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Abstract—Since the underlying mechanisms of neurore-
habilitation are not fully understood, the prognosis of
stroke recovery faces significant difficulties. Recovery out-
comes can vary when undergoing different treatments;
however, few models have been developed to predict pa-
tient outcomes toward multiple treatments. In this study,
we aimed to investigate the potential of predicting a treat-
ment’s outcome using a deep learning prognosis model de-
veloped for another treatment. A total of 15 stroke survivors
were recruited in this study, and their clinical and phys-
iological data were measured before and after the treat-
ment (clinical measurement, biomechanical measurement,
and electroencephalography (EEG) measurement). Multiple
biomarkers and clinical scale scores of patients who had
completed manual stretching rehabilitation training were
analyzed. Data were used to train deep learning prognosis
models, yielding an 87.50% prognosis accuracy. Pre-trained
prognosis models were then applied to patients who com-
pleted robotic-assisted stretching training, yielding a prog-
nosis accuracy of 91.84%. Interpretation of the deep learn-
ing models revealed several key factors influencing pa-
tients’ recoveries, including the plantar-flexor active range
of movement (r = 0.930, P = 0.02), dorsiflexor strength (r =
0.932, P = 0.002), plantar-flexor strength (r = 0.930, P =
0.002), EEG power spectrum density and EEG functional
connectivities in the occipital, central parietal, and parietal
areas. Our results suggest (i) that deep learning can be a
promising method for accurate prediction of the recovery
potential of stroke patients in clinical scenarios and (ii)
that it can be successfully applied to different rehabilitation
trainings with explainable factors.
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I. INTRODUCTION

S TROKE is the leading cause of death and long-term func-
tional impairment worldwide [1]. Stroke survivors com-

monly suffer from motor impairments that negatively impact
their daily lives [2]. Fortunately, several specialized therapies
have emerged in recent years to improve the motor abilities
of stroke survivors [3]. Furthermore, new bioinformation can
improve the efficiency of stroke rehabilitation. Clinical scales,
demographic information, and neurophysiological data are valu-
able to predict recovery outcomes for stroke patients. For in-
stance, a clinical scale of stroke patients has been used to predict
the recovery of upper extremity function in the following 3
months [4], [5]. Demographic information and clinical scales
have been used to create a new biomarker, CoRisk, to identify pa-
tients who were less likely to exhibit favorable outcomes within
a 3-month period [6]. Liu combined all three types of biometrics
to predict whether a stroke patient can achieve effective recovery
[7], [8]. In addition, psychological biomarker was also applied
in certain model to prognosticate stroke recovery [9]. The above
prognostic models were developed based on the correlations
between recovery efficacy and biometrics.

Currently, technological rehabilitation treatments, including
robot-assisted training, functional electrical stimulation, and
transcranial magnetic stimulation (TMS), have been validated in
clinical settings and have shown competence in stroke patients’
motor recovery [3], [10], [11]. However, since stroke patients
are a heterogeneous group, recovery outcomes vary among
patients who receive the same treatment [12], indicating an even
greater dissimilarity between patients from different treatments.
The diversity among patients makes it difficult to determine
whether a specific type of treatment would benefit one specific
patient [12]. Additionally, having an accurate prediction model
can help clinicians avoid challenges in stroke recovery due to
uncertainties and delays of treatments [13], [14]. Therefore,
the prognosis of individual stroke survivors’ recovery outcomes
under a specific rehabilitation method is a significant problem.

