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Abstract—Metaverses have caused significant changes in the
industry and their academic foundation can be traced back to the
term cyber–physical–social systems (CPSS), which was proposed
in 2010. Radar is an important sensor in sensing systems that are
widely applied in many fields, especially, in autonomous driving.
To deal with the complex environment, smart radars with real-
time information processing capabilities are required. Human
factors play a critical role in the operation and management
of radar systems, thus, digital twins’ radars in cyber–physical
systems (CPS) are unable to achieve intelligence in CPSS due
to an incomplete consideration of human involvement. For this
consideration, we propose a novel framework of RadarVerses for
smart radars in metaverses based on ACP-based parallel intelli-
gence, which is also known as cyber–physical–social intelligence
(CPSI). RadarVerses consist of five main parts which are physical
radars, descriptive radars, predictive radars, prescriptive radars,
and deep radars. To construct RadarVerses at the technical level,
we introduce four main technical foundations: 1) communication
technology; 2) scenarios engineering; 3) foundation models; and
4) digital workers. In addition, we also provide a case study
about LiDARs’ predictive maintenance of accumulated snow in
RadarVerses.

Index Terms—Cyber–physical–social systems (CPSS), meta-
verses, parallel intelligence, RadarVerses.

I. INTRODUCTION

THE CONCEPT of metaverses has received extensive
attention since 2021, with the potential to be applied

to various fields, such as intelligent transportation, educa-
tion, and entertainment [1]. Sensing systems play a critical
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role in metaverses that they not only complete the percep-
tion of surroundings in the physical world but also serve as
a bridge between physical space and cyberspace. Radar is a
type of sensor that uses lasers or electromagnetic waves to pro-
vide accurate 3-D depth information about the environment.
It is initially applied in the military [2], [3] and then plays
an increasingly important role in other fields, especially, in
autonomous driving [4], [5]. Due to the increasing environ-
mental complexity of autopilots, it is necessary to construct
smart radar systems that can perform real-time intelligent
adjustments.

Metaverses have introduced human factors into conventional
cyber–physical systems (CPS). The academic foundation of
metaverses is cyber–physical–social systems (CPSS) proposed
by Wang in 2010 [6] and metaverses can be regarded as
the specific realization of CPSS. CPSS are complex Morton
systems with a self-fulfilling prophecy that human interven-
tion will affect the system’s output, while CPS correspond
to Newton systems that operate independently of human
beings [7], [8]. Digital twins’ radars [9], [10], [11], [12]
have proven to be an effective tool to construct smart
radars in CPS and it has already solved many problems in
autonomous driving [13], [14], [15], [16]. However, the oper-
ation and maintenance of radar systems are closely related
to human involvement. Although metaverses have provided
simple human–computer interfaces, they lack not only the
timely virtual–real interaction but also the ability to gener-
ate deep intelligence. Owning to the incomplete consideration
of human factors, digital twins’ radars are insufficient to
achieve intelligent radars in metaverses. ACP-based parallel
intelligence [17], which is also known as cyber–physical–
social intelligence (CPSI), can address these issues effectively.
The ACP method proposed in 2004 [18] is a methodologi-
cal framework to build smart systems in CPSS: A denotes
artificial systems, C corresponds to computational experi-
ments, and P is parallel execution. It has already been
widely applied in many fields, including control and manage-
ment [19], [20], [21], [22], transportation [23], [24], and sens-
ing systems [25], [26], [27], [28]. Based on the ACP method
and CPSI, we propose a novel framework of RadarVerses for
6S radars in this article. 6S, including safety, security, sustain-
ability, sensitivity, service, and smartness, is the new evalu-
ation criterion for radar systems [29], [30]. RadarVerses can
not only intelligently adjust to dynamic environments through
virtual–real interaction in real time but also break the hard-
ware limitations of physical radars. It also provides an efficient
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TABLE I
AUTOMOTIVE LIDARS WITH DIFFERENT SCANNING SYSTEMS

(*** REPRESENTS THE BEST PERFORMANCE)

human–computer interaction mechanism to achieve knowl-
edge automation [31]. RadarVerses consist of five main parts:
1) physical radars; 2) descriptive radars; 3) predictive radars;
4) prescriptive radars; and 5) deep radars. We present commu-
nication technology, scenarios engineering, foundation models,
and digital workers to build RadarVerses. Besides, a case study
on LiDARs’ predictive maintenance for accumulated snow in
RadarVerses is provided.

