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Gradient Boosting Machine and Efficient
Combination of Features for Speech-Based
Detection of COVID-19
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Satyajit Mahapatra

Abstract—In recent times, speech-based automatic dis-
ease detection systems have shown several promising re-
sults in biomedical and life science applications, especially
in the case of respiratory diseases. It provides a quick,
cost-effective, reliable, and non-invasive potential alterna-
tive detection option for COVID-19 in the ongoing pan-
demic scenario since the subject’s voice can be remotely
recorded and sent for further analysis. The existing COVID-
19 detection methods including RT-PCR, and chest X-ray
tests are not only costlier but also require the involve-
ment of a trained technician. The present paper proposes a
novel speech-based respiratory disease detection scheme
for COVID-19 and Asthma using the Gradient Boosting
Machine-based classifier. From the recorded speech sam-
ples, the spectral, cepstral, and periodicity features, as well
as spectral descriptors, are computed and then homoge-
neously fused to obtain relevant statistical features. These
features are subsequently used as inputs to the Gradient
Boosting Machine. The various performance matrices of
the proposed model have been obtained using thirteen
sound categories’ speech data collected from more than 50
countries using five standard datasets for accurate diagno-
sis of respiratory diseases including COVID-19. The overall
average accuracy achieved by the proposed model using
the stratified k-fold cross-validation test is above 97%. The
analysis of various performance matrices demonstrates
that under the current pandemic scenario, the proposed
COVID-19 detection scheme can be gainfully employed by
physicians.

Index Terms—COVID-19 detection, LightGBM, speech
classification, feature fusion, health informatics.
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|. INTRODUCTION

ECENT developments in speech signal processing have
Rshown numerous clinical applications for non-invasive
diagnosis of diseases which helps in effective remote health
monitoring and remote healthcare facilities [1], [2], [3], [4]. In
the current Coronavirus Disease 2019 (COVID-19) pandemic
scenario, this speech-based remote health monitoring system can
play a crucial role. According to the World Health Organization
data, more than 579 million people have suffered including six
million deaths reported till August 8, 2022, due to COVID-
19 [5]. The standard and reliable test of COVID-19 is the
Reverse transcription-polymerase chain reaction test (RT-PCR)
test which is expensive (US$125 per test package, and over
$15,000 to set up a processing lab) and also time-consuming
(4-6 hours of processing time, and a turn-around of 2—4 days,
including shipping) [6]. To deal with this challenging situation,
there is a huge requirement for large-scale testing for isolating
infected individuals and contact tracing [7]. Under this scenario,
speech-based COVID-19 detection (CD) is one of the simplest,
safest as well cost-effective methods [8].

Several temporal and spectral acoustic features of subjects
have been used as inputs to a random forest model for the classi-
fication of speech into nine categories such as shallow and deep
breathing, shallow and heavy cough, sustained vowel phonation
(/ol, lel, la/), and normal and fast counting [9]. Detection
accuracy of 66.74 % is reported in this study. In [10], respiratory
sounds such as cough and breathing have been employed to
classify COVID-19 from asthma using 733-dimensional
features including 477-dimensional handcrafted features and
256-dimensional VGGNet-based features. The Logistic
Regression-based classifier is used to provide an area under
the receiver operator characteristic curve (ROC-AUC) of above
80%. The CD from online available speech data has been carried
out using phoneme level analysis, Mel filter bank features, and
the SVM classifier. It is reported that an accuracy of 88.6%
is achieved from a limited number of 19 speakers [11]. An
automated machine learning-based COVID-19 classification
model is developed using glottal, prosodic, and spectral features
from short-duration speech segments [12]. The proposed model
yields a classification accuracy of 80%. Modified cepstral
features are extracted from two speech databases and fed to the
support vector machine (SVM) classifiers for CD and maximum
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accuracy of 85% is obtained [13]. Transfer learning-based deep
neural network classifiers are used for CD for cough, breath,
and speech with a ROC-AUC of 0.982, 0.942, and 0.923
respectively [14]. Several machine learning-based algorithms
are analyzed for the mobile health solutions of CD and it is
observed that the SVM technique provides the highest accuracy
of 97% for the Coswara database [15]. A mobile application
is developed for CD by combining the symptoms checker with
voice, breath, and cough signals for robust performance on
openly sourced and noisy data sets by using deep CNN and
gradient boosting [16].

