
2374 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 53, NO. 4, APRIL 2023

Graph-Based Deep Decomposition for Overlapping
Large-Scale Optimization Problems

Xin Zhang , Member, IEEE, Bo-Wen Ding, Xin-Xin Xu, Jian-Yu Li , Student Member, IEEE,
Zhi-Hui Zhan , Senior Member, IEEE, Pengjiang Qian , Senior Member, IEEE,

Wei Fang , Member, IEEE, Kuei-Kuei Lai , and Jun Zhang , Fellow, IEEE

Abstract—Decomposition methods play a critical role in coop-
erative co-evolutionary algorithms (CCEAs) for solving large-
scale optimization problems. Although some well-performing
decomposition methods have been designed based on the inter-
actions among variables (IaV), their grouping accuracy is still
limited due to the poor performance on the overlapping problems
and the computational roundoff errors of IaV in the imple-
mentation. To deal with these limitations, a graph-based deep
decomposition (GDD) method is proposed to obtain more accu-
rate grouping results, especially for the overlapping problems.
On the one hand, the GDD mines the IaV information and
obtains the minimum vertex separator of the interaction graph
of variables, so as to group variables deeply and recursively.
On the other hand, the GDD has the ability of fault tolerance
to deal with the computational roundoff errors of IaV and can
improve the grouping accuracy. For better experimental studies
of overlapping problems, a novel overlapping function generator
is designed with the random and complicate overlap type, and
two new metrics are proposed to evaluate the grouping accu-
racy. Comprehensive experiments show that GDD can greatly
improve the grouping accuracy and help CCEAs perform bet-
ter than other existing algorithms, especially on the overlapping

Manuscript received 19 July 2022; revised 6 September 2022; accepted 28
September 2022. Date of publication 20 October 2022; date of current version
17 March 2023. This work was supported in part by the National Key Research
and Development Program of China under Grant 2019YFB2102102; in part
by the National Natural Science Foundations of China under Grant 62106088,
Grant 62172192, Grant 62176094, Grant 62073155, and Grant 61873097; in
part by the Key-Area Research and Development of Guangdong Province
under Grant 2020B010166002; in part by the Guangdong Natural Science
Foundation Research Team under Grant 2018B030312003; in part by the High
Level Personnel Project of Jiangsu Province under Grant JSSCBS20210852;
and in part by the National Research Foundation of Korea under Grant NRF-
2021H1D3A2A01082705. This article was recommended by Associate Editor
J. Liang. (Corresponding authors: Zhi-Hui Zhan; Kuei-Kuei Lai.)

Xin Zhang, Bo-Wen Ding, Pengjiang Qian, and Wei Fang are with the
School of Artificial Intelligence and Computer Science and the Jiangsu Key
Laboratory of Media Design and Software Technology, Jiangnan University,
Wuxi 214122, China.

Xin-Xin Xu is with the School of Computer Science and Technology, Ocean
University of China, Qingdao 266100, China.

Jian-Yu Li and Zhi-Hui Zhan are with the School of Computer
Science and Engineering, South China University of Technology, Guangzhou
510006, China, also with Pazhou Laboratory, Guangzhou 510330,
China, and also with the Guangdong Provincial Key Laboratory of
Computational Intelligence and Cyberspace Information, Guangzhou 510006,
China (e-mail: zhanapollo@163.com).

Kuei-Kuei Lai is with the Department of Business Administration,
Chaoyang University of Technology, Taichung City 413, Taiwan
(e-mail: laikk.tw@gmail.com).

Jun Zhang is with Zhejiang Normal University, Jinhua 321004, China, and
also with Hanyang University, Ansan 15588, South Korea.

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSMC.2022.3212045, provided by the authors.

Digital Object Identifier 10.1109/TSMC.2022.3212045

problems. In addition, the GDD is highly fault tolerant and can
divide problems accurately even on the inaccurate IaV.

Index Terms—Cooperative co-evolutionary algo-
rithms (CCEAs), decomposition methods, evolutionary
computation, large-scale optimization problems (LSOPs).

I. INTRODUCTION

W ITH data growing explosively, large-scale optimization
problems (LSOPs) have aroused increasing attention

and become a hot research topic in many systems engineer-
ing fields [1], [2], [3], such as the multiobjective optimization
of large-scale capacitated arc routing problems [4], the con-
strained optimization of the large-scale power system [5],
and the large-scale optimization of the supply chain
system [6], [7]. Compared with the traditional optimization
problems, a much larger number of decision variables need
to be optimized in the LSOPs. In this case, the increase of the
problem size causes it difficult to obtain the global optimal
solution within the limited computation resources, e.g., within
the maximal number of fitness evaluations [8], [9], [10].

Since evolutionary computation algorithms (including evo-
lutionary algorithms (EAs) [11], [12] and swarm intelli-
gence algorithms [13], [14]) are skilled in maintaining the
solution diversity and finding optimal solutions in global
optimization [15], [16], [17], [18], [19], [20], [21], they have
been widely studied and extensively applied to solve the
LSOPs [22], [23], [24]. EAs used for the LSOPs can be
classified into two main categories according to whether
decompose the problems. The first category of EAs takes the
LSOP as a whole and does the main work on the design
of effective learning strategies. These learning strategies are
proposed to improve the solution diversity and find the optimal
solutions [25], [26], [27], [28], [29].

The second category of EAs, usually called coopera-
tive co-evolutionary algorithms (CCEAs), decomposes the
LSOPs into several subproblems and then solves subproblems
by different subpopulations [30], [31]. The decomposition
of LSOP can reduce the search space of each subprob-
lem and improve the search efficiency of CCEAs [32].
The most important part of CCEAs is the decomposi-
tion method that aims to put the interacting variables of
the problem into the same group and divide the non-
interactive variables into different groups. Each group is

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3636-6453
https://orcid.org/0000-0002-6143-9207
https://orcid.org/0000-0003-0862-0514
https://orcid.org/0000-0002-5596-3694
https://orcid.org/0000-0001-8052-0994
https://orcid.org/0000-0001-6049-1161
https://orcid.org/0000-0001-7835-9871

ZHANG et al.: GDD FOR OVERLAPPING LSOPs 2375

corresponding to a subproblem. An excellent decomposition
method can divide variables accurately and, therefore, improve
the optimization performance of CCEAs for solving the
LSOPs. Two main kinds of decomposition methods are widely
used: 1) random grouping [33] and 2) differential group-
ing (DG) [34], [35], [36], [37], [38], [39], [40], [41], [42].
Normally, the grouping accuracy of DG is usually higher than
random grouping [34], because the DG methods calculate the
interaction among variables (IaV) of the LSOPs to help group
the variables.

However, due to the complexity of the LSOPs and the
computational roundoff errors of IaV, it is still difficult for
the existing DG methods to decompose the LSOPs effec-
tively, especially for the overlapping LSOPs. For example, in
the complex overlapping LSOPs, there are overlaps among
the ideal groups where these groups and their overlaps are
called overlapping groups and overlapping variables, respec-
tively (referred to Section II-A for definition). For example, in
an overlapping function f (X) = (x1+x2+x4)

2+(x1+x3+x5)
2

and X = (x1, x2, x3, x4, x5)T , there are two overlapping groups
(x1, x2, x4)T and (x1, x3, x5)T and an overlapping variable x1
in the ideal case. The two groups actually can be treated sepa-
rately as two overlapping groups, but the existing DG methods
will group all the variables of the problem into a larger group
(i.e., X = (x1, x2, x3, x4, x5)T), which deteriorates hampering
the optimization efficiency of CCEAs for the LSOPs [38]. This
is due to that the DG methods do not identify the overlapping
variables and treat the overlapping groups as a whole group.
Besides, the grouping accuracy of the existing DG methods is
still limited by the accuracy of IaV. That is, IaV may some-
times be inaccurate (compared with the ideal IaV) due to
the computational roundoff errors, e.g., grouping some non-
interacting variables together. As a result, the inaccurate IaV
of these DG methods will inevitably lead to the inaccurate
grouping results.

Therefore, to decompose overlapping LSOPs and deal with
the inaccurate IaV, this article proposes a graph-based deep
decomposition (GDD) method, which is crucial for obtaining
more accurate groups to enhance the performance of CCEAs.
GDD is inspired by the graph cut [43] that can divide a com-
plicated graph into small subgraphs via the minimum vertex
separator (MVS), since an LSOP with IaV can be regarded as
a graph. On the one hand, the GDD uses IaV to deeply and
recursively decompose the overlapping groups, where three
rules are designed to help to determine the recursive decom-
position. On the other hand, due to the decomposition ability
on overlapping LSOPs, the GDD has the ability of fault tol-
erance for dealing with the computational roundoff errors and
improving the final grouping accuracy.

In the GDD, IaV is first obtained by the existing DG meth-
ods, and a graph can be constructed according to IaV. Then,
the connected components of the graph are corresponding to
the initial groups of the problem. Since some of these ini-
tial groups may have overlaps, a recursive overlapping group
decomposition (ROGD) method is proposed to divide overlap-
ping groups based on the MVS of the corresponding graph.
In ROGD, three rules are designed to help to determine the
recursive decomposition, including how to deal with MVS (the

first two rules) and isolated variables to construct the complete
groups (the third rule). Each group is regarded as a graph, and
the max-flow algorithm is used to obtain the MVS [44]. If the
group belongs to an overlapping group, the MVS of the cor-
responding graph is equivalent to the overlapping variables,
and the group can be decomposed by the MVS; otherwise,
the MVS of this group is empty, and the group cannot be
decomposed. Finally, the overlapping groups with too small
sizes will be merged to save the fitness evaluations, and the
final groups are obtained for the CCEAs.