This article is organized as follows. Section II introduces the
common automotive radars and their limitations. The frame-
work and process of RadarVerses are illustrated in Section III,
and Section IV discusses the technical infrastructure of
RadarVerses in detail. Section V provides a specific case
about LiDARs’ predictive maintenance in mines. Section VI
concludes this article and prospects for future work.

II. AUTOMOTIVE RADARS

Radars that can measure depth information about the envi-
ronment are indispensable in autonomous driving. In this
section, we will discuss the two most common types of
automotive radars: 1) LiDARs and 2) mm-wave radars.

A. LiDARs

Automotive LiDARs can obtain the 3-D structure of the
environment with multiple laser beams, which is useful for
perception tasks, such as object detection [32], [33], [34]
and semantic segmentation [35], [36]. A LiDAR consists of
three major components, which are laser sources, a scanning
system, and photodetectors [37]. Laser sources are designed
to emit laser beams of a certain power, scanning systems are
used to cover a large area with the emitted laser beams, and
photodetectors can convert the received optical signals into
electrical signals via the photoelectric effect. Presently, there
are two frequently used classification methods for LiDARs.
The first method relies on waveform modulation, which can be
further subdivided into the time of flight (ToF) and frequency-
modulated continuous waveform (FMCW). Due to the low
complexity and cost of pulse signal modulation, ToF LiDARs
are widely used for autonomous driving. The second one is
categorized according to different scanning systems. As shown
in Table I, LiDARs can be classified into four types, which
will be discussed further below: mechanical LiDARs, micro-
electromechanical systems (MEMSs) LiDARs, optical phased
array (OPA), and flash LiDARs [5], [37].

1) Mechanical LiDARs: Mechanical LiDARs are currently
the most mature and widely applied automotive LiDARs [37].
Multiple laser sources are stacked vertically and the common

configurations are 16, 32, and 64 laser beams. The density and
spatial resolution of LiDAR point clouds gradually increase
as the number of stacked laser sources rises, which is impor-
tant for high-quality perception tasks. The mechanical rotation
systems will spin the stacked laser emitters and complete
the overall environment exploration. Although mechanical
LiDARs can provide a 360-degree field of view (FoV), their
complex internal mechanical structure makes them expensive
and bulky, making large-scale deployment difficult.

2) MEMS LiDARs: MEMS LiDAR is a type of semi-
solid-state LiDAR, which is a transitional product between
mechanical and solid-state LiDARs. It introduces advanced
MEMS technology for manufacturing, and the most important
component in MEMS LiDARs is the MEMS mirror [38]. In
MEMS LiDARs, the laser emitter remains fixed during oper-
ation, and a constant voltage is exerted on MEMS mirrors to
adjust the tilt angle, reflecting laser beams in different direc-
tions to achieve plane scanning. It can help MEMS LiDARs
reduce the number of laser emitters to save costs and space.
Nevertheless, the FoV of MEMS LiDARs is limited due to the
physical structure constraints of MEMS mirrors.

3) OPA: OPA LiDAR is a solid-state LiDAR without any
mechanical motion component [39]. The OPA is made up of
several closely spaced optical transmitting and receiving units,
each of which can be controlled independently by the voltage.
Enhanced interference in a specific direction can be generated
to sense the environment by controlling the phase relationship
between multiple units. OPA LiDARs benefit from small size
due to simple mechanical structures, but the small FoV is an
issue that should be addressed in the future. Furthermore, the
size of each unit in OPAs should be less than half a wavelength
to ensure normal operation, which is a significant fabrication
challenge.

4) Flash: Flash LiDAR is another type of solid-state
LiDAR with a similar operating principle to cameras [40].
Flash LiDARs can emit lasers to cover the entire detection
area in a short period of time and then receive the returned
light signals with high-sensitivity photodetectors. It is appro-
priate for mass production and deployment due to its simple
mechanical structure and small volume. However, high power
is required for Flash LiDARs to illuminate the entire region
at once, which may endanger the safety of human eyes. Due
to the limitations of laser power in the real application, the
detection range of Flash LiDARs is typically less than 100 m.

