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Abstract—Metaverse is an artificial virtual world mapped from
and interacting with the real world. In metaverse, digital enti-
ties coexist with their physical counterparts. Powered by deep
learning, metaverse is inevitably becoming more intelligent in
the interactions between reality and virtuality. However, it is
confronted with a nontrivial problem known as sim2real trans-
Jfer when deep learning techniques try to bridge the reality gap
between the physical world and simulations. In this article, we use
multiagent deep reinforcement learning (MARL) to implement
collective intelligence for digital entities as well as their physical
counterparts. To model the immersive environments in meta-
verse, we define a nonstationary variant of Markov games and
propose a recurrent MARL solution to it. Based on the solution,
MARL sim2real transfer that bridges real and virtual multiple
unmanned aerial vehicle (multi-UAV) systems is successfully con-
ducted by employing recurrent multiagent deep deterministic
policy gradient (R-MADDPG) with the domain randomization
technique. Additionally, we use perception-control modulariza-
tion to improve the generalization performance of MARL policies
and make training more efficient.

Index Terms—Metaverse, multiagent deep reinforcement learn-
ing (MARL), multiple unmanned aerial vehicle (multi-UAV).
nonstationary Markov game, sim2real transfer.

I. INTRODUCTION

ETAVERSE is an artificial virtual world mapped from

and interacting with the real world. In metaverse, digital
virtuality, physical reality, and people are seamlessly inte-
grated. As a result, a concrete metaverse should be regarded
as a specific realization of cyber—physical-social systems
(CPSSs) [1] where digital entities and their physical coun-
terparts are highly interconnected to provide immersive user
experiences.
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Driven by rapid developments of emerging technologies
such as artificial intelligence, extended reality, and blockchain,
metaverse is becoming an attainable reality. As a promising
artificial intelligence technique, deep reinforcement learning
(DRL) recently achieves remarkable success in both video
games of virtuality [2], [3] and many real-world scenes,
such as robotic manipulation [4], [5], mobile robot con-
trol [6], [7], [8], [9], [10], [11], [12], [13], and manufacturing
process [14], [15], which makes it ideally suited for the realiza-
tion of metaverse intelligence. Multiagent DRL (MARL) is a
multiagent extension of DRL that concentrates on the relation
and interaction of multiple agents in mixed cooperative-
competitive environments [16]. As a result, MARL is more
capable of implementing collective intelligence for complex
CPSS.

Because a simulator is faster, more scalable, and lower cost
than a physical platform for data collection, it is a popu-
lar choice to train DRL policies in simulations which can
learn from millions of samples of data. Furthermore, a DRL
training can adopt random exploration which is dangerous for
physical hardware. Ideally, we should use DRL to learn intelli-
gent policies encoding complicated decision-making behaviors
completely from simulations in the virtual world, and then
transfer the results to physical systems in the real world
with minimal additional training. Unfortunately, the discrep-
ancy between simulations and the real world, known as the
reality gap, make it challenging to perform this kind of trans-
fer. The reality gap in robot applications is mainly due to
dynamic environments and uncertain physical hardware in the
real world, such as object mass and friction that influence
dynamics, GPS signal strength and communication conditions
that cause positioning error, and lighting conditions and vari-
ous environment backgrounds that confuse visual perception.
Because the real world is dynamic and uncertain, the virtual
world that is subject to current digital technologies faces diffi-
culties in reproducing richness and randomness, which results
in the reality gap.

Sim2real transfer is a class of methods to bridge the
reality gap. The basic idea of sim2real transfer is to con-
nect and integrate digital entities in simulations (e.g., DRL
policies) with their physical counterparts in the real world,
which is equivalent to how metaverse works. Fig. 1 shows
the relation between sim2real transfer and metaverse, where
sim2real transfer is a concrete form of the interactions
between digital virtuality and physical reality in meta-
verse. Though sim2real transfer has been explored by many
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Fig. 1.

Sim2real transfer in metaverse.

remarkable works [17], [18], [19], [20], [21], [22], [23], few
of them focus on MARL sim2real transfer and its usage
in metaverse. The work in [24] is the closest one to ours.
Candela et al. [24] used a sim2real transfer technique called
domain randomization to develop their multiple autonomous
vehicles (multi-AVs). In our work, we propose a method to
successfully transfer MARL-based multiple unmanned aerial
vehicles (multi-UAVs) from simulations to the real world by
utilizing domain randomization and perception-control modu-
larization. Our multi-UAV system is to collaboratively deliver
a good from a source place to a target place.

