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Abstract—Brain-Computer Interface (BCI) has become
an established technology to interconnect a human brain
and an external device. One of the most popular protocols
for BCI is based on the extraction of the so-called P300
wave from electroencephalography (EEG) recordings. P300
wave is an event-related potential with a latency of 300 ms
after the onset of a rare stimulus. In this paper, we used
deep learning architectures, namely convolutional neural
networks (CNNs), to improve P300-based BCIs. We propose
a novel BCI classifier, called P3CNET, that improved P300
classification accuracy performances of the best state-of-
the-art classifier. In addition, we explored pre-processing
and training choices that improved the usability of BCI
systems. For the pre-processing of EEG data, we explored
the optimal signal interval that would improve classification
accuracies. Then, we explored the minimum number of cal-
ibration sessions to balance higher accuracy and shorter
calibration time. To improve the explainability of deep learn-
ing architectures, we analyzed the saliency maps of the
input EEG signal leading to a correct P300 classification,
and we observed that the elimination of less informative
electrode channels from the data did not result in bet-
ter accuracy. All the methodologies and explorations were
performed and validated on two different CNN classifiers,
demonstrating the generalizability of the obtained results.
Finally, we showed the advantages given by transfer learn-
ing when using the proposed novel architecture on other
P300 datasets. The presented architectures and practical
suggestions can be used by BCI practitioners to improve
its effectiveness.

Index Terms—Biomedical engineering, brain-computer
interfaces, deep learning, neural implants, neurotech-
nology.

I. INTRODUCTION

BRAIN-COMPUTER Interfaces (BCIs) aim to construct
solid communication bridges between the brain of a human

being and an external device. They can assist people with motor
function deficits, who can gain the ability to act on their environ-
ment without utilizing peripheral nerves and muscles, but their
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brain signals [1]. BCI helps in the training of lacking skills, as
well, thanks to the feedback it can give on the correct execution
of a mental task [2]. To evaluate the accuracy of a mental task, (1)
brain signals must be recorded, mainly with non-invasive elec-
troencephalography (EEG) electrodes; (2) task-related features
must be detected in brain signals, thanks to artificial intelligence
(AI) techniques [3].

P300, a visually evoked event-related potential, is one of these
distinctive features, and many BCI protocols are based on the
recognition of this wave in EEG signals [4]–[7]. P300 arises in
the brain signals as a result of the perception of a rare stimulus in
a visually concentrated state. A large positive deflection appears
300 ms after the detected stimulus [8], but some external factors
influence the properties and appearance of this wave, making
its detection non-trivial. E.g., in older people, the latency can
be higher, and the deflection can be lower compared to younger
people. The deflection of the wave is also determined by the
characteristics of the stimulus, and it increases as the rarity
of the stimulus increases. Neurophysiological studies showed
that the major operating rhythms of the P300 are mainly the
delta (1-3 Hz) and theta (4-7 Hz) frequencies, therefore this
waveform is highly utilized as an indicator of attention on visual
tasks [9]–[13].

Recently, BCI systems have been proposed to help people
diagnosed with Autism Spectrum Disorder (ASD) to train and
improve their joint attention, which is the ability to put attention
on a particular object that is indicated by another individual [14].
This training method uses P300-based BCI since it utilizes P300
waveform as the distinctive feature, requiring a good classifier
to be able to provide the patients with feedback on joint attention
tasks. On this issue, Amaral and colleagues designed an exper-
iment [15], [16], involving 15 subjects affected by ASD, which
led to the construction of the BCIAUT-P300 dataset [17]. Virtual
reality simulated a rare visual stimulus. Data were arranged into
a training session and an unlabelled online session, and a scien-
tific challenge (IFMBE Scientific Challenge Competition [18])
was called to find the best AI solution for P300 detection.

Bittencourt et al., using linear support vector machines
(linear SVM), reached 82% average classification accuracy
with the help of session-specific optimized models [19]. Zhao
et al. leveraged linear discriminant analysis (LDA), SVM,
convolutional neural networks (CNN) and long-short term
memory (LSTM) models; LDA achieved the highest average
accuracy in online sessions with 67% [20]. Arancibia et al. took
advantage of LDA, linear SVM and radial SVM models and
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the highest average accuracy they could reach was 80% with
LDA [21]. Krzeminski et al. trained LDA, Logistic Regression
and Minimum Distance to Mean (MDM) algorithms and the
best classification performance was 81.2% with LDA [22].
Chatterjee et al. employed Bayes LDA (BLDA), random
under-sampling boosting (RUS-Boosting) and CNN models
and the best performance was obtained by BLDA with 73%
average accuracy [23]. Adama et al. leveraged decision trees,
random forest, SVM and multi-layer perceptron, and the
best performance was 70% with multi-layer perceptron [24].
Borra et al. employed Lightweight CNN to obtain 84.43%
for within-session training and 92.27% for cross-session
training [25] and became the winner of the competition [18].

