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Ankle Joint Torque Prediction Using an NMS
Solver Informed-ANN Model and

Transfer Learning
Longbin Zhang , Xueyu Zhu , Elena M. Gutierrez-Farewik , and Ruoli Wang

Abstract—In this work, we predicted ankle joint torque by
combining a neuromusculoskeletal (NMS) solver-informed
artificial neural network (hybrid-ANN) model with transfer
learning based on joint angle and muscle electromyography
signals. The hybrid-ANN is an ANN augmented with two
kinds of features: 1) experimental measurements – mus-
cle signals and joint angles, and 2) informative physical
features extracted from the underlying NMS solver, such
as individual muscle force and joint torque. The hybrid-
ANN model accuracy in torque prediction was studied in
both intra- and inter-subject tests, and compared to the
baseline models (NMS and standard-ANN). For each pre-
diction model, seven different cases were studied using
data from gait at different speeds and from isokinetic ankle
dorsi/plantarflexion motion. Additionally, we integrated a
transfer learning method in inter-subject models to improve
joint torque prediction accuracy by transferring the learned
knowledge from previous participants to a new participant,
which could be useful when training data is limited. Our
results indicated that better accuracy could be obtained
by integrating informative NMS features into a standard
ANN model, especially in inter-subject cases; overall, the
hybrid-ANN model predicted joint torque with higher accu-
racy than the baseline models, most notably in inter-subject
prediction after adopting the transfer learning technique.
We demonstrated the potential of combining physics-based
NMS and standard-ANN models with a transfer learning
technique in different prediction scenarios. This procedure
holds great promise in applications such as assistance-as-
needed exoskeleton control strategy design by incorporat-
ing the physiological joint torque of the users.

Index Terms—Neuromusculoskeletal model, neural net-
works, generalizability, transfer learning.
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I. INTRODUCTION

EXOSKELETONS have been extensively investigated for
their potential to regain lost motor function in persons

with motor disorders [1], [2], [3]. During exoskeleton-assisted
rehabilitation training, users’ active participation is essential to
stimulate neuromuscular recovery [4], [5]. Therefore, one of the
most important characteristics of exoskeleton control strategies
is whether the exoskeleton can provide appropriate assistive
torque to adapt to the users’ remaining muscle function [6].
In recent years, research in exoskeleton control strategies that
incorporate the user’s torque capacity in their assistance design
has grown exponentially, as this approach encourages users’
active participation in promoting motor recovery [7].

Among the approaches to predict joint torque, physics-based
methods are common. For instance, Durandau et al. [8] inves-
tigated a real-time electromyography (EMG)-driven neuromus-
culoskeletal (NMS) model to establish the transformations from
EMG signals to mechanical joint torque production in intact
humans. They could robustly compute forces in thirteen muscle-
tendon units and three joint torques (knee extensor/flexor, an-
kle plantarflexor/dorsiflexor and subtalar pronator/supinator)
simultaneously. EMG-driven NMS models typically require
domain knowledge to explicitly model the relationships among
variables, for instance, muscle active and passive force-length
relationship, muscle force-velocity relationship, and joint angle-
musculotendon kinematics relationships. In general, it could
be labor- and time-consuming to set up/calibrate the models
in sophisticated steps. In addition, physics-based NMS models
only make a rough estimation of joint dynamics, and the quality
of EMGs may be affected by cross-talk and sensor placement.
Other studies, such as EMG-assisted NMS models, have been in-
vestigated to further improve the prediction accuracy of models
by incorporating optimization of muscle-tendon parameters, that
result in estimated muscle excitations that better track measured
joint torque [9], [10]. However, obtaining adjusted parameters
in real-time predictions remains a challenging problem.

Artificial neural networks (ANN) have frequently been used to
predict joint torque due to their functionality and approximation
accuracy. An ANN has computational units of multiple layers
that emulate the human neuronal synapse system in the brain by
considering each node as an artificial neuron, thereby creating
an ability to process complex and non-linear information [11],
[12], [13], [14]. Pena et al. [15] used an ANN as an alternative
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method to an NMS model to estimate the mappings between
EMG and torque in the control strategy of an active knee orthosis.
They found that, compared to the NMS model, the ANN-based
model had higher prediction accuracy. ANN is undoubtedly
considered to be a powerful tool to identify the relationships
between variables and output and/or to search for established
patterns in data. However, an ANN is a black-box model with no
concept of underlying mechanisms between variables, and thus
might not be able to provide a reliable prediction for data that
is outside of the training distribution [16], particularly when the
amount and variation of training data are limited. To leverage the
advantages of ANNs, a few recent studies have incorporated neu-
ral networks into physics-based models, for various applications
such as to enhance a model’s prediction capability and facilitate
neuromusculoskeletal modelling. Zhang et al. [17] constructed
a neural network with informative features extracted from spec-
trum reconstruction solvers to model the spectrum of colloidal
quantum dot spectrometers. They showed better reconstruction
accuracy and robustness with the hybrid model, attributed to
the solver-informed features. In a recent review paper, Saxby
et al. [18] proposed how physics-based simulation integrating
with machine learning methods from Big Data could be used
to facilitate neuromusculoskeletal modeling, and recommend
combining personalized neuromusculoskeletal model features
and Big Data/machine learning methods for future research.
Inspired by the above work, we recently incorporated infor-
mative features from an NMS model into a standard-ANN in
ankle torque prediction during gait and isokinetic motions [19].
Our results in intra-subject prediction demonstrated that the
combined model overall predicted joint torque better than both
the NMS and the standard-ANN, demonstrating the benefits
of incorporating informative features from physics-based NMS
solver into a standard-ANN. However, the generalizability of
models in inter-subject prediction has not been further analyzed.

