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Functional Data Analysis for Predicting Pediatric
Failure to Complete Ten Brief Exercise Bouts
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Abstract—Physiological response to physical exercise
through analysis of cardiopulmonary measurements has
been shown to be predictive of a variety of diseases.
Nonetheless, the clinical use of exercise testing remains
limited because interpretation of test results requires expe-
rience and specialized training. Additionally, until this work
no methods have identified which dynamic gas exchange or
heart rate responses influence an individual’s decision to
start or stop physical activity. This research examines the
use of advanced machine learning methods to predict com-
pletion of a test consisting of multiple exercise bouts by a
group of healthy children and adolescents. All participants
could complete the ten bouts at low or moderate-intensity
work rates, however, when the bout work rates were high-
intensity, 50% refused to begin the subsequent exercise
bout before all ten bouts had been completed (task failure).
We explored machine learning strategies to model the rela-
tionship between the physiological time series, the partic-
ipant’s anthropometric variables, and the binary outcome
variable indicating whether the participant completed the
test. The best performing model, a generalized spectral ad-
ditive model with functional and scalar covariates, achieved
93.6% classification accuracy and an F1 score of 93.5%.
Additionally, functional analysis of variance testing showed
that participants in the ‘failed’ and ’success’ groups have
significantly different functional means in three signals:
heart rate, oxygen uptake rate, and carbon dioxide uptake
rate. Overall, these results show the capability of functional
data analysis with generalized spectral additive models to
identify key differences in the exercise-induced responses
of participants in multiple bout exercise testing.

Index Terms—Machine learning, generalized spectral
additive models, time series, cardiopulmonary exercise
testing, CPET.
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I. INTRODUCTION

THE human cardiovascular and associated systems are dy-
namic and highly interrelated. A major goal of cardiopul-

monary exercise testing (CPET or CPX) is to identify physio-
logical variables using nondestructive and minimally invasive
protocols that enable the clinician or researcher to make pre-
dictions about an individual’s particular condition or level of
physical fitness. Standard exercise testing procedures produce
outputs that must be interpreted by trained practitioners with an
understanding of the underlying physiology and kinetics of the
system, as well as an ability to interpret multiple time series.
By applying machine learning (ML) techniques to multiple
bout exercise testing, we seek to lay the foundation for quicker
and more consistent interpretation of patterns in physiological
time series that may aid researchers in caring for their patient.
Our work with functional data analysis shows that it may be
a highly useful method for classifying patients based on their
exercise-induced cardiovascular signals.

In typical CPET protocols the work performed becomes in-
creasingly difficult until the participant or technical supervisors
sense that the limit of the individual’s tolerance has been reached.
In contrast to most CPET protocols, patterns of physical activity
in children and adolescents observed outside of the laboratory
are characterized by series of brief bouts of exercise of varying
intensity interspersed with short intervals of rest [1], [2], [3].
Consequently, individuals must frequently decide whether to
begin the next bout of exercise when engaged in these more
natural patterns of sporadic physical activity. We wondered
whether we could identify predictive physiological signals from
breath-by-breath gas exchange and heart rate (HR) data that are
collected in CPET laboratories.

The study has two innovations: First, we show that systemat-
ically processing the time series with Functional Data Analysis
can lead to conclusive predictive results for pediatric partici-
pants. Second, we posit that an alternative exercise test (MBEB)
may be more appropriate for children and provide richer results
than the gold-standard maximal effort CPET test.

The next section provides relevant background and a literature
review for this area of research, which led us to develop the re-
search questions defined in Section II. To address these research
questions we obtained exercise test data from 81 participants.
We then applied Functional Data Analysis to characterize the
multiple time series obtained from the exercise testing. Results
from this analysis are in Section IV. Following a discussion
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of results and their implications (Section V), we provide an
overview of potential future research opportunities (Section VI)
and limitations of our study (Section VII).

II. BACKGROUND

A. Medical Interpretation of Exercise Testing Data

Exercise testing for diagnostic purposes is conducted by
measuring physiological responses during graded physical ex-
ercise. Typically, this is done by measuring gas exchange
and cardiac condition in order to score the performance of
coordinated human biological subsystems. CPET is the most
widely used exercise test; it measures responsiveness of the pul-
monary, cardiovascular, neuropsychological, skeletal muscular,
and hematopoietic systems. Since about the 1920 s, peak oxygen
uptake (V̇ O2peak) has been the most widely used biomarker for
aerobic fitness, commonly measured through CPET protocols
as the “gold-standard” [4]. CPET has the advantage of being
low-risk [5] and non-invasive.

