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A Dual-Level Model Predictive Control Scheme for
Multitimescale Dynamical Systems
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Abstract—So far, many control algorithms have been developed
for singularly perturbed systems. However, in many industrial
processes, enforcing closed-loop fast-slow dynamics for pecu-
liarly nonseparable ones is a prior request and a crucial issue to
be resolved. Aiming at the above problem, this article presents
two dual-level model predictive control (MPC) algorithms for
multitimescale dynamical systems with unknown bounded dis-
turbances and input constraints. The proposed algorithms, each
one composed of two regulators working in slow and fast time
scales, are designed to generate closed-loop separable dynam-
ics at high and low levels. As a prominent feature, the proposed
algorithms are not only suitable for singularly perturbed systems
but also capable of imposing separable closed-loop performance
for dynamics that are nonseparable and strongly coupled. The
recursive feasibility and convergence properties are proven under
suitable assumptions. The simulation results on controlling a
boiler turbine (BT) system, including the comparisons with
other classic controllers, are demonstrated, which show the
effectiveness of the proposed algorithms.

Index Terms—Boiler turbine (BT) control, dual-level, linear
systems, model predictive control (MPC), separable dynamics.

I. INTRODUCTION

MANY industrial processes are characterized by sepa-
rable fast-slow dynamics, which can be called “mul-

titimescale dynamic systems.” In a multitimescale dynamic
system, for a given constant input signal, some of the out-
put variables reach their steady-state values quickly, while
others may have a longer transient period [1], [2]. A widely
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accepted approach for the control of such systems resorts to
a hierarchical control synthesis that relies on singular pertur-
bation theory (see [2]). A timescale separation technique is
adopted therein to define regulators (controllers) at different
control frequencies to guarantee the stability and performance
of the dynamics associated with the adopted control channels.
In addition to singularly perturbed systems, there are systems
whose dynamics are not separable but must be controlled in
the same way with a multirate control setting; see, for instance,
the control of a boiler turbine (BT) system considered in [3].
In this case, the crucial controlled variables of the considered
system must be adjusted in a faster time scale to meet the
control performance requirement, while other outputs can be
controlled more smoothly in a slower time scale. As another
example, the control applications for mobile robots can also fit
the above control problem setting. For instance, in the race car
control problem [4], [5], velocity maximization is the major
concern to reach the destination with minimum-time periods,
while the reference tracking goal is of less importance. In
urban autonomous driving applications (see [6]), lane-keeping
and precise trajectory tracking are the primary concerns, while
the velocity can be controlled in a smoother manner.

Model predictive control (MPC) is an advanced process con-
trol technique that is widely used in industrial processes [7],
[8], [9], [10], [11], [12], [13], robotics [14], [15], urban traf-
fics [16], [17]. In MPC, the control problem is reformulated as
an optimization one solved on-line according to the receding
horizon principle. Many MPC solutions have been developed
based on the timescale separation technique for systems char-
acterized by open-loop separable dynamics. Among them, a
fast-slow MPC algorithm was proposed in [18] for control of
nonlinear singularly perturbed systems, and the extensions to
large-scale systems and to the dynamic optimization of eco-
nomic cost were addressed in [19] and [20], respectively. The
algorithms utilize the reduced-order models of the original
system, with model couplings between fast and slow time
scales disregarded, which leads to a decentralized controller
design. In [21] and [22], controllers designed with a unitary
slow or fast sampling period were proposed for linear sin-
gularly perturbed systems with control saturations. An MPC
design with a closed-loop property guarantee was presented
in [23] for continuous-time singularly perturbed systems.
In [24], a decentralized controller design was proposed using
input–output models. In the application aspect, notable con-
tributions can be found in [25] for integrated wastewater
treatment systems, [26] for control of a polymerization reac-
tor, [27] for greenhouse climate management, and [28] for
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control of flexible joint manipulators. As a summary comment,
almost all the aforementioned approaches are tailored for
systems with clearly different dynamics due to their dependen-
cies on the singular perturbation theory. Also, the closed-loop
stability relies on the assumption that the open-loop dynam-
ics is separable. As a result, the control performance of such
controllers could be hampered if the real open-loop dynamical
motions are nonseparable.

Motivated by the problems mentioned above, two dual-level
algorithms based on MPC are proposed in this article to exhibit
closed-loop separable dynamic behaviors of linear dynamical
systems with unknown bounded disturbances and input con-
straints. Compared with the aforementioned works [18], [19],
[23], [24], [27], the advantages of the proposed algorithms
are as follows. First, the proposed algorithms utilize consis-
tent models for controller designs at both time scales, making
them suitable for systems with strong coupling effects, i.e.,
with nonseparable dynamics. Second, as opposed to the decen-
tralized controller design in the above methods, in our case,
information exchanges between the controllers at both levels
are allowed, and the performance indices at both levels are
optimized cooperatively.

A similar problem has been addressed in [29]. However,
the control scheme described in this article shows a signifi-
cant improvement for the following reasons: 1) the algorithm
in [29] is proposed for systems described by finite impulse
responses (FIRs), with a particular focus on the application
viewpoint, while this article presents novel solutions to the the-
oretical developments based on a state-space formulation, with
verified closed-loop recursive feasibility and stability; 2) open-
loop strict stability is required in [29] due to the FIR used,
while in our article, the condition is relaxed to the considered
model being controllable; and 3) in [29], the input associ-
ated with the slow dynamics is only manipulated in the slow
time scale. Such a design could lead to control performance
degradation, especially for systems that are strongly coupled.
To solve this problem, we allow the “slow” control variable
to be refined in the fast time scale to improve the control
performance (see the comparative results in Section V).

A two-layer control structure based on MPC has been
proposed in [30], but the control problem considered is
different. Indeed, it is designated to coordinate large-scale
independent subsystems that must produce a constant global
throughput. However, the approach proposed in this arti-
cle commits to enforcing separable closed-loop dynamics for
strongly coupled systems, and the robust control design under
uncertainties is addressed. Hence, the control framework and
technique adopted in this article are significantly different from
that in [30].

The remainder of this article is organized as follows.
Section II presents the problem description and the proposed
control structure. The a dual-level MPC (D-MPC) algorithm
is initially introduced in Section III, while an improved ver-
sion of D-MPC, i.e., the Incremental D-MPC algorithm, is
described in Section IV. A nontrivial simulation example con-
cerning the BT control is studied in Section V, while some
conclusions are drawn in Section VI. Proofs of the theoretical
results are given in the Appendix.

Notation: We denote C as the set of the complex plane. We
use N and N+ to denote the set of non-negative and positive
integers, respectively. Given a matrix P, we use the symbol
P� to denote its transpose. For a generic variable z, we denote
�z(k) = z(k) − z(k − 1), where k is the discrete-time index.
We use ‖x‖2Q to represent x�Qx. Given two sets A and B,
we denote A × B as the Cartesian product. For a set of vari-
ables zi ∈ R

qi , i = 1, 2, . . . , M, we define (z1, z2, . . . , zM) =
[ z�1 z�2 · · · z�M ]� ∈ R

q, where q = ∑M
i=1 qi. When given

a vector v, we denote −→v (k : k + N − 1) the sequence
v(k) . . . v(k + N − 1), where N is a positive integer.

II. PROBLEM FORMULATION

The system to be controlled is described by a discrete-
time linear system consisting of two interacting subsystems
expressed as follows:

⎧
⎨

⎩

xs(h+ 1) = Assxs(h)+ Asf xf (h)+ Bssus(h)

+Bsf uf (h)+ ds(h)

ys(h) = Cssxs(h)

(1a)

⎧
⎨

⎩

xf (h+ 1) = Afsxs(h)+ Aff xf (h)+ Bfsus(h)

+Bff uf (h)+ df (h)

yf (h) = Cff xf (h)

(1b)

where us ∈ R
ms , xs ∈ R

ns , ys ∈ R
ps , and ds ∈ Ds ⊆ R

ns are the
input, state, output variables, and an unmeasured disturbance,
respectively, belonged to (1a), while uf ∈ R

mf , xf ∈ R
nf ,

yf ∈ R
pf , and df ∈ Df ⊆ R

nf are the ones associated with (1b);
Ds and Df are compact sets, h is a basic discrete-time scale
index, the matrices A∗ and B∗ (where ∗ is sf or fs in turn)
represent the couplings between (1a) and (1b) through the state
and input variables, respectively.