GDD can not only decompose overlapping LSOPs but also
has the ability of fault tolerance. Concretely, in a nonoverlap-
ping LSOP, if independent variables in two groups are wrongly
judged as interacting variables caused by the computational
roundoff errors of IaV, the two groups will be regarded as
a group in some existing DG methods [36], [37], which is not
efficient for the CCEA optimization. However, such mistaken
grouped variables can be easily separated by the overlapping
variables (the misjudged interacting variables) in GDD. For
example, in f (X) = (x1 + x2 + x4)2 + (x3 + x5)2 and X = (x1,
x2, x3, x4, x5)T , there are two groups (x1, x2, x4)T and (x3, x5)T

in the ideal case. However, if x1 and x3 are wrongly judged to
be interactive in IaV, only a group (x1, x2, x3, x4, x5)T will be
obtained in some DG methods. Differently, in GDD, x1 can be
regarded as an overlapping variable, and the final groups are
(x1, x2, x4)T and (x1, x3, x5)T , which are closer to the ideal
case. Moreover, GDD is used after getting IaV and does not
consume more fitness evaluations. The contributions of this
article are presented as follows.

1) The GDD method is proposed to deeply and recur-
sively decompose LSOPs via MVS, and three rules
are designed for helping the recursive decomposition.
This decomposition method can obtain more accurate
grouping results, which is significant to improve the
optimization efficiency of CCEAs on LSOPs, especially
for the overlapping problems.

2) Due to decomposition ability on overlapping LSOPs,
GDD is fault tolerant and can obtain the higher grouping
accuracy on LSOPs.

3) A novel overlapping function generator is proposed with
the random and complex overlap type. It can be used as
a routine for generating different kinds of overlapping
LSOP to test the grouping efficiency of decomposition
algorithms. This is significant for further researches into
overlapping LSOPs in the community.

4) Two new metrics are designed to evaluate the group-
ing accuracy, including the overlapping rate and the
redundancy rate of the grouping results obtained by
the decomposition algorithms versus the ideal grouping
results.

The remainder of this article is organized as follows.
Section II introduces the existing decomposition methods for
the LSOPs, the overlapping problems, and the MVS of the
graph. Section III describes the details of the proposed GDD
method. Section IV presents the experiments, including the
analysis of the grouping accuracy and the fault-tolerance
ability of GDD and the optimization efficiency of CCEAs
combined with GDD. Finally, Section V gives a conclusion.

2376 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 53, NO. 4, APRIL 2023

II. BACKGROUNDS

A. Overlapping Problems

In the overlapping problems, there are some subcomponents
with overlap, but these subcomponents can be separated after
dealing with the overlap. The overlapping problem can be
defined as follows.

Definition 1: If arg min f (X) = (arg minf (X1, . . .),
. . . , arg minf (. . . , Xk)) and some of Xi share variables, f (X)
is an overlapping function and is separable with k nonsepara-
ble groups, where X = (x1, . . . , xD)T is a decision vector with
D dimensions, and X1 to Xk are subvectors of X. If Xi and
Xj overlap, they are denoted as overlapping groups, and the
shared variables of them are denoted as overlapping variables.

For example, the ideal groups of the overlapping prob-
lems f 13 and f 14 in IEEE Congress on Evolutionary
Computation (IEEE CEC) 2013 are pairwise joint with
the chain type, as shown in [45]. Therefore, the overlap-
ping variables are the connections between the overlapping
groups. In the existing grouping methods, such as DG [34],
extended DG (XDG) [35], global DG (GDG) [36], DG2 [37],
and recursive DG (RDG) [38], all the variables in the f 13
or f 14 will be regarded as interactive and will be merged in
a larger group. In fact, the larger group can be efficiently
separated by further dealing with the overlapping variables,
although it is difficult to obtain the overlapping variables.
Therefore, the GDD method is proposed in this article to
identify the overlapping variables.

B. Decomposition Methods

The decomposition methods divide the variables of LSOPs
into several groups. Let f (X) denote the objective function of
the LSOP. The separability of f (X) can be defined as follows.

Definition 2 [33]: If arg min f (X) =
(arg minf (X1, . . .), . . . , arg minf (. . . , Xk)), f (X) is sepa-
rable with k nonseparable groups, where X = (x1, . . . , xD)T

is a decision vector with D dimensions, and X1 to Xk are
pairwise disjoint subvectors of X.

The interaction exists only in variables of the same group.
However, it is difficult to identify IaV and group the variables
accurately, although various decomposition methods have been
proposed, such as random grouping [33], [46] and DG [34],
[35], [36], [37], [38], [39], [40]. Random grouping updates
groups in every iteration of CCEAs. It ignores IaV and
attempts different random grouping strategies during the evolu-
tionary process. Therefore, random grouping may result in the
low grouping accuracy and influences the solving efficiency of
CCEAs [46].

Different from random grouping, DG identifies IaV by
calculating the difference of corresponding objective func-
tion values, but it only considers a part of direct variable
interactions [34]. For example, if x1 is interactive with x2,
x2 will be directly assigned to the same group of x1, and
other interactive variables of x2 will not be detected. There are
two shortcomings of DG: the incompleteness of IaV and the
ignorance of computational errors (e.g., the roundoff errors of
the floating-point operations). Therefore, the XDG is proposed
to identify indirect variable interactions and to get more IaV

information than DG [35]. Afterward, the GDG takes the com-
putational errors into consideration, and takes the LSOP as
a graph to decompose the problem and obtain the complete
IaV [36]. Furthermore, DG2 (an improved variant of GDG)
groups variables in a more accurate way by setting a reliable
threshold value, and has a higher calculation efficiency than
GDG [37]. However, these grouping methods cannot solve the
overlapping problems where vectors from X1 to Xk are not
pairwise disjoint in Definition 2. Although GDG and DG2 get
the complete IaV information, they will merge two groups
that have overlapping variables. Therefore, the number of
variables in the group may be still too large due to the mer-
gence, resulting in the difficulty of the optimization of the
LSOPs.

As the above variants of DG methods need a number of
fitness evaluations to obtain the IaV information, the RDG is
proposed to detect IaV by the binary search with less compu-
tation cost [38]. Moreover, RDG2 considers the computational
errors and improves the grouping accuracy of RDG [39].
Based on RDG2, the RDG3 is designed to decompose the
overlapping functions [40]. During the decomposition, if the
size of a group is large, RDG3 will forcedly divide the vari-
ables of this group into different smaller groups. In this way,
RDG3 can decompose the overlapping functions. However,
the forced decomposition may also divide the interactive
variables into different groups, which will break the indepen-
dence among groups and affect the optimization efficiency of
CCEAs. Besides, as RDG, RDG2, and RDG3 do not identify
the interactions between each pair of variables, they cannot
obtain the complete IaV.

C. MVS of the Graph

For a connected graph G, the removal of its MVS will dis-
connect G, and the size of its MVS is equal to the vertex
connectivity of G which is denoted as κ(G) [43], [47]. Let V
and E be the vertex set and the edge set of the graph G(V, E),
respectively. If there exist k(1 ≤ k ≤ |V|) vertices whose
removal makes G unconnected, and the removal of arbitrary
(k–1) vertices does not disconnect G, then κ(G) is equal to
k and the set of the k vertices is recorded as the MVS of G.
Fig. S-1 of the supplementary material shows an example of
the MVS of a graph.

As the vertices and the edges of the graph can be corre-
sponding to the vertices, the edges, and the weights of edges of
a network, it has been proved that the graph can be transformed
to a network, and the calculation of the vertex connectivity can
be transformed into the max-flow problem in the network [44].
Before calculating the maximum flow, the graph G needs to
be transformed into the network N. To be more specific, as
described in [44], each vertex v ∈ V in the graph G is corre-
sponding to two vertices v′ and v′′ and an edge (v′, v′′) with
the weight of 1 in the network N. Each edge (u, v) ∈ E in the
graph G is corresponded with two edges (u′′, v′) and (v′′, u′)
with the weight of infinity (∞) in the network N. The corre-
sponding network N of the graph G in Fig. S-1(a) is shown in
Fig. S-2 of the supplementary material. In this way, the vertex
connectivity κ(G) is equal to the maximum flow of N. This

ZHANG et al.: GDD FOR OVERLAPPING LSOPs 2377

Algorithm 1: (Group, sep) = GDD(�, D)
Begin

1 Group = φ;
2 sep = φ;
3 CNC = ConnComp(�);
4 If CNC has separable variables Then
5 sep = {all separable variables in CNC};
6 Remove sep from CNC;
7 If CNC �= φ Then // divide overlapping groups
8 Group = ROGD(�, CNC, D);
9 Group = Adjust(Group, D);

End

article uses the Dinic algorithm [48] to solve the max-flow
problem. Then, the MVS can be obtained by traversing the
residual network [49].

III. GRAPH-BASED DEEP DECOMPOSITION METHOD

The decomposition method that groups variables accord-
ing to IaV is an effective approach for CCEAs to solve the
LSOPs [34], [35], [36], [37], [38], [39], [40]. IaV can be rep-
resented by a (0, 1)-matrix � [36], [37]. If �(i, j) = 1, where
i and j are two variables, it represents that i is interactive
with j; otherwise, it represents that i and j are independent.
Based on the IaV matrix �, a graph can be obtained. Each
variable of the problem is corresponding to a vertex in the
graph. If two variables are interactive, there will be an edge
connecting the corresponding two vertices; otherwise, there
will be no connection between them. The nonseparable (i.e.,
interactive) groups are equivalent to the connected components
of the graph [36], [37]. Separable variables are equivalent to
the groups with a vertex.

In this section, the GDD method is proposed, inspired by
the idea of the graph cut. The proposed method mines the
interactive information among variables obtained by the DG
methods to deeply divide variables more accurately, especially
for overlapping problems.

Algorithm 1 shows the pseudocode of the GDD method.
The input � is obtained by the existing DG methods, and D
is the dimension of the problem. The output Group is the set
of the final nonseparable groups, and sep is the set of sepa-
rable variables. The function ConnComp is used to obtain the
set of connected components CNC in line 3. After removing
sep from CNC, if CNC is not empty, the ROGD algorithm
is carried out for dividing the overlapping groups (nonsepa-
rable groups with overlapping variables) efficiently. After the
ROGD, an adjustment strategy (Adjust) is carried out to merge
too small groups that have overlapping variables.