The majority of robotic systems are dynamic and uncer-
tain. Hence, we present a nonstationary variant of Markov
games [25] under the MARL framework to model such a non-
stationary system in the real world and metaverse. This article
also demonstrates theoretically and empirically that MARL
algorithms with recurrent neural networks (recurrent MARL)
can solve the nonstationary Markov games. From the per-
spective of MARL sim2real transfer, solving the nonstationary
Markov games provides an approach to bridge the reality gap
since the physical world can be reconstructed by utilizing
domain randomization in simulations.

In order to evaluate the effectiveness of the aforementioned
theory and method, we build a simulated scenario of multi-
UAV collaboratively delivering goods on a simulator named
Airsim [26]. Then, recurrent multiagent deep deterministic
policy gradient (R-MADDPG) [27] and other MARL poli-
cies are trained with domain randomization in this simulation.
Afterwards we conduct sim2real transfer onto our physi-
cal autonomous cooperative multi-UAV system to perform
a real-world good delivery task. Additionally, a perception-
control modularization is used to improve the generalization
performance of MARL policies and make training more
efficient.

The main contributions of this article are summarized as
follows.

1) We define nonstationary Markov games to model MARL

problems with dynamic and uncertain systems.

2) We prove that recurrent MARL of centralized training
and decentralized execution is an effective solution to
the nonstationary Markov games.

3) We propose the methodology of sim2real transfer
based on R-MADDPG and domain randomization, and
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illustrate that the perception-control modularization can
accomplish the task of multi-UAV collaboratively deliv-
ering goods.

The remainder of this article is organized as follows.
Section II introduces related works and compares some of
them with ours. In Section III we give the framework of
Markov games and introduce multiagent deep deterministic
policy gradient (MADDPG). Section IV proposes the the-
ory and methodology of MARL sim2real transfer. Section V
presents experiments and results in both simulations and the
real world to demonstrate the superiority of the proposed
methods. Section VI concludes the work and gives future
directions.

II. RELATED WORKS
A. Metaverse

The term metaverse was first introduced in a science fiction
named Snow Crash in 1992 [28]. People can possess their
own avatars in a virtual world called metaverse. Nowadays
metaverse has been attracting wide attention from both indus-
try and academia. Facebook CEO Mark Zuckerberg renames
his company as Meta [29] aiming to build the social meta-
verse to connect each person. In addition, many technology
enterprises, including Microsoft, NVIDIA, and Tencent, have
participated in the concept of metaverse. As a key technique of
metaverse, virtual reality has already been utilized in the seri-
ous game to improve educational effectiveness [30], [31], [32],
[33], [34]. Furthermore, the work in [35] based its view on
metaverse-powered online distance education. In [36], a survey
was conducted to discuss how blockchain and artificial intel-
ligence can influence metaverse. A DAO-based decentralized
autonomous metaverse (DeMetaverse) was proposed in [37].
Wang [1] viewed CPSS as the abstract and scientific name
for metaverse and introduced parallel intelligence in meta-
verse that overcomes Lighthill’s gap, where the concept of
Lighthill’s gap resembles the reality gap between the physical
world and the mental world. Consequently, MARL simZ2real
transfer can be regarded as a specific method to implement
parallel intelligence for metaverse.

B. Multiagent Reinforcement Learning for Multientity
Decision-Making Tasks

MARL is experiencing an explosive development in
recent years. There is a vital paradigm of MARL referred
to as centralized training with decentralized execution
(CTDE) [38], [39]. Including general algorithms of this
paradigm, such as MADDPG [40] and multiagent proximal
policy optimization (MAPPO) [41], MARL has been proven
to be powerful enough to tackle decision-making tasks for
multiple entities (or agents) in various environments.

Vinyals et al. [42] proposed their MARL agent AlphaStar
that achieved Grandmaster level in a video game named
StarCraft II where every game entity learned to attack enemies
and defend themselves. MARL was also employed in [43]
to tackle sequential social dilemmas, a kind of multiagent
stochastic game with partial information. You et al. [44]
proposed their MARL-based packet routing algorithm which
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significantly reduced the packet delivery time in general
network topologies. In [45], an autonomous driving policy
based on an MARL method was introduced for guaranteeing
functional safety of the driving policy outcome.