Similar to [29], in this article, models (1a) and (1b) are
assumed to satisfy at least one of the following scenarios.

1) Model (1a) is characterized by a slower dynamics in
contrast to (1b) in the sense that the triple (uf , xf , yf )

reaches their final steady-state values fast while the
other one, i.e., (us, xs, ys), may have begun their main
dynamic motions; see the examples in [1], [2], and [31].

2) Even if the dynamics of (1a) and (1b) might not be
strictly separable, however they must be controlled in
a multirate fashion, e.g., the triple (uf , xf , yf ) must
react promptly to respond to operation (reference) vari-
ations while the triple (us, xs, ys) can be controlled in
a smoother manner; see [3].

Notice that in a singularly perturbed system, couplings
between different time scales are weak. Hence, the overall
model is usually decomposed into decentralized reduced-order
models with different time scales. However, in our case, cou-
plings between subsystems might be strong. To cope with
coupling effects, system (1) is collected as a centralized ver-
sion for the controller design. Combining (1a) and (1b), the
overall system is written as follows:

{
x(h+ 1) = Ax(h)+ Bu(h)+ d(h)

y(h) = Cx(h)
(2)

where u = (us, uf ) ∈ R
m, m = ms + mf , x = (xs, xf ) ∈ R

n,
n = ns+ nf , y = (ys, yf ) ∈ R

p, p = ps+ pf , the unknown dis-
turbance d = (ds, df ) ∈ Ds×Df = D . The diagonal blocks of
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the collective state transition matrix A and input matrix B are
Ass, Aff and Bss, Bff , respectively; whereas their nondiagonal
blocks correspond to the coupling terms of the state and input
variables between (1a) and (1b). The collective output matrix
C is a block-diagonal matrix composed of Css and Cff , i.e.,
C = diag{Css, Cff }.

The control objectives to be achieved are introduced here.
1) Setpoint Regulation: For a given reference value yr =

(ys,r, yf ,r), we aim to drive

ys(h)→ ys,r (3a)

yf (h)→ yf ,r. (3b)

2) Input Constraint: Enforce the input constraint of the type

us(h) ∈ Us (4a)

uf (h) ∈ Uf (4b)

where Us and Uf are convex sets, U = Us ×Uf .
The following assumption is assumed to hold.
Assumption 1:
1) The pair (A, B) is controllable;
2) mf = pf . Also, a steady-state pair (ur, xr) exists associ-

ated with the reference yr, such that xr = Axr+Bur, yr =
Cxr, xr = (xs,r, xf ,r), and ur = (us,r, uf ,r) ∈ Us ×Uf .

Remark 1: Assumption 1-2) allows system (2) to be non-
square, i.e., ms �= ps. Specifically, given a reachable setpoint
yr, one can obtain the steady-state value xr by calculating
(xr, ur) = �†(0, yr) for m ≤ p if � is full column rank where

� =
[

I − A −B
C 0

]

and �† = (���)−1��. In other cases (including the case p <

m, where multiple steady-state solutions might exist associated
with yr), one can calculate a suitable steady-state value xr by
optimizing a user-specified performance index subject to the
steady-state equality constraints x = Ax + Bu, yr = Cx, and
the control constraint u ∈ U .

In principle, a centralized robust MPC problem like [32]
can be designed concerning (2) to achieve the above con-
trol objectives. However, the resulting control performance (in
terms of generating closed-loop separable dynamics) might
be hampered due to the conflicting requirements of sam-
pling periods and prediction horizons for (1a) and (1b),
respectively.

For this reason, a D-MPC is initially proposed. As shown
in Fig. 1, at the high level, a slow time scale k associated with
N ∈ N+ period of the basic time scale h is adopted to define
an MPC problem concerning the sampled version of (2). The
computed values of the control actions, u[N]

f (k) and u[N]
s (k),

are held constant within the long sampling time interval
[kN, kN + N), i.e., ūf (h) = u[N]

f (k), ūs(h) = u[N]
s (k) for all

h ∈ [kN, kN +N). At the low level, a shrinking horizon MPC
is designed at the basic time scale to refine the control actions
(ūs(h), ūf (h)) with additional corrections (δuf (h), δus(h)), in
order to derive satisfactory short-term transients associated
with the closed-loop fast dynamics and to account for possible
disturbances.

Fig. 1. Time indices adopted in different levels: h = 1, 2, . . . , denotes
the basic (fast) time instant, while h = 0, N, 2N, . . . , denotes the slow time
instant in the basic time scale. The above figure shows a special case with
N = 5.

Fig. 2. Brief diagram of the proposed control scheme: HMPC (LMPC) stands
for the MPC at the higher (lower) level, while ZOH is the zero-order holder.

The resulting control actions of the D-MPC regulator are
summarized as follows:

us(h) = ūs(h)+ δus(h) (5a)

uf (h) = ūf (h)+ δuf (h) (5b)

where
1) the control actions ūs(h) and ūf (h) will be computed by

solving an MPC problem in the slow time scale to fulfill
objective (3a) and enforce constraints (4a), (4b);

2) the corrections δus(h) and δuf (h) will be calculated
by a shrinking horizon MPC regulator running in the
basic time scale to fulfill objective (3b) and enforce
constraints (4a), (4b).

To further improve the control performance associated
with the fast controlled variables and compensate for uncer-
tainties, an Incremental D-MPC algorithm is also proposed
(deferred in Section IV). The Incremental D-MPC includes
integral actions at the two control levels and a prior explicit
design of the output yf at the slow time scale to enforce
yf to the reference value or its neighbor promptly. A
brief diagram of the proposed approaches is displayed in
Fig. 2.

III. D-MPC ALGORITHM

In this section, the D-MPC algorithm, consisting of an MPC
at the high level and a shrinking horizon MPC at the low level,
is devised.

A. MPC at the High Level

In order to design the high-level regulator in the slow time
scale k (see again Fig. 1), denote by u[N]∗ , x[N]∗ , y[N]∗ , and d[N]∗
the samplings of u∗, x∗, y∗, and d∗ (where ∗ is s or f , in turn)
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and by u[N] = (u[N]
s , u[N]

f ), x[N] = (x[N]
s , x[N]

f ), y[N] = (y[N]
s , y[N]

f ),
and d[N] = (d[N]

s , d[N]
f ) the samplings of the overall input,

state, output, and disturbance associated with the time scale k.
Hence, the sampled version of (2) with N period is given as
follows:
{

x[N](k + 1) = A[N]x[N](k)+ B[N]u[N](k)+ d̃[N](k)
y[N](k) = Cx[N](k)

(6)

where A[N] = AN , B[N] = ∑N−1
i=0 AN−i−1B, d̃[N](k) =

d[N](k) + f [N]
δu (k), d[N](k) = ∑N−1

i=0 AN−i−1d(kN + i), f [N]
δu (k) =

∑N−1
i=0 AN−i−1Bδu(kN + i) is due to the control at the low

level.
The following proposition can be stated for (6).
Proposition 1: The pair (A[N], C) is detectable if (A, C) is

detectable.
Also, the following assumption about (6) is assumed to be

holding:
Assumption 2: The pair (A[N], B[N]) is stabilizable.
Remark 2: To meet the stabilizability requirement of (6),

unlike the detectability condition in Proposition 1, we require
Assumption 2 to be verified a posteriori once the sampling
period N is chosen. This is due to the fact that, starting from
the controllability of (A, B), there is no guarantee the sam-
pled pair (A[N], B[N]) is also stabilizable. A simple example
to illustrate this point is as follows: Consider a controllable
single-input single-output system described by x(h + 1) =
−x(h) + u(h). However, the N = 2 period sampled version
x[2](k + 1) = (−1)2x[2](k) + (−1 + 1)u[2](k) = x[2](k) is not
stabilizable.

As the disturbance term d̃[N] is unknown, we introduce the
following nominal model for prediction:

{
x̂[N](k + 1) = A[N]x̂[N](k)+ B[N]u[N](k)
ŷ[N](k) = Cx̂[N](k).