Inter-subject model generation in limb-joint torque prediction
is often a challenging task. The NMS model must first be
calibrated with individual experimental test to acquire person-
alized parameters, for instance, optimal fiber length, maximum
isometric force, and tendon slack length; then the personalized
model can be used to estimate muscle forces and joint torque. As
a result, one can expect poor generalization of NMS models for
inter-subject prediction. In contrast, the ANN’s generalizability
is mostly determined by the size of the network, given enough
training data and sufficient training. However, when the training
data is limited, generalizability will typically face a performance
drop when the data is outside of the training distribution [16].

Recently, transfer learning has been adopted to improve gen-
eralizability, especially with limited data [20], [21]. Jayaram
et al. [22] proposed a framework for transfer learning in a brain-
computer interface that could be applied to any desired spatio-
temporal feature space based on electroencephalogram signals.
Their results showed that this approach outperformed other
comparable methods in dealing with both session-to-session
(inter-session) and subject-to-subject (inter-subject) variability.
Karri et al. [23] fine-tuned a pre-trained convolutional neural
network, GoogLeNet, a model on the ImageNet database, to
improve its prediction capability in identifying optical coherence

Fig. 1. Experiments. (a) Gait; (b) Isokinetic ankle dorsi/plantarflexion
motions.

tomography images with pathology. These authors illustrated the
adaptation of GoogLeNet for image classification for faster con-
vergence using less data for training. By leveraging knowledge
from a pre-trained neural network on previous experiences/data,
a new neural network with good performance can be obtained
using relatively fewer samples. Therefore, the transfer learning
technique is a potential method to improve the generalizability
of joint torque prediction in inter-subject models.

The aims of this work were to investigate ankle torque predic-
tion accuracy of an NMS solver-informed ANN in both intra-
and inter-subject predictions. Since the training data for some
subjects can often be limited, we adopted a transfer learning
technique to further improve the model’s prediction accuracy
by using the knowledge acquired from previous experiences,
particularly for inter-subject prediction.

II. METHODS

A. Experimental Setup

Ten able-bodied participants (sex: 4F/6 M; age: 26 ± 3 years;
weight: 70.4 ± 11.5 kg; height: 175.1 ± 8.5 cm) were recruited
among acquaintances and colleagues. The Swedish Ethical Re-
view Authority approved this study (Dnr. 2016/286-32) and all
participants gave informed written consent. All subjects were
asked to perform three types of movements specifically walking,
isokinetic ankle plantarflexion, and isokinetic ankle dorsiflexion.
During walking, experimental data was recorded at self-selected,
slow, and fast speeds (Fig. 1). The isokinetic ankle movements
(both plantarflexion and dorsiflexion) were performed at two
different speeds: 60◦/s and 90◦/s. Surface EMG signals (Noraxon
Inc., AZ, USA) of gastrocnemius medialis (GM), tibialis anterior
(TA), and soleus (SOL) of each subject’s right leg were collected
at 3000 Hz, with electrodes placed according to European rec-
ommendations for surface EMGs [24].

In gait, each subject was instructed to walk at a self-selected
speed (1.13 ± 0.09 m/s), then to synchronize steps according to
a metronome set to 100 beats/min (slow, 1.08 ± 0.07 m/s), and
120 beats/min (fast, 1.33± 0.08 m/s) along an instrumented 9-m
walkway. At least 3 trials with valid force plate data during walk-
ing at each speed were collected. One full stance cycle of gait in
each trial was later used for model calibration/training. Marker
trajectories were measured by a 3D motion capture system
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Fig. 2. Schematic structure of an NMS model consisting of four com-
ponents: the muscle activation dynamics compute muscle activation
level with collected EMGs; the muscle contraction dynamics calcu-
lates musculotendon force through a Hill-based muscle model; the mus-
culotendon kinematics computes musculotendon length and moment
arm of each musculotendon unit; Finally, the joint torque is calculated
through the joint dynamics component.

(200 Hz, Qualisys, Gothenburg, Sweden), which were placed
on the participants according to a Plug-in Gait model [25], [26].
Ground reaction forces (GRFs) during walking were measured
at 3000 Hz using force plates (Kistler, Winterthur, Switzerland).
During isokinetic ankle motions, each subject was asked to
dorsiflex and plantarflex with a maximum effort five consecutive
times, in the range between 20◦ plantarflexion and 15◦ dorsiflex-
ion, during which motions and joint torque were recorded by a
dynamometer (5000 Hz, IsoMed 2000, Hemau, Germany).