A. Recursive Overlapping Group Decomposition

The ROGD algorithm aims to divide overlapping groups
(connected components) into smaller groups. It can improve
the decomposition efficiency of the overlapping LSOPs and
help CCEAs to solve problems more effectively.

If each connected component (a nonseparable group) is
regarded as a graph, it can be divided into several compo-
nents after the removal of MVS (described in Section II-C). In

overlapping groups, MVS can be regarded as the overlapping
variables. Let S denote the vertex set of the MVS of a nonsep-
arable group G, and let U denote the graph after removing S
from G. If U can be separated into two connected components
(U′ and U′′), as shown in Fig. S-3 of the supplementary mate-
rial, G can be divided into two groups {U′ ∪ S} and {U′ ∪ S}
with overlapping vertices (i.e., s1 and s2).

However, after removing the MVS, if the size of the new
connected components (i.e., U′ and U′′) is still too large, these
components need to be further divided. Therefore, the ROGD
algorithm is designed in a recursive way to divide an overlap-
ping group into smaller groups with appropriate sizes. In the
ROGD, the termination of the algorithm and the completeness
of grouping (the complete groups include all variables of the
problem) are described as follows.

1) Termination of ROGD: For a group G, if the number
of its vertices |V| is too small or the size of its MVS (|S|)
is too large, G will not be separated any more. Therefore,
in the proposed ROGD algorithm, if |V| ≤ D/α or |S| ≥
|V|/β, where D is the dimension of the problem, the recursive
decomposition of the group G will terminate.

2) Completeness of Grouping: To describe the ROGD
algorithm clearly, the decomposition process is regarded as
the tree structure. Each tree node represents a group or a sep-
arable variable, and leaf nodes represent groups that are not
divided any more. It should be noted that a tree node is also
corresponding to a graph.

For the completeness of grouping, not only the intergroup
independence but also the intragroup interaction should be sat-
isfied. That is, for the variable v in the group G (v /∈ the
overlapping components), all its interactive variables should
be added into G. Therefore, a complete group should include
the MVS of its ancestor nodes (denoted as MVS_anc), because
the MVS_anc is interactive with some variables of this group.
In this way, the groups are also independent after ignoring the
overlapping variables. For example, the decomposition of the
graph G in Fig. S-3 is shown in Fig. S-4 of the supplemen-
tary material. The nodes with shadow represent the leaf nodes.
U′ and U′ are two independent leaf nodes, and the complete
groups are {U′ ∪ S} and {U′′ ∪ S}. Fig. 1 shows an example
of the decomposition process of the ROGD algorithm. Si rep-
resents the MVS of the graph Gi. As shown in the figure,
{7, 8} and {6} are chosen as the MVS of G1 and G3, respec-
tively. The decomposition of f 14 in IEEE CEC 2013 [45] is
also given in Section S-II of the supplementary material as an
example.

There are two main parts of the recursive decomposition.
The first part is to use the breadth-first search (BFS) [50]
to implement the recursive decomposition. A group will be
divided recursively, until it satisfies the termination condition
of ROGD. For example, in Fig. 1(b), G1 is divided into G2,
G3, and G4. G2 and G4 do not need to be divided any more,
but G3 is further divided into G5 and G6 by removing S3. G2,
G4, G5, and G6 are the leaf nodes. The second part is to add
the MVS to groups for the completeness of grouping. Herein,
three points should be taken into consideration, and the three
corresponding rules are designed as follows.

1) First point is which MVS to be added.

2378 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 53, NO. 4, APRIL 2023

Fig. 1. Example of the decomposition of an overlapping group. (a) Graph G1.
(b) Tree structure of the decomposition of G1 (without adding MVS during
the decomposition). (c) Illustration of the final groups of (b) (adding MVS
after the whole decomposition). (d) Tree structure of the decomposition of
G1 (adding MVS during the decomposition).

Rule 1: A node (group) G only adds the MVS_anc that
interacts with its vertices V.

Explanation: This rule is to avoid blindly adding all
MVS_anc into G. There may be two cases. The first case
is that the MVS of its father node is certainly be added, since
this MVS is the minimum set of vertices to separate its father
node and is certainly interactive with V. The second case is
that the MVS of its grandfather nodes or more old ancestor
nodes will be added if and only if the MVS interacts with V.
For example, in Fig. 1(c), G5 and G6 add the MVS (i.e., S3) of
their father node (i.e., G3) to form the final groups. However,
for the node G, not all the MVS_anc is interactive with V,
and only the interactive MVS_anc with V is added into G.
For example, for G5 in Fig. 1(b), only S3 ({6}, the MVS of its
father node G3) is interactive with the vertices (2 and 5) in G5.
Therefore, only S3 is added into G5, but S1 (the MVS of its
grandfather node G1) is not added (as S1 has no interaction
with G5).

2) Second point is when to add the MVS of the group G
into nodes to construct complete groups, such as after
dividing G at the first time or after finding all the leaf
nodes of G.

Algorithm 2: Tnode = InitTnode(g)
Begin

1 Tnode.v = Variable set of g;
2 Tnode.ovp = φ;
3 Tnode.parent = −1; // if Tnode.parent = −1, it is the root node

End

Rule 2: The MVS of the group G is added after the whole
decomposition to construct the final groups.

Explanation: If the MVS is added during the decomposition
of G, it will be involved in the following decomposition of G,
which may increase the repetition of the MVS. However, if the
MVS is added after the whole decomposition, it will be only
involved in the leaf nodes of G, which helps to accelerate the
decomposition process. The depth-first search (DFS) [51] is
used to find the MVS_anc of a node. For a leaf node, all MVSs
of its ancestor nodes are traversed and judged whether to be
added or not. Fig. 1(b) and (c) shows the example of adding
the MVS after finding all the leaf nodes. After removing the
MVS of G1 (S1), G1 can be decomposed into G2, G3, and G4,
and G2 and G4 are leaf nodes. After removing the MVS of
G3 (S3), G3 can be divided into two leaf nodes G5 and G6.
For the leaf nodes G5, the MVS_anc is {S1 ∪S3}, and only the
interactive MVS_anc (S3) is added into G5 to form the final
group G9 in Fig. 1(c). Similarly, S1 is added into G2 and G4
to form G7 and G8, respectively, and S1 and S3 are added into
G6 to form G10. The final groups in Fig. 1(c) include G7, G8,
G9, and G10.

Fig. 1(d) shows the example of adding the MVS after
dividing the group for the first time. Different with the decom-
position in Fig. 1(b) and (c), after removing S1 and dividing
G1, S1 is added into the decomposed parts to form the nodes
G2, G3, and G4. Similarly, after removing S3 and dividing G3,
S3 is added into the decomposed parts to form the nodes G5,
G6, and G7. The final groups in Fig. 1(d) include G2, G4, G5,
G6, and G7. G7 is redundant in the decomposition in Fig. 1(d),
since it includes the vertices 6 and 8 which both have appeared
in other final groups (G2, G4, G5, and G6).

3) Third point is how to deal with the isolated vertices after
removing the MVS of the group G, such as the vertex
D in Fig. S-1 of the supplementary material.

Rule 3: All the isolated vertices are taken as an isolated
group after adding the MVS.

Explanation: For example, in Fig. S-1 of the supplemen-
tary material, vertex D is merged with the MVS of the group
G({C}) to form an isolated group {C ∪ D}.

To construct the tree structure of ROGD, a tree node (Tnode)
which represents a group g should include the variable set of
g (v), the MVS (overlapping variables) of g (ovp), its parent
node (parent). The initialization of a tree node based on group
g is shown in Algorithm 2.

The DFS_MVSanc algorithm is to find the interactive
MVS_anc with the current traversing node, as shown in
Algorithm 3. For the input parameters, TNode is the set of tree
nodes. Tnode is the current traversing node. � is gotten from
the DG methods. For the output parameters, MVS includes the
MVS_anc that is interactive with the variables of Tnode. All

ZHANG et al.: GDD FOR OVERLAPPING LSOPs 2379

Algorithm 3: MVS = DFS_MVSanc(TNode, Tnode, �)
Begin

1 MVS = φ;
2 p = Tnode.parent; // the current traversing ancestor node
3 While p �= −1 Do // TNodep is not the root node
4 If there are variables in Tnode.v is interactive with

variables in TNodep.ovp Then // Rule 1
5 MVS = MVS∪TNodep.ovp;
6 p = TNodep.parent; // obtain the next ancestor node of

Tnode
End

Algorithm 4: Group = ROGD(�, CNC, D)
Begin

1 Group = φ;
2 TNode = φ; // set of tree nodes
3 queNode = φ; //queue of indexes of tree nodes traversed by

BFS
4 r = 1;
5 For all groups g∈CNC Do
6 Tnode = InitTnode(g);
7 TNode = TNode∪{Tnode};
8 queNode = queNode∪{r}; r = r + 1;
9 h = 1; // h is the index of the current traversing queNode

10 While h<r Do // traverse the tree nodes by BFS
11 t = queNodeh; h = h + 1;
12 Tnode = TNodet; // the current traversing node
13 Tnode.ovp = getMVS(Tnode.v);
14 If |Tnode.v| ≤ D/α or |Tnode.ovp| < 1 or

|Tnode.ovp| ≥ |Tnode.v|/β Then // Tnode is a leaf node
(termination of ROGD, Section III-A)

15 If Tnode.parent �= −1 Then // not the root node
16 MVS = DFS_MVSanc(TNode, Tnode, �);
17 Tnode.v = MVS∪Tnode.v; //Rule 2
18 Group = Group∪{Tnode.v};

// a leaf node is a final group
19 Else // Tnode needs to be divided again
20 Remove Tnode.ovp from Tnode.v;
21 Children=ConnComp(Tnode.v);
22 If Children has separable variables seps Then

// seps is saved as a set in Children, Rule 3
23 node = InitTnode(Tnode.sep); node.parent = t;
24 MVS = DFS_MVSanc(TNode, node, �);
25 Group = Group∪{MVS∪node.v};
26 Remove seps from Children;
27 For all connected components cnc∈Children Do
28 node = InitTnode(cnc); node.parent = t;
29 TNode = TNode∪{node};
30 queNode = queNode∪{r}; r = r + 1;

End

ancestor nodes of Tnode are traversed by DFS in lines 3 to 6.
If there are variables of the Tnode.v that are interactive with
variables in TNodep.ovp, TNodep.ovp are added into MVS in
lines 4 and 5.