(7)

With (7), it is now possible to state the MPC problem
at the high level. At each slow time step k, we solve
an optimization problem according to the receding horizon
principle as follows:

min−−→
u[N](k:k+NH−1)

JH (8)

where

JH =
NH−1∑

i=0

(∥
∥ŷ[N](k + i)− yr

∥
∥2

QH
+ ∥∥u[N](k + i)− ur

∥
∥2

RH

)

+ ∥
∥x̂[N](k + NH)− xr

∥
∥2

PH
(9)

NH ∈ N+ is the adopted prediction horizon. The parameters
QH ∈ R

p×p and RH ∈ R
m×m are positive definite and symmet-

ric weighting matrices, while PH ∈ R
n×n is computed as the

solution to the Lyapunov equation described by

F�H PHFH − PH = −
(

C�QHC + K�H RHKH

)
(10)

where the matrix FH = A[N] + B[N]KH is the Schur stable and
KH is a stabilizing gain matrix. The optimization problem (8)
is performed under the following constraints.

1) The dynamics (7) with x̂[N](k) = x(kN).

2) The input constraint

u[N](k + i) ∈ Ū

where Ū is a tightened convex set of U , i.e., Ū ⊆ U .
3) The terminal state constraint

x̂[N](k + NH) ∈X s
F

where X s
F ⊆XF, the set XF is chosen as a positively invariant

set for system (7) controlled with the stabilizing control law
u[N](k) = KH(x̂[N](k)− xr)+ur satisfying KH(XF
 xr) ⊆ U 

ur. To guarantee the recursive feasibility under uncertainties
(deferred in Theorem 1), X s

F is selected such that: for any
z(k) ∈ XF, the successive state under the above stabilizing
control law satisfies z(k + 1) ∈X s

F .

B. Shrinking Horizon MPC at the Low Level

Assume now to be at a specific basic time instant h = kN
(correspond to the slow time instant k, see again Fig. 1) such
that the high-level problem (8) with cost (9) has been success-
fully solved. Let

−→
u[N](k : k + NH − 1|k) be the optimal solution

to (8). Thus, the one-step ahead state prediction x̂[N](k + 1|k)
is available. Let us focus on the output performance in the
fast time scale within the interval h ∈ [kN, kN+N). Denoting
by ỹ(h) = (ỹs(h), ỹf (h)) the output resulting from (2) with
d(h) = 0 and u(h) = u[N](�h/N�), the component ỹf (h) may
expect undesired transient due to the long sampling period
at the high level. For this reason, the overall control action
associated with yf at the low level is refined as follows:

uf (h) = ūf (h)+ δuf (h) (11a)

where ūf (h) = u[N]
f (�h/N�), δuf is computed by a regulator at

the low level, which is deferred in (13).
Since δuf (h) could influence the value of ys(h) in the fast

time scale due to coupling terms Asf and Bsf from (1a) to (1b),
it is convenient to allow the correction on us, i.e.,

us(h) = ūs(h)+ δus(h) (11b)

where ūs(h) = u[N]
s (�h/N�), δus is another decision variable at

the low level.
In view of (11), one can rewrite (2) with u(h) = ū(h) +

δu(h), where ū = (ūs, ūf ), δu = (δus, δuf ). For prediction
purpose at the basic time scale, we define a prediction model
by neglecting the effect of d

{
x̂(h+ i+ 1|h) = Ax̂(h+ i|h)+ Bu(h+ i|h)

ŷ(h+ i|h) = Cx̂(h+ i|h)
(12)

where x̂(h|h) = x(h).
Accordingly, at any fast time instant h = kN+ t, a shrinking

horizon MPC problem can be solved at the low level

min−→
δu(h:(k+1)N−1)

JL (13)

where

JL =
N−t−1∑

j=0

∥
∥ŷ(h+ j|h)− ỹ∗(h+ j)

∥
∥2

Q + ‖δu(h+ j|h)‖2R (14)
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Algorithm 1 On-Line Implementation of D-MPC

Initial condition x[N](0) = x(0).
while for any k ≥ 0 do

h1) Compute u[N](k|k) by solving (8) with (9) and update
x̂[N](k + 1|k)
h2) Generate output ỹ∗(h) from (2) with d(h) = 0 and
u(h) = u[N](�h/N�), for all h ∈ [kN, kN + N)

for h← kN to kN + N − 1 do
l1) Compute δu(h|h) using (13) with (14) and apply
u(h) = u[N](�h/N�)+ δu(h|h) to (2)
l2) Update x(h+ 1), y(h+ 1), set x̂(h+ 1) = x(h+ 1),
ŷ(h+ 1) = y(h+ 1)

end
h3) k← k + 1

end

ỹ∗(h) = (ỹs(h), ỹf (kN +N)), h ∈ [kN, kN +N), ỹs and ỹf are
defined above (11a).

The optimization problem (13) is performed under the
following constraints.

1) Dynamics (12).
2) The input constraint

u[N](�h/N�)+ δu(h|h) ∈ U

u[N](�h/N�)+ δu(h+ j|h) ∈ Ût ∀ j = 1, . . . , N − t − 1 (15)

where Ût is selected such that Ū ⊆ Ût ⊆ U [see (18)].
3) The state terminal constraint

x̂(kN + N|h) = x̂[N](k + 1|k). (16)

Remark 3: The rationale of choosing signal ỹ∗(h) as the
reference for the low level lies in the fact that ŷf (h) is expected
to react promptly to respond to ỹf (kN + N), while ŷs(h) can
be controlled to follow the smooth trajectory ỹs(h) generated
from the high level.

Remark 4: It is highlighted that the structure of the
proposed approach is different from that of the cascade ones;
see, for instance [33]. In the cascade algorithm, the computed
input from the high level is considered as the output refer-
ence to be tracked at the low level. In contrast, the proposed
algorithms utilize the control action computed from the high
level, i.e., ū(h), to generate the possible reference profile with
model (2) in an open-loop fashion.

Remark 5: Note that an identifier-critic framework with an
event-triggered control mechanism was developed in [34] for
decentralized control of nonlinear interconnected systems with
input constraints. Our approach is different from [34] in the
following two aspects: 1) our approach focuses on enforcing
closed-loop separable dynamic behaviors rather than improv-
ing communication efficiency in [34] and 2) the information
exchanges between the controllers at both levels are allowed in
our approaches, in contrast to the decentralized control design
in [34].

C. Summary of the D-MPC Algorithm

In summary, the main steps for the on-line implementation
of the D-MPC are given in Algorithm 1.

Under Assumption 1, if (8) is feasible at k = 0
(
A[N]
)NH−1

D ⊕X s
F ⊆XF (17)

and at any time h ∈ [kN, kN + N − 2]

− AN−t−1D ⊕ LtÛt ⊆ �LtU ⊕ Lt+1Ût+1 (18)

where Lt = ∑N−1
i=t+1 AN−i−1B, �Lt = Lt − Lt+1, t = h − kN,

then the following results can be stated.
Theorem 1 (Recursive Feasibility and Convergence of

D-MPC):
1) The feasibility can be guaranteed.

a) For the high-level problem (8) at all slow time
instant k > 0.

b) For the low-level problem (13) at all fast time
instant h ≥ 0.

2) Moreover, if the disturbance d = 0, the asymptotic
convergence of the closed-loop system can be ensured.

a) The slow-time scale system (6)
enjoys the convergence property, i.e.,
limk→+∞(u[N](k), x[N](k), y[N](k)) = (ur, xr, yr).

b) Consequently, for the low-level problem (13),
it holds that limh→+∞ δu(h) = 0. Finally,
limh→+∞(u(h), x(h), y(h)) = (ur, xr, yr).