Given these promising results, AI seems almost mature to be
leveraged in a BCI context, even if higher accuracies should
always be a target. However, BCI systems are mainly addressed
to people with physical or cognitive disabilities, so accuracy
alone does not guarantee successful BCI adoption [26].

The first problem that BCI users face is represented by the long
calibration phase [15], [16]. On the one hand, subjects need to
learn the task; on the other hand, the AI algorithm must learn to
recognize the P300 waveform, which presents a high between-
subjects variability. As a consequence, subjects might get tired
or frustrated, resulting in a difficult adoption. Then, different
techniques to reduce the burden on subjects must be explored.

A second problem is the signal acquisition setup. Non-
invasive EEG electrodes are the preferred setup, but their ar-
rangement on the scalp must follow precise rules (e.g., 10-10 or
10-20 systems) that might prevent an easy adoption and comfort.
The P300 waveform is mostly obtained from the parietal lobe of
the brain, so the usage of electrode positions can also be lowered
and narrowed to a specific location on the head [27]. In Amaral
and colleagues’ experiment [15] only 8 electrodes were used,
but it can be hypothesized that even fewer electrodes are enough
to preserve signal detection accuracy [28].

Finally, the generalizability of the proposed techniques should
be assessed. In fact, it must be assured that the detecting capa-
bilities of the AI algorithm do not vary if the acquisition system
changes to avoid the need for multiple calibrations.

Furthermore, the optimization of the algorithms is not enough
when AI models are supposed to interact with people. The
Trustworthy AI guidelines [29] require that AI results that
involve human beings must be understandable by human beings
themselves. Hence, explainable AI (XAI) [30] must be applied
to the proposed algorithms to provide a justification for their
predictions.

All these needs can be translated into the aims of our study:
(1) improving P300 detection accuracy by proposing a new
AI model; (2) proposing different solutions to reduce the time
required to achieve a reliable system by assessing (a) the optimal
signal length around the visual event, and (b) the minimum
number of calibration session needed; (3) exploring the feasibil-
ity of reducing the number of electrodes needed by discussing
electrodes importance for the prediction; (4) assessing the gen-
eralizability of the proposed solutions by comparing their effect
on the same dataset with different classifiers, and on different
datasets. All these aims should be achieved with a particular

Fig. 1. Methodological workflow.

focus on models explainability. The methodological workflow
followed is summarized in Fig. 1.

II. METHODS

The first aim of this work is to improve the accuracy perfor-
mance of the state-of-the-art models, bench-marked using the
BCIAUT-P300 dataset [18].

The BCIAUT-P300 dataset has been recorded on 15 subjects
performing a joint attention task, where the participant had to pay
attention to one specific object over 8 possible ones. Therefore,
for every turn of 8 objects, only 1 of them was supposed to
generate the P300 waveform. This feature of the experiment
made the collected dataset an unbalanced one for P300 and non-
P300 classes.
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TABLE I
TECHNICAL DETAILS OF THE DATASETS USED

For every subject, the first 3 sessions were weekly, whereas
the remaining 4 sessions (online sessions) were monthly. Each
session foresaw a calibration phase and a utilization phase. The
models in the IFMBE Scientific Challenge Competition were
bench-marked on the (unlabeled) utilization phase of the four
online sessions.

EEG signals were recorded from -200 ms to 1200 ms with
respect to the stimulus onset, and the sampling rate was 250 Hz,
so for each EEG signal, 350 time-samples were available in
the dataset. The EEG was recorded using 8 different electrode
positions (C3, Cz, C4, CPz, P3, Pz, P4, Poz) in accordance with
the 10-10 system [15]. More details are reported in Table I, left
column.

A. Performance Improvements

Since the BCIAUT CNN Model proposed by Borra and
colleagues [25] won the IFMBE Scientific Challenge Competi-
tion [18], obtaining the highest accuracy in the online sessions,
we selected it as our reference.