The voluminous data from continuous electrocardiogram and
other measurements during CPET are described in a 9-panel
report which can be leveraged for clinical diagnosis of cardiopul-
monary abnormalities [6]. Armed with the ability to analyze
CPET reports, medical professionals should be able to defini-
tively diagnose – or predict – these abnormalities. However,
there exist numerous limitations to CPET interpretation and it
is reportedly underutilized as a clinical tool [7], [8], [9], [10],
[11], [12].

A survey of recent literature reveals an effort to overcome the
barriers to CPET interpretation. To address the difficulty with
human interpretation of graphical data and chaotic breathing
patterns, [7] recommends data smoothing techniques as well
as a focus on dynamic measurement relationships indicating
patterns of dysfunction. Our approach optimally smooths the
data and draws out underlying functional relationships to assist
in pediatric fitness assessment.

In [8] analyzed heart failure severity using time series data
and statistical analysis of variance to compare their engineered
variables. They aimed to clarify pathophysiology with a single
display that uses ratios of oxygen uptake, ventilation, and carbon
dioxide output, plotted on equal axes, to better quantify heart
failure severity. In [9] notes that when processing multiple CPET
time series data points, we often simplify peak values and slopes
which leads to a loss of valuable trend information. The authors
propose a method for encoding the CPET time series as images,
which are fed to a convolutional neural network to classify
patients. In this work, our method is directly compared to the
performance of the image-encoding approach.

Computer-aided algorithms in [10] were highly useful in
evaluating CPET data to identify medical conditions. This ex-
periment with incremental exercise tests produced data that,
when input to supervised ML algorithms, helped to discriminate
between healthy and diseased patients (mean accuracy 99%).
The novel contribution was to convert raw CPET data into
‘normalized percent of predicted’ values.

Recently, [11] applied CPET-generated data to aid clinical
evaluation of exercise intolerance. This advanced approach in-
volved feature engineering, feature selection, and automatic

ML classification to choose the best-performing model for
225 CPET time series cases. In [11] also calls for further
investigation as to whether early data capture would facili-
tate accurate diagnosis without the need for maximal-effort
CPET. Our work addresses this research gap; our results sug-
gest that data from exercise tests of shorter duration can
be incredibly useful in understanding an individual’s fitness
status.

B. Beyond CPET

Though CPET has long been the gold standard, some re-
searchers have been investigating other, possibly more effec-
tive ways to capture health and fitness information in pediatric
patients. References [1], [2], [3] propose that an alternative to
CPET could be more suitable for younger populations. Among
other key differences, it has been noted that gas exchange and
ventilatory signals tend to show greater variation in children
than adults [13]. The present study utilizes a protocol termed
“Multiple Brief Exercise Bouts” (MBEB) which follows the
reasoning that natural patterns of physical activity in children
are characterized by relatively short bursts (seconds to minutes)
of exercise at various intensities interspersed with rest. By
observing the same gas exchange and frequency variables as
CPET over a more appropriate fitness test protocol, we hope
to glean important physiological insights about square wave
exercise cardiovascular dynamics in pediatric subjects.

In a recent publication, we analyzed the gas exchange and
HR kinetic responses during the first five bouts of MBEB and
compared data from early and late-pubertal females and males at
low- and high-intensity MBEB [3]. In the course of these studies,
we noted that all participants completed the MBEB task when
the MBEB work rates were low intensity. In contrast, during the
high-intensity MBEB, a significant number of participants were
unable to start the next bout after the 1-min rest. An important
finding of the research was that, during high-intensity MBEB,
the dynamics of HR and gas exchange changed from bout to
bout even though the work rate input remained constant. This
result suggests that recovery from each bout was incomplete
and raises the possibility that the cumulative response defi-
ciency might eventually translate into signals that alter cognitive
exercise behavior. In this research, we present an analysis of
gas exchange and HR data in the bouts preceding the task
failure.

When reviewing the literature, we found no similar applica-
tion of Functional Data Analysis (FDA) to CPET time series.
This paper inspires a deeper look into FDA as a viable approach
to processing multiple bout exercise data. Our study was guided
by two primary research questions:

1) Can we use machine learning techniques and FDA to
accurately predict which individuals will fail to complete
an exercise test based solely on their cardio-respiratory
signals? Can we make this prediction with reasonable
accuracy after only four exercise bouts?

2) To what extent do the machine learning techniques use
sex, maturational status, and body mass to predict the
physiological responses of children during MBEB?
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TABLE I
ANTHROPOMETRIC AND PEAK V̇ O2 IN 78 STUDY PARTICIPANTS

Shorter and simpler exercise tests would be hugely beneficial
to the medical community; thus, we sought to make predictions
on just 720 seconds of MBEB.