B. Data Processing

EMGs were band pass filtered (30–300 Hz), rectified, low
pass filtered (6 Hz), and normalized to the maximum EMG
value among all motion trials [4], [9], [27]. A low-pass Zero-lag
Butterworth filter (6 Hz) was applied to measured ankle joint
angle and torque during isokinetic movement tasks, as well
as marker trajectories and GRFs during gait [28], [29], [30].
Ankle joint angle and torque during gait were computed using
a musculoskeletal modeling system (OpenSim v3.3, SimTK,
Stanford, USA) using a general pipeline consisting of scal-
ing, inverse kinematics, and inverse dynamics [27]. We scaled
a generic musculoskeletal model (OpenSim Gait2354) to a
subject-specific model by using the collected marker trajectories
on the specific subject to fit the subject’s anthropometry. Then
the scaled musculoskeletal model was applied to reconstruct
3D joint kinematics and kinetics using the recorded marker
trajectories and GRFs as inputs. The joint angles were com-
puted through inverse kinematics by minimizing the distance
between experimental and corresponding virtual markers on the
model [31]. The joint torques were calculated through inverse
dynamics by solving motion dynamic equations [32].

C. Joint Torque Prediction Models

1) NMS Model: An open-source EMG-driven NMS model
(CEINMS) developed by Pizzolato et al. [10] was used in this
study, consisting of musculotendon kinematics, muscle contrac-
tion dynamics, muscle activation dynamics, and joint dynamics
(Fig. 2) [33].

The muscle activation dynamics component computes muscle
activation with collected EMGs. The relations between EMGs

e(t) and neural activation u(t) can be formulated as (1) [34].

u(t) = α · e(t− τ)− β1 · u(t− 1)− β2 · u(t− 2) (1)

where α is the muscle gain parameter; β1 and β2 are the
recursive parameters; α, β1 and β2 are constrained to the fol-
lowing relationships to obtain a stable solution [10] [34] [35]:
β1 = C1 + C2, β2 = C1 · C2, where |C1| < 1, |C2| < 1, and
α− β1 − β2 = 1. τ is the electromechanical delay. The rela-
tionship between muscle activation a(t) and neural activation
can be formulated as (2):

a(t) =
eBu(t) − 1

eB − 1
(2)

where B is the shape factor [9], [35].
The muscle contraction dynamics component calculates mus-

culotendon forces by a Hill-based muscle model. Each muscu-
lotendon unit (MTU) force F can be formulated as (3),

F = Fm
0 [Fa(l) · Fv(v) · a+ Fp(l) + da · v]cos(ψ) (3)

where Fm
0 is the muscle maximum isometric force; l is the

fiber length and v is the contraction velocity of fiber; Fa(l)
represents the active force-length relationship, Fp(l) describes
the passive force-length relationship, and Fv(v) represents the
force-velocity relationship; da is the muscle damping parameter
and ψ is the fiber pennation angle.

The musculotendon kinematics component computes the mo-
ment arms and musculotendon lengths of musculotendon units.
Finally, the joint torque was predicted through the joint dynamics
component.

Subject-specific MTU parameters identification was per-
formed for each participant during the NMS model calibration
process. These parameters, including optimal fiber length, ten-
don slack length, shape factor B, strength coefficient, and coeffi-
cients C1 and C2, were refined by minimizing the error between
estimated and measured joint torque during the calibration pro-
cess. The list of calibrating parameters and boundary conditions
was based on recommendations by Pizzolato et al. [10]. Optimal
fiber length lm0 and tendon slack length lts of each MTU were
constrained within ±15% from their defaults. The shape factor
B was constrained in (−3, 0). Coefficients C1 and C2 were
constrained in (−1, 1). The strength coefficient was constrained
in (0.5,2.5) to scale the muscle maximum isometric force.

2) ANN Models: Next, we constructed a standard ANN
model to estimate ankle torques with the same experimental in-
puts in the NMS model, i.e., EMGs and joint angles as illustrated
in Fig. 3. As mentioned above, the standard ANN technique is a
purely data-driven method and can be expected to predict with
less accuracy when encountering unseen movements [36]. To
improve the generalizability of the standard-ANN model, we
formed a hybrid-ANN model by leveraging more informative
features—individual muscle forces and ankle torque calculated
from the physics-based NMS solver (Fig. 3).

Both standard- and hybrid-ANNs include an input layer, n
hidden layers, and an output layer. For the inputs, the standard-
ANN consists of four experimental input features, which are
ankle joint angle and three muscle EMG signals. Besides these
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Fig. 3. Architecture for standard- and hybrid-ANN models. For both
standard- and hybrid-ANN models, identical experimentally measured
input data were applied, i.e., three muscle EMGs and ankle joint angle.
For the hybrid-ANN model, computed features through the physics-
based NMS model were added, i.e., muscle force and joint torque,
to leverage more informative features from the NMS model into a
standard-ANN model. n hidden layers (two hidden layers were used for
intra-subject prediction and four hidden layers for inter-subject prediction
without transfer learning), and ankle joint torque was predicted at the
output layer.

inputs, the hybrid-ANN added four additional input features: an-
kle torque and three muscle forces calculated from the physics-
based NMS solver. For intra-subject prediction, two hidden
layers were used while four hidden layers were in inter-subject
prediction without transfer learning. Finally, the ankle joint
torque was estimated from the output layer.