Due to the fact that UAVs are usually deployed to carry
out cooperative tasks in a decentralized fashion, multi-UAV
systems are naturally suited to MARL of CTDE. As a conse-
quence, many autonomous multi-UAV applications are studied
based on MARL. Hu et al. [46] proposed a compound-
action actor-critic (CA2C) algorithm to solve cooperative
sensing and transmission tasks of UAVs. In [47], a distributed
MARL algorithm was applied to task allocation of spectrum
sharing among UAVs. The work reported in [48] used an
MADDPG framework for the UAV-enabled secure commu-
nication with cooperative jamming. Cui et al. [49] developed
an MARL framework to deal with dynamic resource allocation
of multiple UAVs-enabled communication networks. In [50],
a simultaneous target assignment and path planning (STAPP)
algorithm was introduced on the basis of MADDPG.

It must be noted that none of the aforementioned works
focused on sim2real transfer, and all of them conducted exper-
iments only in simulations. Our work successfully applies
MARL sim2real transfer to accomplish the task of multi-UAV
collaboratively delivering goods. The MARL algorithm we
use is R-MADDPG [27] which is a memory-based version
of MADDPG [40].

C. Sim2real Transfer

Due to high sample complexity and safety issues, training
MARL policies in the real world is challenging. Simulations
overcome these challenges and serve as a testbed to perform
experiments on algorithms. However, the use of simulations
brings a new problem named sim2real transfer because of dif-
ferences between simulations and the real world in dynamics,
sensors, imagery, etc.

There are sim2real transfer techniques for robot applica-
tions that customize simulation engines [22], [23] or perform
system identification [19], [21] to enhance the accuracy of sim-
ulators and to narrow the reality gap. However, these methods
can work only when the real-world system can be modeled
to be static and constant for simulations, which is hardly
achievable for complicated systems due to the lack of obser-
vation samples, estimation errors, and so on. In contrast, the
idea of domain randomization is to provide enough uncertain-
ties for simulated systems, so that the policies trained to fit
in the randomness can adapt to real-world systems. Through
domain randomization, differences between the source domain
and the target domain are modeled as randomness in the
source domain. The randomness can cover all domain param-
eters that keep fixed during a certain period in physical
systems, including vision parameters (e.g., lighting conditions,
viewpoints, object appearance, and backgrounds) as well as
robotic dynamics parameters (e.g., mass, friction, damping,
and delay).

The work in [17] is the first one to apply domain randomiza-
tion to visual data obtained from camera images to complete
object localization tasks for the purpose of robotic control.
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Peng et al. [18] randomized the dynamics of the simulator to
train and transfer DRL policies to perform an object-pushing
task using a robotic arm. Similarly, randomly sampled param-
eters were used in [19] in order to apply the controllers learned
with a DRL algorithm from simulations to real-legged robots.
In the context of UAV applications, Loquercio et al. [20] also
benefited from domain randomization to generate simulated
visual data for their vision-based drone racing task. However,
they only considered single-UAV situations and used domain
randomization for robot perception, which makes their work
quite different from ours.

As for MARL sim2real transfer, Zhang et al. [51] applied a
cognitive consistency-based MARL method to the circle for-
mation control problem for fish-like robots. Although they also
performed sim2real transfer by using domain randomization
for dynamics and observation, their work did not concentrate
on how to improve the robustness of their MARL algorithm for
sim2real transfer. In [52], an adversarial MARL algorithm was
proposed to train robust policies for better sim2real transfer,
but their approach only applies to a two-agent competitive con-
figuration, which limits its usage. The study that most closely
resembles ours is [24], where a multiple autonomous vehicles
(multi-AVs) system was implemented. They trained multiagent
policies using MAPPO [41] to control vehicles in a simulated
environment of the Duckietown multirobot testbed with dif-
ferent levels of domain randomization, and then transferred
the trained policies to the real environment. Their work used
memoryless feedforward neural networks (FNNs) to model
policies. Although their memoryless policies achieved better
performance than a rule-based one, the lack of mechanisms to
capture history information prevents their policies from infer-
ring the domain parameters of environments. We think the
ability to infer domain parameters is essential for bridging the
reality gap when utilizing domain randomization to simulate
the dynamic and uncertainty of the real world. By comparison,
we show that our memory-based recurrent MARL method is
far more efficient, robust, and general for sim2real transfer.

III. BACKGROUND

In this section, we present the MARL framework and
introduce notations used in the following sections.