3) Complete ROGD: The details of ROGD are shown in
Algorithm 4, where CNC is the set of connected components
(the initial groups) calculated from the IaV matrix �, and D
is the dimension of the problem, and Group is the set of final
groups. The function getMVS in line 13 obtains the MVS
by the Dinic algorithm [49] and the traversal of the residual
network (as shown in Section II-C).

TNode records the set of tree nodes, and queNode records
the queue of indices of tree nodes (TNode) traversed by
BFS. At the beginning, the groups (tree nodes) in CNC are
added to TNode, and the corresponding indices are added to
queNode, in lines 5–8. For example, in Fig. 1(b), CNC = {G1}
and, therefore, TNode1 is G1 and queNode1 is 1. Then, BFS
is used to traverse all tree nodes in lines 10–30.

In BFS, getMVS is used to find the MVS (overlapping
variables) of the current traversing node Tnode (the node in
TNode with the index queNodeh) for judging whether the node
can be divided or not. If the condition in line 14 (the ter-
mination of ROGD, including the minimum size of groups
D/α and the maximum size of MVS |Tnode.v|/β) is satisfied,
Tnode is a leaf node and does not need to be divided again.
After adding the MVS_anc (lines 15–17), Tnode is regarded
as a final group and is added into Group (line 18). If the con-
dition in line 14 is not satisfied, it represents that Tnode needs
to be divided again (lines 20–30). After removing the overlap-
ping variables (Tnode.ovp), Tnode is divided and Children are
the decomposed groups (lines 20 and 21). If there are separa-
ble variables (seps) in Children, seps will be taken as a final
group after adding the interactive MVS_anc and be removed
from Children (lines 23–26). Then, all the children nodes in
Children are added into TNode, and the indices are added into
queNode (lines 27–30). Afterward, the next tree node will be
traversed.

For example, in Fig. 1(b), group G1 in CNC is added into
TNode, and queNode = {1} in lines 5–8. In the first loop
(lines 10–30), queNodeh = 1 and the node G1 is traversed.
The tree nodes G2, G3, and G4 (children nodes of G1) are
added into TNode, and queNode = {1, 2, 3, 4}. In the sec-
ond loop, queNodeh = 2 and G2 is traversed. Because G2 is
a leaf node, no nodes are added into TNode. In the third loop,
queNodeh = 3 and G3 is traversed. G5 and G6 (children nodes
of G3) are added into TNode, and queNode = {1, 2, 3, 4, 5, 6}.
In the following loops, G4, G5, and G6 are traversed, respec-
tively, and no nodes are added into TNode, since G4, G5, and
G6 are all the leaf nodes and do not have children nodes.

B. Adjustment of Grouping

After the recursive decomposition in ROGD, if the number
of groups is still small, it shows that the connectivity of the
graph is strong. Considering the independence among groups
in CCEAs, there is no need to divide the strongly connected
graph. However, if the number of groups is big, such as f 12
in IEEE CEC 2013 [43] which has 496 groups after being
decomposed by ROGD, it will consume lots of fitness evalua-
tions in every iteration and shorten the evolutionary process of
CCEAs (assumed that the terminating condition is the maxi-
mum number of fitness evaluations). To reduce the number of
groups, a grouping adjustment method is proposed to merge
small groups with overlapping components.

For a problem with D dimensions (a graph with D vertices),
if the number of its final groups is more than D/α, small groups
will be merged via their overlapping variables. Algorithm 5
shows the details of the grouping adjustment method, where
Group is the set of final groups. First, all overlapping variables

2380 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 53, NO. 4, APRIL 2023

Algorithm 5: Group = Adjust(Group, D)

Begin

1 While |Group|≥D/α Do
2 MVS.V = φ; // set of overlapping variables
3 MVS.V_num = φ; // MVS.V_numi represents the number

of variables that appear in same groups with MVS.Vi
4 For all variables v∈Group Do
5 if v appears more than twice in Group Then
6 MVS.V = MVS.V∪{v};
7 For i = 1: |MVS.V| Do
8 MVS.V_numi = 0;
9 For all groups g∈Group Do

10 if MVS.Vi appears in g Then
11 MVS.V_numi = MVS.V_numi + |g| – 1; // |g|

– 1, the number of all variables in g, except
for MVS.Vi

12 Sort MVS by MVS.V_num in ascending order;
13 Merge all groups in Group that include MVS.V1;

End

(MVS.V) are stored in lines 4–6. Then, the number of variables
that appear in the same groups with MVS.Vi (MVS.V_numi) is
calculated in lines 7–11, where MVS.Vi is the ith variable in
MVS.V. If MVS.V_numi is relatively small, there is no need to
separate the groups including the overlapping variable MVS.Vi.
Therefore, the groups including the overlapping variable with
the smallest MVS.V_num are merged (lines 12 and 13). This
process is repeated until the number of groups is not more
than D/α.

For example, if the grouping result in Fig. 1(d) needs to be
adjusted, MVS.V = {7, 8, 6}. Vertex 7 appears in G2, G4, and
G6, and MVS.V_num1 is equal to 8 (|G2| − 1 + |G4| − 1 +
|G6|−1). Similarly, MVS.V_num2 = 6, and MVS.V_num3 = 7
(MVS.V_num = {8, 6, 7}). Therefore, the number of vari-
ables that occur in same groups with the vertex 8 is least
(MVS.V_num2 = 6), and the groups (G2, G4, and G7) that
include vertex 8 will be merged.

C. Complexity Analysis

From the observation of Algorithm 1, it can be seen that
the GDD method does not consume fitness evaluations. For
the analysis of the time complexity, all components of GDD
are needed to be analyzed, including ConnComp, ROGD
(Algorithm 4), and Adjust (Algorithm 5) which are all imple-
mented based on the IaV matrix �. ConnComp is also used
in GDG [36] and DG2 [37] to construct the initial graph, and
it can be implemented by the Warshall algorithm [52] whose
complexity is O(D3).

It is assumed that there are N tree nodes and M final groups
(leaf nodes) during the decomposition (M < N). In the worst
case, such as the chain-shaped grouping result (f 12 in IEEE CEC
2013 [45], shown in Fig. S-5 of the supplementary material), the
middle nodes only have an overlapping variable and only one
variable will be separated every time, and the number of vari-
ables of N−M middle nodes are D, D−2, D − 4, . . . , D/α + 2
(which is the lower bound of the number of nodes of a group
in line 14 in Algorithm 4), respectively. Therefore, in f 12, M
is equal to D/2 × (1 − 1/α)+ 1(D − 2 × (M − 1) = D/α), and
N is equal to (M − 1)× 2 + 1 = (1 − 1/α)× D + 1. In the best

case, all groups (CNC) obtained in line 3 in Algorithm 1 are
not needed to be divided again, such as f4 − f11 in IEEE CEC
2013 [45], and N = M = |CNC|. Without loss of generality, it
is assumed that a function F, all the middle nodes have only
an overlapping variable, and they are divided in half until the
number of variables of the nodes reaches the lower bound D/α
(termination of ROGD). The decomposition of F is shown in
Fig. S-6 of the supplementary material. Therefore, in F, M is
equal to α × (D + 1)/(D + α)((D − (M − 1))/M = D/α), and
N is equal to M × 2 − 1 = 2α × (D + 1)/(D + α) − 1.

ROGD (Algorithm 4) includes three main components:
getMVS (line 13), DFS_MVSanc (line 16), and ConnComp
(line 21). getMVS is implemented by the Dinic algorithm
with the complexity of O(D′3) [49] in every loop where D′ is
the number of variables of the current traversing node Tnode
(line 12). Therefore, getMVS is executed N times in ROGD,
and the total complexity of this part is equal to O(|G1|3 +
|G2|3 +· · ·+ |GN |3) where G1 to GN are the tree nodes of the
decomposition. We assume that the nodes from GN−M+1 to
GN are the M leaf nodes (the final decomposed groups). For
DFS_MVSanc (Algorithm 3), the operations between lines 4
and 5 in Algorithm 3 will be executed (|Tnode.v|×|V|) times,
where V is the MVS_anc of Tnode. DFS_MVSanc is only exe-
cuted for M leaf nodes in ROGD, and the total complexity of
this part is O(|GN−M+1| × |VN−M+1| + · · · + |GN | × |VN |),
where Vi is the MVS_anc of Gi, and |Gi| and |Vi| are both
smaller than D. ConnComp is only executed for each middle
nodes (G1 to GN−M), and the complexity of this part in ROGD
is O(|G1|3 + |G2|3 + · · · + |GN−M|3). It can be seen that the
complexity of getMVS in ROGD is higher than DFS_MVSanc
and ConnComp. Therefore, the complexity of ROGD mainly
depends on getMVS (O(|G1|3 +|G2|3 +· · ·+|GN |3)), denoted
as O(ROGD).

In the worst case (f 12 in IEEE CEC 2013), the number of
variables of each tree node is shown in Fig. S-5 in the supple-
mentary material, and O(ROGD) is equal to O(D3 + (D − 2)3

+ · · ·+(D/α)3+M) < O(D4). In the best case (f 4–f 11 in IEEE
CEC 2013), O(ROGD) is equal to O(|G1|3 + |G2|3 + · · · +
|G|CNC||3) < |CNC| × O(D3) ≈ O(D3) if |CNC| << D. For
function F, the number of variables of each tree node is shown
in Fig. S-6 in the supplementary material, and O(ROGD) is
equal to O(D3 + ((D − 1)/2)3 × 2 + ((D − 3)/4)3 × 4 + · · · +
(D/α)3 × M) < O(D3 + D3 × 2 + D3 × 4 + · · · + D3 × M) ≈
O(D3). Therefore, the complexity of ROGD is O(D4) in the
worst case and O(D3) in other cases.