We decided to study the effects of sex, puberty, and body
mass as they are readily available in most CPET datasets and
are known contributors to physiological responses during ex-
ercise. We were interested to explore to what extent each of
the three anthropometric covariates aided with prediction and,
presumably, impacted the child’s exercise tolerance threshold.

III. METHODS

A. Study Participants

Human data collection was approved by University of Cali-
fornia at Irvine’s IRB HS# 2015-2467. Eighty-one participants
were recruited, of which seventy-eight were included in the final
analysis. As shown in Table I, the participants were equally
distributed. The volunteers reflected the racial and ethnic com-
position of the region [Caucasian (93%), Hispanic/Latino (5%),
and African American (2%)]. All participants were screened
and determined to be healthy based on interviews to identify any
congenital or chronic conditions that would impair physiological
responses to exercise. Extremely physically active participants
(e.g., elite athletes involved in routine intensive exercise train-
ing) were also excluded. A commonly used self-assessment
questionnaire for population studies was used to assess pubertal
status, quantified as early pubertal (Tanner 1–2) and late pubertal
(Tanner 4–5).

B. Collection of Exercise Testing Data

The study consisted of three separate exercise testing sessions
completed over a course of no more than 12 weeks. Study visits
were scheduled to morning or early afternoon and participants
were asked to abstain from exercise before the visit in the same
day. The first session consisted of a ramp-type progressive exer-
cise test in which the participant pedaled on a cycle ergometer
(CE) until they reached the limit of tolerance. Gas exchange
was measured breath-by-breath using the SensorMedics system
(Vmax Encore 229, Yorba Linda, CA). Participants were vigor-
ously encouraged to continue pedaling during the high-intensity
phases of the test. Gas exchange was measured breath-by-breath
and peak V̇ O2 was determined when the respiratory exchange
rate exceeded 1.0 and was calculated as the highest 20-s rolling
average in the last minute of exercise.

The results of the ramp CPET were then used to set the
individualized baseline work rate for the subsequent MBEB
session scheduled for separate days. The work rate for the MBEB
task was calculated for each participant as low-intensity (40%
of peak work rate) and high-intensity (80% of peak work rate).

The MBEB protocols were performed on different days and in
random order. No warm-up exercise was performed.

MBEB consisted of up to ten 2-min bouts of constant work
rate exercise on a CE with a 1-min rest period after each bout.
After each bout, the participants were instructed to affirm their
willingness to continue with the next bout. For all sessions, we
asked each participant to try to complete ten bouts of exercise.
All participants completed the full 10-bout MBEB task at the
low-intensity work rate; these data were not analyzed. In con-
trast, 39 of the 81 participants (48%) failed to complete the
high-intensity MBEB. This group of ‘task-failed’ participants
completed a mean of 6.18± 0.23 bouts and all 39 completed
at least 4 bouts. After time-interpolation to achieve second-by-
second data for every participant, the final data set consisted of
266,416 discrete observations of anthropometric, frequency, and
gas exchange variables measured at high intensity.

C. Functional Data Analysis

As a tailorable exercise protocol, MBEB produces data in
discrete but sometimes irregular time series. Variability in the
intervals of measurement and correlation of repeated measure-
ments are just two of the potential problems that arise with
MBEB output that present challenges for traditional multivariate
statistical techniques. Since the goals of this study are to provide
a high level of classification accuracy and to present readily
interpretable and physiologically relevant results for clinicians,
we need methods that can address these challenges. The com-
plexity of traditional multivariate models can render their anal-
ysis uninformative to the medical community. Additionally, we
hypothesize that a high amount of understandable information
can be gleaned from exercise test data without a traditional
9-panel CPET plot. The systematic method we use to attain
these goals and address the data challenges is Functional Data
Analysis (FDA).

FDA is a highly flexible technique which can deal with non-
independent and correlated repeated measures. Its prominence
has grown simultaneously with the emergence of electronic
devices that accurately capture a continuous stream of physio-
logical data; FDA can help leverage that data towards meaningful
empirical conclusions.

Within a biomedical context FDA has proven powerful in
the analysis of human growth curves [14], gait analysis [15],
fetal heart rate monitoring [16], [17], and prediction of maximal
V̇ O2 during exercise [18]. Additionally, [18] proposed FDA
to reduce predictive error in estimation of maximum HR by
avoiding the problems of high dimensionality and collinearity. A
ramp exercise protocol was used in that research, and the authors
called for exploration into the predictive capacity of FDA with
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Fig. 1. One participant’s second-by-second heart rate for the full
MBEB session. In general, HR was the signal that contained the least
noise in our data set; individual exercise bouts are very easily discerned.

square wave exercise modalities. Our research applies MBEB
as a square wave modality.