Even though several speech-based CD methods have been
proposed, there is still scope for improvement in terms of de-
tection accuracy, computational complexity as well as testing
on multiple datasets in different categories of speech. As the
early CD is essential, the higher and more reliable accuracy of
detection is very important which would drastically reduce the
spread and medical emergency of the detection. Additionally,
many researchers have focused on using chest X-rays for CD
using several image processing techniques [17], [18], [19],
[20], [21]. Although it achieved superior performance in terms
of accuracy but acquisition of chest X-rays is a cumbersome
task. A physical visit, a well-trained technician for successful
data acquisition, and a medical practitioner are all required. In
light of these considerations, the current research focuses on
the development of an improved CD system based on speech.
For efficient extraction of information from the speech sam-
ples, an effective combination of speech features is used in
this paper along with Light Gradient Boosting Machine which
was proposed by Microsoft in 2016 [22]. It provides improved
training performance requiring minimum memory, and parallel
processing ability as well as handling large-scale data compared
to the traditional machine learning algorithms. In recent years, it
has been employed for genomics data analysis [23], speech pro-
cessing [16], image processing [24], arrhythmia detection [25],
and others. Because of the associated advantages, the gradient
boosting technique is chosen in the current implementation to
achieve better classification performance. The main research
contributions of the paper are listed below:

e Application of intelligent preprocessing techniques to
bring the speech quality of the different real-life recorded
speech to equal acoustic levels.

e Extraction of spectral, cepstral, and periodicity features at
frame level for efficient combination of high dimensional
relevant audio features at sample level to accurately de-
tect several respiratory diseases including COVID-19 and
Asthma.

® Development of Gradient Boosting Machine as a classifier
and comparison of the detection performance matrices
of the proposed method with those obtained from the
standard methods using five datasets in thirteen different
categories.

* Assessment of the generalization ability of the proposed
model which can be presented as a clinical application
method wherein the model is trained with a large number
of speech samples from the cough category of multiple
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Fig. 1. Block diagram of the proposed speech-based COVID-19 de-
tection scheme.

datasets. Later it can predict the condition of the patient
from his/her cough sound.
The paper is organized into four sections with Section
I dealing with the introduction, literature review, motiva-
tions, and objectives of the investigation. The details of the
materials and methods employed are dealt with in section
II. Section III contains an analysis of results, and contribu-
tions in terms of research findings. The outcome of the re-
search, limitations, and future research scope are presented in
section I'V.

[I. MATERIAL AND METHODS

The block diagram of the proposed speech-based COVID-
19 detection scheme is presented in Fig. 1 consisting of the
following steps: dataset collection, preprocessing and features
extraction, scaling of features, classification model training, and
validation, and performance evaluation.

A. Datasets

Five datasets have been used to evaluate the performance of
the suggested model in this study. These are: Coswara (Dataset-
1) [9], Crowdsourced respiratory by the University of Cambridge
(Dataset-2) [10], Virufy (Dataset-3) [26], recorded interviews
from online platforms in telephone quality speech (Dataset-
4) [11], Coughvid (Dataset-5) [7]. Out of these, data set-2 is used
for both binary (COVID-19 positive, and healthy) and multi-
class classification (COVID-19 positive, Asthma positive, and
healthy) whereas datasets-1,3,4,5 are used for the binary classi-
fication task. These datasets contain speech samples of subjects
from more than 50 countries. The dataset preparation follows a
standard technique as shown in Fig. 2. Due to the deadly spread-
ing nature of the COVID-19, the speech samples are recorded
for most of the speech datasets in the online mode either by using
mobile or web-based applications [7], [9], [10], [11], [26]. Along
with the audio samples the COVID-19 status, location, gender,
age, and the health conditions of the patients are also stored. The
brief details of these five datasets are listed in Table I. A total
of 4178 speech samples have been used in the simulation study.
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Fig. 2. Flowchart for the dataset preparation and classification.

TABLE |

DETAILS OF THE FIVE EXPERIMENTAL DATASETS USED IN THE SIMULATION

Name of Dataset

Categories

Number of speech sam-
ples in each class

Breathing-deep 50 N + 47 P
Breathing-shallow 49N +47P
Cough-heavy 50N +47P
Cough-shallow 50 N + 47 P
Dataset-1 [?] Counting-Fast 17N + 42 P
Counting-Normal 17N +42 P
Vowel-/o/ 50N + 47 P
Vowel-/e/ 50N + 47 P
Vowel-/a/ 50N + 47 P
Breathing 64N + 46P + 167 AP
Dataset-2 2] Cough 200N +47 P + 112 AP
Dataset-3 [?] Cough 73N + 48 P
Dataset-4 [?] Spoken Sentence 237 N + 465 P
Dataset-5 [?] Cough 1155 N + 1155 P
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* The classes are named as COVID-19 Positive (P), COVID-19 Negative or
healthy (N), and Asthma Positive (AP)

Complete details of these datasets are given in supplementary
information S1.

