∈ R

ny×n.
The polynomial matrix right σ -inverse of the matrix CB is
defined by

(CB)R
σ |ϒ = ϒ

(
q−1

)[
CBϒ

(
q−1

)]†
(5)

which contains the essential matrix polynomial DOFs
ϒ(q−1) ∈ R[q−1]nu×ny with respect to the backward shift
operator q−1

ϒ
(

q−1
)

= β0 + β1q−1 + β2q−2 + · · · + βδq−δ (6)

where the label δ indicates an arbitrarily chosen order of
the matrix polynomial derived from the matrix coefficients
βi ∈ R

nu×ny for i = 0, 1, . . . , δ.
The dual matrix left σ -inverse is defined as follows.
Definition 2: Consider B ∈ R

n×nu and C ∈ R
ny×n.

The polynomial matrix left σ -inverse of the matrix CB is
defined by

(CB)L
σ |ϒ =

[
ϒ
(

q−1
)

CB
]†

ϒ
(

q−1
)

(7)

which contains the essential matrix polynomial DOFs ϒ(q−1)

defined as in (6).
It should be emphasized that through the introduced DOFs

ϒ(q−1), it is possible to influence the behavior of the PC algo-
rithm (4) [25]. Moreover, for any selected ϒ(q−1), excluding
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the nonfull rank ϒ(q−1), the main condition (3) always holds.
Nevertheless, the mentioned DOFs only occur in the nonsquare
scenarios. If CBϒ is nonsingular, then both (CB)R

σ |ϒ defined
in (5) and (CB)L

σ |ϒ defined in (7) come down to the regular
inverse of CB.

Remark 5: Observe that for δ = 0 we report the parameter
form of the σ -inverse

(CB)R
σ |β0

= β0[CBβ0]†. (8)

The choice δ = 0 in the constant matrix case reduces (5) to
a subset of A{2, 3} inverses investigated in [42].

Further, the choice δ = 0 and β0 = (CB)T in the case
rank(CB) = ny ≤ nu leads to the unique right inverse which
coincides with the MP inverse of CB

(CB)R
0 ≡ (CB)R

σ |(CB)T = (CB)T[CB(CB)T]†
. (9)

Remark 6: It should be noted that the nonunique poly-
nomial right σ -inverse (5), comprising the key DOFs (6),
includes all right-inverse expressions of CB in the case
rank(CBϒ) = ny. Furthermore, some relationships between
the mentioned σ -inverse (CB)R

σ |ϒ and the broadly applied
S-inverse can be found in [43].

In order to complete the fundamentals concerning the PC
law, the stability behavior of such a control algorithm is
examined below.

B. Properties of Nonsquare Polynomial Right σ -Inverses

The results of this section are applicable to B ∈ R
n×nu ,

C ∈ R
ny×n and ϒ(q−1) ∈ R[q−1]nu×ny . The rank equal-

ity rank(A1) = · · · = rank(Ak) between arbitrary matrices
A1, . . . , Ak will be denoted by �A1,...,Ak .

Representations and characterizations of the polynomial
matrix right σ -inverse are investigated in Lemma 1.

Lemma 1: The following statements hold for the polyno-
mial matrix right σ -inverse (CB)R

σ |ϒ :
1) CB(CB)R

σ |ϒ = PR(CBϒ);
2) (CB)R

σ |ϒCB = PR(ϒ(CBϒ)T),N ((CBϒ)TCB);

3) (CB)R
σ |ϒ = (CB)

(2,3)

R(ϒ(CBϒ)T),N ((CBϒ)T)
∈ (CB){2, 3};

4) (CB)R
σ |ϒ = (CB)

(2,3)

R(ϒ),N ((CBϒ)T)
⇐⇒ �ϒ,CBϒ ;

5) (CB)R
σ |ϒ ∈ (CB){1, 2, 3} ⇐⇒ �CBϒ,CB;

6) (CB)R
σ |ϒ = ϒ((CBϒ)TCBϒ)−1(CBϒ)T

= A(2,3)

R(ϒ),N ((CBϒ))
∈ A{2, 3}ny

⇐⇒ ϒ ∈ R
nu×ny
ny

∧
�CBϒ,ϒ ;

7) (CB)R
σ |ϒ ∈ (CB)−1

{R} ⇐⇒ ϒ ∈ R
nu×ny
ny

∧
�CBϒ,ϒ ;

8) ϒ = (CB)T ∨
ϒ = I =⇒ (CB)R

σ |ϒ = (CB)†;
9) B(CB)R

σ |ϒC is an oblique projector;
10) (CB)R

σ |ϒC =⎧⎪⎨
⎪⎩

B(2)

R(ϒ),∗, rank(CBϒ) = rank(ϒ)

B(2)

∗,N (C)
, rank(CBϒ) = rank(C)

B(2)

R(ϒT),N (C)
, rank(CBϒ) = rank(C) = rank(ϒ).

Proof: Consider appropriate matrices B ∈ R
n×nu and C ∈

R
ny×n.
1) According to the definition in (5), it follows

CB(CB)R
σ |ϒ = CBϒ(CBϒ)† = PR(CBϒ).

2) Clearly, CBR
σ |ϒ ∈ (CB){2}, which implies

(CBR
σ |ϒCB)2 = (CB)R

σ |ϒCB. As a consequence,
CBR

σ |ϒCB = PR(CBR
σ |ϒ CB),N (CBR

ϒ CB) is an oblique
projector [32, Th. 8, p. 59]. On the basis of

R
(
(CB)R

σ |ϒCB
)

= R
(
ϒ(CBϒ)†CB

)
⊆ R

(
ϒ(CBϒ)†

)
= R(

ϒ(CBϒ)T)
in common with

R(
ϒ(CBϒ)T) = R

(
ϒ(CBϒ)†

)
= R

(
ϒ(CBϒ)†CBϒ(CBϒ)†

)
⊆ R

(
ϒ(CBϒ)†CB

)
= R

(
(CB)R

σ |ϒCB
)

it follows R((CB)R
σ |ϒCB) = R(ϒ(CBϒ)T). Similar

verification gives

N
(
(CB)R

σ |ϒCB
)

= N
(
ϒ(CBϒ)†CB

)
⊇ N

(
(CBϒ)†CB

)
=N (

(CBϒ)TCB
)

and

N (
(CBϒ)TCB

) = N
(
(CBϒ)†CB

)
= N

(
(CBϒ)†CBϒ(CBϒ)†CB

)
⊇ N

(
ϒ(CBϒ)†CB

)
= N

(
(CB)R

σ |ϒCB
)

which gives N ((CB)R
σ |ϒCB) = N ((CBϒ)TCB).