When implementing FDA, data observations do not need to be
equally spaced and missing observations are handled relatively
well. Exceptionally noisy signals (such as respiratory rate in our
data) benefit from the smoothing procedure, which is the key
first step in FDA. The functional data (FD) objects themselves
can be more visually informative than the set of finite discrete
observations and allow us to draw prediction information by
applying multivariate statistical concepts.

The functional nature of MBEB-derived observations encour-
ages us to assume that the data are realizations of stochastic
processes in continuous time. The time series measurements of
our MBEB experiment are discrete and sometimes noisy obser-
vations of a continuous, dynamic process, therefore FDA seems
highly appropriate. After transforming the breath-by-breath or
second-by-second time series into a collection of smooth FD
curves, we can explore supervised or unsupervised ML tech-
niques.

1) Data Conversion Procedure: The first step of FDA was
to convert the raw time series into FD objects by choosing
the appropriate basis transform and smoothing parameters. To
predict ‘task-failures,’ we included only measurements for the
first 720 seconds of MBEB. The purpose was to analyze only
the first four bouts of MBEB, as all 81 participants completed a
minimum of four bouts.

The four variables of interest for our research question were
heart rate (HR) (beats/min), respiratory rate (RR) (breaths/min),
V̇ O2 (mL/min), and V̇ CO2 (mL/min). The data was organized
such that each response variable constituted its own independent
time series. We confirmed that each signal has a distinct pattern
characterized by variation and noise. Sample representations of
two signals are presented in Figs. 1 and 2. Plots of the full data
set are available in Appendix A.

Smoothing the data helps our algorithm to differentiate nor-
mal breath-by-breath noise from signal patterns indicating that
a participant is reaching their exertion limit. Splines have been
chosen to represent similar time series data in previous stud-
ies [19], [20]. A B-spline basis representation was determined
to provide an excellent fit to each of the four time series. The

Fig. 2. One participant’s second-by-second respiratory rate for the full
MBEB session. In general, RR was the signal that contained the most
noise in our data set; individual exercise bouts are difficult to discern.

Fig. 3. Example estimation of the smoothing parameter λ. An appro-
priate level of smoothing was determined by visual inspection of the rela-
tionship between GCV and DoF in the smoothed model. This procedure
is explained in depth in [21]. This figure shows a minimal GCV when the
model contains 350 DoF, which corresponds to a λ near 200. Thus, 200
was chosen as the smoothing penalty for the set of HR curves, and the
fit was validated after visual inspection of the smoothness (see Fig. 4).
This process was repeated for all variables.

splines were generated using 725 total basis elements of 6th
order B-splines. The smoothing procedure was controlled by a
roughness penalty, which resulted in reasonably smooth func-
tions without unacceptably large variations in the approximating
function. Penalized smoothing was done by applying harmonic
acceleration operators to the functional data and searching across
values of λ (smoothing parameter) until an acceptable general-
ized cross-validation (GCV) error level and degrees-of-freedom
(DoF) were reached in the smoothed estimate. In other words,
each of the response curve sets were deemed appropriately
smooth for this particular application. This process is intro-
duced in Chapter 5 of [21]. Fig. 3 explains this procedure
visually.

Three participants were removed due to irregularities in their
time series (likely the result of technical HR or gas exchange data
collection errors). This left 78 curves for analysis, representing
an equal number of task-failed (n = 39) and task-successful (n
= 39) participants.
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Fig. 4. Heart Rate data after converting the discrete time series to
78 smoothed and registered curves. Each participant’s time series is
represented as an individually colored function.

After smoothing the FD objects, we carried out curve regis-
tration which allows us to align the curves (by time warping
or otherwise) and remove phase variation while maintaining
amplitude variation. In [22] presents the foundation for registra-
tion in misaligned data sets. For our data, automated continuous
registration resulted in minimal phase shifting, as the original
time series were nearly perfectly aligned by nature of the testing
protocol; exercise bouts began and terminated near the same
moment in time for all participants. The proportion of total
variation due to phase variation (MSEphase/MSEtotal) was
9%. The registered curves (with phase variance removed) were
utilized for all subsequent analysis. Fig. 4 depicts the smoothed
and registered HR FD objects as an example; remaining plots
are in Appendix B.

2) Functional t-Tests: To identify differences in gender or
puberty sub-groups, we investigated the null hypothesis (H0)
that there exists no statistically significant difference in the
functional means of participants in contrasting sub-groups. To
test for differences between gender groups, we sampled 11 each
of males and females at the early-puberty level, to which we
applied permutation t-tests on their functional means using the
default parameters of the function ‘tperm.fd’ in the R software
package ‘fda’ [23]. To test for differences between puberty
groups, we compared 11 samples of early puberty males vs. late
puberty males. For time periods where the t-statistic exceeded
the critical value (0.05), we could reject (H0). This procedure
revealed distinct puberty and gender differences throughout the
time series of V̇ O2 and V̇ CO2, but no such significant mean
functional difference existed for HR and RR. Fig. 5 highlights
one result of this exploration.