1) BCIAUT CNN Model: BCIAUT CNN model is based on
a CNN classifier adapted from the EEGNet model trained to
discriminate between P300 and non-P300 classes [32]. BCIAUT
CNN was designed to keep the number of trainable parameters
limited by means of depth-wise and point-wise convolutions,
resulting in 1386 trainable parameters.

During the pre-processing, EEG signals for each trial were
trimmed between -100 ms and 1000 ms with respect to the
stimulus onset. Each of these signals was then resampled to
140 samples and finally standardized to have zero-mean and
unit-variance. The model was implemented with the layer de-
tails described in Borra’s paper [25]. Optimization and training
hyper-parameters were also kept the same. The only differences
in implementation have been the initialization seed, the weights
assigned to different classes, and the epoch patience (the number
of epochs with no improvement) used in early stopping since

TABLE II
P3CNET LAYERS AND DETAILS

these parameters were not specified in the paper. After a prelim-
inary investigation, to closely match the results in Borra’s paper,
we used “1234” as initialization seed, and the epoch patience
for early-stopping was defined as 55. Different weights were
assigned to account for the unbalanced classes: the P300 class
weighted 7 times more than the non-P300 class. In this way,
having a pseudo-balanced dataset, we can use accuracy as the
main target metric.

The implemented BCIAUT CNN model has been used to
compare and validate the results we have obtained with the
proposed BCI classifier, the P3CNET model.

2) P3CNET Model: We wanted to design an AI model to get
possibly higher accuracy results and to provide a “second opin-
ion” in testing the robustness of our methodologies. For this rea-
son, we have taken inspiration from the BCIAUT CNN model,
along with other deep learning networks [33]–[35]. For this
purpose, we designed P3CNET with the architecture in Fig. 2
and implemented the model in line with the details reported in
Table II. As the BCIAUT CNN model, 3 convolution layers
were used. Further contamination came from VGG-16 [36],
which is used for transfer learning on image classification, which
suggested searching for higher-level features using successive
convolution layers. We used 15 as kernel size for the first 2D
convolution as done by Shan and colleagues [37]. The model
we designed had 4338 parameters, more than the BCIAUT CNN
model, but still with a low computational cost for its training. For
optimization, we preferred the Adam optimizer, as in BCIAUT
CNN model, and the learning rate was equalized to 0.0005.
After a preliminary investigation, we set validation loss as the
metric to be minimized and early-stopping epoch patience to 45.
During training, the maximum epoch number was set to 1000
and the validation split to 0.2. Different weights were assigned
to account for the unbalanced classes: the P300 class weighted
7 times more than the non-P300 class. For both training and
testing, the batch size was set to 128.
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Fig. 2. P3CNET Architecture, composed of three convolution blocks, each one comprising a 2D Convolution (Conv2D), batch normalization, ELU,
Average Pooling 2D, and dropout layers. Numbers close to each layer represent the shape of the output tensors.

We bench-marked the proposed P3CNET model on the four
online sessions of the BCIAUT-P300 dataset and compared the
results with the accuracies obtained with the BCIAUT CNN
model. To verify the robustness of the model to the choice of
the initialization seed, we repeated the experiment using another
five initialization seeds (i.e., “1000”, “2000”, “3000”, “4000”,
and “5000”).

B. Calibration Time Reduction

One of the biggest problems to face during BCI treatment
stands out as the data and time required for the calibration of
BCI. This can be critical for patients showing hyperactivity when
the experiment time lengthens [38]. Therefore, we proposed two
ways to reduce the time needed for the calibration of a P300-
based classifier: (a) to facilitate the classification with an optimal
selection of the EEG signal provided as input to the classifier
and (b) to identify the minimum number of calibration sessions
needed to obtain satisfactory performances.

1) Optimal Signal Pre-Processing: Two elements are cru-
cial to obtaining high accuracy values in deep learning: an
optimized and well-designed model and high-quality data pre-
processing [39], [40]. For this purpose, we explored which
portion of the EEG signals should be used to facilitate the detec-
tion of the P300 wave. Therefore, we developed a grid-search
approach to trim the EEG signals within a specific range, select-
ing different initial samples (start time) and sample windows
(window length). To ensure the robustness of the results, we
performed the grid-search with both BCIAUT and P3CNET
CNN models separately.