B. Mm-Wave Radars

Mm-wave radars use centimeter-wavelength electromag-
netic waves to sense the environment in autonomous driving.
Owing to the great penetration of electromagnetic waves in
the atmosphere, mm-wave radars can operate normally in
different weather conditions, including rain, fog, and snow.
The majority of mm-wave radars use FMCW signals with
frequencies of 24 GHz for short range and 77 GHz for long
range. With the advantages in volume and resolution, 77-GHz
mm-wave radars will be the first choice in the future [41].
Current mm-wave radars, which are also known as 3-D radars,
can provide sparse point clouds with information, including
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Fig. 1. RadarVerses: the framework and process.

TABLE II
MM-WAVE RADARS CATEGORIZED BY THE DETECTION RANGE

range, azimuth angle, and Doppler velocity. 3-D mm-wave
radars can be classified into three types based on the detection
range in Table II: 1) short-range radars (SRR); 2) middle-
range radars (MRR); and 3) long-range radars (LRR) [42].
In autonomous driving, SRR are primarily used for parking
aid, MRR for lane change assistance and blind spot detection,
and LRR for forward collision warning and adaptive cruise
control.

With the advancement of multiple-input–multiple-output
(MIMO) technology [43], 4-D mm-wave radar with additional
elevation angle information has been suggested and is already
being manufactured on a small scale [44]. It can generate
denser point clouds than 3-D mm-wave radar, which is very
important for perception tasks. Recently, a new concept of
5-D radar that incorporates micro-Doppler information based
on 4-D radar was proposed. It can effectively improve the
motion detection performance of small targets and is expected
to be widely employed in the future.

C. Limitations

Although evolving radar technologies have achieved great
success in autonomous driving, there are still some limita-
tions to constructing intelligent radar systems. First of all,
current radars are unable to adjust their operating modes in
real time to deal with dynamic external environments, which
is a serious problem in the real application. Second, local data
processing is adopted by all radars at present. It is a burden
on physical radars hardware and advanced cloud computing
should be implemented. Finally, there is a lack of interaction
between humans and radar systems during operation. Users
are only able to analyze the collected data while intervention
in the process of data collection is not permitted. Due to the
above problems, a new paradigm of smart radar systems in
metaverses should be provided.

III. RADARVERSES

In this section, we propose RadarVerses which is a novel
technical architecture for constructing 6S radar systems in
metaverses. As shown in Fig. 1, RadarVerses consist of
five main parts: 1) physical radars; 2) descriptive radars;
3) predictive radars; 4) prescriptive radars; and 5) deep radars.
Physical radars perceive and collect data in the physical world,
while descriptive radars complete the construction of artificial
radar systems in cyberspace. Predictive radars conduct var-
ious computational experiments with artificial systems, and
prescriptive radars provide indicative feedback to both physical
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and virtual radars, constituting two closed loops. Deep radars
operate as actuators in radar systems to complete parallel exe-
cution in physical and cyberspace. RadarVerses follow the
principle of “small data to big data to deep intelligence” and
provide a platform for virtual–real interaction in real time.

A. Physical Radars

Physical radars refer to the process of sensing the environ-
ment and collecting data in the physical world. In autonomous
driving, LiDARs are used to acquire dense point clouds,
and each point is generally represented by four values: 3-D
coordinates in space and signal intensity. RAD tensors and
sparse point clouds are two types of data representations for
mm-wave radars [45]. RAD tensors are generated by per-
forming three times fast Fourier transforms (FFTs) on ADC
signals in the range, angle, and Doppler velocity dimensions,
respectively. Each mm-wave radar point has five parame-
ters, including 3-D coordinate, radar cross section (RCS), and
Doppler velocity, which is different from a LiDAR point.

B. Descriptive Radars

Descriptive radars are designed to build complete artificial
radar systems in cyberspace and each physical radar can cor-
respond to multiple descriptive radars in artificial systems for
different applications. Apart from high-fidelity sensor models,
descriptive radars also consider scenarios modeling in various
weather conditions to model the physical environment more
realistically. Besides, it is a pioneering work that takes into
account the social environment, including human behaviors,
intervention, and thoughts. Due to the complete consideration
of human factors, descriptive radars are more closely to the
real systems compared with digital twins’ radars.