Remark 6: A convenient but conservative choice of Ût

in (15) can be made, via setting Ût = Û ∀ t = 1, . . . , N − 1.
As such, condition (18) can be replaced by

−MD ⊕ L̄Û ⊆ L̄U (19)

where M =∑N−1
j=0 Aj and L̄ =∑N−1

j=0 AjB.
Terminal constraint (16) in (13) plays a crucial role for guar-

anteeing the closed-loop property of D-MPC. However, as the
proposed control structure is an upper-bottom one, the com-
puted value of x̂[N]

f (k) at the high-level influences the control
performance at the low level due to (16). As a consequence, the
state x̂f (h) associated with ŷf (h) in the basic time scale might
not converge to its nominal value faster than x̂s(h), especially
for systems that exhibit nonseparable open-loop dynamics. We
solve this problem in the following section.

IV. INCREMENTAL D-MPC ALGORITHM

In this section, we design an Incremental D-MPC algorithm
to improve the control performance associated with the fast
output yf and to compensate for possible time-varying piece-
wise constant or smooth uncertainties.

A. Design of the Incremental D-MPC

In the following, we first focus on the redesign of the MPC
regulator at the high level. To this end, we partition the above-
sampled system as the one with the structure similar to (1).
To proceed, we rewrite matrices A[N], B[N], and vector d̃[N] into
the following forms:

A[N] =
[

A[N]
ss A[N]

sf
A[N]

fs A[N]
ff

]

, B[N] =
[

B[N]
ss B[N]

sf
B[N]

fs B[N]
ff

]

, d̃[N] =
[

d̃[N]
s

d̃[N]
f

]

where A[N]
ss ∈ R

ns×ns , B[N]
ss ∈ R

ns×ms , and d̃[N]
s ∈ R

ns .
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The sampled system (6) can be partitioned as two interacting
ones as follows:
⎧
⎨

⎩

x[N]
s (k + 1) = A[N]

ss x[N]
s (k)+ A[N]

sf x[N]
f (k)+ B[N]

ss u[N]
s (k)

+B[N]
sf u[N]

f (k)+ d̃[N]
s (k)

y[N]
s (k) = Cssx[N]

s (k)
(20a)

⎧
⎪⎨

⎪⎩

x[N]
f (k + 1) = A[N]

fs x[N]
s (k)+ A[N]

ff x[N]
f (k)+ B[N]

fs u[N]
s (k)

+B[N]
ff u[N]

f (k)+ d̃[N]
f (k)

y[N]
f (k) = Cff x[N]

f (k).
(20b)

The following assumption about (20b) is assumed to hold.
Assumption 3: Matrix Cff B[N]

ff is full rank.
With (20), with the goal of guaranteeing satisfactory con-

trol performance related to yf in the basic time scale, it is
convenient to enforce all the future predictions y[N]

f (k)∀k > 0
associated with (20b) being equal to the reference value yf ,r. In
this way, the real output yf resulting from controller (13) will
reach the reference yf ,r in only one slow time step. However,
this restriction might cause an infeasibility issue in case yf ,r

is far from its initial value yf (0) and constraints on the control
increments are enforced. For this reason, instead of imposing
y[N]

f (k) = yf ,r ∀k > 0, one can enforce the following relation:

y[N]
f (k) = ỹf ,r(k) ∀k > 0 (21)

where ỹf ,r(k) = yf (0) + α(k)(yf ,r − yf (0)), α(k) is defined
as an optimization variable and its value is restricted by 0 ≤
α(k) ≤ 1 and reaches 1 in finite time steps, i.e.,

⎧
⎨

⎩

α(0) = 0
0 ≤ α(k) ≤ 1, k ∈ [1, Nα)

α(k) = 1, k ≥ Nα

(22)

where Nα is a positive integer. As d̃[N]
f (k) is unknown at time

k, (21) can be slightly relaxed, i.e., we enforce ŷ[N]
f (k + j) =

ỹf ,r(k + j). In view of (20), it is required that

u[N]
f (k + j) = (Cff B[N]

ff )−1
(

ỹf ,r(k + j)− Cff

([
A[N]

fs A[N]
ff

]
x̂[N](k + j)

+B[N]
fs u[N]

s (k + j)
))

(23)

where x̂[N] is the predicted value of x[N]. Under constraint (23),
the time steps required for ŷ[N]

f = yf ,r can be defined via
properly tuning parameter Nα .

By substituting u[N]
f with (23) in (20), one can write the

one-step ahead state prediction at time k, i.e.,
{

x̂[N](k + 1) = Ã[N]x̂[N](k)+ B̃[N]
s u[N]

s (k)+ B̃[N]
f ỹf ,r(k)

ŷ[N]
s (k) = C̃sx̂[N](k)

(24)

where Ã[N] =
[

Ã[N]
ss Ã[N]

sf

Ã[N]
fs Ã[N]

ff

]

, B̃[N]
s =

[
B̃[N]

ss
B̃[N]

fs

]

, B̃[N]
f =

[
B̃[N]

sf

B̃[N]
ff

]

, C̃s =
[

Css

0

]�
, and

Ã[N]
ss = A[N]

ss − B[N]
sf (Cff B[N]

ff )−1Cff A[N]
fs

Ã[N]
sf = A[N]

sf − B[N]
sf (Cff B[N]

ff )−1Cff A[N]
ff

Ã[N]
fs = A[N]

fs − B[N]
ff (Cff B[N]

ff )−1Cff A[N]
fs

Ã[N]
ff = A[N]

ff − B[N]
ff (Cff B[N]

ff )−1Cff A[N]
ff

B̃[N]
ss = B[N]

ss − B[N]
sf (Cff B[N]

ff )−1Cff B[N]
fs

B̃[N]
fs = B[N]

fs − B[N]
ff (Cff B[N]

ff )−1Cff B[N]
fs

B̃[N]
sf = B[N]

sf (Cff B[N]
ff )−1

B̃[N]
ff = B[N]

ff (Cff B[N]
ff )−1.

Assumption 4: The integer N is such that (Ã[N], B̃[N]
s ) is

stabilizable.
To account for the model uncertainties, model (24) is

reformulated in an incremental form and used to define an
MPC including an integral action. In doing so, the closed-
loop system can compensate for the influences caused by
smoothly time-varying disturbances, see [35]. To this end,
letting ¯̂x[N](k) = (ŷ[N]

s (k), �x̂[N](k)), from (24) we compute
⎧
⎪⎪⎨

⎪⎪⎩

¯̂x[N](k + 1) = Ā[N] ¯̂x[N](k)+ B̄[N]
s �u[N]

s (k)
+B̄[N]

f �α(k)(yf ,r − yf (0))

α(k) = α(k − 1)+�α(k)
ŷ[N]

s (k) = C̄ ¯̂x[N](k)

(25)

where Ā[N] =
[

I C̃sÃ[N]

0 Ã[N]

]

, B̄[N]
s =

[
C̃sB̃[N]

s
B̃[N]

s

]

, B̄[N]
f =

[
C̃sB̃

[N]
f

B̃[N]
f

]

,

and C̄ = [I 0
]
.

Proposition 2: The pair (Ā[N], B̄[N]
s ) is stabilizable if and

only if

• rank

([
C̃sÃ[N] C̃sB̃[N]

s
Ã[N] − I B̃[N]

s

]�)
= n+ ps

• rank

⎛

⎜
⎝

⎡

⎣
2I 0

C̃sÃ[N] Ã[N] + I
C̃sB̃[N]

s B̃[N]
s

⎤

⎦

�⎞
⎟
⎠ = n+ ps.