For each tested combination of start time and window length,
the pre-processing of each session’s training and testing sets was
adapted to the input tensor size of the models with appropriate
resampling, and the training and testing were performed for
each session separately. We computed the mean accuracy and
standard deviation of all sessions and all subjects for each com-
bination. In this way, robust results were obtained by calculating
the model’s data for each combination over 105 different data
points (15 subjects x 7 sessions).

Having tested all combinations for both BCIAUT and
P3CNET, we primarily aimed at maximizing the mean accuracy
while maintaining low standard deviations. In this way, we

TABLE III
14 SESSION ORDERS USED TO FIND THE MINIMUM NUMBER OF TRAINING

SESSIONS

identified the optimal pre-processing choices guaranteeing the
best performances for both models.

2) Number of Training Sessions: As mentioned before,
while obtaining the BCIAUT-P300 dataset, seven training ses-
sions were performed by each subject, leading to a long exper-
iment duration. Here, we wanted to see whether all of these
training sessions were necessary and if we could eliminate
some of them and shorten the overall time needed for the BCI
calibration.

For each experiment, 14 different session orders were used
since the existing order of the sessions may create a session-order
bias. As shown in Table III, the 14 different orders were defined
in such a way that each session took place 2 times at a certain
position.

Each condition has been tested with 6 different initialization
seeds to ensure the robustness of the findings; therefore, 84
experiments (6 seeds x 14 session orders) have been carried
out for each subject.

After the session orders were defined, we included an in-
creasing number of training sessions in the calibration data.
The calibration process first started with the use of only one
training set; in this case, the test sets of the remaining 6 sessions
were used to measure the accuracy. Then an additional session,
according to the order identified previously, was added to the
calibration data, and the model was trained from scratch. In this
case, the accuracy was computed on the testing sets comprising
the 5 remaining sessions. This process continued until we used
6 sessions for the training and 1 session for the testing. Finally,
we also tried to use all 7 sessions for the calibration. In this case,
we reported the training accuracy.

To identify the minimum number of sessions needed for the
training, we then looked at the difference in the median accura-
cies obtained by each subject in the 84 experiments when using
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x or x+ 1 training sessions. When the gain in accuracy (i.e.,
Delta accuracy) approaches zero, that means that the inclusion
of an additional x+ 1 session to the training did not lead to an
increase in the testing accuracy.

C. Channels Importance and Electrode Selection

Deep learning models have been successfully leveraged in
tasks such as image classification or pattern recognition, and they
often achieved very high accuracies. Although high accuracy is
the most prominent feature of a classifier, its explainability is
of great importance too. Especially when used for biomedical
applications, the users and the operators must have confidence
in the model. This is possible if the model itself is more com-
prehensible. Toward this aim, one possible method is to build
saliency maps, illustrating which are the features of the input
(e.g., of the input image) used by the model to generate the
classification. One of the main algorithms to generate saliency
maps is the Gradient-weighted Class Activation Mapping (Grad-
CAM) [41]. This method prepares a localization map from the
last convolutional layer to the input layer. Grad-CAM uses the
gradients of the target class to create a saliency map of the same
size as the input image. When the input image is compared to
this map pixel-by-pixel, it shows which areas or features of the
input image are more significant for the model to select a certain
class. The Grad-CAM algorithm can be used with a wide variety
of CNN models, and we utilized it for the explainability of the
two CNN models.

For both BCIAUT and P3CNET, we trained the model
from scratch with the training set for each session. Then, the
calibrated model was tested with the testing set of the same
session, and the correctly classified input EEG signals of the
P300 class were averaged. Thus, an average P300 input image
was created for each session. Then these input tensors were
provided to the Grad-CAM function, and a saliency map was
obtained for each session.

We were particularly interested in knowing which of the 8
EEG electrodes placed at different anatomical locations on the
scalp (i.e., C3, Cz, C4, CPz, P3, Pz, P4, POz) carried more
information to recognize the P300 wave. Therefore, we needed
to analyze each row of the input EEG signal separately.

However, since the Grad-CAM algorithm starts from the last
convolutional layer while creating localization maps, it normally
creates saliency maps equal to the output tensor size of that
layer. Then, this map is brought to the same size as the input
image tensor by applying interpolation with the same obtained
values. At this point, both BCIAUT and P3CNET have a vertical
dimension of 1 in the output of the last convolutional layer due
to the between-channels (vertical) convolution applied in one
of the previous convolutional layers. This causes Grad-CAM to
interpolate from 1 to 8 and prevents analysis of the importance
of different EEG channels. As a solution to this, we removed
the filters that perform spatial convolution from both models.
Thus, 8 separate channels were obtained in the output of the
last convolutional layer for both models. Therefore, Grad-CAM
provided channel-specific saliency values. Leveraging this mod-
ification, we applied Grad-CAM to all sessions and all subjects
as previously described.