3) Supervised Functional Classification: We tested the abil-
ity of the FDA approach to discriminate between MBEB task-
failures and task-completers. This is an example of a curve-
discrimination problem, further explored in [24]; we have a
sample of curves (Xi, i = 1, ..., n), and each of them is
known to belong to one of the G groups g = 1, ..., G. Given
a new curve x, we wish to know its class membership; thus
we estimate, for any g ∈ 1, ..., G , the conditional probability:
pg(x) = P [T = g | X = x] where Ti is the group of the curve
Xi (task-failure or completer). To do this we applied various

Fig. 5. Visual output of the functional permutation t-test between
Early- and Late-puberty males. The blue curve shows the t-statistic for
the observed values. The green curve represents the 95% quantiles,
and the dashed red line is the 95% quantile of the maximum of null
distribution t-statistics. The t-test confirms that the derivatives are indeed
different except in the regions of overlap (the first few moments of
exercise). This could signify a fundamental difference in the physiology
between puberty groups when holding gender status constant.

classification models to the FD object set. The goal was to find
a classifier with the minimum error rate. Our first approach was
to predict ‘failure’ from combinations of the functional data and
anthropometric covariates: sex (binary), puberty level (binary),
and body mass (continuous). Weight alone was used for body
mass observations, without consideration to fat mass.

The flexible nature of FDA allowed us to test seven unique
classification models: generalized spectral additive models
(GSAM), linear discriminant analysis (LDA), recursive par-
titioning and regression trees (RPART), RandomForest (RF),
support vector machines (SVM), neural network (NNet), and
k-Nearest Neighbors (KNN). Ten-fold cross-validation was built
into each classification model.

Functional representation of HR alone was the first FD co-
variate we tested: failure = s(HR[0,720]) where HR[0,720] is
the smoothed HR function over the first four bouts. After this
approach proved fruitful on the cleanest physiological signal,
we applied the classifiers to RR, V̇ O2, and V̇ CO2 FD objects
with the same model parameters. This allowed us to compute
model performance and directly compare results. Overall model
accuracy was calculated as the number of correct classifications
divided by the total number of attempts. The F1 score was
computed as (2 ∗ (precision ∗ recall)/(precision+ recall)).
Finally, we combined all anthropometric and functional covari-
ates for HR, RR, V̇ O2, and V̇ CO2 into a ‘full’ multivariate
model and tested the classification rate. The structure of each
model is described in Appendix D.

The final step was to conduct functional analysis of variance
(FANOVA) over our 78 independent samples. One-way ANOVA
was performed within the software package ‘fda.usc’ based on
an asymptotic version of the ANOVA F-test. The function returns
the p-value of the test over a specified number of bootstrap
replications [25]. The HR, RR, V̇ O2, and V̇ CO2 functional
data objects were bootstrap resampled 500 times, plotted, and
analyzed. We empirically tested whether ‘task-failures’ and
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TABLE II
INDIVIDUAL CLASSIFICATION MODEL PERFORMANCE

TABLE III
FULL CLASSIFICATION MODEL PERFORMANCE

‘task-completers’ display differences in their signals’ functional
means, as indicated by a significant FANOVA p-value. A p-value
≤ 0.05 was considered significant to reject the null hypothesis
(H0) of equality of mean functions between participants labelled
‘failure’ and ‘completer.’

4) Comparison: We compared our FDA method to the re-
cently proposed image encoding approach for CPET classifica-
tion [9]. In that paper, authors encoded the CPET time series as
images using the Gramian Angular Field (GAF) or the Markov
Transition field (MTF) approach, followed by attention-based
pooling for multivariate time series classification. GAF/MTF
encoded images are capable of capturing the temporal trends
and interactions between different time points within time series
and hence have shown strong classification performance. We
encoded the time series used in our ‘full’ multivariate model
(HR, RR, V̇ O2, and V̇ CO2) using the three approaches (GASF,
GADF, and MTF) proposed in their paper. Using the neural net-
work architecture consisting of attention pooling, we performed
ten-fold cross-validation for the ‘task-failure’ classification task.
The resulting performance measures are shown in Table III for
comparison to FDA results.