A. Markov Games

A multiagent extension of Markov decision processes
(MDPs) called partially observable Markov games [25] can
be defined by (N, S,A;, T, O;, r,y). The possible configura-
tions of NV agents are described by a set of states S with a set
of actions Ay, ...,Ay and a set of observations Oq, ..., Oy
for each agent. At each discrete timestep ¢, each agent i (i € N)
obtains a private observation correlated with the current state

ol : S 0

and uses a policy

]tiZO,‘I—>A,‘
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to take an action al’-, which leads to the next state according
to the state transition function

T:SxA; x...xAy— S.

Under cooperative settings, all agents then share the same
scalar reward as a function of the last state and actions

i SxA x...xAv— R

and receive new observations. Each agent i aims to maximize
its own total expected return

R; = E|:Z Y rt:|
t
where y € [0, 1] is a discount factor.

B. Inherent Nonstationarity

Since we are discussing the nonstationary problem arising
from dynamic and uncertain systems, it is worth pointing out
that there is a classical problem of MARL known as the inher-
ent nonstationarity caused by the influence of other behavior
changing agents from the perspective of any individual agent
at training time.

CTDE paradigm [38], [39] can be utilized to solve the inher-
ent nonstationarity by making the most of the advantages of
centralized training.

C. Multiagent Deep Deterministic Policy Gradient

MADDPG [40] is a powerful actor-critic policy gradi-
ent algorithm to solve MARL problems. Each agent i has
its own policy m;(0;) = a; which is referred to as the
actor, and an action-value function for policy m; which is
the critic denoted by Q? (x, ¢), where x = (o1, ...,o0y) and
¢ = (ay,...,ay) when no additional information is pro-
vided. MADDPG uses these centralized critics that take into
account extra information about all other agents to deal with
the inherent nonstationarity, while making decentralized actors
considered to remain in single-agent situations. Moreover, the
framework of CTDE allows the critic to use sufficient addi-
tional information provided by the simulator at training time
to reduce the variance of policy gradients and improve policy
performance, while the actor (policy &) remains restricted to
its private observation since the additional information is not
available for the policy at execution time. In this case, intro-
ducing additional information z € Z correlated with S, the
critic is denoted by QOF (x, c, z).

IV. THEORY AND METHODOLOGY
A. Nonstationary Markov Games

As a nonstationary variant of partially observable
Markov games, nonstationary Markov games are defined by
(N,S,A;, T, O, r,y, 1), where u is a set of domain parame-
ters that parameterize the system with respect to agents’ own
properties and the environment. Here, the next state is achieved
following the nonstationary state transition function

T:SxA X...xAy X u+—S.
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General Markov games think the system with respect to
agents’ own properties and the environment is fixed. In con-
trast, considering that most real-world systems are dynamic
and uncertain, we propose the nonstationary Markov games
where the state transition function is affected by a set of vari-
ables of domain parameters x and thus becomes nonstationary.

B. Recurrent MARL Solution to Nonstationary
Markov Games

Assumption 1: Under the paradigm of CTDE, from the per-
spective of any decentralized agent i, we ignore the influence
of other agents and consider other agents to be a part of the
environment.

Assumption 2: With Assumption 1, we think that
s : O; — S is true, which means o; : S — O; is
bijective.

Proposition 1: Given an MARL algorithm that satisfies
the CTDE paradigm, if it is realized with recurrent neural
networks (RNNs), i.e., the RNN model IT;(:, g?) corresponds
to the decentralized policy for agent i, where

gi = 8(7)
is the internal memory

t__ t =1 t—1 =2 =2
Ti—[oi’ai ,0; ,a; 7,0 ,]

and : represents other inputs, then it can be a solution to
nonstationary Markov games.

Proof: Based on Assumptions 1 and 2 and the nonstationary
state transition function

T:SxXA X ...xXANX u+—>S
we introduce the nonstationary observation transition function
+1
P i <0i+

(i is ignored in the following proof).
Let

ag,oﬁ;u):OixA,-xMxo,-H[o,l]

H = [0’,A”], 01, A2, 02, . ]
Then, we have
H o {(of—f‘A’—f—l, of—/—l)‘o <j< z}
and
0 <j<r(0ad 0 ) ~ Py,

According to the Glivenko—Cantelli theorem, with a large
number of samples

t_ | ¢t =1 =
Ii—[oi,ai ,0;

1 =2 -2
i a4 T,0; ,]

the true distribution function P, can be inferred, and so can
@ which parameterizes the nonstationary problem.