If M is bigger than D/α, the Adjust algorithm (Algorithm 5)
is used to adjust the decomposed results. In the worst case, the
number of groups decreases from M to D/α by only one every
time. The operations between lines 2 and 13 in Algorithm 5
will be executed (M − D/α) times and M − D/α < D. The
complexity of operations in lines 4–6, lines 7–11, line 12, and
line 13 are O(D2), O(V_num × D), O(V_num × log(V_num)),
and O(D), where V_num is the number of overlapping vari-
ables in the current loop and smaller than D. Therefore, the
complexity of Adjust is O(D2 × (M − D/α)) < O(D3).

Overall, ROGD is the most time-consuming part of GDD,
and the time complexity of GDD is O(D4) in the worst case
and O(D3) in other cases.

ZHANG et al.: GDD FOR OVERLAPPING LSOPs 2381

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In the comparative experiment, five benchmark functions
from IEEE CEC 2013 [45] and 20 overlapping functions
which are randomly generated are tested to verify the
performance of GDD on decomposing the LSOPs. As GDD
is based on the IaV matrix � to deeply decompose the
problem, it will be performed on the complete and high
accurate � obtained by GDG [36] and DG2 [37], result-
ing in the corresponding algorithms denoted as GDG_GDD
and DG2_GDD, respectively. It should be noted that RDG2
and RDG3 are not combined with GDD, because they can-
not get the complete IaV. Let �I and �A denote the ideal
� and the � obtained by the algorithm A, respectively. �I

can be obtained by the method used in [37], with the source
code available from https://bitbucket.org/mno/differential-
grouping2/src/master/matlab/adjmatrix2013.m.

In the following experiments, the test suite is first intro-
duced, including 20 new overlapping functions. Then, the
grouping accuracy of the decomposition methods before and
after employing GDD are analyzed. Afterward, the grouping
efficiency and the fault-tolerance ability of GDD are verified.
Finally, the GDD-enhanced decomposition methods are incor-
porated into the third version of contribution-based cooperative
co-evolutionary algorithm (CBCC3) [53] to compare with
some state-of-the-art large-scale optimization algorithms. The
CCBC3 framework will first consider and optimize the sub-
problem which contributes more to the current improvement
of the whole problem optimization.

A. Test Suite

The test suite includes five functions in IEEE CEC
2013 [45], such as f 7, f 11, f 12, f 13, and f 14. f 12, f 13, and f 14
are overlapping functions with conforming components and
conflicting components, respectively, and their ideal group-
ing cases are descripted in Section S-III of the supplementary
material. f 7 and f 11 are partially additively separable func-
tions. As the experimental results on f 7 and f 11 can validate
the fault-tolerance ability of GDD (as shown in Section IV-D),
they are also chosen as the test functions.

Moreover, since there are only three overlapping functions
in IEEE CEC 2013, 20 new overlapping functions are designed
based on f 13 and f 14, denoted as o1 to o20. For simplicity, the
only difference between these generated overlapping functions
and f 13 and f 14 is the vector P that represents the ideal group-
ing case. Vector P and the ideal groups of o2i−1 are the same as
o2i (i = 1, 2, . . . , 10). Except for P, other parameters of o2i−1
are the same as f 13, and other parameters of o2i are the same as
f 14. In f 13 and f 14, the grouping type is chain shaped (groups
are pairwise joint) with a fixed overlap size [45]. Therefore, in
order to increase the overlapping types of the tested problems,
new functions are designed based on random overlapping vari-
ables and overlap sizes to enhance the diversity of the overlap
type. For example, Fig. S-7 of the supplementary mate-
rial shows another complicated overlap type rather than the
chain-shaped. The generation of different types of overlapping
functions is described in Section S-IV of the supplementary
material, including the generation of vector P, differences

between o1 to o20 and f 13 and f 14, and their ideal grouping
results. Datasets are available at https://github.com/zhangxin-
Jancy/Benchmarks_for_overlappingLSOP.

B. Analysis of Grouping Accuracy

GDG and DG2 use three metrics ρ1, ρ2, and ρ3 to mea-
sure the accuracy of identifying three types of relationships
in IaV [36], [37]. However, these metrics are only related to
the matrix � and cannot evaluate the real grouping results
of algorithms. Therefore, two new metrics are proposed in
this article, including the overlapping rate (Rol) and the redun-
dancy rate (Rrd). Let GroupI = {GI

1, GI
2, . . . , GI

n} denote the
ideal grouping result and GroupA = {GA

1 , GA
2 , . . . , GA

m} denote
the grouping result obtained by a decomposition method
A, where n and m are the number of groups in GroupI

and GroupA, respectively. The ideal grouping results GroupI

can be obtained based on the parameters of the benchmark
functions [45], as mentioned in Section II-A and Section S-III
of the supplementary material. It should be noted that each
separable variable is regarded as a single group to evalu-
ate the identification of separable variables accurately. Before
the calculation of Rol and Rrd, the maximum matching of
groups in GroupI and GroupA is obtained, denoted as GroupI

∩maxGroupA. The group GI
i corresponds to the group GA

j

which has the most common variables with GI
i. If groups

GI
i1 and GI

i2 both correspond to the group GA
j, GA

j will
choose the group with more common variables, and different
GI

i corresponds to different GA
j. Fig. S-8 of the supplementary

material shows an example of GroupI ∩max GroupA, where
GI

1 corresponds to GA
1, and GI

2 corresponds to GA
2 or GA

3
and, therefore, GroupI ∩max GroupA = {{1, 2, 4}, {4, 5}} or
{{1, 2, 4}, {4, 6}}.

The overlapping rate Rol is the ratio of the number of
variables grouped in the right groups to the total number of
variables in GroupI (including the repetitive variables). The
redundancy rate Rrd is the ratio of the number of redundant
variables to the total number of variables in GroupA, where
redundant variables are included in GroupA but not in GroupI

∩max GroupA. Rol and Rrd are calculated as follows:

Rol =
∑n

i=1 |GI
i ∩max GA

ji
|

∑n
i=1 |GI

i |
× 100% (1)

Rrd =
∑m

j=1 |GA
j | − ∑n

i=1 |GI
i ∩max GA

ji
|

∑m
j=1 |GA

j | × 100% (2)

where GA
ji

is corresponding to GI
i in the maximum matching.

If Rol = 100% and Rrd = 0%, it represents that GroupA is
same as GroupI . Besides, GroupA with a bigger value of Rol

and a smaller value of Rrd is closer to GroupI . Therefore,
the larger Rol and the smaller Rrd are better. If the GroupI

of the graph in Fig. 1(a) is {9, 10, 11, 7, 8}, {1, 2, 5, 6}, and
{3, 4, 6, 7}, Rol and Rrd of the grouping result in Fig. 1(c) are
92.3% and 25%, respectively, and the Rol and Rrd of the group-
ing result in Fig. 1(d) are 92.3% and 29.4%, respectively. It
also indicates that adding MVS after finding the leaf nodes
(Rule 2) is helpful to decrease Rrd of decomposition methods.

2382 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 53, NO. 4, APRIL 2023

TABLE I
Rol AND Rrd OF DIFFERENT DECOMPOSITION METHODS (%)

With the use of Rol and Rrd, the hyperparameter tuning is
investigated in Section S-V of the supplementary material.

Table I shows Rol and Rrd of RDG3, GDG, GDG_GDD,
DG2, and DG2_GDD. The last line represents the average
results (Avg.). The bold data represent the best results among
all algorithms. Moreover, the results with underlining are the
better results between two variants of compared algorithms
(e.g., GDG and GDG_GDD).

For the metric of Rol, if Rol of algorithm A is equal to 100%,
it indicates that GroupA ⊃ GroupI . As shown in Table I,
DG2_GDD obtains the highest the average Rol, and the Rol

of it reaches 100% on 18 functions (24 functions in total).
Following DG2_GDD, GDG_GDD can also obtain higher Rol

than other algorithms. Because GDG and DG2 cannot divide
the overlapping functions (f 13, f 14, and o1 to o20) and obtain
accurate IaV (f 7 and f 11), there will be fewer groups to match
GroupI , and the average Rol of them is much lower than
GDG_GDD and DG2_GDD, respectively. RDG3 will forcedly
divide the variables of a larger group into different smaller
groups, and break the intergroup independence and ignore the
completeness of grouping (as mentioned in Section III-A).
Therefore, although the average Rol of RDG3 is higher than
GDG and DG2, it is lower than GDG_GDD and DG2_GDD.

For the metric of Rrd, if the Rrd of an algorithm is equal
to 0%, it indicates GroupA has no more variables than the
common variables with GroupI (GroupI ∩max GroupA). As
shown in Table I, DG2_GDD followed by GDG_GDD can
obtain the lowest average Rrd, and the Rrd of it can reach
0% on 16 functions. In addition, because the groups of GDG
and DG2 are larger without decomposition, and there are more
redundant variables after matching with the groups in GroupI ,

the average Rrd of GDG and DG2 is worse (i.e., higher) than
RDG3, GDG_GDD, and DG2_GDD.

Based on the comprehensive analysis of the results of Rol

and Rrd, it can be concluded that GDG_GDD and DG2_GDD
can obtain higher accurate groups not only in overlapping
functions but also in partially separable functions (f 7 and f 11).
As the accuracy IaV obtained by DG2 is higher than that
obtained by GDG (i.e., �DG2 is higher than �GDG) [37], DG2
and DG2_GDD can get more accurate groups than GDG and
GDG_GDD, respectively. The grouping accuracy of RDG3 is
higher than GDG and DG2, but lower than the methods
combined with GDD.