Descriptive radars serve three primary functions in
autonomous driving. First, descriptive radars can be used for
low-cost simulation experiments to optimize physical radar
systems, such as new radar validation [46] and the optimal
placement of multiple automotive radars [47]. Second, descrip-
tive radars can help with the long-tail problem of data. It is a
costly task to collect data in the physical world and the major-
ity of datasets are normal driving datasets in clear weather
without corner cases or severe weather conditions [48], [49].
Thus, models trained on current datasets are incapable of
dealing with emergencies effectively. Descriptive radars can
generate a large amount of synthetic data to address this
issue, and virtual data has already demonstrated significant
advantages in object detection [13], segmentation [14], [15],
and localization [16]. Finally, descriptive radars can guaran-
tee the safe operation of radar systems during driving. To cope
with unexpected physical radar failures, the working condition
and position of descriptive radars should be consistent with
physical radars in real time. When the physical radar fails,
synchronized data generated by virtual radars can be adopted
for emergency management to protect drivers.

C. Predictive Radars

Predictive radars conduct computational experiments with
artificial systems in cyberspace. The computational experiment

is a broad concept that consists of various tasks, includ-
ing object detection [32], [33], [34], semantic segmenta-
tion [35], [36], and trajectory planning [50], [51], [52], [53].
Due to human factors in CPSS, it is impossible to identify
the system’s optimal strategy using only the collected data. In
order to achieve convergent solutions, predictive radars fore-
cast data from future scenarios first and then evaluate different
situations [54], [55].

In the context of autonomous driving, predictive radars can
forecast not only the external environment but also the internal
working conditions of radars. In terms of external surround-
ings, predictive radars can perform functions such as key
area estimation and obstacle warning in blind spots. They
first process information about current data using the evolving
cooperative perception [56], [57], [58], then complete tem-
poral forecasting, and conduct evaluation for the predicted
traffic scenarios. For internal working conditions, predictive
radars can realize sensors’ predictive maintenance in bad
weather which has a significant impact on radar performance.
The need for human intervention can be determined in real
time, reducing human workload and enabling more efficient
radar system management. Furthermore, predictive radars can
predict keyframes of data to ease the burden of communica-
tion transmission, requiring only keyframes to be transmitted
between physical space and cyberspace.

D. Prescriptive Radars

Prescriptive radars can provide indicative control for phys-
ical and virtual radar systems. It achieves the transition from
predictive knowledge to the feedback of current systems,
resulting in double closed loops in both physical and
cyberspace. Prescriptive radars redefine radars with the soft-
ware system [59] and generate prescriptive intelligence that
can be fed back to controllers or humans for final deci-
sions [60], [61].

In autonomous driving, prescriptive radars cal-
culate the specific feedback scheme based on the
optimal strategy obtained through computational experi-
ments [62], [63], [64], [65], [66]. For example, prescriptive
radars can adjust important parameters in radar systems such
as scanning frequency and distribution of laser emitters to
focus on the key area during operation [67]. Besides, they
also can provide users with an appropriate maintenance plan
based on weather conditions.

E. Deep Radars

Deep radars, which can be regarded as actuators and con-
trollers of radars, complete parallel execution in both physical
space and cyberspace based on the generated descriptive,
predictive, and prescriptive intelligence. Deep radars enable
virtual–real interaction in real time, allowing RadarVerses to
form a combination of physical, artificial, and mental worlds.

The evolving digital signal technology promotes the devel-
opment of deep radars at the technical level. Conventional
automotive radars generate waveforms using an analog modu-
lation method, which is difficult to adjust during operation,
whereas digital modulation methods, such as OFDM [68],
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Fig. 2. Four main technical foundations of RadarVerses.

and PMCW [69] can address this issue efficiently. They
can alter the physical parameters of radar systems in real
time [70], and even adjust the waveform type according to the
environment. Besides, deep radars are closely related to the
development of solid-state LiDAR technology that can avoid
the manipulation of complex mechanical structures to facilitate
software-to-hardware feedback control.

IV. TECHNICAL INFRASTRUCTURE

To construct RadarVerses in metaverses, advanced tech-
niques from various fields, such as communication technology
and artificial intelligence, are required. As shown in Fig. 2, we
will introduce four main technical foundations in this section,
which are communication technology, scenarios engineering,
foundation models, and digital workers.