IV. RESULTS

A. Classification

The results of the ten best performing models are presented
in Table II. The table shows (1) which classification model
structure was used; (2) which combination of inputs (functional
and non-functional) were applied to that model; and (3) the
resulting predictive accuracy over the dataset. All models per-
formed better when the continuous variable ‘body mass’ was
omitted. The GSAM structure generally performed best among
the tested classifiers. The highest F1 score (93.5%) was achieved

Fig. 6. Comparison of functional means for the Heart Rate signal [X(t)]
during the first four exercise bouts. Task-failures are labelled as ‘1’ with a
solid green mean function. ‘Task-completers’ are labelled ‘0’ with a solid
red mean function. The black line indicates the mean trajectory for all
participants.

TABLE IV
FANOVA RESULTS

using V̇ O2 functional data and sex and puberty covariates as
predictors in a GSAM. Providing functional data alone (with no
anthropometric covariates) resulted in a maximum classification
F1 score of 91.1%.

After testing each individual cardiovascular signal, we con-
structed a ‘full’ model. This model used all functional data of
HR, RR, V̇ O2, and V̇ CO2 together, along with sex, puberty
level, and body mass. The results are shown in Table III. The
‘Full GSAM’ model performed best (F1 score 93.5%, accuracy
93.6%). Further, we demonstrated that the FDA method per-
formed better than GAF and MTF encoder approaches.

B. Functional Analysis of Variance

The statistic of interest in drawing conclusions from FANOVA
was the probability of a true difference in functional means over
the bootstrapped observations. A p-value ≤ 0.05 indicated that
we could reject (H0) and conclude that a significant difference
in functional means was present.

Fig. 6 is the visual depiction of HR functional means for
‘task-failures’ and ‘completers’ and compares the estimated
HR curves after bootstrap resampling. FANOVA results for
RR, V̇ O2, and V̇ CO2 are included in Appendix C. Table IV
shows the resulting p-values and conclusions from FANOVA.
We found that children in the ‘failure’ and ‘completer’ groups
have significantly different functional means for three signals:
HR, oxygen uptake rate, and carbon dioxide uptake rate. Each
of these variables display higher mean functions across the four
bouts for those who failed to complete the MBEB session.
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V. DISCUSSION

This is the first study to examine whether functional data
analysis of breath-by-breath gas exchange and HR data could
predict an individual’s ability to complete a task consisting of
ten 2-min bouts of constant work rate, high-intensity exercise.

There are a few theoretical implications highlighted by our
work. First, we contribute to understanding exercise-induced
responses of children. The differences that we found between
gender and puberty subgroups are generally in agreement with
historical findings. There is evidence, for example, that healthy,
early pubertal children have substantially faster HR and V̇ CO2

exercise responses than healthy late-pubertal or adult individ-
uals [26], [27]. V̇ O2 kinetics appear to be less dependent on
puberty status, but children typically have higher oxygen up-
take per work performed than do late pubertal or adult indi-
viduals [12], [28]. These differences were identified via t-test
after our second-by-second observations were transformed into
functional data. Statistically significant functional differences
between males and females were more difficult to discern in our
data set and require further study.

We considered FDA’s theoretical utility in the exercise data
arena. Based on model performance alone, FDA seems to be
a highly useful tool for processing exercise-induced physiolog-
ical signals. By transforming the raw data into appropriately
smoothed functions, the outputs were quite useful for highlight-
ing differences among the cohorts. In addition to the promising
predictive capability we presented here, the general benefits of
FDA were apparent. As exercise response signals are inherently
noisy and non-linear (especially in younger children compared
with adults), exploration of the data as smoothed functions was
instrumental in our statistical analysis. Conventional statistical
techniques are useful for ramp style exercise time series, as
the on- and off-transient structure does not exist. However,
these methods struggle to capture the patterns when considering
multiple repeated exercise intervals.

FDA allows for handling of sparse datasets and those in which
individual exercise performance intervals of the protocol are not
cleanly aligned. FDA’s ability to reduce predictive error could be
beneficial for exercise prescription, especially in settings where
a maximal stress test is not feasible [29].

One-way functional ANOVA showed that, in general, ‘task-
failures’ were characterized by a statistically significant higher
functional mean HR, V̇ O2, and V̇ CO2 across the four bouts.

Our models included gender, maturational status, and body
mass as scalar covariates alongside functional MBEB signals to
identify ‘task-failures.’ V̇ O2, V̇ CO2, and HR were especially
informative signals for predicting ‘task-failures’ based on the
first four exercise bouts. Incorporating gender and puberty level
was beneficial for several models. The top performing model
classified ‘task-failures’ with 93.5% F1 score; by adding the
anthropometric features to the functional covariate, we improved
the classification rate by several points. We also showed the
ability to sample from subgroups and conduct permutation t-
tests of the functional means, testing for sex and maturational
status differences. This particular comparative method is more
challenging with discrete data.