3) Utilizing basic properties of the MP inverse and
Definition (5) it can be concluded (CB)R

σ |ϒ ∈ CB{2, 3}.
Further

rank((CBϒ)T) ≥ rank(ϒ(CBϒ)T)

≥ rank(CBϒ(CBϒ)T) = rank((CBϒ)T)

in conjunction with N (AB) = N (B) ⇐⇒ �AB,B [32]
implies (CB)R

σ |ϒ = CB(2,3)

R(ϒ(CBϒ)†),N ((CBϒ)T)
=

(CB)
(2,3)

R(ϒ(CBϒ)T),N ((CBϒ)T)
.

4) Using �ϒ,Aϒ ⇐⇒ �ϒ,(Aϒ)∗ ⇐⇒ �ϒ,ϒ(CBϒ)T , this
part of the proof follows from 3) and known result
R(UV) = R(U) ⇐⇒ �UV,U [32].

5) This statement is implied by 3) and the relation
CBϒ(CBϒ)†CB = CB ⇐⇒ �CBϒ,CB [32].

6) This statement follows from:
(CBϒ)† = ((CBϒ)TCBϒ)−1(CBϒ)T in the case ϒ ∈
C

ny×nu
nu

∧
�ϒCB,ϒ [32, p. 57], [42].

7) The assumption (CB)R
σ |ϒ ∈ (CB)−1

{R} initiates CBϒ

(CBϒ)† = Iny . According to [32, Lemma 2, p. 43],
it follows rank(CBϒ) = ny, which implies ϒ ∈
R

nu×ny
nu

∧
�CBϒ,ϒ . On the other hand, conditions ϒ ∈

C
nu×ny
nu

∧
�CBϒ,ϒ imply CBR

σ |ϒ = ϒ(CBϒ)−1 ∈
(CB)−1

{R}.
8) Follows from (CB)† = (CB)T(CB(CB)T)† [32].
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9) Clearly, B(CB)R
σ |ϒC is idempotent.

10) Follows from (CB)R
σ |ϒC = ϒ(CBϒ)†C and

the Urquhart representation of generalized
inverses [32, Th. 13, p. 72].

Characterizations and representations of the polynomial
matrix left σ -inverse are presented in Lemma 2.

Lemma 2: The following statements hold for the polyno-
mial matrix left σ -inverse (CB)L

σ |ϒ :
1) CB(CB)L

σ |ϒ = PR(A(ϒA)∗),N ((ϒA)∗ϒ);
2) (CB)L

σ |ϒCB = PR((ϒT(CB)T);

3) (CB)L
σ |ϒ = CB(2,4)

R((ϒCB)T),N ((ϒCB)Tϒ)
∈ (CB){2, 4};

4) (CB)L
σ |ϒ = A(2,4)

R((ϒCB)T),N (ϒ)
⇐⇒ �ϒCB,ϒ ;

5) (CB)L
σ |ϒ ∈ CB{1, 2, 4} ⇐⇒ �ϒCB,CB;

6) (CB)L
σ |ϒ = (ϒCB)T(ϒCB(ϒCB)T)−1ϒ

= (CB)
(2,4)

R((ϒCB)T),N (ϒ)
∈ (CB){2, 4}s

⇐⇒ ϒ ∈ C
ny×nu
nu

∧
�ϒCB,ϒ ;

7) (CB)L
σ |ϒ ∈ (CB)−1

{L} ⇐⇒ ϒ ∈ R
ny×nu
ny

∧
�ϒCB,ϒ ;

8) ϒ = (CB)T ∨
ϒ = I =⇒ (CB)L

σ |ϒ = (CB)†;
9) B(CB)R

σ |ϒC is an oblique projector;
10) B(CB)L

σ |ϒ =⎧⎪⎨
⎪⎩

C(2)

R(B),∗, rank(CBϒ) = rank(B)

C(2)

∗,N (ϒ)
, rank(CBϒ) = rank(ϒ)

C(2)

R(BT),N (ϒ)
, rank(CBϒ) = rank(B) = rank(ϒ).

Proof: Consider appropriate matrices B ∈ R
n×nu and C ∈

R
ny×n.
1) Since, (CB)L

σ |ϒ ∈ (CB){2}, it follows
(CB(CB)L

σ |ϒ)2 = CB(CB)L
σ |ϒ . So, CB(CB)L

σ |ϒ =
PR(CB(CB)V

σ |ϒ),N (CB(CB)V
σ |ϒ) is a projector [32, Th. 8,

p. 59]. On the basis of

R
(

CB(CB)V
σ |ϒ

)
= R

(
CB(ϒCB)†ϒ

)
⊆ R

(
CB(ϒCB)†

)
= R(

CB(ϒCB)T)
in conjunction with

R(
CB(ϒCB)T) = R

(
CB(ϒCB)†

)
= R

(
CB(ϒCB)†ϒCB(ϒCB)†

)
⊆ R

(
CB(ϒCB)†ϒ

)
= R

(
CB(CB)V

σ |ϒ
)

it follows R(CB(CB)V
σ |ϒ) = R(ϒ(CBϒ)T). On the

other hand

N
(

CB(CB)V
σ |ϒ

)
= N

(
CB(ϒCB)†ϒ

)
⊇ N

((
ϒTCB

)†
ϒ
)

= N (
(ϒCB)Tϒ

)
and

N (
(ϒCB)Tϒ

) = N
(
(ϒCB)†ϒ

)
= N

(
(ϒCB)†ϒCB

(
ϒTCB

)†
ϒT

)
⊇ N

(
CB(ϒCB)†ϒ

)
= N

(
CB(CB)V

σ |ϒ
)

imply N (CB(CB)V
σ |ϒ) = N ((ϒCB)Tϒ).

2) According to the definition in (7), it follows
(CB)V

σ |ϒCB = (ϒCB)†ϒCB = PR((ϒCB)T).
3) Utilizing basic properties of the MP inverse and

Definition (7) it can be concluded (CB)V
σϒ ∈ (CB){2, 4}.

Further

rank((ϒCB)T) ≥ rank((ϒCB)Tϒ)

≥ rank((ϒCB)TϒCB) = rank((ϒCB)T)

and R(UV) = R(U) ⇐⇒ �UV,U [32] imply

(CB)V
σϒ = A(2,4)

R((ϒCB)Tϒ),N ((ϒCB)Tϒ)

= (CB)
(2,4)

R((ϒCB)T),N ((ϒCB)Tϒ)
.

4) Follows from 3) and known result N (UV) =
N (V) ⇐⇒ �UV,V [32].

5) This statement is implied by 3) and the relation
CB(ϒCB)†ϒCB = CB ⇐⇒ rank(ϒCB) =
rank(CB) [32].