3) Transfer Learning: A transfer learning technique was
adopted in both ANN models in inter-subject prediction to learn
the structural similarities by pre-training a model using knowl-
edge/information acquired from previous experiences/subjects
(S1, S2, . . ., Sp) and transferring the acquired knowledge to a
new participant (Fig. 4). We extracted layers from the pre-trained
model except the output layer and then shared them to the model
of the target subject (St). we added one new hidden layer and
one new output layer in the target model; then the weights
of the two added layers were trained while that of the other
layers were fine-tuned, with the data/information from the new
participant.

4) Hyper-Parameters Tuning for ANN Models: We used a
“coarse-to-fine” random search [37] method to determine the
hyper-parameters of ANN models. During the training, the loss
function was the mean square error (mse) between estimated and
actual ankle torque. A batch size of 20 was used. A Xavier weight
with zero bias initializer was chosen. Two hidden layers were
chosen for intra-subject prediction and four hidden layers were
chosen for inter-subject prediction. Each hidden layer includes
ten neurons with a tanh activation function. An Adam optimizer
was chosen (learning rate of 10−3). For the transfer learning
technique, a tuned learning rate of 10−4 was used and 10−5

for fine-tuning. We obtained the optimum model by iterating
4000 epochs with an early stop technique when the loss did not
decrease in a consecutive 200 epochs.

Fig. 4. The transfer learning technique adopted in ANN models in
inter-subject prediction. The pre-trained model includes the knowledge
acquired from previous experiences/subjects(S1, S2, . . ., Sp). The lay-
ers/knowledge from the pre-trained model were extracted except the
output layer and then transferred to the model of a target subject (St).
One new hidden layer and one new output layer were added to the
target model, and then we retrained the target model using the infor-
mation/data from the new user.

D. Evaluation Framework

The ankle joint torque estimation accuracy of the NMS,
standard-ANN and hybrid-ANN were investigated in two pre-
diction model scenarios: intra-subject and inter-subject. In inter-
subject prediction, the benefit of adopting the transfer learning
technique into both ANN models was also studied, and the
prediction results by ANN models were compared to the NMS
model in the intra-subject prediction. For each prediction model,
seven different cases were investigated: Gaitfast, Gaitself ,
Gaitslow, IsokP90, IsokP60, IsokD90 and IsokD60. For more
descriptions of different cases in detail, see Fig. 5. The NMS
model in the hybrid-ANN was calibrated as described in the
calibration process of Section II C(a). It is a concern that the
need for NMS model calibration may limit widespread use of the
proposed hybrid-ANN model. We therefore investigated the pre-
diction accuracy of the hybrid-ANN model with a non-calibrated
NMS in inter-subject predictions with transfer learning tech-
nique (illustrated in Appendix).

Intra-Subject Prediction: Models were calibrated/trained by
using data from each motion separately, and tested on the same
type motions at different speeds, for each user (S1, S2, . . ., S10)
individually. More specifically, we calibrated/trained models for
gait at one speed and tested on remaining gait speeds; likewise
for the isokinetic ankle motions. For ANN-models training, two
trials were used as training data and one trial as validation data.

In order to compare the models’ accuracy in intra-subject
and inter-subject prediction, we reproduced previously-reported
results from intra-subject prediction [19].

Intra-Subject Prediction:
a) Without Transfer Learning: Similar to intra-subject

prediction, seven cases were included. ANN models were trained
for each movement of multiple subjects except one (leave-one-
out cross-validation method) and then tested on the same type
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Fig. 5. (a) The training/calibration and testing data of NMS and
ANN models for seven different cases in intra-subject prediction; and
(b) the training and testing data of ANN models for seven different
cases in inter-subject prediction. Intra-subject prediction: For each
case, different movements were used to calibrate (NMS) or train (ANN)
models. Models were calibrated/trained by using data from each motion
separately, and tested on the same type motions at different speeds,
for each user (S1, S2, . . ., S10) individually. Inter-subject prediction
without transfer learning: Models were trained for each movement of
multiple subjects except one (leave-one-out cross-validation method),
and then tested on the same type motions for the remaining new subject,
then iterated for each subject. Inter-subject prediction with transfer
learning: Models were pre-trained for each movement on multiple users
except one, and were shared to a new user with a common structure.
We then re-trained models with data from the same motion of the new
participant (i.e., fewer data from the new participant), and tested on the
same type motions at different speeds of the new subject, and then
iterated for each subject.

motions for the remaining new subject, then iterated for each
subject.

b) With Transfer Learning: ANN models were pre-
trained for each movement on multiple participants except one,
and were shared to a new participant with a common structure.
We then re-trained models with data from the same motion of
the new participant (i.e., fewer data from the new participant),
and tested on the same type motions at different speeds of the
new subject, and then iterated for each subject.