Since we aimed at identifying the most informative chan-
nels/electrodes, we computed the relative importance of each
electrode for each session and subject. The saliency maps gen-
erated by the Grad-CAM algorithm were normalized between 0
and 1. Then, we computed for each channel (i.e., for each row of
the saliency maps) the 95th percentile. Then, for each channel,
we computed its importance value by looking at the median
importance, considering all subjects and all sessions (N = 105).
The channels with the highest importance values corresponded
to the electrodes that brought most of the information to identify
the P300 wave. Then, for each CNN model, we evaluated the
importance of the electrode anatomical locations by projecting
the values on the EEG topographic maps. Finally, with the
hypothesis that the less informative electrodes might bring noise
and worsen the performance, we re-trained the models with the
four most informative electrodes only. To preserve the input size
of 8 channels, we duplicated the most informative electrodes by
mirroring them vertically.

D. Generalizability and Transfer Learning

As a final analysis, we aimed at verifying whether the results
obtained with the two CNN models were valid when used to clas-
sify a different dataset. For this purpose, we used another EEG
dataset, called GIB-UVa ERP-BCI, including P300-protocol
recordings from 73 subjects (42 healthy and 31 with motor
disabilities) [31], [42], details are reported in Table I, right
column. EEG data were recorded with 8 channels (8 active
electrodes placed at Fz, Cz, Pz, P3, P4, PO7, PO8, and Oz,
according to the 10–10 system) from 0 to 1000 ms with respect
to the visual stimulus onset. Using this dataset, we selected
20 random healthy subjects and 20 severely disabled patients.
The patients suffered from different pathologies; we randomly
selected 20 of them while keeping the relative incidence as
the one in the full dataset. As a result, 4 patients had spinal
cord injury, 2 had Friedrich’s ataxia, 4 had cerebral palsy, 2
had polymalformative syndrome, 1 had a stroke, and 7 had
multiple sclerosis. After completing the selection of the dataset
and subjects, we tested different scenarios. First, we trained from
scratch both CNN models to test their performances. For the
BCIAUT CNN model, the original EEG data (from 0-1000 ms)
was provided, while we tested the P3CNET model with both
original EEG data and after the optimized pre-processing trim-
ming identified on the BCIAUT-P300 dataset. In this way, we
investigated if the optimized pre-processing is beneficial for the
new dataset. Secondly, we wanted to verify if it was possible to
apply transfer learning techniques [43], pre-training the CNN
models with the BCIAUT-P300 dataset, and then fine-tuning
the networks on the new dataset. For the transfer learning, after
a preliminary exploration, we made the first two convolution
blocks non-trainable. To ensure robustness, we have done 8
tests for each subject, using different initialization seeds. There-
fore we performed 1920 experiments in total (40 subjects x2 -
with/without transfer learning - x3 model conditions - BCIAUT
CNN with original EEG data, P3CNET with original EEG data,
P3CNET with pre-processed EEG data - x8 initialization seeds).
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In all experiments, we used 70% of the data for the training and
30% of the data for the testing.

We then compared the testing accuracies obtained by the
BCIAUT CNN, P3CNET using the original EEG signal, and
P3CNET using the optimized pre-processing. We employed the
Friedman test for paired samples to compare the three groups,
and we then performed a post hoc comparison between groups
using Wilcoxon tests with continuity correction for multiple
comparisons.

Then, we compared the performances obtained without the
pre-training and with the pre-training (transfer learning) of the
CNN models on all 7 sessions of the BCIAUT-P300 dataset. We
wanted to test whether transfer learning contributed to increased
accuracy. In this case, we applied the Wilcoxon test for paired
samples to compare the two groups.

Finally, we stratified the results by dividing the healthy sub-
jects from those affected by motor disability to verify if the
pre-training was more beneficial for the classification of EEG
data produced by healthy or pathological subjects. For the two
classes, we employed the Wilcoxon tests for paired samples to
compare the results with the training from scratch and with the
pre-training on the BCIAUT-P300 dataset.

For all statistical tests, we set the significance level to 0.05.