Artificial intelligence has become a promising method for
predicting stroke survivors’ recovery outcomes [15], [16]. The
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gradient boosting decision tree was created to cope with various
complicated inputs in order to forecast motor progress in stroke
survivors [8]. A combination of initial clinical scale scores,
demographic information, and structural magnetic resonance
imaging (MRI) data has been selected to predict the outcome
after repetitive TMS intervention [12]. The study applied five
machine learning models to predict individual motor impairment
using MRI results and other information [12]. A neurophysiolog-
ical biomarker signal, electroencephalography (EEG), was used
to predict stroke patients’ outcomes after brain–computer inter-
face (BCI) upper limb rehabilitation training [17], [18]. Another
machine learning method, partial least square, was applied to
predict the functional recovery based on EEG data [19]. Another
study used a deep neural network to predict mortality based on
stroke patients’ EEG data [20]. Since deep learning remains a
“black box” solution [11], another focus of this research was to
understand the mechanism behind the prognosis model and the
factors influencing neurorehabilitation. Interpretation methods,
including the Shapley additive explanations (SHAP) value [21],
attention maps, and gradient-weighted class activation mapping,
have been used in the visualization of medical biomarkers [22],
computed tomography scans [23], and EEG signals [24], respec-
tively. The above methods might have the potential to find out the
recovery mechanisms from deep learning–supported prognosis.

In the present study, we aimed to investigate the potential of
using a deep learning-based prognosis model developed for a
specific treatment to predict the recovery outcome of another
treatment. Therefore, a deep learning model was created to
prognosticate the efficacy of motor recovery after 2 weeks of
manual stretching training by learning a combination of clinical
scale scores, demographic information, and resting-state EEG
data before training. Then, we applied the pre-trained model
to learn the corresponding data collected from robot-assisted
stretching training to prognosticate the efficiency of motor re-
covery. In addition, the interpretation method was also employed
to identify the critical factors that influenced the prognosis result.
Section II introduces the architecture of the proposed model, and
Section III presents the prediction results for stroke patients after
2-week rehabilitation training. The paper ends with a discussion
on the merits of the pre-trained model and the factors influencing
outcomes.

II. MATERIALS AND METHODS

A. Participants

The Institutional Ethical Committee of Tsinghua Chang-
gung Hospital approved this study. This study was con-
ducted according to the principles expressed in the Declara-
tion of Helsinki (18172-0-01) and registered as a clinical trial
(ChiCTR2000030108).

Between May 2019 and November 2020, 15 individuals were
recruited based on our inclusion criteria. Each participant gave
written informed consent prior to their eligibility assessment.
No adverse events related to the study occurred. All participants
were recruited at the Rehabilitation Department of Beijing Ts-
inghua Changgung Hospital. The main inclusion criteria were:
(i) participants should have no prior history of recurrent stroke;
(ii) rehabilitation within 6 months from stroke onset; (iii) age

TABLE I
PATIENTS’ INFORMATION

ranges from 18 to 75 years; (iv) participants should understand
the physician’s orders and must not have cognitive deficits that
could prevent them from undertaking the rehabilitation tasks; (v)
the participants need to have the ability to remain in a stable state
without spasticity during the EEG measurements and training
sessions. Table I reveals the patients’ information.

Each participant was evaluated by clinical, biomechanical,
and EEG measurements. All measured data were applied in
our deep learning model to prognosticate patients’ recovery
outcome.

B. Clinical Measurements

All participants completed the following functional assess-
ments during the clinical evaluations. The Fugl–Meyer Assess-
ment of Lower Extremity (FMA-LE) is the evaluation standard
for measuring lower limb sensorimotor recovery (from 0 to 34
points, hemiplegia to healthy) [25]. The Berg Balance Scale
(BBS) is used for assessing the balancing function of participants
(from 0 to 56 points, imbalance to balance) [26]. The Postural
Assessment Scale for Stroke (PASS) is a 12-item performance-
based scale used for assessing and monitoring postural control
following stroke (from 0 to 36, worst to normal). The Activities
of Daily Living (ADL) scale is designed to describe fundamental
skills required to care for oneself independently or collectively
(from 0 to 100, worst to normal) [27]. Clinical evaluations were
performed immediately before and after the 2-week intervention
(see Table I).