C. Analysis of the Grouping Efficiency of GDD

From the observation of the grouping results, it can be seen
that GDG and DG2 cannot divide the variables of overlapping
components. After being combined with GDD, the average Rol

of GDG and DG2 has an increase, and the Rrd of them has
a decrease. It indicates that GDD can help GDG and DG2 to
get more accurate group on these functions, including over-
lapping functions f 13 and f 14, o1–o20, and partially separable
functions f 7 and f 11. The reason is that GDD can find the
overlapping variables (i.e., the MVS) among connected com-
ponents (i.e., the overlapping groups) through the IaV matrix
�. Therefore, GDD can divide the overlapping functions accu-
rately if �A is close to the ideal �I , such as �DG2 on f 13
and f 14 [37]. In addition, if the independent variables are
wrongly judged as interactive variables (i.e., �I(i, j) = 0 but
�A(i, j) = 1), GDD can also help decomposition methods to
overcome the wrong interactive information to get more accu-
rate groups. That is because the groups of GroupI including
the variables i and j will be merged into a group GA of GroupA,
but GA can be decomposed after GDD removing the MVS
({the variable i} or {the variable j}) of GA, as shown in Fig.
S-9 of the supplementary material.

To validate the effectiveness of Rule 2, GDG_GDD and
DG2_GDD without this rule are tested, as shown in Table II.
GDG_GDD and DG2_GDD without Rule 2 are denoted as
GDG_GDD2 and DG2_GDD2, respectively. The last line of
the table is the average value of Rol or Rrd. The results in
bold are the best results among all algorithms, and the results
with underlining are the better results between two variants of
compared algorithms (e.g., GDG_GDD and GDG_GDD2).

As shown in Table II, Rrd of DG2_GDD2 is higher than
DG2_GDD. The reason is that as described in Section III-A,
if MVS is added after dividing a group for the first time (as in
DG2_GDD2), MVS will always be involved in the following
decomposition, and there will be more redundant variables
in groups. On the other hand, the problem will be divided
into more groups, and the number of variables in each group
will decrease corresponding to the matched GroupI . Therefore,
Rol of DG2_GDD2 is lower than DG2_GDD. The differences
between GDG_GDD2 and GDG_GDD are similar.

To verify the effect of Rule 2 on the solving efficiency
of the LSOPs, GDG_GDD2, GDG_GDD, DG2_GDD2, and
DG2_GDD are incorporated into CBCC3 which is sensitive
to the grouping accuracy [33], [37], [53], and SaNSDE [54]

ZHANG et al.: GDD FOR OVERLAPPING LSOPs 2383

TABLE II
Rol AND Rrd OF GDG_GDD AND DG2_GDD WITH

AND WITHOUT RULE 2 (%)

is chosen as the optimizer. The optimization results of them
are shown in Tables S-I and S-II of the supplementary mate-
rial, respectively. The maximum number of fitness evaluations
is set to 300 0000. Each experiment is conducted for 25 times
independently. In addition, the Wilcoxon rank-sum test at a 5%
significance level is used for the statistical comparisons. The
last column of the tables is the number of wins, ties, and losses
of GDG_GDD or DG2_GDD against other algorithms. From
the observation of Table S-I and Table S-II in the supplemen-
tary material, it can be seen that the optimization results of
GDG_GDD and DG2_GDD are better than GDG_GDD2 and
DG2_GDD2, respectively.

In summary, the designed rules can not only prescribe how
to get the complete grouping results after adding MVS, but
also help to improve the accuracy of grouping and get better
optimization results of the LSOPs.

D. Analysis of the Grouping Fault Tolerance of GDD

From the observation of the results mentioned above, it
can be drawn that GDD helps decomposition methods to get
more accurate groups not only on overlapping functions but
on some nonoverlapping functions. It also shows that GDD
has the capacity of fault tolerance, since the GDD decom-
poses the problems via the MVS deeply and recursively.
Differently, the compared decomposition methods, such as
RDG3, GDG, and DG2, directly obtain the groups without
mining IaV for deep decomposition and, therefore, they are
not fault tolerant.

Taking DG2_GDD as an example, the grouping accuracy of
it partially depends on the accuracy rate of �DG2. To analyze

TABLE III
ACCURACY RATE (ρ1, ρ2, AND ρ3) OF �DG2 AND THE GROUPING

ACCURACY (Rol AND Rrd) OF DG2_GDD (%)

the influence of the accuracy rate of �DG2 on DG2_GDD,
Table III shows the accuracy rate of �DG2 and the grouping
accuracy of DG2_GDD. ρ1, ρ2, and ρ3 represent three different
metrics of �DG2 [36]. The data in italic type represents that
the results reach to 100.00 after being rounded up. If ρ1 = ρ2
= ρ3 = 100%, it represents that the accuracy rate of �DG2
reaches 100%, and �DG2 is the same as �I . As shown in
Table III, if �DG2 is the same as �I (ρ1 = ρ2 = ρ3 = 100%),
the grouping accuracy of DG2_GDD can also reach to 100%
(Rol = 100% and Rrd = 0%), such as on f 13, o15, and o19.
However, when the accuracy rate of �DG2 is close but not equal
to 100% (ρ1 ≈ ρ2 ≈ ρ3 ≈ 100%), DG2_GDD can still get the
same grouping result as GroupI on most functions, such as the
results on f 11, f 14, o2, o3, o4, o6, o8, o10, o12, o14, o16, o18, and
o20. Therefore, although the grouping accuracy of DG2_GDD
is related to the accuracy rate of �DG2, DG2_GDD can also
get the ideal grouping results with the inaccurate �DG2, which
also proves DG2_GDD to be fault tolerant.

The reason why GDD is fault tolerant is due to the decom-
position ability on overlapping LSOPs. Specifically, there are
three factors. First, GDD can identify the overlapping vari-
ables (MVS) among overlapping groups, and divides these
groups into smaller groups. As shown in Section IV-C, GDD
can get more accurate groups after dividing the wrongly
judged overlapping groups which are merged in GroupDG2 but
are separated in GroupDG2_GDD and GroupI . For example, as
shown in Table S-III of the supplementary material, GroupDG2

merges GDG2_GDD
6 and GDG2_GDD

7, and GroupDG2_GDD on
f 7 is closer to the corresponding GroupI . Therefore, GDD can
get more accurate groups. Second, the three rules, designed
in Section III-A, help to add the overlapping variables to
improve the grouping accuracy. Rule 1 and Rule 2 avoid

2384 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 53, NO. 4, APRIL 2023

adding redundant variables of overlapping components. These
rules are helpful for the algorithms with inaccurate �A to get
more accurate groups. For example, although �DG2 on f 7, f 11,
and f 14 are inaccurate (as shown in Table III), DG2_GDD can
still obtain the approximately ideal groups on these functions
(Rol ≈ 100% and Rrd ≈ 0%). Third, the graph connectivity
also helps to improve the fault-tolerance ability of GDD. For
example, �(1, 2) = 1 and �(1, 3) = 1, variables 1, 2, and
3 will be assigned to a group whether �(2, 3) = 1 or �(2,
3) = 0. For example, �I and �DG2 on f 14 are different (e.g.,
�I (106, 225) = 1 and �DG2(106, 225) = 0). The index of
variables starts from 0), but GroupDG2_GDD is same as GroupI .

E. Comparison of Optimization Results

Table S-IV in the supplementary material shows the com-
parative results of DG2_GDD, DG2, GDG_GDD, GDG,
and RDG3 with the CBCC3 framework [53] (denoted
as CBCC3-DG2_GDD, CBCC3-DG2, CBCC3-GDG_GDD,
CBCC3-GDG, and CBCC3-RDG3, respectively) and other
well-known large-scale optimization algorithms, such as the
version 2 of CC particle swarm optimization (PSO), i.e.,
CCPSO2 [46], competitive swarm optimization (CSO) [25],
social learning PSO (SLPSO) [55], dynamic segment-based
predominant learning swarm optimizer (DSPLSO) [56], and
dynamic level-based learning swarm optimizer (DLLSO) [26].

Comparing the results of CBCC3-DG2 and CBCC3-
DG2_GDD, it can be seen that CBCC3-DG2_GDD is better
than CBCC3-DG2 on all test functions with the significant dif-
ference, except for f 11 where the grouping result of DG2_GDD
is same as DG2. It should be noted that CBCC3-DG2_GDD
performs much better than CBCC3-DG2 on f 12. It is due
to that DG2_GDD divides variables into several overlapping
groups, which is useful for the CBCC3 framework to solve
problems efficiently, but DG2 considers all variables of f 12
as a single group. It can be concluded that GDD is help-
ful to improve not only the grouping accuracy but also the
optimization efficiency of DG2. The comparative results of
GDG and GDG_GDD are similar to DG2 and DG2_GDD.

From the observation of Table S-IV in the supplementary
material, it can be concluded that CBCC3-DG2_GDD performs
significantly better than other algorithms on most functions.
GDG_GDD, RDG3, and CCPSO2 apply the random grouping,
but DG2_GDD has a higher grouping accuracy and helps
CBCC3 search solutions in a relatively clear direction within
the decomposed space. Compared with CSO, SLPSO, DSPLSO,
and DLLSO that solve problems as a whole, CBCC3-DG2_GDD
decomposes LSOPs into relatively independent parts and solves
them separately, which can search solutions broadly.

In this section, it can be concluded that GDD can not only
help GDG and DG2 to decompose the overlapping problems
but help CCEAs to outperform other excellent algorithms.

V. CONCLUSION

In this article, the GDD method was proposed to decom-
pose overlapping LSOPs and improve the grouping accuracy.
Specifically, GDD first obtains the MVS based on IaV and then
separates the overlapping groups by their MVS. In addition,

GDD uses the recursive method and the adjustment strategy to
divide the overlapping problems into appropriate sizes. GDD
has three advantages. First, GDD improves the grouping accu-
racy of decomposition methods, not only on the overlapping
problems but also on partially separable problems. Second,
GDD has a high fault-tolerance ability. It can help decom-
position methods to divide problems into approximately ideal
groups even if the corresponding IaV matrix � is inaccurate.
Third, GDD can help CCEAs to get better optimization results
than other well-known optimization algorithms, especially on
the overlapping problems.