6) Follows from [32, p. 57].
7) Assumption (CB)V

σ |ϒ ∈ (CB)−1
{V} initiates (ϒCB)†

ϒCB = Inu . According to [32, Lemma 2, p. 43],
it follows rank(ϒCB) = nu, which implies ϒ ∈
R

nu×ny
nu

∧
�ϒCB,ϒ .

On the other hand, conditions ϒ ∈ R
nu×ny
nu

∧
�ϒCB,ϒ

imply (CB)V
σ |ϒ = (ϒCB)−1ϒ ∈ (CB)−1

{V}.
8) It is based on (CB)† = ((CB)TCB)†(CB)T [32].
9) It follows from the fact that B(CB)R

σ |ϒC is idempotent.
10) Since B(CB)V

σ |ϒ = B(ϒCB)†ϒ , this statement follows
from the Urquhart representation of generalized inverses
[32, Th. 13, p. 72].

Observe that nonsquare right inverses play fundamental
roles in the PC scheme design. Indeed, generalized inverses
are a useful tool for exploring desirable properties of closed-
loop control structures. This phenomenon is clarified in the
subsequent sections.

C. Perfect Control Stability Characteristic

The stability of the IMC-related d-PC strategy (4), with
d ≥ 1, assuming arbitrary yref(k + d), can be investigated in
terms of the representative single-delayed plant being under
yref(k + d) = 0 [1], [44]. Therefore, in such a scenario, our
control formula in the form of

u(k) = −Kx(k), K = (CB)R
σ |ϒCA (10)

provides the PC stability expression in the following manner:

det
(

zIn − A + B(CB)R
σ |ϒCA

)
= 0 (11)

where z denotes some complex operator. According to the
inverse of the matrix product CB, the subsequent observation
should be formulated.

Proposition 1 investigates conditions for a structurally sta-
ble pole-free PCD in the case when the generalized right
σ -inverse defined in the canon (5) is applied. The notation
A−1

R (resp. A−1
L ) will be used to denote a particular right (resp.

left) inverse of A.
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Proposition 1: Let A ∈ R
n×n, B ∈ R

n×nu , and C ∈ R
ny×n.

The structurally stable pole-free PCD can be obtained in two
feasible cases.

1) nu = ny = n,
2) nu > ny = n, rank(Bϒ) = n.

Configurations other than those summarized above do not sat-
isfy the optimal PC law requirement (3) in the context of the
full rank consideration.

Proof: Consider the right inverse of Bϒ defined in the case
ny ≥ n, rank(Bϒ) = n, by (Bϒ)−1

R = (Bϒ)T(Bϒ(Bϒ)T)−1.
Then, the following holds.

1) In the first examined scenario both matrices Bϒ and C
are regular-invertible; hence

(CB)R
σ |ϒ = ϒ(Bϒ)−1C−1 (12)

which provides only the pole-free (or zero-pole)
instances

det
(

zIn − A + Bϒ(Bϒ)−1C−1CA
)

= det(zIn) (13)

where In denotes n × n identity matrix.
2) In the second case, we also obtain the pole-free behavior

since the element (CB)R
σ |ϒ can be rewritten as follows:

(CB)R
σ |ϒ = ϒ(Bϒ)−1

R C−1 (14)

consequently leading to

det
(

zIn − A + Bϒ(Bϒ)−1
R C−1CA

)
= det(zIn) (15)

under Bϒ(Bϒ)−1
R = In.

In other scenarios, we do not receive straightforward results,
since

(CB)R
σ |ϒ ∈ (Bϒ)−1

{R}C
−1
{L} (16)

is not applicable to meet PC law (3). Please see [1]. The proof
is completed in all cases.

Remark that the relations (16) should be considered in the
context of the pole-free stable PC scenario only.

Thus, in the general case, the exemplary closed-loop PC
system

x(k + 1) = G
(
ϒ
(

q−1
))

x(k) (17)

such that G(ϒ(q−1)) := A − B(CB)R
σ |ϒCA, possesses the

poles

eig(G) =
{
λ1

(
ϒ
(

q−1
))

, λ2

(
ϒ
(

q−1
))

, . . . , λn

(
ϒ
(

q−1
))}

(18)

and, according to the well-known stability theory, the arbitrar-
ily selected ϒ(q−1) has to meet the crucial condition∣∣λj

(
ϒ
(

q−1
))∣∣ < 1, j = 1, 2, 3, . . . , n. (19)

Having the PC paradigm notion, we can proceed with the
key PC energy issue in the next section.

IV. ENERGY PROBLEM FORMULATION

The IMC-oriented PC energy approach often constitutes
the main problem in the discussed control scheme design
process. Due to the lack of analytical methods covering the
optimization of the PC energy expenditure, the heuristic solu-
tions introduced in the literature are related to the following
well-known general expression:

Eu(H) =
H∑

k=0

{
uT(k)u(k)

}
(20)

wherein u(k) is determined as in (4) and H denotes arbitrarily
selected time horizon.

Moreover, the complementary performance index, involving
the cases of yref(k + d) �= 0, in the form of

Eu(H) =
H∑

k=0

{
[u(k) − uss]

T[u(k) − uss]
}

(21)

where uss stands for the steady-state control input vector, has
also been utilized.

However, because of the heuristic procedures, the time
horizon H, in both presented energy-based indices, could
at most be selected as a considerable number, yet, it natu-
rally has to hold the condition H  +∞. Consequently, the
results obtained in the L2-norm-based domain are generally
not representative.

Therefore, in our analytical investigation, we have to con-
sider the general case, where H → +∞. Hence, we should
proceed with the subsequent formula

Eu(+∞) =
+∞∑
k=0

{
uT(k)u(k)

}
. (22)

Now, the fundamental question of the IMC theory has
arisen: what kind of the matrix ϒ(q−1) involved in the σ -
inverse defined in (5) guarantees the IMC-oriented minimum-
energy PCD (4)?

Originally, this issue could be considered as the following
minimization:

ϒopt

(
q−1

)
= arg min

ϒ(q−1)

+∞∑
k=0

{
uT(k)u(k)

}
. (23)

In fact, the solution to the fundamental problem (23) can
be resolved analytically by

d
{∑+∞

k=0 uT(k)u(k)
}

d
{
ϒ
(
q−1

)} = 0. (24)

Nevertheless, the presented operation comprising the deriva-
tives of the matrix components has not yet been defined in an
analytical manner [32].

Remark 7: Accordingly, due to the lack of analytical results
in this field, the pseudo-optimal well-known unique MP
inverse (9) has commonly been used in the IMC-oriented
scheme design processes [20], [30], [32].