With regard to the ‘body mass’ variable, the generalized
spectral additive model (GSAM) that produced the best results
showed that inclusion of this variable provided no additional
benefit in model performance. Body mass is certainly correlated
with some physiological signals. A theoretical discussion of
how body mass may influence physiological and metabolic
function can be found in seminal papers by A. Heusner [30], [31].
However, the degree of this correlative effect seems to be subject
to a participant’s other demographics [3]. These researchers
found significantly higher V̇ O2, and V̇ CO2, and V̇ E costs in the
early-pubertal participants for both low- and high- intensity mul-
tiple brief exercise bout (MBEB) protocols when these values
were scaled to body mass. It is possible that these differences in
dynamic responses between pubertal groups hindered the ability
of Functional Data models to correctly predict which children
would fail to complete all ten exercise bouts.

As to the practical implications of our work, FDA can also
provide interpretable results for the clinician. Suppose that in-
stead of predicting who quits exercising, we want to see the
differences between healthy individuals and those with chronic
disease. The graphical depictions of sub-group mean functions
(Fig. 6 and Appendix C) can aid a clinician with determining
whether a patient’s trajectory more closely aligns with that of
a healthy or non-healthy subject. Finally, as suggested by [11],
we demonstrated that meaningful medical conclusions can be
drawn with measurements from shorter-duration exercise tests.

VI. FUTURE WORK

FDA is currently a very active research topic. The perfor-
mance of FDA for exercise testing on this sample of participants
suggests further research opportunities. First, there exist other
important frequency and gas exchange variables as calculated
during CPET; work output (watts), minute ventilation (V̇ E),
respiratory quotient (RQ), and the ratio of V̇ E to V̇ CO2

(V̇ E/V̇ CO2 slope). FDA could be applied to each of these
and may prove medically useful. Some physiological signals
are correlated with body mass; it would be interesting to test
theories about the dynamics of gas exchange variables while
specifically normalizing by lean body mass.

Further investigation is needed into the the selection of
smoothing parameters and basis representation for FDA. A
B-spline basis was chosen for this dataset due to the popularity
and flexible nature of splines as well as the ability to capture the
on- and off-transient signal patterns that resulted from MBEB.
Other basis transformations should be investigated for their
goodness of fit on this and other data sets. Additional analysis
is also necessary to confirm that the results in this research are
reproducible for the low-intensity exercise setting.

VII. LIMITATIONS

The primary limitations of this study relate to the type of
patients and quantity of exercise tests analyzed. Our participant
population, while reflective of the local community at our site,
was not representative of the population as a whole. Moreover,
any predictive methodologies must be tested by prospective
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studies and analysis. Further studies will be necessary to gauge
the effect of chronic disease, racial, ethnic, and other social de-
terminants on exercise responses as children develop. The FDA
method should be applied to other population groups, such as
healthy young adults or pediatric patients with chronic diseases
or obesity. This study’s analysis may be useful as a baseline to
which we can compare the signals of diseased individuals. The
inclusion of prospective data in future work should eliminate
potential bias in our method of analysis.

The binary classification methods used here assume that
whether or not a child completes an exercise test is an appropriate
proxy for his or her physical fitness. There are undoubtedly other
factors at play when a child makes the decision to quit during
intense exercise. Understanding the physiological determinants
that contribute to cognitive decision-making around exercise
behavior will be critical for the optimal use of exercise testing
in health and disease.

APPENDIX A
RAW DATA PLOTS

The figures below are the second-by-second observations of
our four variables of interest: HR, RR, V̇ O2, and V̇ CO2.

Fig. 7. Ten bouts of Heart Rate data, originally observed breath-by-
breath and time interpolated to a second-by-second representation.
Each participant’s observations are shown with a unique color.

Fig. 8. Ten bouts of Respiratory Rate data, originally observed breath-
by-breath and time interpolated to a second-by-second representation.

Fig. 9. Ten bouts of O2 Uptake Rate data, originally observed breath-
by-breath and time interpolated to a second-by-second representation.

Fig. 10. Ten bouts of CO2 Uptake Rate data, originally observed
breath-by-breath and time interpolated to a second-by-second repre-
sentation.

APPENDIX B
SMOOTHED & REGISTERED DATA PLOTS

The figures below are the functional data representations of
our four variables of interest: HR, RR, V̇ O2, and V̇ CO2.

Fig. 11. Four bouts of Heart Rate after converting the discrete time se-
ries to 78 smoothed and continuously registered functional data objects.

Fig. 12. Four bouts of Respiratory Rate after converting the discrete
time series to 78 smoothed and continuously registered functional data
objects.
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Fig. 13. Four bouts of O2 uptake rate after converting the discrete
time series to 78 smoothed and continuously registered functional data
objects.

Fig. 14. Four bouts of CO2 uptake rate after converting the discrete
time series to 78 smoothed and continuously registered functional data
objects.