Prediction accuracy of each model was evaluated by normal-
ized root mean square error (NRMSE) ENRMS , which was
designated as the root mean square error ERMS (between the
estimated and actual ankle torque) scaled by the range of actual

ankle torque during corresponding motions:

ERMS =

√√√√ 1

N

N∑
i=1

(yp,i − yi)2 (4)

ENRMS =
ERMS

(ymax − ymin)
× 100% (5)

where yp,i and yi are the estimated and actual/measured ankle
torque at time step i respectively; ymax is the maximum and
ymin is minimum values of measured joint torque yi during
corresponding motions.

Shapiro-Wilk tests were used to check data distribution
normality (significance level at p < 0.05). For abnormally
distributed data, Wilcoxon signed-rank tests with Bonferroni
correction were applied to study the difference of NRM-
SEs predicted from the three methods (significance level at
p < 0.05).

III. RESULTS

A. Intra-Subject Prediction

Overall, smaller NRMSE (Fig. 6) was observed in the hybrid-
ANN model compared to both NMS and Standard-ANN.

In all calibrated/trained motions, the predicted accuracy by
hybrid-ANN was significantly higher than that of the NMS.
(self-selected speed walking: p = 0.02, fast walking: p = 0.02,
slow walking: p = 0.05, isokinetic plantarflexion 90◦/s: p =
0.04, isokinetic plantarflexion 60◦/s: p = 0.02, isokinetic dorsi-
flexion 90◦/s: p = 0.02, isokinetic dorsiflexion 60◦/s: p = 0.02).

In the tested movements, compared to NMS, the hybrid-ANN
generally has a better torque prediction accuracy with only one
exception (Fig. 7). In theGaitself case, the prediction accuracy
of the hybrid-ANN model was lower than that of the NMS model
for fast and slow walking of one subject (Fig. 6).

Compared to the standard-ANN, the hybrid-ANN did not
always demonstrate a superior prediction accuracy. It is worth
noting that a worse predicted torque agreement with actual
torque by the standard-ANN model was found in some tested
motions compared to the other two models, such as slow walking
in Gaitself case (Fig. 7 B3), isokinetic plantarflexion 60◦/s in
IsokP90 case (Fig. 7 D2) and isokinetic plantarflexion 90◦/s in
IsokP60 case (Fig. 7 E1).

Torque trajectories estimated by the NMS model sometimes
displayed an offset at the beginning of the cycle which was not
present in measured torque. This offset was not observed in
torque predicted by the ANN models (For instance, A1 and A3

in Fig. 7).

B. Inter-Subject Prediction

1) Without Transfer Learning: Overall, torque prediction ac-
curacy from ANN models was worse than that from the subject-
specific NMS model (Fig. 8(a) and Fig. 9), wherein prediction
accuracy from the hybrid-ANN was higher than the standard-
ANN. In all calibrated/trained motions, the prediction accuracy
by standard-ANN was significantly worse compared to NMS.
(slow walking: p = 0.02, self-selected speed walking: p = 0.02,
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Fig. 6. The NRMSE between the estimated and measured ankle torque across subjects during seven motions in all cases in intra-subject
prediction, illustrated by violin plots. Each violin plot combines a box plot with a kernel density plot. The box plot shows the minimum, lower
quartile, median, upper quartile, and maximum values of the NRMSE. Then the kernel density plot is added to show the distributions of NRMSE
where the wider sections of a violin plot represent a higher probability and the smaller sections a lower probability of NRMSEs. A significant
difference between the two models was indicated with ∗, according to Wilcoxon signed-rank tests with Bonferroni correction. For each case, the
motion used as calibration/training data was circled with a dashed gray box and others are testing data.

fast walking: p = 0.02, isokinetic plantarflexion 90◦/s: p =
0.02, isokinetic plantarflexion 60◦/s: p = 0.02, isokinetic dorsi-
flexion 90◦/s: p = 0.03, isokinetic dorsiflexion 60◦/s: p = 0.02).
In the tested movements, the standard-ANN generally had worse
prediction accuracy than both NMS and hybrid-ANN models.

2) With Transfer Learning: Overall, with transfer learning,
the prediction accuracy of both ANN models was consider-
ably improved, wherein the standard-ANN had poorer accu-
racy in some movements compared to the other two models,
for example, in the self-selected walking speed Gaitfast case
(Fig. 10 A2), the isokinetic plantarflexion 60◦/s IsokP90 case
(Fig. 10D2) and the isokinetic plantarflexion 90◦/s IsokP60 case
(Fig. 10 E1).

In the Gaitfast, Gaitself and Gaitslow cases, the hybrid-
ANN model, in general, outperformed the other two models
(Fig. 8(b)). Compared to the NMS model, significantly higher
prediction accuracy was found in the same trained/calibrated
motions, such as in fast walking (p = 0.03) and self-selected
speed walking (p = 0.02), and somewhat, though not signif-
icantly, higher in slow walking (p = 0.11). Notably, in the
Gaitself case, the worst peak plantarflexion torque agreement
with actual torque by the standard-ANN model was found in the
tested slow walking (Fig. 10 A2).