B. Preprocessing

Speech preprocessing is critical to the overall success of
developing a robust and efficient speech recognition system [27].
When speech is recorded by different users in different environ-
ments, then the speech quality varies drastically in one category
within the dataset as well as across different datasets [28].
The background noise level significantly affects the overall
performance of the speech recognition system [29], [30]. For
highly non-stationary situations, the noise level is computed
using the noise estimation algorithm [31]. To evaluate the effect
of preprocessing, the variation in noise level and coefficient of
variation are plotted in Figures 3 and 4 for two cases before
and after preprocessing. The coefficient of variation measures
the variation in the noise level by calculating the ratio between
the standard deviation and mean of the estimated noise levels for
one class [32]. For the noise level estimation, the cough category
sound is used for dataset-1,2,3,5 and complete sentence sounds
for dataset-4. The steps involved in preprocessing are mentioned
below.

1) Low Pass Filtering: The sampling frequency of speech
signals is different for different datasets. However, significant
information is found within the 8 kHz bandwidth [33]. It is also
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Fig. 4. Change in Coefficient of variation (CV) of noise level between
positive and negative class.
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Fig. 5. Spectrogram of the cough signal from dataset-2.

evident from Fig. 5, where the time-frequency representation of
one cough signal of dataset-2 is plotted using the spectrogram.
To remove the unwanted signal components which are not
associated with human speech, all the audio signals are passed
through a low pass filter of 10 kHz. To maintain a uniform
sampling rate and to extract the same number of features for
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each frame, all speech signals are resampled at the maximum
available sampling frequency (48 kHz) of all the datasets.

2) Speech Enhancement: The multi-band spectral subtrac-
tion approach has been employed to denoise the speech samples
of all five datasets [34]. This is a simple and effective method
for denoising signals affected by colored noises where spectral
subtraction is performed separately at different frequency bands.

3) Voice Activity Detection and Dynamic Level Control: To
separate the voiced frames from the unvoiced frames, a simple
short-term energy-based voice activity detection (VAD) algo-
rithm is used. The voiced frames are then passed through a
Dynamic Level Controller (DLC). It is made up of an expander
and a compressor, with the expander boosting low signal levels
and the compressor lowering peak levels [35].

C. Features Extraction

In this section, the details of the audio features extraction
techniques used in the investigation are dealt with. At the frame
and sample levels, numerous audio features are extracted in
the frequency, structural, statistical, and temporal domains. The
complete recording of a single user in one category comprises
one sample, while a frame is a subset of the entire audio data
found in a sample. Considering there is 'n’ number of frames
present in each sample, the details of the frame-level features
are described below. The features are named as f(serial number
of the feature) such as f1 to f5701.

o Spectral Features — The speech signal is a non-stationary
signal but the properties remain constant over fixed time
intervals of 10-30 ms. The short-time spectral features
are obtained by converting the time domain signal into the
frequency domain by applying different Transform tech-
niques. These features provide information about spectral
information which plays an importantrole in speech recog-
nition [36]. In this work, the hamming window is chosen
as it provides less spectral leakage and the side lobes of
this window are lower than the others [37]. A window
size of 25 msec duration with 50% overlapping between
two successive frames has been considered. The spectral
features extracted are: Linear Spectrum (nx512), Mel
Spectrum (nx32), Bark Spectrum (nx32), and Equivalent
Rectangular Bandwidth (ERB) Spectrum (nx44). There-
fore, the total dimension of spectral features is (nx620).