APPENDIX C
FANOVA RESULTS

Functional ANOVA results for the RR, V̇ O2, and V̇ CO2

guided the investigation of the null hypothesis. For p-values
≤ 0.05, we reject the null hypothesis and conclude that there is
a statistically significant difference in the functional means for
‘task-failures’ and ‘task-completers.’

Fig. 15. Comparison of functional means for the RR signal during the
first four exercise bouts. p-value = 0.186. Participants who failed to
complete ten bouts during MBEB are labelled as ‘1’ and colored green.
The red line depicts the functional mean for ‘task-completers.’ The black
line indicates the mean trajectory for all 78 participants. The plot on
the right shows Heart Rate curves for MBEB ‘task-failures’ (green) and
‘task-completers’ (red), bootstrapped 500 times. The black line indicates
the mean trajectory for all 78 participants. Notice that there is substantial
overlap between the two groups’ signals; quitters and non-quitters have
virtually indistinguishable respiratory rates.

Fig. 16. Comparison of functional means for the V̇ O2 signal during
the first four exercise bouts. p-value = 0. Participants who failed to
complete ten bouts during MBEB are labelled as ‘1’ and colored green.
The red line depicts the functional mean for ‘task-completers.’ The black
line indicates the mean trajectory for all 78 participants. The plot on the
right shows Heart Rate curves for MBEB ‘task-failures’ (green) and ‘task-
completers’ (red), bootstrapped 500 times. The black line represents the
bootstrapped mean function for 78 participants.

Fig. 17. Comparison of functional means for the V̇ CO2 signal during
the first four exercise bouts. p-value = 0. Participants who failed to
complete ten bouts during MBEB are labelled as ‘1’ and colored green.
The red line depicts the functional mean for ‘task-completers.’ The black
line indicates the mean trajectory for all 78 participants. The plot on the
right shows Heart Rate curves for MBEB ‘task-failures’ (green) and ‘task-
completers’ (red), bootstrapped 500 times. The black line represents the
bootstrapped mean function for 78 participants.

APPENDIX D
CLASSIFICATION MODEL DESCRIPTIONS

This appendix details the structure of each classification
model in the Functional Data approach. Models were built with
consistent parameters to allow for performance comparison.
Note that the individual models use only functional data from
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one physiological signal, and the multivariate models use func-
tional data coefficients from all four signals. Also, the full mul-
tivariate models include BodyMass as a third anthropometric
scalar variable.

All modeling was performed in Rstudio (Version 1.4.1103).
FDA was conducted in R using the ‘fda’ package (version
5.5.0) [23] and the ‘fda.usc’ package (version 2.0.2) [25]. Wrap-
per versions of the following packages were called within the
’fda.usc’ functions:

� RPART: rpart package
� RandomForest: randomForest package
� SVM: e1071 package
� LDA: MASS package
� Neural Network: nnet package

The binary class ‘quit’ (1 or 0) was predicted with the follow-
ing covariates (X[0,720] represents the response variable and the
function s(·) denotes an additive effect over the variable):

� GSAM: s(X[0,720])

–equal weights (1) were used for all observations in GSAM
models

–The probability value for binary discriminant (i.e. classification
threshold) was optimized within each GSAM model; we
searched across a range between 0.3 and 0.8, and the threshold
which produced the highest F1 score was selected.

� GSAM + Covariates: s(X[0,720]) + Gender +
PubertyLevel (+ BodyMass for the full model)

� RPART: s(X[0,720]) + Gender + PubertyLevel (+
BodyMass for the full model)

–the value of prior probabilities was set to the default for rpart

� K-Nearest Neighbors: X[0,720] + Gender +
PubertyLevel (+ BodyMass for the full model)

–the k number of nearest neighbors was chosen based on trial and
error, to determine which k resulted in the lowest classification
error. Therefore, k varies between 12 and 14 among the
models.

� RandomForest: X[0,720] + Gender + PubertyLevel (+
BodyMass for the full model)

–we used the default value for the number of trees to grow (500)
and the number of variables available for splitting at each tree
node (square root of total number of variables)

� Support Vector Machines: X[0,720] + Gender +
PubertyLevel (+ BodyMass for the full model)

–default values were used for the C parameter (1) and γ param-
eter (1/data dimension) in the radial basis function kernel

� Linear Discriminant Analysis: X[0,720] + Gender +
PubertyLevel (+ BodyMass for the full multivariate
model)

–the important parameter was the prior probabilities of class
membership; with our balanced data, we used the class pro-
portions for the training set

� Neural Network:X[0,720] +Gender+PubertyLevel (+
BodyMass for the full model)

–we used the default value for weights (1) in the neural net
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