Under Proposition 2, it is possible to find a gain matrix K̄s,H

such that F̄s,H = Ā[N] + B̄[N]K̄s,H is a Schur stable.
Note that, it is not straightforward to write constraints on

ū[N]
s and ū[N]

f using model (25). We are going to show that, in
line with [35], it is possible to represent control variables by
states in the incremental form, i.e.,

ū[N]
s (k) = �us

( ¯̂x[N](k + 1)− B̄[N]
f ỹf ,r

)

ū[N]
f (k) =

(
Cff B[N]

ff

)−1(
ỹf ,r(k)

− �uf

( ¯̂x[N](k + 1)− B̄[N]
f ỹf ,r

))
(26)

where �uf = Cff

[
A[N]

fs A[N]
ff B[N]

fs

]
�, �us =

[
0n Ims

]
�, and

� =
[

C̃sÃ[N] C̃sB̃[N]
s

Ã[N] − In B̃[N]
s

]−1

. In view of (4a), (4b), and (26), to

enforce constraints on (ū[N]
s (k), ū[N]

f (k)) ∈ Us × Uf , one can
use

Axx̄[N](k + 1)+ by ∈ Ū (27)

where Ax =
[
��us − ��uf

]�
, by =

[
−(�usB̄

[N]
f )� (Cff B[N]

ff )−� + ((Cff B[N]
ff )−1�uf B̄[N]

f )�
]�

ỹf ,r.
Based on (25) and (27), now we state the Incremental MPC

problem at the high level. At each slow time step k, we solve
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an optimization problem according to the receding horizon
principle as follows:

min−−−→
�u[N]

s (k:k+N̄H−1)

J̄H (28)

where

J̄H =
N̄H−1∑

i=0

∥
∥
∥ ¯̂x[N](k + i)− C̄�ys,r

∥
∥
∥

2

Q̄s,H
+ ∥∥�u[N]

s (k + i)
∥
∥2

R̄s,H

+ γ (α(k + i)− 1)2 +
∥
∥
∥ ¯̂x[N]

(
k + N̄H

)− C̄�ys,r

∥
∥
∥

2

P̄H
(29)

γ is a positive scalar, N̄H > Nα is the adopted prediction
horizon. The positive definite and symmetric weighting matri-
ces Q̄s,H ∈ R

(n+ps)×(n+ps) and R̄s,H ∈ R
ms×ms are free design

parameters, while P̄H is computed as the solution to the
Lyapunov equation

F̄�s,HP̄HF̄s,H − P̄H = −
(

Qs,H + K̄�s,HR̄s,HK̄s,H

)
. (30)

The optimization problem (28) is performed under the
following constraints.

1) Dynamics (25) with x̂[N](k) = x[N](k), constraints (22)
and (27).

2) The state terminal constraint

x̄[N](k + N̄H) ∈ X̄ s
F

where X̄ s
F ⊆ X̄F, the set X̄F is a positively invariant set for

the nominal system of (25), i.e.,

z(k + 1) = Ā[N]z(k)+ B̄[N]
s û(k) (31)

that is controlled with the stabilizing control law û(k) =
K̄s,H(z(k) − C̄�ys,r) such that F̄s,HX̄F ⊆ X̄F under con-
straint (27). The set X̄ s

F is selected such that: for any
z(k) ∈ X̄F, the successive state under the prescribed stabilizing
control law satisfies z(k + 1) ∈ X̄ s

F .

Let
−−→
�u[N]

s (k : k + N̄H − 1|k) be the optimal solution to
optimization (28). The real input u[N]

s (k) at time instant k is
given by u[N]

s (k) = u[N]
s (k−1)+�u[N]

s (k|k). Also, from (23), we
can compute the value of u[N]

f (k). Hence, the state x̂[N](k+1|k)
is available by applying u[N](k) = (u[N]

s (k), u[N]
f (k)) to (6).

In principle, the fast MPC problem described in the previous
section, i.e., (13) with cost (15), can be used for computing the
corrections of the control input in the fast time scale. We pro-
pose an improved version in the following. Slightly different
to (12) in (13), we use
{

�x̂(h+ i+ 1|h) = A�x̂(h+ i|h)+ B�u(h+ i|h)

ŷ(h+ i|h) = ŷ(h+ i− 1|h)+ C�x̂(h+ i|h)
(32)

h ∈ [kN, kN + N), to compensate for uncertainties.
Accordingly, at any fast time instant h = kN + t, letting¯̂x = (ŷ,�x̂), and ȳ = (ỹ∗, 0), the shrinking horizon MPC

problem can be solved at the low level, i.e.,

min−→
�u(h:(k+1)N−1)

J̄L (33)

J̄L =
N−t−1∑

j=0

‖¯̂x(h+ j|h)− ȳ(h+ j)‖2
Q̄
+ ‖�u(h+ j|h)‖2R (34)

Algorithm 2 On-Line Implementation of Incremental D-MPC

Initial condition x[N](0) = x(0), given Nα .
while for any k ≥ 0 do

h1) Compute �u[N]
s (k|k) by solving (28) with (29) and

update x̄[N](k + 1|k)
if (28) with (29) is infeasible then

Nα ← Nα + 1 and go back to step h1); see (22)
else

continue
end
h2) Calculate u[N]

f (k) from (23) with u[N]
s (k) = u[N]

s (k−1)+
�u[N]

s (k|k), apply the control u[N](k) = (u[N]
s (k), u[N]

f (k)) to
(38) and update x[N](k + 1|k)
h3) Generate output ỹ∗(h) from (2) with d(h) = 0 and
u(h) = u[N](�h/N�), for all h ∈ [kN, kN + N)

for h← kN to kN + N − 1 do
l1) Compute �u(h|h) using (33) with (34) and apply
u(h) = u(h− 1)+�u(h|h) to (2)
l2) Update x(h+1) and y(h+1), set x̂(h+1) = x(h+1),
ŷ(h+ 1) = y(h+ 1)

end
h4) k← k + 1

end

where Q̄ ∈ R
(n+p)×(n+p) is a positive-definite matrix. The

optimization problem (33) is performed under the following
constraints.

1) The dynamics (32).
2) The input constraint

u(h− 1)+�u(h|h) ∈ U

u(h− 1)+
j∑

i=0

�u(h+ i|h) ∈ Ût, ∀ j = 1, . . . , N − t − 1.

(35)

3) The state terminal constraint

x̂(kN + N|h) = x̂[N](k + 1|k). (36)

It is noted that constraints (35) and (36) can be rewritten fol-
lowing the line of (27), but the design steps are neglected for
the sake of simplicity.

B. Summary of the Incremental D-MPC Algorithm

To better clarify the requirements for implementing
Incremental D-MPC and its difference with the D-MPC,
the main steps for the on-line implementation are given in
Algorithm 2.

Under Assumptions 1–4, if (28) is feasible at k = 0
(
Ā[N]
)N̄H−1

ED ⊕ X̄ s
F ⊆ X̄F (37)

where E = [C̃�s I�
]�

, and (18) is satisfied, then the following
results hold for the Incremental D-MPC.

Theorem 2 (Recursive Feasibility and Convergence of
Incremental D-MPC):

1) The feasibility can be guaranteed.
a) For the high-level problem (28) at all slow time

instant k > 0.
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b) For the low-level problem (33) at all fast time
instant h ≥ 0.

2) Moreover, if the disturbance d is constant, the asymp-
totic convergence of the closed-loop system can be
ensured.

a) The slow-time scale system (25)
enjoys the convergence property, i.e.,
limk→+∞(x̄[N](k), �u[N]

s (k)) = (C̄�ys,r, 0).
Consequently, limk→+∞(x[N](k), u[N](k)) =
(xr, ur).

b) For the low-level problem (33), it holds
that limh→+∞�u(h) = 0. Finally,
limh→+∞(u(h), x(h), y(h)) = (ur, xr, yr).

V. SIMULATION EXAMPLE

In this section, simulation results on a realistic BT system
with extensive comparisons in different domains are reported,
including comparisons in the nominal and perturbed scenarios.

A. Description of the BT Model

A 160 MW BT system in [36] is considered and its dynamic
diagram is presented in Fig. 3. The input variables applied to
the boiler are the fuel flow qf (kg/s) and feedwater flow qw

(kg/s), while the controlled variables of the boiler are drum
pressure P (kg/cm2) and water level L (m). The control and
controlled variables of the turbine are the steam control qs

(kg/s) and the electrical power output Q (MW). Typically, the
goal of BT control is to regulate the electrical power to meet
the load demand profile meanwhile minimizing the variations
of internal variables, such as water level and drum pressure
within their safe sets. Moreover, drum pressure must also be
controlled properly in the operation range to respond to possi-
ble turbine speed changes caused by load demand variations.
Many works have been addressed at this point focusing on
deriving satisfactory closed-loop control performance of elec-
trical power plants; see [37], [38], [39], [40], [41]. In this
scenario, the control related to the output variables, such as
electrical power and drum pressure is a major issue that must
be tackled properly to respond to frequent load demand vari-
ations. At the same time, the water level can be adjusted
smoothly under its constraint with the possibility to follow its
desired value. Hence, it is reasonable to apply the proposed
dual-level control algorithms in this scenario.