Therefore, a recurrent MARL algorithm with decentralized
policy T1;(:, g}) that is able to infer P, and p by learning from
7/ is a solution to nonstationary Markov games. |

Assumption 1 is premised on the fact that the central-
ized part solves the inherent nonstationarity of MARL, and
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therefore, the decentralized policy can be regarded to be
reducible to single-agent situations. Assumption 2 is a com-
mon assumption under single agent situations where the
environment is fully observed [53]. The partially observable
problem is mainly considered by MARL and it is reason-
able for the decentralized policy to have Assumption 2 under
Assumption 1.

With the goal to maximize the total expected return R, the
recurrent policy is sure to learn to infer P, and p somehow so
as to gain more information about the system and take better
actions, which leads to more positive rewards. Eventually, it
will converge to more effective solutions.

Under the setting of deterministic policies, inputs of the
internal memory of the decentralized policy IT;(:, g%) can be
simplified as follows:

where

1

hf = [otfl, 0?72, .. ]

If the policy of each agent i is deterministic, denoted by
m;(0;) = a;, the nonstationary observation transition function

Pi,/A(O?-H
can be simplified as follows:

Pi,. (Og+1

tt.
aiv Oi? I'L)

1

o33 M)

since ! is deterministic if o} is deterministic.

C. R-MADDPG

R-MADDPG [27] is a memory-based extension of
MADDPG. A model where both actors and critics are recur-
rent was verified to be more capable of learning under partially
observable environments.

In this article, we propose the memory-based actor model

mi(ol,y)) = dt
where
h§ = [0571,0€72, ]
and the internal memory
vi = (%)

acts as the history of past observations obtained by agent i,
and the memory-based critic model

OF (¢, "2, . f")
where

fr=f(H, ... hHy)
is the internal memory of the action-value function and (z’, i)
is the additional information only provided to the critic.

The internal memory enables the policy to infer the domain
parameters of environments through the history information,
which benefits the policy as the additional information does.
Our work will show that R-MADDPG is remarkable when

facing dynamic and uncertain systems under both simulations
and real-world conditions.
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> High-Level Action
Detected Target Data
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Multi-UAV System
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CNN Target Detection . Models for Simulations
replacement
.‘ ———— ’. @ iocels for Reality
Fig. 2. Perception-control modularization on the autonomous cooperative

multi-UAV system.

D. Perception-Control Modularization

Perception-control modularization divides the policies of
robot applications into two modules: 1) perception and 2) con-
trol. The perception module is designed to detect target objects
around the environment, and the control module functions to
navigate robots to accomplish the task.

Many DRL-based robot applications are prone to learning
end-to-end policies, e.g., from the input of pixel signals to the
output of control signals. One advantage of this kind of end-to-
end method is that visual data are easy to obtain and are very
informative. In our work, we abandon the end-to-end method
because it is often plagued by high sample complexity and low
generalization. Specifically, the end-to-end method increases
the consumption of time and manpower when training DRL
policies with pixel data, and makes it difficult to deploy the
trained policies to real-world environments due to the large
gap between low-quality simulated images and real images.

Instead, we use modularization as an alternative. The idea
of modularization is to decompose policies into multiple mod-
ules, each of which can be implemented independently and
then combined into a complete system. The advantage of mod-
ularization is that it dissolves the tight coupling between input
and output signals, so that more information can be extracted
between different modules.

In this work, we conduct perception-control modulariza-
tion on our autonomous cooperative multi-UAV system, as
shown in Fig. 2. Specifically, the perception module employs
a CNN-based target detection algorithm, which inputs pixel
data from the video streams of cameras and outputs the result
that locates the detected targets in the input streams. This
step realizes feature extraction and dimension reduction from
high-dimensional pixel data. Taking the detected target data
obtained by perception (and other inputs), the control mod-
ule uses MARL-based policies that output high-level actions
to control the UAV. This perception-control modularization
is distributively deployed on each UAV of our multi-UAV
system.

It should be noted that our work of sim2real transfer is con-
ducted on MARL policies of the control module. Since the
perception module applies different but homogeneous CNN
models trained by simulated and real-world images, respec-
tively. For the simulated and real-world environments, we label



2112

Domain

Parameters
Lighting

Conditions

Fig. 3. Domain randomization for the simulation of multi-UAV systems in
metaverse. By randomizing a variety of domain parameters corresponding to
the factors of the multi-UAV system, domain randomization makes the real-
world system a sample of the space of simulated systems in the virtual world
of metaverse.

the transformation of the perception module as the “replace-
ment” of CNN target detection models. Through assigning
a part of subtasks to other algorithms that are more expert,
perception-control modularization improves the generalization
performance of perception and reduces sample complexity for
the learning of control.