E. Hardware and Software

The training and testing of the CNN models have been done
exploiting the online platform Google Colab Pro, a cloud com-
puting solution that allowed us to use a powerful GPU needed for
the training of the models. We exploited the Tesla P100 hardware
accelerator to decrease the time needed for the training. Even if
we employed CNN with a reasonable number of free parameters,
we carried out thousands of experiments, as described in the
previous sections, therefore we needed a powerful platform to
run them. On average, it took ∼15 seconds to train BCIAUT and
∼45 seconds to train P3CNET, when using the seven-sessions
training set for a single subject.

We used Python language for the creation, training and testing
of the CNN models and also for the subsequent analysis of the
results. We used the following versions and libraries: Python
3.7.10, Tensorflow 2.4.3, Keras 2.4.3, NumPy 1.19.5, Pandas
1.1.5, Matplotlib 3.2.2, and SciPy 1.4.1.

The Tensorflow codes to create and train the two CNN models,
the resulting data and the codes used to analyze the results,
including a Jupyter Notebook that reproduces all the figures and
results reported in this paper, are publicly available at IEEE
Dataport [44].

III. RESULTS

A. Performance Improvements

The replicated BCIAUT CNN was tested on online sessions
and resulted in a median accuracy of 88.00%, with a 95% con-
fidence interval of the median [80.00; 90.00]%. The P3CNET
provided a median accuracy of 92.00% [88.00; 94.00]%. These
results are reported in Fig. 3.

Fig. 3. Accuracy comparison on online sessions between BCIAUT and
P3CNET. Red triangles (BCIAUT) and black circles (P3CNET) represent
the accuracy obtained for each subject (N = 15) in the four online
sessions. Box and whiskers plots report median (thick line), quartiles
(box) and the range of the data, excluding outliers (whiskers).

Fig. 4. Grid-search analysis to identify the optimal EEG signal se-
lection. Panels A and C report the mean classification accuracy on
online sessions obtained with BCIAUT and P3CNET, respectively. The
red asterisks indicate the combinations of start time and window length
that led to the highest mean accuracy. Panels B and D report the
standard deviation of the classification accuracy obtained with BCIAUT
and P3CNET, respectively.

With five different initialization seeds, the median accuracies
obtained with P3CNET were consistently higher than BCI-
AUT: 86%, 87%, 88%, 86%, and 86% for BCIAUT and 91%,
90%, 90%, 92%, and 88% for P3CNET, therefore proving that
P3CNET yielded to robustly better performances.

B. Calibration Time Reduction

Concerning time reduction, Fig. 4 shows the results of the
search for an optimal signal trimming. Panels A and B refer
to accuracy, which should be maximized, i.e., lighter colors;
panels C and D refer to standard deviation, which should be
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TABLE IV
STATISTICS OF TESTING ACCURACY DISTRIBUTION OBTAINED USING ONLY

THREE SESSIONS FOR THE TRAINING

minimized, i.e., darker colors. Panels A and C are BCIAUT
results, panels B and D are P3CNET results. The best time win-
dows, expressed as (start time, window length), for BCIAUT are
(200 ms, 700 ms) and (300 ms, 500 ms), where average accuracy
was 86.07% ± 11.71%; for P3CNET are (200 ms, 800 ms) and
(200 ms, 500 ms), with 86.20% ± 12.96% of accuracy. When
considering both models, the (200 ms, 700 ms) combination
was selected, as it resulted in an average accuracy of 86.07% for
both BCIAUT (SD: 11.80%) and P3CNET (SD: 13.49%). Note
that these mean accuracies have been obtained when using a
single session for training and testing. These are therefore lower
than the accuracies obtained in the previous section, where the
training set use was much bigger. Instead, the results on the
trimmed signal should be compared to the corresponding mean
accuracy achieved by leveraging the (-100 ms, 1000 ms) time
window, as in Borra and colleagues [25], that are 81.7% and
84.7% for BCIAUT CNN and P3CNET, respectively. Therefore,
the selected time window spanned between 200 ms and 900 ms,
which was half of the one used in the Amaral and colleagues’
experiment [16], and 400 ms shorter than the one used by Borra
and colleagues [25].