To evaluate the grouping accuracy of decomposition meth-
ods, two new metrics were proposed, including the overlapping
rate (Rol) and the redundancy rate (Rrd). The exhaustive exper-
iments were conducted on five functions of IEEE CEC 2013
and 20 designed overlapping functions, and the results showed
that CCEAs combined with GDD achieve a better performance
on the LSOPs.

REFERENCES

[1] D. M. Cabrera, “Evolutionary algorithms for large-scale global optimi-
sation: A snapshot, trends and challenges,” Progr. Artif. Intell., vol. 5,
no. 2, pp. 85–89, Feb. 2016.

[2] X. Luo, Y. Yuan, S. Chen, N. Zeng, and Z. Wang, “Position-transitional
particle swarm optimization-incorporated latent factor analysis,” IEEE
Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3958–3970, Aug. 2022.

[3] Z.-J. Wang, J.-R. Jian, Z.-H. Zhan, Y. Li, S. Kwong, and J. Zhang, “Gene
targeting differential evolution: A simple and efficient method for large
scale optimization,” IEEE Trans. Evol. Comput., early access, Jun. 23,
2022, doi: 10.1109/TEVC.2022.3185665.

[4] R. Shang, K. Dai, L. Jiao, and R. Stolkin, “Improved memetic algo-
rithm based on route distance grouping for multiobjective large scale
capacitated arc routing problems,” IEEE Trans. Cybern., vol. 46, no. 4,
pp. 1000–1013, Apr. 2016.

[5] F. Guo, G. Li, C. Wen, L. Wang, and Z. Meng, “An accelerated
distributed gradient-based algorithm for constrained optimization with
application to economic dispatch in a large-scale power system,” IEEE
Trans. Syst., Man, Cybern., Syst., vol. 51, no. 4, pp. 2041–2053,
Apr. 2021.

[6] X. Zhang, K.-J. Du, Z.-H. Zhan, S. Kwong, T.-L. Gu, and J. Zhang,
“Cooperative coevolutionary bare-bones particle swarm optimization
with function independent decomposition for large-scale supply chain
network design with uncertainties,” IEEE Trans. Cybern., vol. 50, no. 10,
pp. 4454–4468, Oct. 2020.

[7] X. Zhang, Z.-H. Zhan, W. Fang, P. Qian, and J. Zhang,
“Multipopulation ant colony system with knowledge-based local
searches for multiobjective supply chain configuration,” IEEE Trans.
Evol. Comput., vol. 26, no. 3, pp. 512–526, Jun. 2022.

[8] S. Liu, Q. Lin, Q. Li, and K. C. Tan, “A comprehensive com-
petitive swarm optimizer for large-scale multiobjective optimization,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 52, no. 9, pp. 5829–5842,
Sep. 2022.

[9] S.-H. Wu, Z.-H. Zhan, and J. Zhang, “SAFE: Scale-adaptive fitness eval-
uation method for expensive optimization problems,” IEEE Trans. Evol.
Comput., vol. 25, no. 3, pp. 478–491, Jun. 2021.

[10] Y. Pan, K. Gao, Z. Li, and N. Wu, “Solving biobjective distributed
flow-shop scheduling problems with lot-streaming using an improved
Jaya algorithm,” IEEE Trans. Cybern., early access, Apr. 25, 2022,
doi: 10.1109/TCYB.2022.3164165.

[11] J.-Y. Li, Z.-H. Zhan, C. Wang, H. Jin, and J. Zhang, “Boosting data-
driven evolutionary algorithm with localized data generation,” IEEE
Trans. Evol. Comput., vol. 24, no. 5, pp. 923–937, Oct. 2020.

[12] Z. H. Zhan et al., “Cloudde: A heterogeneous differential evolution algo-
rithm and its distributed cloud version,” IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 3, pp. 704–716, Mar. 2017.

[13] X.-F. Liu, Z.-H. Zhan, Y. Gao, J. Zhang, S. Kwong, and J. Zhang,
“Coevolutionary particle swarm optimization with bottleneck objective
learning strategy for many-objective optimization,” IEEE Trans. Evol.
Comput., vol. 23, no. 4, pp. 587–602, Aug. 2019.

http://dx.doi.org/10.1109/TEVC.2022.3185665
http://dx.doi.org/10.1109/TCYB.2022.3164165

ZHANG et al.: GDD FOR OVERLAPPING LSOPs 2385

[14] J.-Y. Li et al., “A multipopulation multiobjective ant colony system con-
sidering travel and prevention costs for vehicle routing in COVID-19-like
epidemics,” IEEE Trans. Intell. Transp. Syst., early access, Jun. 17, 2022,
doi: 10.1109/tits.2022.3180760.

[15] X.-F. Liu et al., “Historical and heuristic-based adaptive differential
evolution,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 12,
pp. 2623–2635, Dec. 2019.

[16] K. Qiao, K. Yu, B. Qu, J. Liang, H. Song, and C. Yue, “An evolution-
ary multitasking optimization framework for constrained multiobjective
optimization problems,” IEEE Trans. Evol. Comput., vol. 26, no. 2,
pp. 263–277, Apr. 2022.

[17] C. E. da Silva Santos, R. C. Sampaio, L. dos Santos Coelho,
G. A. Bestard, and C. H. Llanos, “Multi-objective adaptive differential
evolution for SVM/SVR hyperparameters selection,” Pattern Recognit.,
vol. 110, Feb. 2021, Art. no. 107649.

[18] L. Meng, K. Gao, Y. Ren, B. Zhang, H. Sang, and Z. Chaoyong,
“Novel MILP and CP models for distributed hybrid flowshop scheduling
problem with sequence-dependent setup times,” Swarm Evol. Comput.,
vol. 71, Jun. 2022, Art. no. 101058.

[19] Z.-H. Zhan, Z.-J. Wang, H. Jin, and J. Zhang, “Adaptive dis-
tributed differential evolution,” IEEE Trans. Cybern., vol. 50, no. 11,
pp. 4633–4647, Nov. 2020.

[20] J.-Y. Li, Z.-H. Zhan, K. C. Tan, and J. Zhang, “A meta-knowledge
transfer-based differential evolution for multitask optimization,”
IEEE Trans. Evol. Comput., vol. 26, no. 4, pp. 719–734,
Aug. 2022.

[21] N. Zeng, Z. Wang, W. Liu, H. Zhang, K. Hone, and X. Liu, “A dynamic
neighborhood-based switching particle swarm optimization algorithm,”
IEEE Trans. Cybern., vol. 52, no. 9, pp. 9290–9301, Sep. 2022.

[22] J.-Y. Li, K.-J. Du, Z.-H. Zhan, H. Wang, and J. Zhang,
“Distributed differential evolution with adaptive resource allo-
cation,” IEEE Trans. Cybern., early access, Mar. 14, 2022,
doi: 10.1109/TCYB.2022.3153964.

[23] J.-R. Jian, Z.-H. Zhan, and J. Zhang, “Large-scale evolutionary
optimization: A survey and experimental comparative study,” Int.
J. Mach. Learn. Cybern., vol. 11, no. 3, pp. 729–745, 2020.

[24] Z.-H. Zhan, L. Shi, K. C. Tan, and J. Zhang, “A survey on evolutionary
computation for complex continuous optimization,” Artif. Intell. Rev.,
vol. 55, pp. 59–110, Jan. 2022.

[25] R. Cheng and Y. Jin, “A competitive swarm optimizer for large
scale optimization,” IEEE Trans. Cybern., vol. 45, no. 2, pp. 191–204,
Feb. 2015.

[26] Q. Yang, W.-N. Chen, J. D. Deng, Y. Li, T. Gu, and J. Zhang, “A level-
based learning swarm optimizer for large-scale optimization,” IEEE
Trans. Evol. Comput., vol. 22, no. 4, pp. 578–594, Aug. 2018.

[27] Z.-J. Wang, Z.-H. Zhan, S. Kwong, H. Jin, and J. Zhang, “Adaptive
granularity learning distributed particle swarm optimization for large-
scale optimization,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1175–1188,
Mar. 2021.

[28] Z.-J. Wang et al., “Dynamic group learning distributed particle
swarm optimization for large-scale optimization and its application
in cloud workflow scheduling,” IEEE Trans. Cybern., vol. 50, no. 6,
pp. 2715–2729, Jun. 2020.

[29] J.-R. Jian, Z.-G. Chen, Z.-H. Zhan, and J. Zhang, “Region encoding
helps evolutionary computation evolve faster: A new solution encoding
scheme in particle swarm for large-scale optimization,” IEEE Trans.
Evol. Comput., vol. 25, no. 4, pp. 779–793, Aug. 2021.

[30] J. Liang et al., “Cooperative co-evolutionary comprehensive learning
particle swarm optimizer for formulation design of explosive simulant,”
Memet. Comput., vol. 12, no. 4, pp. 331–341, Oct. 2020.

[31] Y.-H. Jia, Y. Mei, and M. Zhang, “Contribution-based cooperative
co-evolution for nonseparable large-scale problems with overlapping
subcomponents,” IEEE Trans. Cybern., vol. 52, no. 6, pp. 4246–4259,
Jun. 2022.

[32] T. Jansen and R. P. Wiegand, “The cooperative coevolutionary (1+1)
EA,” Evol. Comput., vol. 12, no. 4, pp. 405–434, 2004.

[33] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary
optimization using cooperative coevolution,” Inf. Sci., vol. 178, no. 15,
pp. 2985–2999, Aug. 2008.

[34] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution
with differential grouping for large scale optimization,” IEEE Trans.
Evol. Comput., vol. 18, no. 3, pp. 378–393, Jun. 2014.