C. Biomechanical Measurements

In the biomechanical evaluations, measurements of muscle
strength, range of motion (ROM), and ankle stiffness (Nm/°)
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were conducted. Ankle stiffness was measured by an ankle
robot [28]. The dorsiflexor (DF) and plantar-flexor (PF) mus-
cle strength were measured on each patient’s affected side.
Ankle stiffness includes the DF stiffness and PF stiffness, which
were calculated as the ratio of the reaction moment from ground
to the angular deflection of the specific joint as T/θ [29], where
T is the passive torque increment during the amount of ankle
movement. When θ is an infinitely small angle, the quasi-static
stiffness can be approximated by the slope of a tangent line of
the torque–angle curve at an ankle position. The peak stretching
velocity was set at 5 degrees/second during the passive range
of motion (PROM) to avoid reflex responses induced by our
experimental criteria.

Additionally, the PROM stiffness of DF at 10° and of PF
at 30° was measured during the PROM. The PROMs of DF
and PF (PF PROM/PF PROM) and active ROMs (AROMs)
of DF and PF (DF AROM/PF AROM) were measured by a
HogganMicroFET3 portable device (Hoggan Health Industries,
Inc. Salt Lake City, USA). All biomechanical evaluations were
performed immediately before and after the 2-week intervention
(see Table I).

D. Neurophysiological Measurements

Before treatment intervention, all participants’ EEG signals
were recorded during neurophysiological measurement ses-
sions. The goal of these sessions is to look for patterns in the
participants’ EEG power spectrum and functional connectivities
while they are at rest. A NeuSen W system (Neuracle Tech.,
Changzhou, China) was used to capture signals from 32 EEG
channels covering the entire scalp at a sample rate of 1000
Hz. Raw EEG data were pre-processed following the method
described in our previous study; they were first averaged by
an average reference and then filtered to a frequency range of
0.5–45 Hz using a finite impulse response band-pass filter [31].
EEG waves were subjected to independent component analysis
to eliminate human interference. The processed EEG data were
then separated into 2-s intervals [14]. To ensure data consistency
between our prognosis model and displayed results, EEG data
collected from ipsilateral hemiplegia patients with lesions in the
right hemisphere have been flipped to corresponding channels
in the left hemisphere [30]. Thus, the two hemisphere areas
correspond to the information from electrodes FP2, AF4, F4,
F8, FC2, FC6, C4, T8, CP2, CP6, P4, P8, PO4, and O2 (affected
hemisphere) and FP1, AF3, F3, F7, FC1, FC5, C3, T7, CP1,
CP5, P3, P7, PO3, and O1 (unaffected hemisphere).

E. EEG Power Spectrum Density and Functional
Connectivities

MATLAB’s built-in function pwelch was used to com-
pute each segment’s EEG power spectrum density from pre-
processed data (R2018b, MathWorks, Natick, MA, USA). The
Welch technique was modified in this work using the following
parameters: 0.5 Hz frequency resolution, 1-s Hanning window
overlap, and 0 phase shift. Each trial was averaged into a single
matrix to eliminate biased prediction due to experimental error.
Consequently, a two-dimensional matrix was created, with the
two dimensions representing EEG signal channels and EEG data

frequency (0.5–45 Hz, interval of 0.5 Hz). For EEG power data,
the matrix size was (32, 90).

This study focused on six recognized EEG signal bands
discovered in earlier studies as significant indicators for EEG
functional connectivities, namely Delta (1–3 Hz), Theta (4–7
Hz), Alpha (8–13 Hz), Beta Low (13–18 Hz), Beta Medium
(18–21 Hz), and Beta High (21–30 Hz) [31], [32]. EEG func-
tional connectivities was calculated using a previously described
method [14]. The columns represent the 496 two-electrode
combinations (for 32 electrodes, 1 + 2 + … + 31 = 496). The
rows represent the six bands used to illustrate connectedness (6).

The EEG power spectrum density and functional connectivi-
ties results were normalized based on the z-score, which boosted
the deep learning model’s prediction accuracy [33].

F. Treatments

This study was an assessor-blinded, randomized controlled
experiment. Each participant was randomly assigned to one
of the two different rehabilitation treatments, namely robot-
assisted ankle stretching or manual stretching training, for 10
sessions in 2 weeks (five times a week, 20 min/session).