The second approach to reducing the calibration time was
to lessen the number of calibration sessions. In Fig. 5, Panel A
reports the accuracy distribution when the number of calibration
sessions is increased; Panel B shows the improvement (Delta
accuracy) caused by the addition of a new calibration session. It
can be noticed that both accuracy and its improvement tend to
converge. A single session largely underestimates the potential
performances of the models, the second session helps boost
the performance, but adding more than three sessions seems
to bring an irrelevant improvement. Therefore, four out of seven
sessions could be discarded from the training process. Then, we
applied three-session calibration on both BCIAUT and P3CNET.
Table IV summarizes the results of these tests. Averaging over
the 60 sessions, accuracies of 78.94% and 81.04% were obtained
for BCIAUT and P3CNET, respectively.

C. Channels Importance and Electrode Selection

Concerning the feasibility of reducing the number of ac-
quisition channels, the accuracy results given by the elimi-
nation of the channels convolutions were 66.83%, 67.87%,

Fig. 5. Accuracy with different sizes of the training set. Panel A shows
the testing accuracies obtained with a different number of training ses-
sions (from 1 to 7) for all subjects. Each point (red triangles for BCI-
AUT, black circles for P3CNET) represents the accuracy obtained by
one subject in one experiment. Each condition has been tested with
6 different initialization seeds and 14 combinations of session order,
i.e., 84 experiments for each subject. N.B. the accuracy displayed when
using all seven sessions for the training is the training accuracy since no
sessions are left for the testing. Box and whiskers plots report median
(thick line), quartiles (box) and the range of the data, excluding outliers
(whiskers). Panel B shows the difference in accuracy between the me-
dian accuracies obtained by each subject in the 84 experiments when
using x or x+ 1 training sessions. Each point (N = 15, red triangles for
BCIAUT, black circles for P3CNET) represents the gain (or loss, when
the delta accuracy is negative) in accuracy obtained when adding a
session to the training set.

67.87%, 68.00%, 67.40% for BCIAUT on online sessions, whilst
P3CNET achieved 72.56%, 72.87%, 72.40%, 71.53%, 72.80%.
As the accuracy was still satisfactory, we proceeded with the
analysis.

Fig. 6 C shows the averaged channel importance for BCIAUT
(left) and P3CNET (right), represented as topographical maps.
It must be noticed that P electrodes (channels 5, 6, 7, 8) had
higher values. When considering P electrodes only in the models
training, accuracy results were 78.23% and 80.83% for BCIAUT
and P3CNET, respectively.

D. Generalizability and Transfer Learning

The results of the application of the CNNs described in this
paper to the new dataset are reported in Fig. 7A. BCIAUT
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Fig. 6. Saliency maps of the input EEG signals and electrodes im-
portance. Panel A shows an example of the normalized average EEG
signal recorded during P300 trials from one subject during one session
(namely, subject 12, session 1). Each row represents one EEG chan-
nel, each column represents one time-sample. Yellow and blue pixels
represent positive and negative deflections, respectively. It is possible to
notice the P300 wave between 300 and 500 ms and a subsequent neg-
ative deflection around 700 ms. Panel B represents the saliency maps
corresponding to the input EEG for BCIAUT (left panel) and P3CNET
(right panel), considering their modified versions without the channels
convolution as explained in the Methods. Dark blue pixels represent
regions of the input image that are considered salient for the classifica-
tion of the P300 wave. Panel C shows the EEG topographical maps of
electrodes normalized importance for BCIAUT (left) and P3CNET (right).
Channels from 1 to 8 were represented at the anatomical locations on
the scalp of the respective electrodes: C3, Cz, C4, CPz, P3, Pz, P4,
POz. Dark blue and white regions represent high and low importance,
respectively.

resulted in a median accuracy of 69.08%, with a 95% con-
fidence interval of the median of [67.92; 70.47]%. P3CNET
applied to the untrimmed (original) signal resulted in a median
accuracy of 72.44% [71.08; 73.61]%. P3CNET applied on the
time window that was considered optimal for the BCIAUT-
P300 dataset resulted in a median accuracy of 71.40% [69.81;
73.32]%. The Friedman test revealed significant differences
between the groups (p-value = 0.01). The post hoc analysis
confirmed that the second group accuracy (“P3CNET original”,
i.e., untrimmed) was significantly higher both than the BCIAUT
results (p-value=6.44 · 10−3) and the trimmed P3CNET results
(p-value = 0.02). On the other hand, BCIAUT and the trimmed
P3CNET results did not differ significantly (p-value = 0.44).