[35] Y. Sun, M. Kirley, and S. K. Halgamuge, “Extended differential
grouping for large scale global optimization with direct and indirect
variable interactions,” in Proc. ACM Genet. Evol. Comput. Conf., 2015,
pp. 313–320.

[36] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive
divide-and-conquer algorithm for unconstrained large-scale black-box
optimization,” ACM Trans. Math. Softw., vol. 42, no. 2, pp. 1–24,
Jun. 2016.

[37] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, “DG2: A
faster and more accurate differential grouping for large-scale black-box
optimization,” IEEE Trans. Evol. Comput., vol. 21, no. 6, pp. 929–942,
Dec. 2017.

[38] Y. Sun, M. Kirley, and S. K. Halgamuge, “A recursive decomposi-
tion method for large scale continuous optimization,” IEEE Trans. Evol.
Comput., vol. 22, no. 5, pp. 647–661, Oct. 2018.

[39] Y. Sun, M. N. Omidvar, M. Kirley, and X. Li, “Adaptive threshold
parameter estimation with recursive differential grouping for problem
decomposition,” in Proc. ACM Genet. Evol. Comput. Conf., 2018,
pp. 889–896.

[40] Y. Sun, X. Li, A. Ernst, and M. N. Omidvar, “Decomposition for large-
scale optimization problems with overlapping components,” in Proc.
IEEE Congr. Evol. Comput., 2019, pp. 326–333.

[41] M. Yang, A. Zhou, C. Li, and X. Yao, “An efficient recursive differen-
tial grouping for large-scale continuous problems,” IEEE Trans. Evol.
Comput., vol. 25, no. 1, pp. 159–171, Feb. 2021.

[42] J.-Y. Li, Z.-H. Zhan, K. C. Tan, and J. Zhang, “Dual differen-
tial grouping: A more general decomposition method for large-scale
optimization,” IEEE Trans. Cybern., early access, Mar. 25, 2022,
doi: 10.1109/TCYB.2022.3158391.

[43] W. Benameur and M. D. Biha, “On the minimum cut separator problem,”
Networks, vol. 59, no. 1, pp. 30–36, 2012.

[44] S. Even, “Applications of network flow techniques,” in Graph
Algorithms. Potomac, MD, USA: Comput. Sci. Press, 1979,
pp. 121–130.

[45] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, “Benchmark func-
tions for the CEC 2013 special session and competition on large scale
global optimization,” Dept. Evol. Comput. Mach. Learn. Subpopulation,
RMIT Univ., Melbourne, VIC, Australia, Rep., 2013.

[46] X. Li and X. Yao, “Cooperatively coevolving particle swarms for
large scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2,
pp. 210–224, Apr. 2012.

[47] H. A. Esfahanian, On the Evolution of Graph Connectivity Algorithms,
Michigan State Univ., Michigan, MI, USA, 2002, pp. 10–11.

[48] E. A. Dinits, “Algorithms for solution of a problem of maximum flow in
a network with power estimation,” Soviet Math. Doklad, vol. 11, no. 11,
pp. 1277–1280, 1970.

[49] J. X. Hao and J. B. Orlin, “A faster algorithm for finding the minimum
cut in a directed graph,” J. Algorithms, vol. 17, no. 3, pp. 424–446,
Nov. 1994.

[50] R. Zhou and E. A. Hansen, “Breadth-first heuristic search,” Artif. Intell.,
vol. 170, nos. 4–5, pp. 385–408, Apr. 2006.

[51] C.-H. Peng, B.-F. Wang, and J.-S. Wang, “Recognizing unordered depth-
first search trees of an undirected graph in parallel,” IEEE Trans. Parallel
Distrib. Syst., vol. 11, no. 6, pp. 559–570, Jun. 2000.

[52] U. Berger, H. Schwichtenberg, and M. Seisenberger, “The warshall
algorithm and Dickson’s lemma: Two examples of realistic program
extraction,” J. Autom. Reason., vol. 26, no. 2, pp. 205–221, Feb. 2001.

[53] M. N. Omidvar, B. Kazimipour, X. Li, and X. Yao, “CBCC3—A
contribution-based cooperative co-evolutionary algorithm with improved
exploration/exploitation balance,” in Proc. IEEE Congr. Evol. Comput.,
2016, pp. 3541–3548.

[54] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution
with neighborhood search,” in Proc. IEEE Congr. Evol. Comput., 2008,
pp. 1110–1116.

[55] R. Cheng and Y. Jin, “A social learning particle swarm optimization
algorithm for scalable optimization,” Inf. Sci., vol. 291, pp. 43–60,
Jan. 2015.

[56] Q. Yang et al., “Segment-based predominant learning swarm optimizer
for large-scale optimization,” IEEE Trans. Cybern., vol. 47, no. 9,
pp. 2896–2910, Sep. 2017.

Xin Zhang (Member, IEEE) received the Ph.D.
degree in computer science and technology from the
South China University of Technology, Guangzhou,
China, in 2020.

She is currently a Lecturer with the School
of Artificial Intelligence and Computer Science,
Jiangnan University, Wuxi, China. Her research
interests include evolutionary computation, swarm
intelligence, and their applications in large-scale
optimization, supply chain network, and intelligent
manufacturing.

http://dx.doi.org/10.1109/tits.2022.3180760
http://dx.doi.org/10.1109/TCYB.2022.3153964
http://dx.doi.org/10.1109/TCYB.2022.3158391

2386 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 53, NO. 4, APRIL 2023

Bo-Wen Ding received the B.E. degree in soft-
ware engineering from the Nanyang Institute of
Technology, Nanyang, China, in 2019. He is cur-
rently pursuing the B.S. degree in software engineer-
ing with Jiangnan University, Wuxi, China.

His research interests include evolutionary com-
putation and its applications.

Xin-Xin Xu received the B.S. degree in computer
science from Qilu Normal University, Jinan, China,
in 2016, and the M.S. degree in computer science
from Shandong Normal University, Jinan, in 2019.
She is currently pursuing the Ph.D. degree in com-
puter science with the Ocean University of China,
Qingdao, China.

Her research interests mainly include compu-
tational intelligence, hyperheuristic optimization,
dynamic multiobjective optimization, and their
applications in real-world problems.

Jian-Yu Li (Student Member, IEEE) received the
B.S. degree in computer science and technology
from the South China University of Technology,
Guangzhou, China, in 2018, where he is currently
pursuing the Ph.D. degree in computer science and
technology with the School of Computer Science
and Engineering.

His research interests mainly include com-
putational intelligence, data-driven optimization,
machine learning, including deep learning, and their
applications in real-world problems, and in environ-

ments of distributed computing and big data.

Zhi-Hui Zhan (Senior Member, IEEE) received the
bachelor’s and Ph.D. degrees in computer science
from Sun Yat-sen University, Guangzhou, China, in
2007 and 2013, respectively.

He is currently the Changjiang Scholar Young
Professor with the School of Computer Science and
Engineering, South China University of Technology,
Guangzhou. His current research interests include
evolutionary computation, swarm intelligence, and
their applications in real-world problems and in envi-
ronments of cloud computing and big data.

Dr. Zhan was a recipient of the IEEE Computational Intelligence
Society (CIS) Outstanding Early Career Award in 2021, the Outstanding
Youth Science Foundation from the National Natural Science Foundations of
China in 2018, and the Wu Wen-Jun Artificial Intelligence Excellent Youth
from the Chinese Association for Artificial Intelligence in 2017. His doc-
toral dissertation was awarded the IEEE CIS Outstanding Ph.D. Dissertation
and the China Computer Federation Outstanding Ph.D. Dissertation. He
is one of the World’s Top 2% Scientists for both Career-Long Impact
and Year Impact in Artificial Intelligence and one of the Highly Cited
Chinese Researchers in Computer Science. He is currently the Chair of the
Membership Development Committee in IEEE Guangzhou Section and the
Vice-Chair of the IEEE CIS Guangzhou Chapter. He is currently an Associate
Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,
Neurocomputing, Memetic Computing, and Machine Intelligence Research.

Pengjiang Qian (Senior Member, IEEE) received
the Ph.D. degree in information technology and
engineering of light industry from Jiangnan
University, Wuxi, China, in 2011.

He is currently a Full Professor with the School
of Artificial Intelligence and Computer Science,
Jiangnan University. His research interests include
data mining, pattern recognition, bioinformatics,
and their applications, such as analysis and pro-
cessing for medical imaging and intelligent traffic
dispatching.

Wei Fang (Member, IEEE) received the Ph.D.
degree in information technology and engineering
of light industry from Jiangnan University, Wuxi,
China, in 2008.

He is a Professor of Computer Science with
Jiangnan University. His current research interests
involve the evolutionary computation.

Prof. Fang serves as an Editorial Board Member
for the International Journal of Swarm Intelligence
Research and International Journal of Computing
Science and Mathematics.

Kuei-Kuei Lai received the Ph.D. degree in manage-
ment science from Tamkang University, New Taipei.
Taiwan.

He is currently a Professor with the Department
of Business Administration, Chaoyang University
of Technology, Taichung, Taiwan. He has authored
more than 90 articles. His research interests include
quantitative analysis, patent citation analysis, social
networks analysis, technology strategy and techno-
logical forecasting, computational intelligence, and
applications in management.

Jun Zhang (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from the City
University of Hong Kong, Hong Kong, in 2002.

He is currently a Korea Brain Pool Fellow
Professor with Hanyang University, Seoul,
South Korea. His current research interests include
computational intelligence, cloud computing,
operations research, and power electronic circuits.
He has published over more than 150 IEEE
TRANSACTIONS papers in his research areas.

Dr. Zhang was a recipient of the Changjiang
Chair Professor from the Ministry of Education, China, in 2013, the National
Science Fund for Distinguished Young Scholars of China in 2011, and
the First-Grade Award in Natural Science Research from the Ministry of
Education, China, in 2009. He is currently an Associate Editor of the
IEEE TRANSACTIONS ON CYBERNETICS and IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