In the considered system [36], the state variables are
ρ, P, and Q, where ρ is the fluid density (kg/cm3) that
establishes a static mapping to the water level. The con-
trol variables are limited by 0 ≤ qf , qw, qs ≤ 1 and their
rate constraints are also considered, i.e., −0.007 ≤ q̇f ≤
0.007, −2 ≤ q̇s ≤ 0.2, −0.05 ≤ q̇w ≤ 0.05. The lin-
earized model at an operation point (ρr, Pr, Qr) = (513.6,

129.6, 105.8), (qw,r, qf ,r and qs,r) = (0.663, 0.505, 0.828)

is considered as the controlled model, i.e.,
{

ẋ = Ax+ Bu
y = Cx

(38)

where C = I, the state and output variables are y = x =
(ρ − ρr, P − Pr, Q − Qr), while the input variables are u =

Fig. 3. Diagram of the BT dynamics.

Fig. 4. Unitary impulse response of the BT dynamics.

(qw − qw,r, qf − qf ,r, qs − qs,r). The unitary step response
of (38) is presented in Fig. 4, which displays that the system
outputs are strongly coupled, and the dynamics are not strictly
separable.

B. Design of the D-MPC and Incremental D-MPC
Regulators

In order to implement the proposed dual-level control
algorithms, the system’s continuous-time model (38)
was sampled with �t = 1 s to derive model
(1), where the input, state, and output variables associ-
ated with (1a) to be controlled smoothly were chosen as
us = qw − qw,r, xs = ρ − ρr, and ys = xs, while the corre-
sponding ones associated with (1b) to be controlled promptly
were uf = (qf − qf ,r, qs − qs,r), xf = (P− Pr, Q− Qr), and
yf = xf . The resulting model was resampled with N = 20 to
obtain (6) and (20) to be used at the high level.

1) Design of the D-MPC Regulator:
1) The high-level MPC (8) with cost (9) was implemented

with QH = I and RH = diag{2, 20, 20}, and the
prediction horizon was set as NH = 20. The control gain
matrix KH was selected by solving an infinite horizon LQ
problem. The terminal penalty PH was calculated accord-
ing to (10). The terminal set was chosen according to
the algorithm described in [42].

2) The low-level shrinking horizon MPC (13) with
cost (14) was designed with Q = I and R =
diag{1, 1, 10}.

2) Design of the Incremental D-MPC Regulator:
1) The high-level MPC (28) with cost (29) was imple-

mented with Nα = 2 (see Algorithm 2), Q̄H = I, R̄H =
diag{2, 20, 20}, and the prediction horizon was set as
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TABLE I
TUNING PARAMETERS OF THE DECENTRALIZED PIDS

N̄H = 20. The control gain matrix K̄S,H was selected by
solving the corresponding infinite horizon LQ problem.
The terminal penalty was calculated according to (10).
Likewise, the terminal set was chosen according to the
algorithm described in [42].

2) The low-level shrinking horizon MPC (33) with
cost (34) was designed with Q̄ = I and R =
diag{1, 1, 10}.

C. Simulation Results: Control of the Linear Nominal Model

The proposed dual-level control algorithms were applied to
the linear BT system by solving an output reference tracking
problem. The output set-point yr = (10, 2,−2) was initially
considered; while at time t = 400 s, the reference value was
reset according to a new load profile, i.e., yr = (5, 1, 4). The
dual-level control algorithms were implemented from null ini-
tial conditions. In the following, the designs of the adopted
comparative controllers are described.

1) Design of the Multirate MPC [29]: Note that, due to
the usage of FIR, the model used in [29] must be strictly
stable. However, the considered system has a pole on the uni-
tary circle. Hence, a feedback compensator us = kys + v
was used, where v is an auxiliary control input calculated
by the MPC, k is chosen as k = −0.005. For a fair com-
parison, the design parameters Qs and Rs were selected
coincident with the proposed MPC algorithms, i.e., Qs =
diag{1, 2, . . . , 2, 20, . . . , 20}, Rs = 2.

2) Design of the Single-Layer MPC [43]: Two single-layer
stabilizing MPC algorithms were designed to work in slow
and fast time scales, respectively. The sampling periods were
chosen as �t = 20 s and �t = 1 s, respectively; and the
prediction horizon values were chosen as NH and N, respec-
tively. The design parameters Q and R are the same as that at
the high level of the D-MPC.

3) Design of the Decentralized PID Controller: The decen-
tralized PIDs, one for each input/output pair, were designed
with all the selected tuning parameters listed in Table I.

4) Simulation Results: All the comparative simulation
experiments were implemented within the MATLAB environ-
ment in a Laptop with Intel Core i9-9880H 2.30-GHz running
Windows 10 operating system. Also, the MPC algorithms
were implemented with an additional Yalmip toolbox [44]
in the MATLAB environment. The simulation results were
reported in Figs. 5–7. As shown in Fig. 5, after an initial
transient, inputs, and outputs return to their nominal values,
until the change of the reference occurs when the D-MPC
algorithms and single-layer MPC algorithms properly react to
bring the input and output variables to their new steady-state
values, while the multirate MPC and decentralized PIDs react
more slowly to reference variations. Note that the proposed

Fig. 5. Output and control variables of the controlled linear model.

Fig. 6. Comparison of variations of cumulative square regulation errors
among all the controllers in the nominal scenario: The proposed D-MPC
and Incremental D-MPC have gained the smaller regulation costs of the fast
(crucial) output yf at the expense of larger ones of the slow (less crucial)
output ys.

dual-level algorithms exhibit better control performances than
other approaches for the crucial pair (uf , yf ), while the fast
MPC performs the best for the pair (us, ys) which in fact can be
controlled smoothly in the considered problem. In Fig. 6, the
cumulative square regulation errors Js =∑Nsim

i=1 ‖ys(i)−ys,r‖2,
and Jf = ∑Nsim

i=1 ‖yf (i) − yf ,r‖2 with Nsim = 800 are dis-
played for all the approaches. The results show that, the
proposed algorithms result in smaller values of cost Jf than
other approaches at the expense of a larger cost on Js. The
cost Js with the fast MPC is the lowest but at the expense
of a larger cost on Jf , i.e., a degradation of the control
performance on (uf , yf ). Also, the cost Jf with the Incremental
D-MPC is smaller than that with the D-MPC at the price of
a slightly larger Js. In other words, the proposed D-MPC and
Incremental D-MPC show strong points in imposing separa-
ble closed-loop dynamics, i.e., controlling the pair (uf , yf )

promptly while regulating the less crucial pair (us, ys) in a
smoother fashion. Also, the Incremental D-MPC outperforms
the D-MPC in this respect. As for computational resources,
the average computational time values of the proposed algo-
rithms are slightly smaller than that of the fast MPC in the
nominal scenario (see Fig. 7).



ZHANG et al.: D-MPC SCHEME FOR MULTITIMESCALE DYNAMICAL SYSTEMS 1639

Fig. 7. Computational time comparison. The computational time values of
the proposed algorithms are smaller than those of the fast single-layer MPC
algorithms.

D. Simulation Results: Control of the Linear Model With
Uncertainties

To further verify the capability of the proposed algorithms
in dealing with disturbances. A bounded unknown step-wise
disturbance, i.e., (−0.2, 0.05,−0.1) ≤ d ≤ (0.2, 0.1, 0.1),
was added to the discretized model of (38); see Fig. 8. In
the proposed controller, the control constraints were properly
tightened according to (18) and the terminal constraint was
computed according to [45]. For comparison, the multirate
MPC [29], two single-layer robust MPC regulators in [46],
the decentralized PID controller, and the sliding mode con-
troller (SMC) in [47] were used. In the robust MPC algorithms,
the design parameters were chosen similar to the nominal
MPC algorithms, except that the control constraints were tight-
ened according to the robust invariant set for real constraint
satisfaction under perturbations, and the optimization on the
initial nominal state was considered (see [46]). In the SMC,
all the parameters are fine-tuned according to the design pro-
cedures in [47]. In the simulation tests, the output set-point
regulation with yr = (10, 2,−2) was considered. The corre-
sponding simulation results are presented in Figs. 9 and 10.
The results show that, the proposed Incremental D-MPC can
realize offset-free control for all the outputs, which is not yet
realized by the D-MPC, the multirate MPC, the robust MPC
approaches, the PIDs, and the SMC, since most of the cumu-
lative costs are still increasing at the terminal simulation time
(see Fig. 10). Also, the multirate MPC is early terminated
due to the infeasibility issue caused by disturbances. In other
words, the proposed approaches, especially the Incremental D-
MPC, outperform the multirate MPC, robust MPC algorithms,
decentralized PIDs, and SMC, in enforcing satisfactory con-
trol performance for the pair (uf , yf ) (see again Fig. 10). Also,
the average computational time values with the proposed algo-
rithms are slightly smaller than that of the fast robust MPC
(see Fig. 7).