® Cepstral Features — The cepstral features help in extract-
ing relevant speech information for speech emotion recog-
nition tasks by using filter banks based on human speech
perception [13]. The cepstral features are Mel-frequency
cepstral coefficients (MFCC), MFCC Delta, MFCC Delta
Delta, Gammatone cepstral coefficients (GTCC), GTCC
Delta, GTCC Delta Delta, each of dimension (nx13).
Therefore, the total dimension of cepstral features is
(nx78)

e Spectral Descriptors — These features extract statistical
information from the lengthy spectral features. These fea-
tures are widely used in speaker, music, mood recognition,
and classification tasks [38]. The spectral descriptors used
are: Centroid, Crest, Decrease, Entropy, Flatness, Flux,

Kurtosis, Roll-off Point, Skewness, Slope, and Spread,
each having dimension (nx1). The total dimension of
spectral descriptors is (nx11).

e Periodicity Features —These features provide important
time-domain information of speech which helps in monau-
ral speech analysis [39]. The features used are: Pitch
(nx 1), and Harmonic Ratio (nx 1).

For this purpose, MATLAB-based audioFeatureExtractor is
used [40], [41]. The fusion of spectral features, cepstral fea-
tures, spectral descriptors, and periodicity features yields an n*
712-dimensional feature vector for each speech sample. As the
frame numbers vary for each sample, so training in machine
learning becomes difficult. Therefore, in this work, the statistical
measures are computed at the sample level and it provides a
fixed length of features for each sample. To extract statistical
distributions at the sample level, several statistical features
are extracted from the frame-level features [10]. The sample
level features are: mean (f1:f712), median (f713:f1424), RMS
(root-mean-square) (f1425:2136), maximum (f2137:f2848),
minimum (f2849:f3560), quartile (1st and 3 rd quartile,
interquartile range) (f3561:f3563), standard deviation (SD)
(f3564:f4275), skewness (f4276:f4987), kurtosis (f4988:f5699)
of all frame-level features. Also, the Zero crossing rate (ZCR)
(f5700), and Short-time energy (STE) (f5701) are calculated
sample-wise. Each combined feature vector is the concatenation
of the sample level features and it is a 5701-dimensional feature
vector. Outliers in the high-dimensional feature vector can have
an impact on the learning algorithm’s performance. As a result,
feature scaling is an important preprocessing step. The robust
scaler removes the median and scales the data according to the
quantile range, removing outliers from the features [42].

D. LightGBM (LGM)

The LGM is an effective gradient boosting decision tree
with gradient-based one-side sampling (GOSS) and exclusive
feature bundling (EFB) to increase computational efficiency
without affecting the accuracy [22]. The steps involved in LGM
modeling are: (i) defining the loss function, (ii) performing the
GOSS sampling, and identification of the optimal segmentation
point using a histogram-based algorithm, (iii) calculation of
feature dimension by the EFB method, (iv) performing the
leaf-wise algorithm to combine the samples to fit residuals,
and (v) splitting the nodes based on the objective function and
generate a decision tree.

Let us consider X as the input feature vector and Y as the
class labels. The aim of LGM is to determine the approxima-
tion function F'(z) so that the loss function (L(y, F(z))) gets
minimized [43].

~

F(z) = arglvgmin Eqy [L(y, F(x)))] (1)

The final LGM model (F;(X)) is formed using M decision trees
such that

Fa(X) =Y Fu(X) )
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The LGM is trained in an additive form at step m and can be
expressed as:

n
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Where, g ; and h; represent the first and second-order gradient
statistics of the loss function. By denoting the sample set /;of
leaf j(1 < j < .J)(3) can be written as:
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Let, I7, and I are the sample sets of the left and right branches,
respectively. The leaf weight, the regular penalty factor, A is used
as a smoothing parameter in calculating gain in the process of
splitting points. The objective function after adding the split is
then calculated as

G- 1 (Ziengi)Q (Eictn gi)2
2\ (e b +2)  (Cier hi + 1)
(Ziel gi)2
b+ ©

In the conventional gradient boosting technique, the tree grows
horizontally, while in LGM the tree grows vertically which
makes it an efficient tool for processing large-scale data and
features [43]. The GOSS technique of LGM effectively selects
the input features with larger gradients and removes the features
with smaller gradient values. This works as feature reduction
in the current implementation where the input feature size is
relatively higher and thereby, it increases the efficiency of the
detection model.