4566 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 53, NO. 7, JULY 2023

V. MINIMUM-ENERGY PROBLEM SOLUTION

To illustrate the intricate nature of the problem concerning
the PC energy optimization, we start with the broadly known
single-delayed system governed by the simplified state-space
framework (1) as follows:

x(k + 1) = Ax(k) + Bu(k), x(0) = x0 (25a)

y(k) = Cx(k). (25b)

In such a case, the general PC index (3) can be restated in
the form

J = min
u(k)

{+∞∑
k=0

∥∥∥y(k + 1) − yref(k + 1)

∥∥∥2

2

}
. (26)

Consequently, the complex PC expression (4) boils down
into the compact design

u(k) = (CB)R
σ |ϒ

[
yref(k + 1) − CAx(k)

]
(27)

which under zero reference value yref(k + 1) = 0 goes to

u(k) = −(CB)R
σ |ϒCAx(k). (28)

Now, for the simple representative scenario associated with
(28), the control can be redefined in accordance with the
structure (25) through the recursive mechanism as follows:

u(0) = −(CB)R
σ |ϒCAx(0)

u(1) = −(CB)R
σ |ϒCAx(1)

= −(CB)R
σ |ϒCA

(
A − B(CB)R

σ |ϒCA
)

x(0)

u(2) = −(CB)R
σ |ϒCAx(2)

= −(CB)R
σ |ϒCA

(
A − B(CB)R

σ |ϒCA
)2

x(0)

...

u(m) = −(CB)R
σ |ϒCAx(m)

= −(CB)R
σ |ϒCA

(
A − B(CB)R

σ |ϒCA
)m

x(0). (29)

The rationale for employment of the initial condition x0 in
pieces (29) is that we can rewrite the complex formula (22)
in the following compact common form:

Eu(+∞) =
+∞∑
k=0

{[
(CB)R

σ |ϒCA
(

A − B(CB)R
σ |ϒCA

)k
x(0)

]T

×
[
(CB)R

σ |ϒCA
(

A − B(CB)R
σ |ϒCA

)k
x(0)

]}
(30)

which will be useful for obtaining a σ -inverse-oriented ϒ(q−1)

matrix that guarantees the minimum-energy IMC-based PCD.

A. Perfect Regulation Energy Solution

The perfect regulation term is related to the PC strategy
with the zero reference value yref(k + 1) = 0. In such a case,
the minimum-energy solution for the second-order MISO LTI
discrete-time state-space systems has already been formulated
in the recent paper [4].

Accordingly, the closed-loop perfect regulation-based state-
space structure (17) can be transformed into the operator
representation

z(X(z) − X(0)) = G(β0)X(z) (31)

which can be prescribed in the following way:

(zIn − G(β0))X(z) = zX(0). (32)

Now, the solution to the given relation can be combined as
r + q, where the outcome r and an arbitrary q have to fulfill
the consolidated expression

{(zIn − G(β0))r = zX(0) ∧ q ∈ ker(zIn − G(β0))}. (33)

Therefore, the essential formula appears for the second-
order state-space plants

q ∈ ker(λ1(β0)I2 − G(β0)) (34)

where λ1(β0) denotes the single nonzero pole of the closed-
loop control system (17), giving rise to the formulation of the
key relation

x(k) ∈ ker(λ1(β0)I2 − G(β0)), k ≥ 1. (35)

Furthermore, the canon (35) can be reformulated in the
following way:

G(β0)x(k) = λ1(β0)x(k), k ≥ 1 (36)

and in consequence, the control formula (28) can now be
designated by the sophisticated rule

u(1 + j) = −(CB)R
σ |β0

CA
(
λ1(β0)

)jx(1), j = 0, 1, 2, . . .

(37)

Thus, the energy performance index (30) can now be divided
into two main parts as follows:

Eu(+∞) = uT(0)u(0) +
+∞∑
k=1

{
uT(k)u(k)

}
(38)

with the second component certainly arranging the
method (37), giving rise to the following explicit form
revealing the geometric sequence notion:

Eu(+∞) =
[
(CB)R

σ |β0
CAx(0)

]T[
(CB)R

σ |β0
CAx(0)

]

+
+∞∑
k=1

{[
(CB)R

σ |β0
CAx(1)

]T[(
(CB)R

σ |β0
CAx(1)

]

× (λ1(β0))
2(k−1)

}
. (39)

After taking into account the stability condition (19) impos-
ing |λ1(β0)| < 1 along with the geometric sequence peculiari-
ties, we finally arrive at the following fundamental expression:

Eu(+∞) =
[
(CB)R

σ |β0
CAx(0)

]T[
(CB)R

σ |β0
CAx(0)

]
+

[
(CB)R

σ |β0
CAG(β0)x(0)

]T

×
[
(CB)R

σ |β0
CAG(β0)x(0)

]
×

[
1 − [Tr(G(β0))]

2
]−1

. (40)
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The presented formula allows us to determine the total
energy of the PC input signals analytically. In addition, for the
considered MISO case, the relation (24) can now be redefined
in the form

d{Eu(+∞)}
d{β0} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂{Eu(+∞)}
∂
{
β01

} = 0
∂{Eu(+∞)}

∂
{
β02

} = 0

...
∂{Eu(+∞)}

∂
{
β0nu

} = 0

(41)

under

βT
0 = [

β01 β02 . . . β0nu

]
(42)

finally providing the minimum-energy solution subject to the
crucial index (23).

Remark 8: It has to be recalled that the complete analytical
evidence concerning the presented complex material can be
found in [4].

Still, the given results are justified only for second-
order MISO plants associated with the zero reference value
yref(k + 1) = 0. However, what about the cases with a nonzero
setpoint yref(k + 1) �= 0, for which the above investigation
is not valid? Moreover, is it possible to consider the gen-
eral scenario of the entire class of single-delayed LTI MIMO
state-space systems with more than one nonzero pole? The
breakthrough in these matters is presented in the subsequent
key section.

B. Perfect Control Energy Solution

Let us consider the PC formula (27) with the nonzero
reference value yref(k + 1) �= 0, being under the parameter
σ -inverse canon (8), in the ensuing configuration

u(k) = (CB)R
σ |β0

[
yref(k + 1) − CAx(k)

]
. (43)

Notice that in such a case, the performance indices (20)
and (21) can be utilized interchangeably in the context of the
minimum-energy issue. Since we are searching for the gen-
eral solution, we must operate in the infinite time horizon.
Therefore, the formula (21) has to be rewritten as follows:

Eu(+∞) =
+∞∑
k=0

{
[u(k) − uss]

T[u(k) − uss]
}
. (44)

At this point, we should formulate the following vital
theorem.

Theorem 1: The energy-based performance expression (44)
can be redefined in terms of the minimum-energy solution
exploration as follows:

Euss(+∞) = lim
k→+∞ uT(k)u(k) = uT

ssuss. (45)

Proof: The formula (44) is utterly dependent on the value
of the steady-state control input vector uss, so the transient
control values (for k < +∞) can be omitted under the infinite
time horizon consideration, hence the proof follows.