E. Domain Randomization

In multi-UAV systems, observation noise that arises from
various sensors and communication conditions severely affects
the robustness of systems. In addition, changing environments
and various tasks result in differences in loading weight,
team formation, flight altitude, outdoor winds, lighting condi-
tions, target appearance, etc. These differences are abstracted
as domain parameters in simulations to reproduce real-world
multi-UAV systems.

Fig. 3 illustrates how domain randomization is used to sim-
ulate a multi-UAV system. By randomizing a variety of domain
parameters, we aim to let real-world systems be samples of
the space of simulated systems in every aspect. MARL poli-
cies trained in the randomized virtual world can, therefore, be
generalized to complicated multi-UAV systems.

FE. Network Architecture

The RNNs of actor and critic are shown in Fig. 4. Both
networks are composed of a feedforward branch and a recur-
rent branch. The feedforward branch consists of a fully
connected layer, and the recurrent branch contains an embed-
ding fully connected layer followed by an LSTM layer where
the internal memory is updated at every timestep during an
episode. The outputs of both branches are then concatenated
and processed by two fully connected layers. Each fully con-
nected layer has an ReLU activation except the output layer.
All hidden layers including LSTM consist of 64 units.
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Tanh Activation

MLP 64 MLP 64 Size = action dim
o' ] —_
Y v
MLP 64 U
MLP 64 MLP 64 Linear. Activation
Size=1
u
. — —
. —> g —
z Y
MLP 64 ' '
Fig. 4. RNNs of memory-based actor (top) and memory-based critic
(bottom).

The actor network takes in observation o' as input and sends
its copies to both branches. While the recurrent branch is
aimed at extracting features of the environment through the
history of observations, the feedforward branch helps to gain
direct information of observations which is essential for deter-
mining the output action a’. The critic network is of a similar
architecture with the actor network, but their difference lies in
their inputs. Copies of (¥, z') are the input of both branches
and the feedforward branch additionally takes in (i, ¢*). While
the critic network has a linear output unit corresponding to the
Q-value, the output of the actor network is activated with tanh
and scaled to fit each action variable for different scenarios.

G. MARL Sim2real Transfer

The workflow of MARL sim2real transfer is shown in
Fig. 5. Domain parameters need to be determined according
to the demands of the real-world task and then the simu-
lated system can be implemented with domain randomization.
After training and testing the MARL policy in the simulation,
sim2real transfer can be directly performed onto the adapted
real system. If the policy does not work as expected, the
domain parameters or the MARL policy should be reconsid-
ered. We think this process is faster and lower cost than that
of a conventional rule-based approach.

V. EXPERIMENTS

The UVAs of our physical autonomous cooperative multi-
UAV system are composed of PX4 as flight controllers and
quad-rotor F450 as body frames. Additionally, differential GPS
systems, front and down monocular cameras, and Jetson Nano
with quad-core ARM Cortex-A57 MPCore CPU and 128-Core
NVIDIA Maxwell architecture GPU as the onboard computer
are equipped.

The simulator Airsim [26] is an open-source platform
providing researchers with lifelike simulations in both phys-
ical and visual aspects for the development of autonomous
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Determine or adjust domain parameters according
to the real-world system.

v

Implement or adjust the simulated system with
domain randomazation.

v

Train or adjust the MARL policy in the simulation
until convergence.

A

Y

The policy works as expected
in the simulation?

Yes
v

Adapt the real system to deploy the MARL policy.

v

Perform sim2real transfer.

v

Test and adapt system parameters to utilize the
policy. (e.g., scale factor of speed)

The MARL policy works as
effectively as in the simulation?

Yes

End

Fig. 5. Workflow of MARL sim2real transfer.

drones and vehicles. The simulated UAVs are also quad-rotor
ones and equipped with front and down monocular cameras.

The target detection algorithm applied to the perception
module is from our previous works [54], [55].

Five MARL policies of our cooperative multi-UAV system
are trained by using five different methods in the simulated
environment implemented on Airsim and then transferred to
our physical multi-UAV system. The training is performed by
episodes of finite length composed of discrete timesteps.

A. Multi-UAV Cooperative Goods Delivery Task

We introduce a cooperative goods delivery task under a sim-
ple setting with two UAVs in the system. An illustration of
the task and an image of real-world experiments are shown
in Fig. 6. Specifically, goods are tied under two UAVs with,
respectively, two ropes of finite length. Two UAVs work as a
team to transport the goods to the unloading point pointed out
by two stationary ground markers. UAVs are initially deployed
at the starting point where ground markers can be perceived
and detected. The environment is free of obstacles. The task is
completed when each UAV reaches and hovers directly above
one arbitrary ground marker. The task is terminated if the two
UAVs are either too close or too far away from each other
before the task is completed.
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The basic components of aforementioned Markov games for

the task are defined as follows.