A. Communication Technology

With the rapid development of the Internet, Internet of
Things (IoT) which denotes the connection of all physical
objects via Internet [71], [72], [73], [74], [75], [76] has gained
popularity. The sensing capability of a single automotive
radar is limited, necessitating the use of vehicle-to-everything
(V2X) [77], [78] to connect multiple radar systems to form
sensing networks. V2X, which includes vehicle-to-vehicle

(V2V) and vehicle-to-infrastructure (V2I) [79], [80], can effec-
tively obtain comprehensive information about local areas and
improve perceptual performance. In order to realize 6S radars
in RadarVerses, it is also necessary to achieve low-latency
interaction between physical and virtual radars. Advanced
communication technology, such as 5G [81], provides tech-
nical support for real-time interaction in RadarVerses.

Although the rapid development of communication technol-
ogy has sped up data transmission, we propose the following
improvements to make better use of communication resources
in RadarVerses. First, only the models and deep knowledge
will be shared among radar systems that can reduce data
transmission amount significantly. Besides, physical radars
will operate on an intermittent basis, with time intervals
dynamically adjusted according to dynamic weather and road
conditions. Virtual radars provide guidance for the operation
of physical radars by predicting keyframes and nonkey frames
are directly generated by virtual radars for compensation.

B. Scenarios Engineering

Radar systems primarily use features extracted from pub-
lic datasets to train models for various perception tasks.
However, it is impossible to cover all road and weather con-
ditions in public datasets and the extracted features cannot
be guaranteed to be valid in all scenarios. Therefore, we
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propose a transformation from feature engineering to scenarios
engineering for radars to achieve trustworthy AI [30].

Scenarios engineering is known as a collection of scenarios
and activities within a specific time and space. RadarVerses
divide traffic scenes into small regions to build multiple sce-
narios in autonomous driving. For each scenario, users can
generate virtual data and perform computational experiments
on different road conditions in this region. Researchers can
create leaderboards for different downstream tasks and every-
one can upload their models to leaderboards for comparison,
which is similar to the operation of current public datasets. The
best model for each scenario is transferred to the model library
in the cloud for sharing with all users. When the vehicle enters
a new scenario, the corresponding model is downloaded from
the model library to serve as the initial model and is updated
using the collected and predicted data. Scenarios engineer-
ing can reduce the burden of data collection and make more
efficient use of computing resources by sharing models.

C. Foundation Models

With the rapid development of artificial intelligence, auto-
motive radars are increasingly being applied for a lot of
downstream tasks, resulting in the emergence of a large num-
ber of small models. Fragmented models complicate unified
deployment in practical applications, whereas foundation mod-
els can efficiently solve this problem. Foundation models use
a large amount of data as input, which is pretrained at first
and then fine-tuned for different tasks [82]. They not only
have the advantage of good versatility but they can also
outperform small models, which has already been demon-
strated. To jointly realize intelligent radar systems, we will
deploy three types of foundation models in RadarVerses:
1) vision foundation models; 2) language foundation models;
and 3) multimodal foundation models [83]. Vision founda-
tion models are primarily applied for the intelligent operation
and management of radar systems. When a rough blueprint is
entered by the manager, vision models can generate specific
flowcharts to efficiently organize multimodal and language
models to achieve the goal. Language foundation models that
are trained on human speech data are responsible for pro-
cessing speech signals in the application. They can invoke
the relevant multimodal models to fulfill the requirements.
Multimodal foundation models, which have received extensive
attention recently, train with data from multiple modalities,
such as point clouds, RAD tensors, and trajectories, and then
fine-tune for specific tasks.

In the real application, a large model library is constructed
to store various multimodal and language foundation models
in the cloud [84]. Based on the flowcharts from vision models,
models in the model library will be transferred and deployed
to the edge. The edge foundation models in autonomous driv-
ing focus on local, short-term tasks and upload the acquired
knowledge to the cloud to solve global, long-term problems.

D. Digital Workers

We are currently living in an era of an intelligence explo-
sion, with a large number of algorithms and foundation models

Fig. 3. (a) and (b) Drive mining cars in the snowstorm.

Fig. 4. Experimental vehicle is equipped with a 64-line Hesai LIDAR.

emerging that far exceed the capabilities of the human brain.
To efficiently manage virtual radars, we introduce digital work-
ers [85] to liberate human workers’ intellectual work, just as
robotic workers in the industrial age liberated human workers’
physical work.