In order to exploit the crucial result of Theorem 1, we have
to designate the value of the steady-state control vector uss as
follows:

u(+∞) = (CB)R
σ |β0

[
yref(+∞) − CAx(+∞)

]
. (46)

Remark 9: Due to the complexity of the analytical energy-
oriented investigation, we assume, w.l.o.g., that the value of
the setpoint yref(k) is constant yref.

So, after engaging the control algorithm (43) to the state-
space framework (25), we get

x(k + 1) = G(β0)x(k) + 
(β0) (47)

with 
(β0) = B(CB)R
σ |β0

yref and the G(β0) derived from (17).
Remark 10: In order to present new results in a legible

manner, we already propose the simplifying nomenclature:
Gβ0 ≡ G(β0) and 
β0 ≡ 
(β0).

Observe that the structure (47) develops in the recursive way

x(k + 2) = Gβ0 x(k + 1) + 
β0 (48)

which comes down to

x(k + 2) = G2
β0

x(k) + Gβ0
β0 + 
β0 . (49)

Accordingly, in the further step we obtain

x(k + 3) = Gβ0 x(k + 2) + 
β0 (50)

and finally

x(k + 3) = G3
β0

x(k) + G2
β0


β0 + Gβ0
β0 + 
β0 (51)

enabling the establishment of the yet unexplored general
expression

x(k + m) = Gm
β0

x(k)

+
[
In + Gβ0 + G2

β0
+ · · · + Gm−1

β0

]

β0 . (52)

Now, the stability-oriented closed-loop control matrix Gβ0

can be presented in the Jordan Canonical form (JCF) as

Gβ0 = HQ(β0)H−1 (53)

with the proper matrix H and the Q(β0) containing the Gβ0 ’s
eigenvalues on the main diagonal.

Moreover, after taking into account the fact that all control
system’s poles have to be located inside the unit circle (19),
we receive the following outcome:

G+∞
β0

= HQ+∞(β0)H−1 = 0. (54)

Thus, the relation (52) under the above investigation accom-
panied by the crucial geometric sequence property reveals[

In + Gβ0 + G2
β0

+ · · · + Gm−1
β0

]
=

[
In − Gm

β0

][
In − Gβ0

]−1 (55)

which for m → +∞ goes to the following important
statement:

x(+∞) = [
In − Gβ0

]−1

β0 . (56)
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Hence, the steady-state PC (46) can now be presented in a
deterministic way as follows:

u(+∞) = (CB)R
σ |β0

[
yref − CA

[
In − Gβ0

]−1

β0

]
(57)

which can be rewritten in the final complex form

u(+∞) = (CB)R
σ |β0

[
Iny − CA

×
[
In − A + B(CB)R

σ |β0
CA

]−1
B(CB)R

σ |β0

]
yref.

(58)

Remarkably, the introduced control methodology (58)
enables to analytically designate an accurate value of the con-
trol runs in the steady state. Moreover, the above formula does
not rely on the initial condition x0. This fact is very intriguing
in the context of the general minimum-energy solution, since
in the case of yref = 0, see (28), the optimal β (23) just strictly
depends on the initial condition, i.e., βopt(x0). Such an issue
additionally emphasizes the intricate nature of the PC law.

According to the previous investigation, we have to solve
the following fundamental expression:

d
{
Euss(+∞)

}
d{β0} = 0 (59)

with the control defined as in (58).
Such an operation can now be extended to the subsequent

set of relations

d
{
Euss(+∞)

}
d{β0} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂{Euss (+∞)}
∂
{
β011

} = 0

∂{Euss (+∞)}
∂
{
β012

} = 0

...
∂{Euss (+∞)}

∂
{
β0nuny

} = 0

(60)

under

β0 =
⎡
⎢⎣

β011 β012 . . . β01ny
...

. . .
...

β0nu1 . . . β0nuny−1 β0nuny

⎤
⎥⎦. (61)

It is striking that the presented methodology can provide the
minimum-energy solution to (23). Moreover, we can define in
an analytical mode the minimum-energy PCD for cases with
a nonzero reference value yref(k + 1) �= 0.

The given outcome significantly impacts the fundamentals
covering the control and systems theory. This issue will be
explained in detail in the following essential section.

VI. MOORE–PENROSE PARADIGM CHALLENGE

The matrix inverse and generalized inverse formulas have
been utilized in a number of scientific and engineering fields,
going far beyond the control-oriented applications, to mention
physics [38], medicine [45], or economics [46]. Moreover, at
the start of this section, it should be recalled and strongly
highlighted that the MP generalized inverses have without
a doubt been treated as the optimal ones, since they mini-
mize the Euclidean norm in every general case [31], [32],

[38], [39]. However, based on the new analytical investiga-
tion conducted in the previous section, we can now challenge
the optimal peculiarity of the minimum-norm MP pseudoin-
verse. This novelty is touched upon in the following motivation
example.

A. Motivation Example

Consider the exemplary single-delayed right-invertible LTI
MIMO plant Se(A, B, C) described by the discrete-time state-
space framework (25) with

A =
⎡
⎣1.5 −2.2 1

0.1 1.6 0.2
0.2 1 −0.9

⎤
⎦, B =

⎡
⎣ 1.2 1 1

−0.3 1.5 −1
−1 0.2 1.4

⎤
⎦

C =
[

2 0.5 0
1 2 −1

]

and the initial condition x0 = 0 under the nonzero refer-

ence value yref =
[−5

6

]
. The crucial energy performance

index (45), derived from the PC algorithm (43) in the
form (58) subjected to the MP inverse (9), is equal

to Euss0
(+∞) = 100.1264, whilst uss0(+∞) =

⎡
⎣4.1305

1.7552
8.9434

⎤
⎦

with the closed-loop control system’s poles eig(G) =
{0.3398, 0, 0}, see (18).

Now, let us move on to the critical minimum-energy
examination. We start with the next breakthrough theorem.