When trained/calibrated with IsokP90 and IsokP60 cases
(Fig. 8(b)), the hybrid-ANN model had the highest pre-
diction accuracy in all isokinetic plantarflexion movements.
Compared to the NMS, significance was found in in the
same trained/calibrated isokinetic plantarflexion 60◦/s (p =
0.02), and somewhat, though not significantly, better in 90◦/s
(p = 0.07).

In the IsokD90 and IsokD60 cases, the prediction accuracy
by hybrid-ANN was significantly higher compared to NMS in
the same trained/calibrated movements (90◦/s: p = 0.02, and
60◦/s: p = 0.02; Fig. 8(b)), and somewhat better though not
significantly in tested isokinetic dorsiflexion movements. Over-
all, ANN models generally performed better than NMS models
(Fig. 10).

IV. DISCUSSION

In this work, we estimated ankle torque using an NMS
solver-informed ANN (hybrid-ANN) with a transfer learning
technique. Besides experimental signals, the hybrid-ANN model
also augments a standard-ANN with additional physics-based
NMS informative features, namely individual muscle force and
ankle joint torque. Specifically, we investigated the joint torque



ZHANG et al.: ANKLE JOINT TORQUE PREDICTION USING AN NMS SOLVER INFORMED-ANN MODEL AND TRANSFER LEARNING 5901

Fig. 7. One example of the predicted and measured ankle torque
trajectories via models in all cases in intra-subject prediction. For
each case, the motion used as calibration/training data was circled with
a dashed gray box and others are testing data.

prediction accuracy of the proposed hybrid model and compared
it to the two baseline models (standard ANN and NMS) in
both intra-subject and inter-subject predictions. In inter-subject
prediction, we adopted a transfer learning technique to improve
torque prediction. Overall, we found that the hybrid-ANN pre-
dicted torque with higher accuracy than both NMS and standard-
ANN, especially in inter-subject cases after adopting a transfer
learning technique.

Both EMG-driven NMS and ANN models are popular meth-
ods in the joint torque estimation, and each has its own benefits
and limitations depending on prediction scenarios. Compared to
the NMS model, a standard-ANN model has a strong approx-
imation [15], [36] but may become less accurate with unseen

motions as it is a black-box model and only aims to study
the relationships between inputs and outputs based on trained
movements [4], [38]. In this context, one aim was to leverage
the advantages of NMS and neural network models; in a previous
study [19], we proposed a hybrid-ANN by integrating physical
features from NMS solver into a standard-ANN, and the pre-
liminary results in intra-subject prediction demonstrated that the
hybrid model resulted in a more accurate joint torque estimation
than both NMS and standard-ANN independently. Still, how-
ever, inter-subject models for predicting joint torques remain
challenging. Therefore, in the current study, we combined an
NMS solver-informed ANN model with transfer learning to
further improve the prediction accuracy of ankle joint torque in
both intra-subject and inter-subject predictions. We found that
the hybrid-ANN model predicted torques more accurately than
both NMS and standard-ANN models in general. We attribute
this finding to the fact that physiological features — individual
muscle force that was computed within the hybrid-ANN models
— are dominant intermediate components in joint torque esti-
mation, according to the structure of the joint dynamics (Fig. 2).
Thus, incorporating these physiological features can enhance the
prediction accuracy of the standard ANN models, particularly
when encountering unseen motions. For instance, compared
to hybrid-ANN and NMS models, torque prediction was least
accurate for the standard-ANN model when tested on unseen
motions—slow walking in the Gaitself case in intra-subject
prediction (Fig. 7B3), especially near peak plantarflexion torque
in terminal stance. The large discrepancy around peak torque
is likely because the trained standard ANN model was more
sensitive to EMG variation and walking speed, and testing data
from other speeds may be outside of the distribution of the
trained model.

A. Intra-Subject Prediction

In intra-subject prediction, it is worth noting that some small
offsets are predicted by the NMS model when measured torque
is close to zero at the beginning of the cycle, for example, A2,
D2 and E1 in Fig. 8. This is likely because during the NMS
model calibration, the calibrated parameters, such as optimal
fiber length, maximum isometric force, and tendon slack length,
are refined by minimizing the error between predicted and actual
torque during the whole movement cycle. When the measured
torque is close to zero with non-zero EMG magnitudes, espe-
cially during fast walking, the NMS calibration optimizer may
have difficulty finding an optimal solution that fulfills the initial
near-zero torque and with overall small errors in the whole
cycle. In addition, in the NMS model, two previous time-steps
of neural activation of each MTU were needed to compute
muscle neural activation ((1)). At the beginning of a cycle, the
past two neural activation values were not available. Instead,
they were approximated using EMG signals from two previous
time-steps; therefore they may also lead to initial offsets in
predicted torque. However, the initial torque offset was largely
eliminated by the hybrid-ANN model, which can be regarded as
a correction mapping from NMS-based joint torque prediction to
the measured torque. That is mainly due to that the hybrid-ANN
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Fig. 8. The NRMSE between the estimated and measured ankle torque across subjects during seven motions in all cases in inter-subject
predictions: (a) without transfer learning and (b) with transfer learning. Each violin plot combines a box plot with a kernel density plot. The
box plot shows the minimum, lower quartile, median, upper quartile, and maximum values of the NRMSE. Then the kernel density plot is added to
show the distributions of NRMSE where the wider sections of a violin plot represent a higher probability and the smaller sections a lower probability
of NRMSEs. A significant difference between two models was indicated with ∗, according to Wilcoxon signed-rank tests with Bonferroni correction.
For each case, the motion used as calibration/training data was circled with a dashed gray box and others are testing data.
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Fig. 9. One example of the predicted and measured ankle torque
trajectories via models in all cases in inter-subject prediction with-
out transfer learning. For each case, the motion used as calibra-
tion/training data was circled with a dashed gray box and others are
testing data.