A physiotherapist with at least 5 years of experience in
clinical rehabilitation gave manual stretching training. Each
participant’s PROM ankle score was required to be measured to
ensure safety before the manual stretching training. During the
manual stretching training, the physiotherapist gently stretched
the participant’s affected side ankle from PF to DF in the sagittal
plane and then held it at the extreme DF position for 5 s. In
all stretching training sessions, the participants remained in a
relaxed position ( Fig. 2(a)).

The ankle stretching robot can assist a stroke patient with
ankle stretching; this robot was described in our previous study
[28]. During treatment, the participants were required to look at
the display monitor; when the monitor displayed the phrase “an-
kle joint,” the robotic device assisted the patients in conducting
ankle stretching training, moving from the DF position to the PF
position (Fig. 2(b)).

G. Labeling of the Development Datasets

Previous studies have shown that recoveries from stroke usu-
ally plateau at ∼70% from initial performance to complete re-
covery, regardless of patient age or sex, stroke type, and therapy
dose [34], [35], [36], [37], [38]. Therefore, proportional recovery
was used as a standard in clinical rehabilitation to determine
whether a patient can recover to expectation under specific
rehabilitation training. We used the increase between FMA-LE
scores before and after intervention from clinical evaluation to
estimate motor recovery performance. The maximum value was
34. The following function was used to calculate the FMA score
if the expected 70% improvement from the initial assessment
was achieved:

ΔFMApredict = 0.7× (34− FMAinitial) (1)

The residual was defined as the difference between predicted
and observed improvement from the initial assessment to the
assessment after intervention [7], [8], [34]. In the present study,
the median value of differences between predicted and observed
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Fig. 1. Framework of the deep learning prognosis model for stroke survivors. The following inputs were applied to predict rehabilitation outcome: (i)
Scaled values including clinical scales and biomechanical measurements, (ii) EEG functional connectivities, and (iii) EEG power spectra. ∗Matrices
have a Conv-BatchNorm-ReLU structure.

Fig. 2. (a) The treatment of Manual stretching (Physiotherapist is as-
sisting stroke survivor ankle movement). (b) The treatment of Robot-
assisted stretching (The Robotic is assisting stroke survivor ankle move-
ment).

values was 6. Therefore, patients were assigned to the propor-
tional recovery group if their residuals were smaller than 6
and to the poor recovery group if their residuals were greater
than 6.

H. Deep Learning Model

A supervised deep learning architecture was designed for
the prognosis model for predicting recovery outcomes. Three
inputs were selected: binary and scaled values obtained from
clinical assessments and biomechanical measurements (size:
[17]) (Table I), functional connectivities based on EEG data
(size: [496, 6]), and the power spectrum density based on EEG
data (size: [90, 32]).

Two 128-node fully connected layers in the prognosis model
were used to learn features from clinical and biomechanical
assessment. In addition, the convolution layers were used to
learn features from the EEG power spectrum and functional con-
nectivities. This prognosis model utilized Nesterov-accelerated
Adaptive Moment Estimation (Nadam) gradient descent as the
stochastic optimizer for our prognosis model. The Nadam opti-
mizer combines the advantages of Nesterov adaptive, momen-
tum optimizer, and RMS-Prop optimizer and is thus capable of
working with large datasets [39]. With the Nadam optimizer, our
deep learning prognosis model can automatically learn multiple
features from a large training dataset with adaptive rates. More-
over, this prognosis model utilizes the categorical cross-entropy
as a loss function. For forwarding and back-propagation, 200
epochs with a batch size of 32 were used.

EEG inputs were first applied on the convolution layer, then
on the batch normalization layer, and then activated by the
Rectified Linear Unit (ReLU) activation function that is used
in all layers (Conv-BatchNorm-ReLU). The complete sequence
was performed three times to extract features. Moreover, the
kernel size was different in the EEG power spectrum density
(3) and EEG functional connectivities (2). After three repeating



LIN et al.: TRANSFERABLE DEEP LEARNING PROGNOSIS MODEL FOR PREDICTING STROKE PATIENTS’ RECOVERY 6007

sequences, the matrix would be flattened. Next, a fully connected
layer (dense) with 128 nodes was added to the resulting matrix
after the feature extraction layer.