Theorem 2: The application of the unique MP inverse (9) to
the state-space PC law (43) does not guarantee the minimum-
energy behavior of the control. In other words, the minimum-
norm MP pseudoinverse does not generally minimize the
Euclidean-oriented norm (45), and this fact can be manifested
by the equivalent explicit form

Euss(+∞) =
∥∥∥u(+∞)

∥∥∥2

2
. (62)

Proof: The considered state-space structure (25) can easily
be transformed, under the zero initial condition x0 = 0, to the
equipollent input-output-related z-transfer-function domain in
the following manner:

y = C(zIn − A)−1Bu. (63)

Now, after taking into account the well-known final value
theorem (FVT) in z-transform

lim
k→+∞ f (k) = lim

z→1

(
1 − z−1

)
F(z) (64)

engaging the fixed reference value yref(k) = yref for k ≥ 0,
the stable steady state reveals

Huss = yref (65)

where H = C(In − A)−1B.
Notice that the given formula corresponds to the broadly

known primary linear equation Ax = b and its optimal solu-
tion for the full rank A ∈ R

ny×nu with ny ≤ nu is x = AR
0 b =

AT(AAT)−1b [31], [32].
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Thus, we can state with full confidence that in the nonsquare
transfer-function-originated case, the unique MP inverse (9)
always ensures the optimal solution in the form of

ussopt = HT(HHT)−1
yref (66)

which, for our exemplary state-space plant Se(A, B, C), pro-

duces ussopt =
⎡
⎣6.9251

1.3765
3.3922

⎤
⎦ with the control energy (45) equal

to Eussopt
= 61.3584.

It has to be mentioned here that the received result in the
input-output domain provides the notion of the optimal control
value in the steady state.

Notice that the given MP-based outcomes in the discussed
state-space and input-output structures differ, i.e., uss0(+∞) �=
ussopt , and consequently, the energies also vary Euss0

(+∞) >

Eussopt
, so the proof follows.

Notwithstanding, the question remains: which inverse for-
mula guarantees the minimum-energy PCD for the state-space
plant Se(A, B, C)? The answer to this issue can now be
established through the new methods defined in the previous
section. Theorem 3 gives answer in this particular case.

Theorem 3: The right σ -inverse (8), containing the properly
selected set of DOFs, guarantees the minimum-energy PCD for
the state-space object Se(A, B, C) in the case R

2×3.
Proof: In the beginning, it is required to engage the

parameter σ -inverse-related DOFs in the symbolic form

βT
0 =

[
β011 β012 β013

β021 β022 β023

]
(67)

to the PC formula in the steady state, see (58).
Now, after applying Theorem 1 to the key expression (60)

we receive the collection of six equations. Throughout the
algebraic calculations, we obtain the set of solutions

β0opt = {βs1, βs2} (68)

where

βT
s1 =

[
2.0414 0 1

0 1 0

]
(69)

and

βT
s2 =

[
0 1 0

2.0414 0.4058 1

]
. (70)

Amazingly, for both solutions βs1 and βs2 the state-space

PC law (58) comes down to uss|β0opt
(+∞) =

⎡
⎣6.9251

1.3765
3.3922

⎤
⎦

and the energy index (62) goes to Euss|β0opt
(+∞) = 61.3584

under the closed-loop object’s eigenvalues equal to eig(G) =
{−0.7060, 0, 0}.

Observe that the optimal state-space-related design is
established, since uss|β0opt

(+∞) = ussopt as well as
Euss|β0opt

(+∞) = Eussopt
, what ends the proof.

Remark 11: According to Theorem 3, the right σ -inverse,
possessing the appropriate DOFs, provides the minimum-
energy PCD in the case R

2×3, and it outperforms the pseudo-
optimal unique MP inverse under the state-space investigation.

Nevertheless, what about the cases with a time delay d > 1?
Can the presented approach be employed in such instances?
Moreover, is it possible to improve the control inputs behavior
through the polynomial forms of the right σ -inverse (5)? The
answers to these issues and the analytical extension of the
presented methodology are presented in the subsequent section.

VII. GENERAL MINIMUM-ENERGY SOLUTION

In this vital section, we have addressed the problem of
the minimum-energy IMC-based PCD for the multivariable
d-state-space systems of the delay d ≥ 1 and an arbitrary
nonzero reference value yref ∈ R

ny \ {0}.
Thus, we start with the pivotal observation covering the

steady-state peculiarity, which is presented in the following
theorem.

Theorem 4: In the steady state under the PC force (4), the
key relations

x(+∞) = x(+∞ − 1) = x(+∞ − 2) = · · · (71)

and

u(+∞) = u(+∞ − 1) = u(+∞ − 2) = · · · (72)

appear in every stable general case.
Proof: Immediately after considering the fact that only

asymptotically stable closed-loop control plants (17)–(19) are
examined, the proof follows.

Therefore, after taking into account the above perception
we can just propose the new approach to the PC energy issue.

Now, the breakthrough Theorem 1 requires the value of the
PC signals in the steady state. Contrary to the authors’ previous
geometric-related solutions, we additionally introduce the new
remarkable method to the world control society.

Thus, according to the above consideration it is clear that
the state equation of the d-step structure (1) in the form of

x(k + 1) = Ax(k) + Bu(k − d + 1) (73)

comes down to

x(+∞) = Ax(+∞) + Bu(+∞) (74)

under the steady-state examination subjected to the rela-
tions (71) and (72).

Moreover, the above formula can easily be rewritten as
follows:

(In − A)x(+∞) = Bu(+∞) (75)

resulted in

x(+∞) = (In − A)−1Bu(+∞) (76)

for (In − A) related to the full rank n.
As a consequence, the PC algorithm (46) can now be

presented as follows:

u(+∞) = (CB)R
σ |β0

[
yref − CA(In − A)−1Bu(+∞)

]
(77)

or rather

u(+∞) = (CB)R
σ |β0

yref − (CB)R
σ |β0

CA(In − A)−1Bu(+∞)

(78)
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with a slight modification[
Inu + (CB)R

σ |β0
CA(In − A)−1B

]
u(+∞) = (CB)R

σ |β0
yref

(79)

giving rise to the new remarkable formula

u(+∞) =
[
Inu + (CB)R

σ |β0
CA(In − A)−1B

]−1

× (CB)R
σ |β0

yref. (80)

Intriguingly, the presented approach also allows us to desig-
nate the accurate control value in the steady state. Moreover,
the new method (80) provides the same results as in the case
of the rule (58). Furthermore, the geometric-oriented method-
ology presented in Section V can only be applied to the
single-delayed state-space plants. However, the newly intro-
duced issue, heavily arranging the expressions (71) and (72)
of Theorem 4, enables the examination of the systems with
any d ≥ 1.