IIl. RESULTS AND DISCUSSIONS

The performance of the proposed model is assessed for two
tasks, (I) binary classification task to predict the speech samples
as COVID-19 positive or negative, and (IT) multiclass classifi-
cation task to predict COVID-19 positive, Asthma positive, and
healthy speech samples. To perform this, the speech samples
are passed through the additional preprocessing blocks such as
low pass filtering, speech enhancement, voice activity detection,
and dynamic level control. Then a total of 5701 features are
extracted from each sample. Here, the preprocessing block is
a part of the feature extraction. These features are combined
with an LGM classifier and three baseline classifiers such as
Random Forest (RF) [9], SVM [10], [11], and K-Nearest Neigh-
bor (KNN) [44] used for the speech classification task. For

TABLE Il
PERFORMANCE COMPARISON FOR DATASET-1 USING 5701 FEATURE
VECTOR FOR BINARY CLASSIFICATION

Category Evaluation LGM SVM RF KNN
Measures
CA 0.969 0.557 0.969 0.691
Breathing  F-2 0.969 0.502 0.969 0.687
Deep PR 0.969 0.641 0.969 0.697
(D-1) RC 0.969 0.557 0.969 0.691
AUC 0.968 0.543 0.968 0.687
CA 0.99 0.5 0.948 0.604
Breathing  F-2 0.99 0.421 0.948 0.602
Shallow PR 0.99 0.258 0.95 0.606
(D-1) RC 0.99 0.5 0.948 0.604
AUC 0.989 0.489 0.947 0.602
CA 0.979 0.598 0.969 0.773
Cough F-2 0.979 0.555 0.969 0.773
Heavy PR 0.979 0.695 0.969 0.773
(D-1) RC 0.979 0.598 0.969 0.773
AUC 0.979 0.586 0.968 0.772
CA 0.979 0.701 0.969 0.701
Cough F-2 0.979 0.684 0.969 0.696
Shallow PR 0.98 0.756 0.971 0.719
(D-1) RC 0.979 0.701 0.969 0.701
AUC 0.978 0.693 0.968 0.704
CA 0.99 0.505 0.959 0.557
Vowel-/a/ F-2 0.99 0.427 0.958 0.538
(D-1) PR 0.99 0.263 0.962 0.565
RC 0.99 0.505 0.959 0.557
AUC 0.99 0.49 0.957 0.548
CA 0.99 0.515 0.959 0.742
Vowel-fe/ F-2 0.99 0.434 0.959 0.737
(D-1) PR 0.99 0.266 0.959 0.759
RC 0.99 0.515 0.959 0.742
AUC 0.99 0.5 0.958 0.737
CA 0.969 0.866 0.979 0.68
Vowel-/o/ F-2 0.969 0.866 0.979 0.678
(D-1) PR 0.969 0.866 0.979 0.685
RC 0.969 0.866 0.979 0.68
AUC 0.969 0.866 0.979 0.677
CA 0.966 0.712 0.966 0.712
Counting F-2 0.966 0.659 0.966 0.687
Normal PR 0.966 0.507 0.966 0.668
(D-1) RC 0.966 0.712 0.966 0.712
AUC 0.958 0.5 0.958 0.552
CA 0.949 0.712 0.932 0.644
Counting  F-2 0.949 0.669 0.932 0.607
Fast PR 0.949 0.656 0.932 0.492
(D-1) RC 0.949 0.712 0.932 0.644
AUC 0.929 0.517 0.917 0.452

the development of the classification model five-fold stratified
cross-validation scheme is employed. Standard performance
measures as reported in [45] such as Classification Accuracy
(CA), F-2 Score (F-2), Precision (PR), Recall (RC), and area
under the curve (AUC), are employed in this study. The details
of the performance measures are described in supplementary in-
formation S2. Grid search is used to find the optimal parameters
of the classifiers. These parameters are listed in supplementary
information S3.

A. Performance Evaluation as a Binary
Classification Task

The comparative study between the performance of LGM,
SVM, RF, and KNN classifiers for binary classification task are
presented in Tables I and III. The LGM classifier provides an
average accuracy of 0.978, an F-2 Score of 0.979, and an AUC of
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TABLE IlI
PERFORMANCE COMPARISON FOR DATASET-2,3,4,5 USING 5701 FEATURE
VECTOR FOR BINARY CLASSIFICATION