Finally, the concatenate layer collected matrices from those
three inputs, namely, scale information, the EEG power spec-
trum density, and EEG functional connectivities. These matri-
ces were placed in a 512-node dense layer with all important
characteristics preserved. The output was a prediction of each
patient’s recovery category, namely, poor recovery or propor-
tional recovery.

To validate the prognosis model’s reliability, leave-one-out
cross-validation was applied. When verifying deep learning
models with a small sample set, leave-one-out cross-validation
is frequently utilized [40]. We applied this method to ensure the
reliability of the prediction for each model; for each training
session of the leave-one-out method, a single stroke patient’s
data were “left out” to serve as the validation set, while the
remaining data from the training set comprised the other sets.

Our proposed architecture was implemented in CUDA and
run on an RTX 3070Ti GPU with 8 GB memory (NVIDIA).
The standard implementations run on an Intel i7-11700k CPU
at 3.60 GHz. Keras was the platform used for building our deep
learning models’ architecture. The average time for activating
the model was 68.16 s.

I. SHAP Interaction Values

SHAP values were used to explain the machine learning
model. This method is a game-theoretic approach to explain the
output of the machine learning model. However, this study used
the deep learning method to build a prognosis model. Therefore,
to explain the output of the deep learning method, the function
GradientExplainer was applied in this study. GradientExplainer
is a technique that combines ideas from Integrated Gradients,
SHAP, and SmoothGrad.

In the present study, we validated the reliability of the deep
learning model with the leave-one-out method. Therefore, the
number of parameter sets of the prognosis model was the same
as the number of datasets from each patient. Each prognosis
model has its SHAP interaction values because it uses a different
training set. Pearson’s correlation was applied to find features
that were simultaneously important across all models generated
from leave-one-out validation.

J. Statistical Analysis

The Shapiro–Wilk test and the homogeneity of variance test
were applied to evaluate the differences between proportional
recovery group and poor recovery group datasets. Fisher’s exact
test was used to compare categorical variables, and the Wilcoxon
rank-sum test was used to compare continuous variables in
baseline characteristics.

By applying the Shapiro–Wilk test and the homogeneity
of variance test to obtained EEG signals, we could verify if
the power spectrum density and functional connectivities were
normally distributed [41]. The two-sample t-test or the Wilcoxon
rank-sum test was applied to examine differences between the
proportional and poor recovery groups. The Pearson or Spear-
man correlation coefficient was applied to find the correlation.

Fig. 3. Receiver operating characteristic curve of manual stretching
prognosis models was generated by the leave-one-out method (orange
curve). The area under the characteristic curve was 0.95. An area under
the curve of 1 indicates absolute prognosis accuracy.

The false discovery rate (FDR) was used to avoid Type I errors,
and a T-distribution was applied to obtain the 95% confidence
interval (95% CI). All statistical analyses were conducted using
MATLAB and SPSS version 26.0 (IBM Corporation, Armonk,
NY, USA).

III. RESULTS

A. Performance of the Prognosis Model for Predicting
the Outcome of Manual Stretching Training

Clinical data, biomechanical data, EEG functional connec-
tivities, and EEG power spectra were applied to our prognosis
model as inputs (as shown in Fig. 1) to predict rehabilitation
outcomes.

In the leave-one-out cross-validation method, the number of
parameter sets of the prognosis model generated by this method
is the same as the number of available training sets, which is
eight. The prognosis model was used as a classification model
to predict whether the patient can reach proportional recovery.
The prediction results of the prognosis model generated by the
leave-one-out method. The prediction accuracy is 87.50%. Fig. 3
shows the receiver operating characteristic (ROC) curve area.
The area under the ROC curve (AUC) was 0.95. The confusion
matrix of the manual stretching prognosis model shows that the
number of true positives is 3 and that the number of true negatives
is 4 (Fig. 4). The sensitivity was 1.00, and the specificity was
0.80.