model has an additional component: adding neural networks to
further train a better model by minimizing the errors between
measured and predicted joint torque.

Notably, in intra-subject prediction, the standard -ANN per-
formed poorly in one subject in theGaitself case when tested on
fast and slow walking (Fig. 6). This may be due to the fact that the
hybrid-ANN model adopted the NMS solver-informed muscle
forces and joint torque as input features. However, in certain
situations, the torques predicted by the NMS model were poor.
As a result, it provided less informative or even misleading input
features to the hybrid-ANN model, and negatively impacted its
prediction accuracy. It is not surprising that the NMS model pre-
dicted poorly in some tested movements because there may be

Fig. 10. One example of the predicted and measured ankle torque tra-
jectories via models in all cases in inter-subject prediction with trans-
fer learning. For each case, the motion used as calibration/training data
was circled with a dashed gray box and others are testing data.

different muscle coordination patterns between the calibration
and testing movements. In future work, we suggest a model that
adopts alternative neural networks with uncertainty quantifica-
tion, feature such as a Bayesian neural network that is able to
identify a situation first and therefore guide the enrichment of
training data to re-train a robust model [39].

B. Inter-Subject Prediction

As expected, when transfer learning was not adopted, inter-
subject torque performance was generally less accurate than that
of intra-subject prediction, regardless of which ANN model was
used. Without transfer learning, both hybrid- and standard-ANN
were trained using data from previous experiences/subjects but
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none from the new subject. Therefore, it is to be expected that
the torque prediction would be less accurate than that from
the subject-specific NMS model calibrated with data from the
new subject. Furthermore, muscle coordination patterns can
be expected to vary across subjects [40], [41]; thus, standard
ANN models may not have sufficient generalizability without
information from a new subject in the training process, partic-
ularly when training data sets with other subjects are not rich
enough. However, one interesting finding was that even though
the ANN models generally predicted torques less accurately than
the subject-specific NMS models, the hybrid-ANN predicted
torques more accurately than the standard-ANN (Fig. 9). This is
mainly because the hybrid-ANN model includes more relevant
input features, i.e., individual muscle force and joint torque from
an NMS solver, than the standard-ANN, and can thus leverage
the robustness and reliability of the NMS solver.

Transfer learning technique is a popular method in inter-
subject cross-validation methods to improve the generalizability
of neural networks, and can prevent the aforementioned perfor-
mance leak by applying obtained knowledge/information from
the source domain (previous subjects) to the target domain (new
participant) [16]. In the current study, we adopted a transfer
learning technique into the ANN models for inter-subject joint
torque prediction during movements. We found that transfer
learning significantly improved torque prediction accuracy in
all cases. For instance, in the Gaitfast case, without transfer
learning, predicted torques by both ANN models disagreed
considerably compared to measured torques (Fig. 9 A1, A2

A3), but with transfer learning, both ANN models predicted
torques much more accurately (Fig. 10 A1, A2 and A3). As
another example, the hybrid-ANN model’s prediction accuracy
in the (Gaitself ) case in one subject, which was quite poor
without transfer learning, was improved when transfer learning
was applied and was even better than intra-subject prediction
(Fig. 6 Vs Fig. 8(b)). This improvement was probably because
the weights in the shared similarities/structure in the pre-trained
model were used as initial weights for the model of the new
user. The initial weights were reported to influence the model
prediction accuracy, which is, closer similar initial weights are
to the solution, the better the model prediction accuracy will
be [42], [43].

C. Limitation

It is important to note that we chose the classical type of ANN
since it has frequently been applied in joint torque prediction
thanks to its functionality and approximation accuracy [15],
[44], [45]. Other ANNs that have different structures, such as
long short-term memory (LSTM) networks, may have different
results. Although LSTM networks can remember patterns for
a period thanks its memory structure, the NMS model that we
incorporated to the hybrid-ANN model also has similar function
as described in (1); the NMS model also has a kind of memory,
as it uses information from two previous time-steps of MTU
neural activation. Furthermore, LSTM networks usually need
more data to train, which limits their use in the current study,
as we we have a small dataset. Our aim was to study whether

a combination model of a physics-based NMS and an ANN
would improve the ankle torque prediction accuracy in both
intra- and inter-subject predictions. Different types of neural
networks can be further analyzed in future work. Regarding
execution times, the hybrid-ANN is a combination of the NMS
and standard-ANN, and its execution time was dominated by
the time required by the NMS model. The online execution time
cost of forward evaluation of ANN is negligible. As suggested
in a previous study by Sartori et al. [45] the mean delay of a
real-time EMG-driven NMS model is roughly 35 ms. Therefore,
hybrid-ANN models are still applicable for real-time applica-
tions. Nonetheless, there are also several limitations in this study.
Only SOL, GM and TA activation signals and ankle plantar- and
dorsiflexion angle were used to estimate ankle torque. Hip and
knee joints, also play important roles in daily activities and will
affect musculotendon dynamics of biarticular muscles. Torque
prediction of the proposed NMS solver-informed ANN model
on hip and knee joints can be further validated.