For completeness, the proposed controllers were applied
to the original nonlinear systems and compared with clas-
sic nonlinear MPC algorithms and the SMC in [47]. The
implementing steps and simulation results are neglected here
for space limitations, interested readers may refer [48] for
a detailed report. The simulation results have verified the
effectiveness of the proposed approaches.

Fig. 8. Disturbances on the linear model.

Fig. 9. Output and control variables of the controlled linear model with
uncertainties.

Fig. 10. Comparison of variations of cumulative square regulation
errors among different controllers in the perturbed scenario: The proposed
Incremental D-MPC is the only one that has realized offset-free control at
both the fast and slow control channels. Note that the Incremental D-MPC
has gained the smallest tracking cost of the fast (crucial) output yf at the
expense of the largest one of the slow (less crucial) output ys.

E. Discussion

As shown in the above simulation tests, the proposed
algorithms, especially Incremental D-MPC, have fulfilled the
considered control objective, i.e., generating satisfactory fast
dynamics for the fast (crucial) pair (uf , yf ) and smooth dynam-
ics for the slow (less crucial) pair (us, ys) (see Figs. 6 and 10).
The goal on the pair (uf , yf ) is enforced at the expense of
the performance degradation on the pair (us, ys). However, the
above control objective is not well met by the single-layer fast
MPC algorithms working in the basic time scale (see again
Figs. 6 and 10), where in contrast, the control performances
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on the less crucial (us, ys) are the best ones among all the
controllers. Note that the proposed algorithms might not out-
perform the single-layer MPC algorithms when the overall
control performance is a major concern, which is not in the
scope of this article. The computational time values of the
proposed algorithms are slightly smaller than that of the fast
MPC algorithms, due to the shrinking horizon strategy used
in the basic time (see Fig. 7).

Different from output-feedback controllers, the proposed
approaches do not rely on an observer for estimating distur-
bances. The simulation results in Figs. 9 and 10 show that
the proposed approaches are robust to time-varying distur-
bances, and the Incremental D-MPC can realize offset-free
control under unknown time-varying piece-wise disturbances.
One possible limitation of the proposed algorithms lies in the
boundedness assumption of the disturbances for the recursive
feasibility guarantee of constrained control problems.

VI. CONCLUSION

In this article, two D-MPC control algorithms have been
proposed for linear multitimescale systems with input con-
straints. The proposed MPC algorithms rely on clear time
separation, so allow to deal with control problems in differ-
ent channels. In view of their main properties, the proposed
algorithms are, based on the MPC solution with a dual-level
structure, suitable not only to cope with the control of singu-
larly perturbed systems but also to impose different closed-
loop dynamical performance for systems with nonseparable
open-loop dynamics.

The recursive feasibility and convergence of the proposed
D-MPC and Incremental D-MPC are proven under suitable
assumptions. The effectiveness of the proposed algorithms
is tested rigorously in different simulation scenarios, includ-
ing numerous comparisons with different classic controllers.
The simulation results show that both the proposed D-MPC
and Incremental D-MPC are effective in imposing closed-loop
separable dynamics and can deal with unknown bounded time-
varying disturbances. Also, the latter can obtain offset-free
control under unknown and time-varying step-wise distur-
bances without using a disturbance estimator.

Future work will extend the proposed framework to solving
multirate control problems for large-scale dynamical systems,
possibly relying on a cloud-edge computing structure; and
apply the proposed approaches to multiagent control systems.

APPENDIX

A. Proof of Proposition 1

According to the PBH detectability rank test, the pair (A, C)

is detectable if and only if rank(
[
λI − A� C�

]�
) = n ∀ λ ∈ C

and |λ| ≥ 1. An equivalent form to this condition is that v = 0
is the unique solution to the following linear equations:

{
Av = λv
Cv = 0

(39)

∀ λ ∈ C and |λ| ≥ 1. From (39), v = 0 is the unique solution
to λi−1Av = λiv, Cv = 0∀ i ∈ N+, which is Aiv = λiv, Cv =

0∀ i ∈ N+. In view of this, recalling that (A, C) is detectable,
it holds that v = 0 is the only solution to

{
A[N]v = μv

Cv = 0

where μ = λN , which implies (A[N], C) is observable for all
the modes that their poles |λ| ≥ 1. Hence, Proposition 1 holds.

B. Proof of Theorem 1

1) Recursive Feasibility of the D-MPC [i.e., High-
Level Problem (8) and Low-Level Problem (13)]: As the
problem (8) is assumed to be feasible at time k = 0, one can
prove the closed-loop recursive feasibility by verifying that:
if (8) is feasible at any time k, then:

1) the low-level problem (13) is feasible at any fast time
h ∈ [kN, kN + N);

2) also, the high-level problem (8) is feasible at the subse-
quent slow time instant k + 1.

First, we show that condition 1) can be verified. To proceed,
we assume that the high-level problem (8) is feasible at time
k, and δu(kN), . . . , δu(h|h), . . . , δu(kN+N−1|h) is a feasible
solution at time h ∈ [kN, kN + N − 2] and the terminal state
constraint is verified. Letting h = kN + t, one has

x̂[N](k + 1|k) =
N−1∑

i=0

AiBu(kN + i|h)+ ANx(kN)

+
t−1∑

i=0

AN−i−1d(kN + i). (40)

One can also write at time h+ 1

x̂(kN + N|h+ 1) =
N−1∑

i=0

AiBu(kN + i|h+ 1)+ ANx(kN)

+
t∑

i=0

AN−i−1d(kN + i). (41)

To ensure the recursive feasibility, it is required to enforce
x̂(kN + N|h + 1) = x̂[N](k + 1|k). By the difference of (41)
and (40), leads to

N−1∑

i=t+1

AN−i−1Bu(kN + i|h+ 1) = −AN−t−1d(h)

+
N−1∑

i=t+1

AN−i−1Bu(kN + i|h) ∈ �LtU ⊕ Lt+1Ût+1 (42)

in view of condition (18). Hence, the recursive feasibility at
the low level follows.

As for 2), first note that, one can compute the gap between
the real state and the predicted one, i.e.,

x[N](k + 1)− x̂[N](k + 1|k) = d̃[N](k). (43)

Note that, x̂(kN + N|kN + N − 1) = x̂[N](k + 1) and x(kN +
N)− x̂(kN +N|kN +N − 1) = d(kN +N − 1). One promptly
has

d̃[N](k) = d(kN + N − 1).
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Hence, one can also compute

x̂[N](k + NH|k)− x̂[N](k + NH|k + 1) = (A[N]
)NH−1

d(kN + N − 1).

(44)

Assume that at any slow time instant k the optimal control
sequence of (8) can be found, i.e.,

−→
u[N](k : k + NH − 1|k) =

(u[N](k|k), . . . , u[N](k + NH − 1|k)) such that x[N](k + NH|k) ∈
X s

F . Let the input sequence
−−→
u[N],s(k + 1 : k + NH|k + 1) =

(u[N](k+1|k), . . . , u[N](k+NH−1|k), KH(x[N](k+NH|k)−xr)+
ur) be a candidate choice at the next time instant k + 1. As
condition (17) is assumed, it holds that x̂(k+NH|k+1) ∈XF.
Consequently, x̂(k + NH + 1|k + 1) ∈ X s

F can be verified in
view of the definitions of KH and X s

F . Hence, the recursive
feasibility of (8) follows.