B. Performance of Pre-Trained Prognosis Model for
Predicting the Outcome of Robot-Assisted Training

The prognosis model generated from manual stretching
datasets was used to predict the rehabilitation outcomes of
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TABLE II
PRE-TRAINING MANUAL STRETCHING PROGNOSIS MODEL APPLIED ON ROBOT-ASSISTED TRAINING

Fig. 4. Confusion matrix of manual stretching prognosis models was
generated by the leave-one-out method.

robotic-assisted stretching. The inputs of the pre-trained prog-
nosis model were the same as for the prognosis model used
above.

The prognosis results from the pre-trained prognosis model
are presented in Table II. The prediction accuracy showed com-
petitive performance in classifying between the proportional
recovery group and the poor recovery group after robot-assisted
training. The average accuracy was 91.07% (sensitivity is 0.941,
specificity is 0.897), and the average accuracy, excluding the
out-of-bound parameter set, in manual stretching rehabilitation
training was 91.84% (sensitivity is 0.933; specificity is 0.912).
The operation was based on a previous study, which can avoid the
influence from an erroneous model [42]. The lowest prediction
accuracy for one pre-trained prognosis model was 71%. Four
among the rest seven parameter sets presented 100% accuracy in
predicting robotic-assisted stretching training outcomes. Fig. 5
shows the receiver operating characteristic (ROC) curve area
of average and excluding the out-of-bound parameter sets. The
area under the ROC curve (AUC) of the average was 0.95 and the
area under the ROC curve (AUC) of excluding the out-of-bound
parameter was 0.96.

C. Key Factors of Prognosis Model

Results from GradientExplainer reveal key factors from all
different parameter sets’ prognosis models, including clinical
data, biomechanical data, the EEG power spectrum density, and
EEG functional connectivities. Key factors determining whether
a patient can make a proportional recovery are thus analyzed
using a statistical method.

Fig. 5. Orange receiver operating characteristic curve represents av-
erage prognosis accuracy for all eight patients who received robot-
assisted treatment (curve 1). The green receiver operating characteristic
curve represents the average prognosis accuracy for seven patients,
excluding one out-of-bounds model (curve 2). The areas under charac-
teristic curves can be found in the legend (curve 2).

Characteristics of biomechanical measurements were re-
vealed to show significant differences in PF AROM, DF strength,
and PF strength. After Pearson correlation coefficient analysis,
the correlation and credibility of biomechanical measurements
were as follows: PF AROM (r = 0.930, P = 0.02), DF strength
(r = 0.932, P = 0.002), and PF strength (r = 0.930, P = 0.002).
The above analyses all showed high r values, which indicates
high positive correlation between these biomarkers and patient
recovery.

The results obtained from the EEG power spectrum density
through the Pearson correlation coefficient analysis showed a
positive correlation between the power density in the occipital
lobe (O2) and patient recovery; the range of this positive correla-
tion included the Alpha band to the Beta High band (Alpha band,
r = 0.956, P = 0.001; Beta Low band, r = 0.782, P = 0.038;
Beta Medium band, r = 0.897, P = 0.006; Beta High band,
r = 0.782, P = 0.038). Power density in the central parietal
lobe (CP2) showed a positive correlation with patient recovery
in the Theta band (r = 0.812, P = 0.026). Power density in the
right parietal lobe (P8) showed a positive correlation with patient
recovery in the Alpha band (r= 0.94, P = 0.002). Power density
in the left parietal lobe (P3) showed a positive correlation with
patient recovery in the Beta Medium band (r= 0.868, P= 0.011)
(Fig. 6(a)).
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Fig. 6. (a) SHAP interaction values obtained from power spectrum density (warmer color tones represent higher positive correlation). (b) SHAP
interaction values obtained from functional connectivities (bright colors mark areas of high correlation, both positive and negative).

The Pearson correlation coefficient analysis results for EEG
functional connectivities showed that the following interhemi-
spheric functional connectivities are positively correlated with
patient recovery: frontal cortex and central cortex (FC5–C4);
frontal cortex and parietal cortex (F3–PO3, F4—P7); frontal
cortex and occipital cortex (FP1–O1, FC1–Oz, AF3–O2); pari-
etal cortex and central cortex (P8–CZ, P8–CP2); occipital cortex
and parietal cortex (O1–P4). The following functional connec-
tivities within the frontal areas are positively correlated with
patient recovery: F3–FP2 and F3–AF4. The values of functional
connectivities between the following areas are negatively corre-
lated with patient recovery: frontal cortex and occipital cortex
(AF3–Oz) (Fig. 6(b)).