1) Agent: Each UAV is considered homogeneously as an
agent that can obtain its private observation and choose
to take an action according to its policy. Therefore, the
task is mutiagent and of decentralized execution.

2) Observation: The private observation of each agent O;
consists of two parts: a) the two-dimensional (2-D)
location in Cartesian coordinate (height is fixed and
therefore, neglected, here, and below) of the other
agent relative to itself and b) the target detection result
from the perception module. The former is denoted
by o_loc(lx, ly), and the latter o_pept(px1, py1, px2, py2)
indicates the upper-left and lower-right pixel points for
each ground marker in each video stream.

3) Action: The space of action A; corresponding to high-
level control interfaces is continuous, consisting of the
2-D linear velocity and the yaw angular rate, i.e.,
(vx, vy, yaw).

4) Reward: This task is cooperative and, therefore, a
shared team reward that considers all agents’ states is
introduced. The reward function is defined as follows:

r=arg + Bra, + orcom

where «, B, and w are scale factors. rﬁll is a function
of dlﬁ, that is, the distance from UAV i to the closest
ground marker at timestep ¢, i.e.,

ro_ t—1 t
le —Zd]l _dll'
i

rfdz is a function of dé, that is, the distance between
the two UAVs if the task is not terminated at timestep ¢
otherwise it becomes a punishment function with respect
to db, i.e.,

— dé_l — d&‘, if not terminated

t
r =
a2 pun(d5, speed),

otherwise

where UAVs’ speed is defined as follows:

speed = Z v + vyi2.
i

Feom 1S the completion reward, i.e.,

- I' —¢, if completed
com 0, otherwise

where I' is the time horizon (maximum episode length).
Additional information Z is defined as relative 2-D locations
of all ground markers from the perspective of all agents.

B. Domain Parameters

Each episode of training holds a different set of domain
parameters p that are sampled following their distributions.
The randomized domain parameters of w in our work are as
follows.

1) Standard deviation of observation noise for o_loc(lx, ly),

denoted by o.
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2) Standard deviation of observation noise for
o_pept(px1, py1, px2, py2), denoted by oy,.

3) False positive (FP) probability of target detection.

4) Flight height of each UAV.

5) Initial distance between UAVs (same for ground mark-

ers), denoted by D;.

6) Initial distance between the UAV group and the ground

marker group, denoted by D>.

The observation noise follows the independent Gaussian dis-
tribution with zero mean and random standard deviation for
each episode. FP is a target detection term, also known as false
detection. Because few other objects interfere with the detec-
tion of ground markers in simulations in contrast to real-world
situations, FP occurring with a certain probability is manually
implemented in simulations. All parameters are sampled ran-
domly at the beginning of each episode and held fixed during
the episode. Flight height is sampled independently for each
UAV, considering that the length of ropes tied under differ-
ent UAVs may differ in reality. Due to the reliable high-level
control interfaces provided by PX4, we do not take mass of
UAVs and goods, gains for controllers, outdoor winds, etc.,
into consideration in this work.

C. Experiments of MARL Sim2real Transfer

First, trained with domain randomization, an R-MADDPG
policy (RMRand) and an MADDPG policy (MRand) are com-
pared to demonstrate the advantages of the memory-based
method. Next in order to verify the recurrent MARL solution
to nonstationary Markov games, we consider two MADDPG
policies, one trained with a memory-based RNN actor and
a memoryless FNN critic (RARand), and the other trained
with a memoryless FNN actor and a memory-based RNN
critic (RCRand). Finally, an MADDPG policy trained with-
out domain randomization (MADDPG) is also included as a
baseline.

Some MARL training settings and hyperparameters are as
follows.

1) Number of episodes for training: 20 000.

2) Maximum episode length (number of timesteps): 30.

3) Learning rate for both actor and critic: Se-3.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 53, NO. 4, APRIL 2023

(b)

(a) Iustration of the muti-UAV cooperative goods delivery task. (b) Image of real-world experiments of the task.

TABLE 1
DOMAIN PARAMETERS AND THEIR RANGES

Parameter Range
Standard Deviation o; (m) [1,3]
Standard Deviation o}, (pixel) [5,25]
FP Probability (%) [0.25,1]
Flight Height (m) [1,3]
Initial Distance D7 (m) [2,5]
Initial Distance D2 (m) [5,15]

4) Discount factor y: 0.99.