2) Convergence of the Closed-Loop System: We first prove
the convergence of the high-level problem (8). As the distur-
bance d = 0, it holds that x̂ = x, ŷ = y. Denote by Jo

H(x[N](k))

the optimal cost associated with
−→
u[N](k : k+NH − 1|k) at time

k and by Js
H(x[N](k+ 1|k)) the suboptimal cost associated with−−→

u[N],s(k + 1 : k + NH|k + 1) at time k + 1. One can compute

Js
H(x[N](k + 1|k))− Jo

H(x[N](k))

= −
(
‖y[N](k)− yr‖2QH

+ ‖u[N](k|k)− ur‖2RH

)

+ ∥∥x[N](k + N|k)− xr
∥
∥2

F�H PHFH−PH+C�QHC+K�H RHKH=0.

(45)

In view of (10) and of Jo
H(x[N](k+ 1|k)) ≤ Js

H(x[N](k+ 1|k))
and from (45), one has

Jo
H(x[N](k + 1|k))− Jo

H(x[N](k))

≤ −
(
‖y[N](k)− yr‖2QH

+ ‖u[N](k|k)− ur‖2RH

)
(46)

which implies that Jo
H(x[N](k+ 1|k))− Jo

H(x[N](k)) converges to
zero. Moreover, from (46), one has Jo

H(x[N](k)) − Jo
H(x[N](k +

1|k)) ≥ ‖y[N](k)− yr‖2QH
+ ‖u[N](k|k)− ur‖2RH

, then ‖y[N](k)−
yr‖2QH

+ ‖u[N](k|k) − ur‖2RH
→ 0. Recalling the defini-

tions of QH and RH , one has limk→+∞ y[N](k) = yr and
limk→+∞ u[N](k) = ur. In view of Proposition 1, consequently
limk→+∞ x[N](k) = xr.

As for the convergence of the low-level problem (13),
assume that the high-level system variables have reached their
reference values, i.e., u[N](k) ≡ ur x[N](k) ≡ xr, y[N](k) ≡ yr.
Define δx(k) = x(kN)− xr and δy(k) = y(kN)− yr. Along the
same line in [30], in view of dynamics (12) at time instant
h = kN, the low-level dynamics at the slow time scale is
defined as follows:

{
δx(k + 1) = ANδx(k)+ w(k)
δy(k) = Cδx(k)

(47)

where w(k) = ∑N−1
j=0 AN−j−1Bδu(kN + j). Since δx(k) =

0∀k ≥ 0 [due to (16)], it holds that w(k) = 0.
In view of the cost function at the low level, the
null sequence

−→
δu(h:(k + 1)N − 1) = 0 solves the

problem (8), which implies that limh→+∞ δu(h) = 0 and
limh→+∞ u(h) = ur. Finally, limh→+∞ y(h) = yr and
limh→+∞ x(h) = xr.

C. Proof of Proposition 2

According to the PBH stabilizability rank test,
the pair (Ā[N], B̄[N]

s ) is stabilizable if and only if
rank(

[
λI − Ā[N] B̄[N]

s

]
) = n + ps, for λ ∈ C and |λ| ≥ 1. An

equivalent form to this condition is that v = 0 is the unique
solution to the following linear equations:

{(
Ā[N]
)�

v = λv
(
B̄[N]

s

)�
v = 0

(48)

where λ ∈ C and |λ| ≥ 1.
In view of (25), it is possible to write (48) in the form

⎡

⎣
I − λI 0
C̃sÃ[N] Ã[N] − λI
C̃sB̃[N]

s B̃[N]
s

⎤

⎦

�

v = 0. (49)

Since (Ã[N], B̃[N]
s ) is stabilizable by Assumption 4, it is obvious

to see that for |λ| > 1, v = 0 is the unique solution to (49).
For λ = 1, v = 0 is the unique solution to (49) if and only if

rank

([
C̃sÃ[N] Ã[N] − I
C̃sB̃[N]

s B̃[N]
s

]�)
= n+ ps.

As for λ = −1, v = 0 is the unique solution to (49) if and
only if

rank

⎛

⎜
⎝

⎡

⎣
2I 0

C̃sÃ[N] Ã[N] + I
C̃sB̃[N]

s B̃[N]
s

⎤

⎦

�⎞
⎟
⎠ = n+ ps.

D. Proof of Theorem 2

1) Recursive Feasibility of the Incremental D-MPC [High-
Level Problem (28) and Low-Level Problem (33)]: As Nα is
assumed to be reachable by Algorithm 2 such that (28) is
feasible at time k = 0, along the same line of Appendixes-A
and -B, we first prove the recursive feasibility for problem (33)
in the fast time scale. To this end, note that (33) is feasible at a
time instant h ∈ [kN, kN+N) means that one can find the can-
didate control sequence �u(kN), . . . , �u(h|h), . . . , �u(kN +
N − 1|h) such that the terminal state constraint is verified. In
line with Appendix, the above condition requires (42), which
can be verified in view of (18). Hence, the recursive feasibility
at the low level follows.

As for a sketch of proof for the feasibility at the high level,
first note that, one can compute

�x[N](k + 1)−�x̂[N](k + j|k) = x[N](k + 1)− x̂[N](k + 1|k)
= d(kN + N − 1). (50)

Recalling that x̄[N] = (y[N]
s , �x[N]), one also has

¯̂x[N]
(
k + N̄H|k

)− ¯̂x[N]
(
k + N̄H|k + 1

) = (Ā[N]
)N̄H−1

Ed(kN + N − 1).

(51)

Let assume at time k that the optimal control sequence (8) is
found, i.e.,

−−→
�u[N]

s (k : k+N̄H−1|k) = (�u[N]
s (k|k), . . . ,�u[N]

s (k+
N̄H − 1|k)) such that constraint (27) is fulfilled and¯̂x[N](k + N̄H|k) ∈ X̄ s

F . Noting the fact that N̄H ≥ Nα ,

one has α(k + N̄H) = 1∀k ≥ 0. Let
−−−→
�u[N],s

s (k +
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1 : k + N̄H + 1|k + 1) = (�u[N]
s (k + 1|k), . . . ,

�u[N]
s (k + N̄H − 1|k), K̄s,H(x̄[N](k + N̄H|k) − C̄�ys,r)) be the

candidate input sequence at the next time instant k + 1. As
condition (37) is assumed, it holds that ¯̂x(k+ N̄H|k+1) ∈ X̄F.
In view of this, ¯̂x(k + N̄H + 1|k + 1) ∈ X̄ s

F can be verified in
view of the definitions of K̄s,H and X̄ s

F . Hence, the recursive
feasibility of (28) follows.

2) Convergence of the Incremental D-MPC: In view
of (22) and the feasibility result of (28) under d being con-
stant, along the same line of Appendixes-A and -B, one can
compute

J̄o
H

(
x̄[N](k + 1|k))− J̄o

H

(
x̄[N](k)

)

≤ −
(
‖x̄[N]

s (k)− C̄�ys,r‖2Qs,H
+ ‖�u[N]

s (k|k)‖2Rs,H

)
(52)

where J̄o
H is the optimal cost. Equation (52) implies that

J̄o
H(x̄[N](k+1|k))− J̄o

H(x̄[N](k)) converges to zero. Consequently,
it holds that ‖x̄[N]

s (k) − C̄�ys,r‖2Q̄H
+ ‖�u[N]

s (k|k)‖2
R̄H
→ 0 as

well. Recalling the definitions of Q̄H and R̄H , it holds that
limk→+∞ x̄[N]

s (k) = C̄�ys,r and limk→+∞�u[N]
s (k) = 0.

Consequently, one has limk→+∞ y[N](k) = yr,
limk→+∞ u[N]

s (k) = const. In view of Proposition 1, it promptly
follows that, limk→+∞ x[N](k) = xr, limk→+∞ u[N]

s (k) = us,r.
The arguments for the results limh→+∞�u(h) = 0,
limh→+∞ y(h) = yr are similar to Appendixes-A
and -B. Consequently, one has limh→+∞ x(h) = xr, and
limh→+∞ u(h) = ur.
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