Digital workers not only serve as the interactive
interface [86], [87], [88] but they can also complete tasks
in cyberspace automatically. Digital workers enable the con-
version of complex decision-generation problems into simple
selection problems in RadarVerses. When a human worker pro-
poses a specific task, he can give commands to digital workers
as interfaces directly. Following the processing of input data, it
will direct other digital workers to select the appropriate mod-
els, construct the method framework, and return the optimal
strategy to human workers. In the future RadarVerses, human,
robotic, and digital workers will collaborate to realize the
efficient management of radar systems. Human workers with
intuitive rationality account for 5% of the total and are only
responsible for leadership and organization. 15% are robotic
workers with adaptive rationality that focus on physical labor,
while the rest 80% are digital workers with computational
rationality for mental labor in cyberspace.

V. CASE STUDY

With the complete consideration of human factors, we
provide a case study of LiDARs’ predictive mainte-
nance [89], [90], [91] based on the framework of RadarVerses.
It takes point cloud data as input and guides operators to
maintain physical radar systems through computational exper-
iments. Apart from regular urban roads, the autopilot can
also be applied to some specific areas, such as mines and
ports. Extreme weather conditions, i.e., snowstorms and sand-
storms, are significant challenges to safe autonomous driving
in mines [92]. Snowstorms in Fig. 3 not only interfere with
laser beams’ propagation [49] but also accumulate on the sur-
face of LiDARs, reducing LiDARs’ perception performance
seriously. To keep LiDARs’ normal operation, it is necessary
to conduct manual snow cleaning on a regular basis. However,
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Fig. 5. Indoor and outdoor scenes for data collection.

Fig. 6. (a)–(d) Different levels of snow accumulation on the surface of
LiDARs.

the human judgment of whether maintenance is required is
inaccurate and the commonly used regular cleaning method is
incapable of dealing with various emergencies.

We propose to use a deep-learning-based method to realize
accurate predictive maintenance and provide real-time guid-
ance to operators. It also allows workers to monitor multiple
mining cars remotely, significantly reducing labor costs. Due
to the lack of relevant datasets, a new dataset was collected
inside the campus using an experimental vehicle equipped with
a 64-line Hesai LIDAR, as shown in Fig. 4. This dataset con-
tains 400 frames of point cloud data from five indoor and five

outdoor scenes in Fig. 5, with 80% serving as the training set
and 20% for the test set. In each scenario, artificial snow is
applied to simulate different levels of accumulated snow on
the surface of LiDARs as shown in Fig. 6. In Fig. 7, the hor-
izontal axis is the time that is positively correlated with snow
accumulation, and the vertical axis represents the number of
points in each frame. We observe that the number of point
clouds has a negative correlation with accumulated snow from
Fig. 7. When the number of point clouds drops to 80% of the
normal condition, the distortion becomes severe and manual
intervention should be introduced. According to the number
of points, we divide the collected data into two categories of
whether or not they should be maintained. PointNet++ [93]
is trained for this classification task and the epoch number
is set as 100. The Adam optimizer is used and the learning
rate is 0.0005. The trained PointNet++ model achieves 72.5%
accuracy on the test set, allowing managers to receive accurate
information in real time.

Although the proposed method is proven to be efficient in
LiDARs’ predictive maintenance, the size of our dataset is
the main problem. Besides, our dataset was only collected in
the static campus environment, as opposed to dynamic min-
ing scenes. In future work, we will collect data in real mines
to expand our dataset and introduce the temporal features of
multiframe data to conduct prediction more precisely.

VI. CONCLUSION

To construct 6S radar systems in metaverses, the novel
framework of RadarVerses is proposed in this article. It not
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Fig. 7. Curves about the number of point clouds. (a) Indoor scenes. (b) Outdoor scenes.

only provides a mechanism to achieve knowledge automation
in CPSS but also constitutes a closed loop between physical
space and cyberspace with physical radars, descriptive radars,
predictive radars, prescriptive radars, and deep radars. We also
introduce four gordian techniques to construct RadarVerses at
the technical level. And a case study about LiDARs’ predictive
maintenance in RadarVerses is provided. In future work, we
will apply the architecture of RadarVerses to investigate more
intelligent operations of radar systems in metaverses.
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