Category Evaluation LGM SVM RF KNN
(Dataset) Measures
CA 0.992 0.966 0.992 0.983
Couch F2 0.992 0.966  0.992 0.982
(D_g PR 0.992 0966 0.992 0.960
RC 0.992 0.966  0.992 0.957
AUC 0.986 0.955 0.980 0.940
CA 0.982 0.909 0.964 0.818
Breathing F2 0.982 0.909 0.964 0.815
(D-2) PR 0.982 091 0964 0.824
RC 0.982 0.909 0.964 0.818
AUC 0.981 0.9 0.959 0.797
CA 0.969 0.965 0.942 0.793
Cough F2 0.968 0.965 0.941 0.781
D-3) PR 0.969 0.965 0.947 0.823
RC 0.969 0.965 0.942 0.793
AUC 0.961 0.960 0.927 0.746
CA 0.992 0.991 0.992 0.928
Sentence F2 0.992 0.991 0.992 0.928
(D-4) PR 0.993 0.992  0.993 0.928
RC 0.992 0.991 0.992 0.928
AUC 0.999 0.988 0.999 0.985
CA 0.998 0.993  0.998 0.921
Cough F2 0.998 0.993  0.998 0.922
(D-5) PR 0.998 0.994  0.998 0.924
RC 0.998 0.993  0.998 0.921
AUC 0.999 0.985 0.999 0.971
TABLE IV

PERFORMANCE EVALUATION FOR DETECTION COVID-19 POSITIVE,
NEGATIVE AND ASTHMA FROM DATASET-2 USING 5701 FEATURE VECTORS

Category  Evaluation LGM SVM RF KNN
Measures
CA 0.971 0.947 0.943 0.915
F-2 0.971 0.946 0.941 0.915

Cough PR 0.973 0.949 0.946 0914
RC 0.971 0.947 0.943 0.915
AUC 0.991 0.969 0.985 0.974
CA 0.981 0.89 0.963 0.854
F-2 0.981 0.889 0.963 0.851

Breathing PR 0.983 0.893 0.965 0.854
RC 0.981 0.89 0.963 0.854
AUC 0.999 0.949 0.994 0.918

0.976 across all the categories in the five datasets. The average
accuracy, F-2 Score, and AUC of the SVM classifier are 0.749,
0.717, and 0.712, respectively. Similarly, for the RF classifier,
the average accuracy, F-2 score, and AUC are found to be 0.967,
0.966, and 0.963, respectively. For the KNN classifier, the values
are 0.753, 0.745, and 0.728. The results show that the LGM
classifier performs better on the high-dimensional features than
the SVM, RF, and KNN classifiers.

B. Performance Evaluation as a Three-Class
Classification Task

To further evaluate the prediction ability of the classifiers, an
assessment of multi-class data has been carried out for dataset-2
contains samples of COVID-19 positive, Asthma positive, and
healthy in the cough and breathing sound categories. The results
are listed in Table IV. It is observed that the performance of the
LGM classifier is superior in all the performance measures as
compared to the SVM, RF, and KNN classifiers respectively. The
ROC curves are two-dimensional plots that provide the relative
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Fig. 6. Comparison of ROC curves of different classifiers for multiclass

classification in cough category of dataset-2.
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Fig. 7. Comparison of ROC curves of different classifiers for binary

classification in cough category of dataset-2.

trade-offs between the true positive and false-positive rates [45].
The ROC curves of dataset-2 in the cough category (binary and
multi-class) are shown in Fig. 6 and Fig. 7 respectively. The
proposed approach has a high true true-positive rate and a low
false false-positive rate, according to the ROC curves. The AUC
of the proposed model is 0.99, which is better in comparison
to the RF, SVM, and KNN models. The proposed features with
the additional preprocessing provide better results compared to
standard features and classifiers.

C. Comparison With Baseline Models and
Combined Datasets

A comparative analysis of the proposed model over the ex-
isting methods used in the five datasets are shown in Table V.
The Improvement in the detection performance is mentioned in
the last column. It is observed that the proposed model shows
consistent performance across all the datasets as well as in the
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TABLE V
COMPARATIVE ANALYSIS OF THE OVERALL DETECTION OF PERFORMANCE
OF EACH OF THE DATASETS