5) Update mini-batch size (number of episodes): 128.

6) Update interval (number of episodes): 16.

7) Optimizer: ADAM [56].

Every timestep takes a fixed duration of 0.8-s during which
each agent performs an action (vx, vy, yaw) determined by
its actor. The simulation on Airsim is accelerated, eventually
leading to a training cost of about 40 h per policy.

Parameters of domain randomization are sampled uniformly
with certain ranges that are shown in Table I. All ranges of
domain parameters are set according to conditions of real-
world experiments, e.g., the observation o_loc in reality is
obtained by transforming data from onboard GPS, and the
error arising from GPS noise and communication conditions
is approximately between 1 and 3 m.

To compare the performance of the five policies, we evaluate
them by the mean episode reward over 40 evaluation episodes
every 270 training episodes. All evaluation episodes are per-
formed with domain randomization. The evaluation curves
during training are shown in Fig. 7. RMRand gets a higher
convergence rate and better performance than MRand, indicat-
ing that the memory-based one is more powerful when facing
domain randomization. The performance of RARand which
is much better than RCRand and MRand verifies the correct-
ness of our proposition that a CTDE MARL algorithm with
memory-based decentralized policies is a solution to nonsta-
tionary Markov games. Moreover, the low-performance gap
between RARand and RMRand shows that a memory-based
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Fig. 7. Evaluation curves of five MARL policies.

TABLE 11
POLICY PERFORMANCE OF SIMULATED EXPERIMENTS

Policy Completion Rate (Sim) Completion Timesteps (Sim)
RMRand 76.0% 12.2
MRand 71.0% 16.0
RARand 73.2% 12.2
RCRand 75.5% 15.6
MADDPG 37.2% 18.9
TABLE III

POLICY PERFORMANCE OF REAL-WORLD EXPERIMENTS

Policy Completion Rate (Real) Completion Time (Real)
RMRand 8/10 51.1s

MRand 6/10 60.2s

RARand 7/10 52.8s

RCRand 6/10 57.0s
MADDPG 2/10 54.2s

actor is more important than a memory-based critic for non-
stationary Markov games since the improvement of the actor
benefits the policy more directly. Comparing MRand with
MADDPG, it is shown that a memoryless policy can learn
to adapt to domain randomization to a certain extent.

In addition, Table I compares the five policies after
training by task completion rates and mean values of com-
pletion timesteps over 1000 testing episodes for each pol-
icy. Completion rates of the other four policies except
MADDPG are relatively close, so comparing them by comple-
tion timesteps, the same result can be concluded that RMRand
and RARand are of similar performance and they are better
than MRand and RCRand.

Directly transferring the policies from simulations to the real
world, we perform real-world experiments on our autonomous
cooperative multi-UAV system to complete the coopera-
tive goods delivery task. Table III compares the real-world
performance of all five directly transferred policies. RMRand
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has the highest completion rate and time efficiency, show-
ing that it is most capable of bridging the reality gap in
nonstationary systems. Comparing with RCRand, RARand’s
performance is closer to RMRand, indicating that memory-
based actors play a more vital role in MARL sim2real transfer.
The fact that MADDPG, the policy trained without domain
randomization, cannot adapt to the real-world environment
shows the significance of training MARL policies with domain
randomization in improving their generalization performance.

VI. CONCLUSION

To empower digital entities with metaverse intelligence
and bridge the reality gap in dynamic and uncertain meta-
verse systems, this article defines a nonstationary variant
of Markov games and proposes a recurrent MARL solution
to it. Specifically, we prove theoretically recurrent MARL
is capable of solving the nonstationary Markov games so
that it can be leveraged with domain randomization and
perception-control modularization to perform MARL sim2real
transfer. Unlike most MARL studies that are confined to
simulations, we successfully transfer MARL policies onto
our physical autonomous cooperative multi-UAV system to
accomplish multi-UAV cooperative goods delivery, empiri-
cally demonstrating the high generalization performance of
recurrent MARL.

As an emerging and promising research field, MARL
sim2real transfer needs more investigation. We will further
verify different recurrent MARL algorithms with more varied
domain parameters from a broader scope, and explore more
efficient sim2real transfer techniques in theory and practice.
We hope this work inspires more studies on MARL sim2real
transfer for robot applications, and arouses more attention to
metaverse intelligence.
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