D. Patient Characteristics

In the manual stretching training, significant differences in
clinical information between the proportional recovery group
and the poor recovery group are found in PASS (P = 0.039)
and FMA-LE (P < 0.01). Significant differences in biomedical
information between the two groups were found in DF AROM
(P = 0.030), PF AROM (P = 0.010), and PF strength (P =
0.014). Patients from the proportional recovery group were
observed to have a consistently higher value for these biomarkers
than patients from the poor recovery group. On the contrary, EEG
power spectrum density and functional connectivities showed no
significant difference between the proportional recovery group
and the poor recovery group when evaluated by the Wilcoxon
rank-sum test.

In the robotic-assisted stretching training, significant dif-
ferences in clinical information between the proportional and
poor recovery groups were found in BBS (P = 0.047) and
FMA-LE (P = 0.004). Biomedical information between the
two groups showed a significant difference in PF PROM (P =
0.042), DF strength (P = 0.012), and PF strength (P = 0.002),
in which the proportional recovery group had higher values
for all biomarkers than the poor recovery group. Similar to
manual stretching training, the EEG power spectrum density
and functional connectivities between the two groups showed no
significant difference when evaluated by the Wilcoxon rank-sum
test.

IV. DISCUSSION

The main objective of this study was to explore the feasibility
of creating a transferable deep learning prognosis model compat-
ible with various rehabilitation treatments. Accurate prognosis
results obtained in this study proved the possibility of creating
a prognosis model that can be transferred between similar reha-
bilitation treatments.

Our deep learning prognosis model based on clinical data,
biomechanical information, and neurophysiological signals has
been developed to predict lower limb recovery with competitive
performance. The resulting models were validated by leave-one-
out cross-validation. A total of eight models are presented based
on leave-one-out cross-validation. Only one of these models was
inaccurate, leading to an average prognosis accuracy of 87.50%.
The prediction results agree with our hypothesis that using all
biomarkers in conjunction to predict stroke survivor outcomes
under a specific rehabilitation training can result in prediction
results with high enough accuracy for use in real-life settings.
The prognosis models for manual stretching training accurately
classify the proportional and poor recovery groups. Different
treatments generally have different feature domains, posing
significant difficulties for transfer learning. Regardless, we can
conclude from our result that the prognosis models can have
high accuracy by evaluating all biomarkers in conjunction with
each other and limiting the evaluation to a specific treatment.

Applying the pre-trained prognosis model from manual
stretching treatment on stroke survivors with robot-assisted
training (a concept from transfer learning) yielded a prediction
accuracy of 91.84%. This high accuracy may be due to the
advantages of transfer learning [43]. The first advantage is
the ability of the pre-trained model to avoid data bias. Since
each patient’s recovery varies with his/her initial capability, it
would be difficult to have an unbiased comparison between the
two comparison groups [12]. Furthermore, in clinical settings,
patient data are hard to acquire because each patient could face
issues such as stability issues, consciousness issues, and other
problems that could occur during training [44]. A review study
showed that the sample sizes for EEG studies using deep learning
are generally around 10 participants per dataset [45]. With such
a small sample size, a few-shot learning study shows that the
biased data would cause a considerable impact (a 17% drop in
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accuracy) [46]. Therefore, a pre-trained model generated from
an unbiased dataset could achieve a more accurate result. Our
study’s pre-trained application result shows an average accuracy
of 91.84%. The second advantage of adapting transfer learning
in our methodology is applying one prognosis model to datasets
from a different training method [43], [47] without having to
train a new model for every rehabilitation method. Relational
knowledge transfer, one of the transfer learning methods, can
deal with the classification or regression problems only if the
source and target domains have similarities [43]. A previous
study has identified similarities between robot-assisted training
and manual stretching rehabilitation training from a clinical
aspect [48]. It is thus reasonable to suggest that the progno-
sis efficacies of these two treatments have similar domains of
influential factors, allowing us to apply transfer learning to a
broader range of rehabilitation methods.