V. CONCLUSION

In this work, we estimated ankle joint torque during gait and
isokinetic ankle dorsi- and plantarflexion movements using an
NMS solver-informed ANN, with experimental joint angles and
muscle EMGs as inputs. In addition to the joint angle and EMG
signals, the hybrid-ANN model augments a standard-ANN with
informative physical features, i.e., individual muscle forces and
joint torque, extracted from the underlying NMS solver. Transfer
learning technique was integrated into inter-subject prediction to
learn structural similarities by transferring the acquired knowl-
edge/information from previous multiple experiences/subjects
to a new participant. Our results suggested that the NMS
solver-informed ANN estimated torque more accurately than
both NMS and standard-ANN models, indicating the potential
benefit of incorporating informative features from physics-based
NMS solver into a standard-ANN. Furthermore, the hybrid ANN
further outperformed both the standard-ANN and NMS model
in accuracy and robustness after applying transfer learning, par-
ticularly for inter-subject prediction. The proposed hybrid-ANN
with transfer learning shows great potential use in the design of
exoskeleton rehabilitation control strategies thanks to its ability
to incorporate the physiological joint torque of multiple users.

APPENDIX

A. Transfer Learning With Non-Calibrated NMS Model

We investigated the prediction accuracy of the hybrid-ANN
model with a non-calibrated NMS in inter-subject predictions
with transfer learning technique, and compared its prediction
accuracy to that of the NMS model calibrated for each subject
in intra-subject predictions (Fig. 11) .

Overall, with transfer learning, the prediction accuracy of
the hybrid-ANN model with a non-calibrated NMS was better
than with the NMS model (Fig. 11). Significant difference was
observed in fast walking (p = 0.02) for Case Gaitfast, in fast
walking (p = 0.02) and self-selected speed walking (p = 0.01)
for CaseGaitself , in isokinetic dorsiflexion 90◦/s (p < 0.01) for
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Fig. 11. NRMSE between the estimated and measured ankle torque
across subjects during seven motions of the hybrid-ANN model with a
non-calibrated NMS in inter-subject predictions with transfer learning
technique, and compared its prediction accuracy to that of the NMS
model calibrated for each subject in intra-subject predictions. The box
plot shows the minimum, lower quartile, median, upper quartile, and
maximum values of the NRMSE. Then the kernel density plot is added
to show the distributions of NRMSE where the wider sections of a violin
plot represent a higher probability and the smaller sections a lower
probability of NRMSEs. A significant difference between two models was
indicated with ∗, according to Wilcoxon signed-rank tests. For each case,
the motion used as calibration/training data was circled with a dashed
gray box and others are testing data.

Fig. 12. NRMSE between the estimated and measured ankle torque
across subjects during seven motions in all cases in inter-subject
predictions without transfer learning, as a comparison of 4 vs.
5 hidden layers. Each violin plot combines a box plot with a kernel
density plot. The box plot shows the minimum, lower quartile, median,
upper quartile, and maximum values of the NRMSE. Then the kernel
density plot is added to show the distributions of NRMSE where the
wider sections of a violin plot represent a higher probability and the
smaller sections a lower probability of NRMSEs. For each case, the
motion used as calibration/training data was circled with a dashed gray
box and others are testing data.

Case IsokD90, and in isokinetic dorsiflexion 60◦/s (p < 0.01)
for Case IsokD60.

B. Hidden Layer Number Selection of the Hybrid-ANN
Model in Inter-Subject Predictions Without Transfer
Learning

We adopted 4 hidden layers in the hybrid-ANN model without
transfer learning in inter-subject predictions. It is a concern that
the two compared hybrid-ANN model between with and without
transfer learning should have the same hidden layers. However,

we aim to study the benefit of adopting transfer learning in inter-
subject prediction and followed the normal transfer learning
procedure: loading the weights from a pre-trained model and
fine-tuning the last few newly-added layers [18]. Considering
this concern, we performed the scenarios of the hybrid-ANN
without transfer learning containing 5 hidden layers that are the
same as the hidden layers in the hybrid-ANN model with transfer
learning. The prediction accuracy was similar and no significant
difference is found between the hybrid-ANN models without
transfer learning that contains 4 and 5 hidden layers (Fig. 12).
Since 4 hidden layers are easier to train than 5 hidden layers, we
adopted 4 hidden layers in the model without transfer learning.
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