TABLE VI
COMPARISON OF T-STATISTIC OF PROPOSED MODEL WITH STANDARD
ML-BASED MODELS

Classification Name of the Existing LGM improvement Dataset LGM LGM LGM
task dataset method Vs Vs Vs
Dataset-1 (cough) 0.67 0.98 0.30 SVM RF KNN
Dataset-2 (cough) 080 097 0.17 Breathing Deep (D-1) 2.95 0 1.90
Binary Dataset-3 (cough) 073 098 025 Breathing Shallow (D-1) 4.01 0.96 4.02
Dataset-4 (spoken  0.88°  0.98  0.09 Cough Heavy (D-1) 3.88 0.14 1.52
sen[ence) Cough Shallow (D-1) 3.50 0.21 1.64
Dataset-5 (cough) 077 0.98 020 Vowel-/a/(D-1) 6.09 0.31 271
Multiclass Dataset-2 (cough)  0.82° 0.97 0.15 Vowel-/e/(D-1) 6.02 0.36 2.50
Vowel-/o/(D-1) 1.52 -0.14 2.46
Counting Normal (D-1) 1.84 0 3.50
TABLE VI Counting Fast (D-1) 1.51 0.19 3.17
PERFORMANCE COMPARISON FOR COMBINED DATASET (COUGH CATEGORY) Cough (D-2) 11 0 025
USING 5701 FEATURE VECTOR Breathing (D-2) 1.69 0.36 1.63
Cough (D-3) 0.09 0.35 2.27
Evaluation LGM SVM RF KNN Sentence (D-4) 0.17 0 4.46
Measures Cough (D-5) 1.38 0 8.35
CA 0.983 0.922 0.971 0.858
F-2 0.983 0.922 0.971 0.858
PR 0.983 0.924 0.971 0.858
RC 0.983 0.922 0.971 0.858 reason for this is the use of various signal processing techniques
AUC 0.989 0.972 0.982 0.932

combined dataset. There is approximately 30%, 15%, 25%, 9%,
and 20% minimum improvement in CD performance for datasets
1,2,3,4,5. For the assessment of the generalization ability of the
proposed model, a combined dataset is prepared with the speech
signals in the cough category from datasets 1,2,3,5. In the com-
bined dataset, there is a total of 1528 samples from the healthy
category, while 1344 samples are from the COVID-19 positive
category. The performance of all four methods is evaluated and
the results are listed in Table VI. It is observed that the proposed
model shows the highest accuracy of 0.983 over the other three
standard models.

The minimum CD performance of the proposed method is
approximately 97 % across all sound categories, databases, and
CV schemes. The proposed approach has a high true-positive
rate and a low false-positive rate, according to the ROC curves.
The AUC of the proposed model is 0.99, which is better in
comparison to the RF, SVM, and KNN models. The proposed
features with the additional preprocessing provide better results
compared to standard features and classifiers.

D. Statistical Analysis of Classifier Models

The statistical analysis of the comparison of the performance
of the LGM model with the standard machine learning-based
models SVM, RF, and KNN over five datasets is listed in
Table VII. For this purpose, the t-statistic value between the
two classifiers is computed as mentioned in (7).

C1 —Cg
E o
Where, the mean and variance of the 5-fold classification accu-
racy of classifier 1 and classifier 2 are denoted as c1, co, and v, v3
respectively [46]. Most of the t-values in Table VII are positive,
which indicates the superior performance of the proposed model
over the standard machine learning-based models.The above
classification tasks, comparative, and statistical analysis results
reveal the effectiveness of the proposed model with preprocess-
ing and an efficient combination of audio features. The main

t=

such as low pass filtering, speech enhancement, voice activity
detection, and dynamic level control have substantially helped in
reducing the effects of various environments while recording the
speech signal of subjects. Secondly, The use of feature fusion-
based statistical features evaluated from frame-level speech
signal to the LGM classifier has yielded enhanced detection
accuracy which is a minimum of 9% more than that obtained by
the reported standard methods. The detection model has been
observed to be robust as it offers a consistent detection perfor-
mance of 97% while testing with five different speech datasets.

[V. CONCLUSION

In the current study, a non-invasive and effective respiratory
disease detection scheme is developed and tested for COVID-
19 and Asthma. The major contributions of the investigation
are the use of improved preprocessing techniques, an effec-
tive combination of spectral, cepstral, and periodicity features
along with the implementation of gradient boosting machines
for robust and consistent performance across multiple datasets.
The proposed model can be used for early and fast automatic
diagnosis of COVID-19 without the subject visiting a hospital
as well as without the assistance of a medical professional.
However, it is suggested that the detection scheme by the use
of the proposed intelligent model can be verified by the medical
professional before a prescription is initiated. It may be noted
that the proposed detection scheme involves more computations
and training time. There is still room to improve the method’s
computing complexity for faster implementations. The effective
preprocessing techniques, as well as the combination of audio
features can be further implemented and tested for other speech
recognition tasks including emotion recognition, Parkinson’s
disease, and heart disease detection.
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