GradientExplainer can be applied to prognosis models to
visualize the key features of stroke survivors who met the criteria
of a proportional recovery group after rehabilitation. Analyzing
features from biomechanical measurements showed a high cor-
relation coefficient between patient recovery and biomarkers,
including PF AROM, PF strength, and DF strength. A previous
study showed that ankle DF and PF strength correlate with
walking distances [49], supporting our finding that DF and PF
strength are essential factors for stroke survivors to have a good
recovery. Another study found that AROM is an influential factor
in predicting upper extremity function, which also supports our
findings to some extent [4], [50]. SHAP interaction values based
on the power spectrum density show that the power spectrum
density in the Alpha and Beta Low bands correlates with stroke
survivors’ recovery. A long-term study showed a difference
in EEG signals at different post-stroke times, supporting our
findings [55]. In our research, we further found that key features
in the occipital lobe, central parietal lobe, and parietal lobe
are positively correlated with stroke survivors’ recovery. SHAP
interaction values based on functional connectivities showed
the correlation between interhemispheric and intrahemispheric
connectivities and patient recovery.

Interhemispheric EEG connectivities between the frontal cor-
tex and central cortex, the frontal cortex and parietal cortex,
the frontal cortex and occipital cortex, the occipital cortex
and central cortex, and the occipital cortex and parietal cortex
showed high correlation coefficients with stroke patients’ re-
covery. Similarly, intrahemispheric EEG connectivities within
the frontal, central, and parietal cortex showed high correlation
coefficients with stroke patients’ recovery. Several functional
MRI (fMRI) studies support our SHAP findings with respect to
the EEG power spectrum density and functional connectivities
[52], [53], [54], [55]. An fMRI study analyzed the longitudinal
changes of resting-state functional connectivities in which the
stroke survivors have lower connectivities in the contralesional
central and occipital cortex than healthy patients, supporting our
results [52]. The present study found that high signal activities in
the central and occipital cortex correlate with a high probability
of proportional recovery. Another study investigating functional
recovery through analyzing functional connectivities matched
our findings with respect to interhemispheric connections [53].
One study showed that the frontal-parietal cortex is correlated

with motor recovery [54]. The results of a brain structural
analysis in a robot-assisted rehabilitation training study also
match our findings [55]. It is thus reasonable to suggest that by
applying deep learning interpretation methods to a sufficiently
accurate model, researchers can identify hidden mechanisms
and factors influencing patient recovery with relative ease and
accuracy.

Differences between the proportional recovery group and the
poor recovery group in manual and robot-assisted stretching
training showed significant resemblance. The differences be-
tween the proportional recovery group and the poor recovery
group are virtually the same for FMA-LE scores, PF strength,
and DF strength (P = 0.053) in both rehabilitation methods.
These findings are the same as the GradientExplainer results
for biomechanical data. These results indicate that the recovery
mechanism of manual stretching training is similar to that of
robotic-assisted training, which may contribute to transfer of
the proposed prognosis model.

Aside from helping doctors to make better judgments, accu-
rate prognosis results may help boost the confidence of patients.
For patients in the proportional recovery group, an accurate
forecast of recovery has the potential to boost confidence and
stimulate a positive attitude, which was shown to boost motor
recovery [56]. However, to date, there is no research that categor-
ically states a strong correlation between prognosis accuracy and
patient mood. Further research on this topic can be conducted
based on our prognosis model.

V. CONCLUSION

In summary, the multi-input design (including demographic,
clinical, biomechanical, and neurophysiological data), along
with the flexible nature of deep learning, allows our prognosis
model to be transferable between different scenarios with high
accuracy. Successful application of transfer between manual
and robot-assisted rehabilitation shows potential in reducing the
amount of model required to generate a prognosis for different
rehabilitation treatments.
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