Thus, to define an expanded PC paradigm, let us investigate
the state-space object with d = 2, which can be drafted by the
discrete-time state-space framework (1) as follows:

x(k + 1) = Ax(k) + Bu(k)q−1, x(0) = x0 (81a)

y(k) = Cx(k). (81b)

In such a case, the general PC (4) presented as follows:

u(k) = (CB)R
σ |β0

[
yref − CABu(k − 1) − CA2x(k)

]
(82)

goes to

u(+∞) = (CB)R
σ |β0

[
yref − CABu(+∞ − 1) − CA2x(+∞)

]
(83)

in the steady state.
Now, according to the canons (72) and (76), the above rule

comes down to the item

u(+∞) = (CB)R
σ |β0

[
yref − CABu(+∞)

− CA2(In − A)−1Bu(+∞)
]

(84)

which after simple manipulations can be rewritten to[
Inu + (CB)R

σ |β0
CAB + (CB)R

σ |β0
CA2(In − A)−1B

]
× u(+∞) = (CB)R

σ |β0
yref (85)

finally providing

u(+∞) =
[
Inu + (CB)R

σ |β0
CAB

+ (CB)R
σ |β0

CA2(In − A)−1B
]−1

(CB)R
σ |β0

yref.

(86)

The same investigation can be carried out for instances with
d = 3. In such a scenario, the steady state of the complex PC
algorithm (4) is expressed as follows:

u(+∞) = (CB)R
σ |β0

[
yref − CABu(+∞ − 1)

− CA2Bu(+∞ − 2) − CA3x(+∞)
]

(87)

or rather

u(+∞) = (CB)R
σ |β0

[
yref − CABu(+∞)

− CA2Bu(+∞) − CA3x(+∞)
]
. (88)

Thus, considering the previous study, we can write the
following formula:[

Inu + (CB)R
σ |β0

CAB + (CB)R
σ |β0

CA2B

+ (CB)R
σ |β0

CA3(In − A)−1B
]
u(+∞) = (CB)R

σ |β0
yref (89)

which provides the subsequent solution for d = 3

u(+∞) =
[
Inu + (CB)R

σ |β0
CAB + (CB)R

σ |β0
CA2B

+ (CB)R
σ |β0

CA3(In − A)−1B
]−1

(CB)R
σ |β0

yref.

(90)

Consequently, the following steady-state d-PC input values
in the forms of:

ud=1(+∞)

=
[
Inu + (CB)R

σ |β0
CA(In − A)−1B

]−1
(CB)R

σ |β0
yref (91)

and

ud=2(+∞) =
[
Inu + (CB)R

σ |β0
CAB

+ (CB)R
σ |β0

CA2(In − A)−1B
]−1

(CB)R
σ |β0

yref

(92)

as well as

ud=3(+∞) =
[
Inu + (CB)R

σ |β0
CAB + (CB)R

σ |β0
CA2B

+ (CB)R
σ |β0

CA3(In − A)−1B
]−1

(CB)R
σ |β0

yref

(93)

clearly identify the prevailing trend related to the crucial time
delay d.

Therefore, the general d-PC methodology covering the value
of the control input runs in the steady state can now be
presented as follows:

u(+∞)

=
[

Inu + (CB)R
σ |β0

C

[(
d−1∑
k=1

Ak

)
+ Ad(In − A)−1

]
B

]−1

× (CB)R
σ |β0

yref (94)

giving rise to the elegant complete d-PC formula

u(+∞) =
[
Inu + (CB)R

σ |β0
�(d)

]−1
(CB)R

σ |β0
yref (95)

where

�(d) = C

[(
d−1∑
k=1

Ak

)
+ Ad(In − A)−1

]
B. (96)

Remarkably, the newly introduced methods concern all LTI
multivariable discrete-time d-state-space plants. The novel
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established innovation, which has never been investigated
previously, significantly generalizes the knowledge corre-
sponding to the yet undiscovered IMC theory.

To express explicitly the general β0-oriented minimum-
energy IMC-based PCD rule, we should provide a solution
to the equation

d

{∥∥∥[Inu + β0[CBβ0]−1�(d)
]−1

β0[CBβ0]−1yref

∥∥∥2

2

}
d{β0} = 0.

(97)

Unfortunately, due to the lack of analytical matrix-oriented
methods, the derivative involved in (97) cannot be resolved
directly [32]. Nevertheless, in such a case, we can uti-
lize the previously defined energy-oriented analytical proce-
dures (59)–(61).

The following question remains: can the polynomial form of
the right σ -inverse (5) outperform the parameter one (8) under
the nonzero setpoint consideration? This subject is touched
in the subsequent theorem.

Theorem 5: The polynomial right σ -inverse (5), with the
arbitrarily selected order δ supported by the freely chosen
polynomial DOFs providing the stability conditions (17)–(19),
cannot decrease the energy consumption of the PC input runs
strictly derived from yref �= 0 and the parameter σ -inverse (8)
employing the parameter optimal ϒ0opt = β0opt .

Proof: In the steady state, the crucial relations (71)
and (72) hold; hence, the q-time-depended pieces associ-
ated with the matrix polynomial ϒ(q−1) are just constant.
Therefore, the polynomial DOFs of ϒ(q−1) (6) can now be
redefined, under the steady-state investigation, to the vital
observation

ϒ
(

q−1
)

= (β0 + β1 + β2 + · · · + βδ)q
0 (98)

which coincides to the parameter form of the σ -inverse with
ϒ0opt . Since q0 = 1, the proof follows.

It is understandable that the polynomial σ -inverse does not
have to be considered in the context of a minimum-energy
solution, as ϒopt(q−1) → β0opt and consequently (CB)R

σ |ϒ →
(CB)R

σ |β0
under yref ∈ R

ny \ {0}.
In the end, after taking into account the fact that the

parameter σ -inverse-related DOFs can comprise any value of
β0 ∈ R

nu×ny \ {0}, including β0 = (CB)T, we propose the
following closing theorem.

Theorem 6: The parameter right σ -inverse (8) with appro-
priately selected DOFs guarantees, in every general case, the
minimum-energy IMC-oriented PCD for the entire class of
LTI MIMO discrete-time d-state-space plants.

Proof: Immediately, after considering the whole discussed
investigation deeply relying on the original concepts of
Theorems 1 and 4.

Now, to exhibit the decisive nature of the obtained results,
we present the numerical example in the next examination.

A. Simulation Example

Let us consider the exemplary LTI MIMO plant Se(A, B, C)

with d = 3 described by the discrete-time state-space struc-
ture (1) as follows:

x(k + 1) = Ax(k) + Bu(k)q−2, x(0) = 0 (99a)

y(k) = Cx(k) (99b)

being under

A =
⎡
⎣1.5 −2.2 1

0.1 1.6 0.2
0.2 1 −0.9

⎤
⎦, B =

⎡
⎣ 1.2 1 1

−0.3 1.5 −1
−1 0.2 1.4

⎤
⎦

C =
[

2 0.5 0
1 2 −1

]

and the nonzero reference value yref =
[−5

6

]
.

In conditions of such a scenario, the general PC algo-
rithm (4) boils down to

u(k) = (CB)R
σ |β0

[
yref − CABu(k − 1)

− CA2Bu(k − 2) − CA3x(k)
]
. (100)

The newly introduced energy-oriented PC methodology (95)
in the form of

u(+∞) =
[
Inu + (CB)R

σ |β0
�(3)

]−1
(CB)R

σ |β0
yref (101)

with �(3) specified according to (96), allows us to settle the
minimum-energy issue for the considered state-space plant
Se(A, B, C) with d = 3.

After arranging the pseudo-optimal MP inverse (9) to the
product of CB, the essential energy performance index (45)
under the PC method (101) surprisingly again goes to

Euss0
(+∞) = 100.1264, whilst uss0(+∞) =

⎡
⎣4.1305

1.7552
8.9434

⎤
⎦.

Naturally, the poles of the 3-step system in the form of
eig(G) = {0.3398, 0, 0} correspond to those obtained for the
single-delayed instance, which is in relation to the PC stability
characteristic of Section III-C.

The runs of the state, control, and output variables of the
system (99) under IMC force (100) are presented in Figs. 1–3.

Remark 12: Notice that in the input-output scenario the
general canon

y(+∞) = C(In − A)−1Bu(+∞ − d + 1) (102)

changes, according to Theorem 4, to

y(+∞) = C(zIn − A)−1Bu(+∞) (103)

hence the formula (66) holds for any d-step object.
Therefore, the transfer-function-based control expres-

sion (66) provides the issue of the optimal control value
in the steady state in every d-step case. Thus, for any d

we have ussopt =
⎡
⎣6.9251

1.3765
3.3922

⎤
⎦ with the energy (45) equal to

Eussopt
= 61.3584.
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Fig. 1. PC signals of state: case T-inverse.

Fig. 2. PC signals of control: case T-inverse.

Observe that the pseudo-optimal MP minimum-norm
T-pseudoinverse (9) again does not guarantee the minimum-
energy solution to the PC strategy, resulting in Euss0

(+∞) >

Eussopt
.

On the other hand, the authors’ novel PC methods will be
appreciated here to express the minimum-energy approach.

So, after employing the symbolic β0 in the form of

βT
0 =

[
β011 β012 β013

β021 β022 β023

]
(104)

to the PC formula (101) subjected via (62) to the partial deriva-
tives (60), we surprisingly receive the same outcome as in the
case of the single-delayed plant of Theorem 3, that is

β0opt = {βs1, βs2} (105)

with

βT
s1 =

[
2.0414 0 1

0 1 0

]
(106)

Fig. 3. PC signals of output: case T-inverse.

and

βT
s2 =

[
0 1 0

2.0414 0.4058 1

]
. (107)

It is intriguing that the same result: βs1 and βs2,
guarantees the minimum-energy 3-step PCD with dual

uss|β0opt
(+∞) =

⎡
⎣6.9251

1.3765
3.3922

⎤
⎦ and the energy (62) equals

Euss|β0opt
(+∞) = 61.3584 under the closed-loop system’s

poles eig(G) = {−0.7060, 0, 0}.
After comparing the results with those established in the

single-delayed example of Section VI-A and many others, we
propose the following conjecture.

Conjecture 1: It seems that the minimum-energy d-PC
structure can be considered in terms of a single-delayed plant
with corresponding triplet S(A, B, C). In other words, the
minimum-energy β0opt -related PCD for the cases with d = 1
also provides the same energy solution for examples with
d > 1. Indeed, the time delay d can be passive in a num-
ber of scenarios, also those associated with the infinite time
horizon.

Interestingly, the peculiarity in the above statement would
coincide with the transfer-function-originated feature given in
Remark 12 and the stability property, where the d-step PC
systems are also discussed in terms of the single-delayed
component.

Finally, the minimum-energy 3-step PC plant’s behaviors
are depicted in Figs. 4–6. In both cases (Figs. 3 and 6), the
outputs reach the reference values just after the time delay
d ≥ 3, which achieves the fundamental PC requirement.

VIII. PROGRESS IN THE MINIMUM-ENERGY-BASED

IMC THEORY

It should finally be emphasized that the PC methodology for
the multivariable linear d-step systems of different domains
has only been investigated through the heuristic approaches.
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Fig. 4. PC signals of state: case σ -inverse.

Fig. 5. PC signals of control: case σ -inverse.

Indeed, the IMC continuous-time plants have effectively been
analyzed in the context of the minimum energy of con-
trol input runs subjected to an assumed finite time horizon
[3], [26], [27]. On the other hand, the inverse model-
based maximum-speed/maximum-accuracy control design for
discrete-time systems has also been studied, and the resulted
peculiarities have consequently been revealed to the control
society [11], [25], [36]. Nevertheless, the received analyti-
cal outcomes in this matter have only been referred to the
relatively simple objects involving a single output variable [4].

Following the notions, it has turned out that the more com-
plex systems can constitute serious difficulties, which could be
overcome by applying certain advanced analytical studies. The
new methodologies presented throughout this manuscript meet
these challenges. Henceforth, we can calculate the energy-
originated optimal consumption analytically for every d-step
LTI MIMO state-space plant without employing the heuristic-
related computational effort. Moreover, the newly established

Fig. 6. PC signals of output: case σ -inverse.

procedures guarantee a goal of the minimum-energy function
subjected to the infinite time horizon. Crucially, a completed
novel set of solutions can no longer be associated with the
commonly known MP inverse canon. This critical accomplish-
ment sheds new light on the control theory and practice as a
new idea never seen before.

IX. CONCLUSION AND OPEN PROBLEMS

Applications of polynomial right inverses in solving the
energy-oriented IMC theory related to the LTI MIMO discrete-
time d-step systems have been established in this article.
Representations and characterizations of related generalized
inverses have been investigated. It is evident that the MP
paradigm can no longer be associated with the optimal design
of the multivariable IMC-based d-state-space PC structures.
This statement has been formulated analytically and proven
for the first time. Moreover, it should be stated that the
general IMC-oriented minimum-energy d-PC law is strictly
related to the application of nonunique right σ -inverses.
Nevertheless, the presented theory concerns the d-step plants
with nonzero reference values. Therefore, the following cru-
cial open problems require solving to introduce the complete
unified minimum-energy PC methodology. First, the explicit
analytical solution to the complex expression (97) should
provide the general form of the β0opt . Second, the compre-
hensive energy-oriented analytical investigation related to the
multivariable d-state-space plants with a zero setpoint is a
crucial factor that should ultimately lead to announcing the
complete IMC-based minimum-energy PCD theory. Last but
not least, some generalizations of the presented results on
another control algorithms, such as the generalized MVC, and
their verification based on physical objects are also expected.
Particularly, since the IMC procedures are sensitive in terms
of the parameter descriptions, the impact of disturbances and
uncertainties on the new control laws constitutes an unexplored
research area worth extensive investigations in the nearest
future.
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