Fig. 7B shows the results of training from scratch, with respect
to performing transfer learning with both CNNs. The median
accuracy achieved when training from scratch was 67.75%
[66.83; 68.99]%. The median accuracy achieved when applying
transfer learning was 73.50% [72.59; 74.35]%. As confidence
intervals are disjointed and the Wilcoxon test rejected the null
hypothesis of equal medians (p-value=1.07 · 10−10), it is possi-
ble to affirm that performance is generally higher when applying

Fig. 7. Generalizability and transfer learning. Panel A shows the ac-
curacy obtained on the GIB-UVa ERP-BCI dataset by the BCIAUT CNN
model with red triangles, the P3CNET model with the original EEG data
(from 0 to 1000 ms after the visual stimulus) with black circles, and the
P3CNET with the pre-processed EEG data (from 200 to 900 ms after
the visual stimulus) with blue squares. Box and whiskers plots report
median (thick line), quartiles (box) and the range of the data, excluding
outliers (whiskers). Asterisks indicate a significant difference between
two groups (N = 80, Wilcoxon post hoc analysis with correction for
multiple comparisons). Panel B shows the accuracies obtained when
training both CNNs from scratch (green circles, N = 120) or when
fine-tuning the pre-trained networks (orange circles, N = 120). Panel
C shows the results obtained with and without the pre-training, i.e., the
same data points of panel B (N = 120). For each experiment, accuracies
without the pre-training are the abscissae, while the accuracies obtained
with transfer learning are the ordinates. The data points placed in the
orange area above the main diagonal (dashed black line) are exper-
iments where the pre-training granted a higher accuracy. Data points
placed below the main diagonal are experiments where the CNN trained
from scratch performed better. Panel D shows the stratification of the
experiments divided into healthy (left) and pathological (right) conditions
(N = 60 for each group). For both healthy participants and severely
disabled patients, transfer learning significantly improved classification
accuracy.

transfer learning. The same result can be inferred from Fig. 7C,
where data are scattered according to the accuracy achieved with
(ordinate) and without (abscissa) pre-training. In this figure, it is
possible to observe that transfer learning is particularly helpful
when the classification accuracies are lower than 65% for the
CNNs trained from scratch. For those experiments where it
is difficult to identify the P300 wave, the pre-training on the
BCIAUT-P300 dataset granted a higher success.

Fig. 7D shows the stratification of the latter results according
to the health condition of the subjects. P300 detection accuracy
on healthy subjects was slightly higher (Wilcoxon test for
paired samples, p-value = 0.02) when tested with or without a
pre-trained network, as training from scratch provided a median
accuracy of 70.44% [69.63; 71.08]% and transfer learning
provided a median accuracy of 73.81% [72.34; 75.52]%. More
importantly, P300 detection accuracy for disabled subjects
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found a significant benefit in the application of transfer learning
(Wilcoxon test for paired samples, p-value = 8.7 · 10−10). In
fact, median accuracy when training from scratch was 64.38%
[63.54; 66.19]%, whilst it was 73.38% [72.09; 74.46]% when
transfer learning was applied.

IV. DISCUSSION

In this work, we proposed deep learning methods to im-
prove brain-computer interfaces through the detection of the
P300 waveform in EEG recordings. Differently from standard
approaches, which usually aim at reaching better performance
only, we paid special attention to BCI users’ and practition-
ers’ needs as well. In fact, BCI users are often subjects with
neurological or physical impairments that can hardly bear long
preparatory phases. Hence, we proposed methods to reduce the
calibration time and we explored the feasibility of reducing the
number of electrodes needed in the setup. To assure that our
methods can be applied in standard BCI settings, we focused
on models’ trustworthiness, both in terms of explainability and
generalizability of the proposed solutions. To achieve these
goals, we leveraged two models based on convolutional neural
networks. First, we reproduced a state-of-the-art CNN architec-
ture, the BCIAUT [25], then we proposed an advancement, the
P3CNET model.

As an overall result, it is worth noting that the novel archi-
tecture we are proposing (the P3CNET) overpasses the state-
of-the-art BCIAUT CNN both on the dataset it was optimized
for (the BCIAUT-P300), and on a new dataset (the GIB-UVa
ERP-BCI). Therefore we can affirm that we built a robust and
generalizable model for better P300 detection.

The first method to reduce P300 calibration time acts on
reducing the signal-to-noise ratio (SNR) of the EEG record-
ings, finding the most informative time window around the
presumed P300 occurrence. We found that the time window
which maximized accuracy and minimized its standard deviation
was between 200 ms and 900 ms after the occurrence of the
stimulus, i.e., 400 ms less than previous experiments [25]. This
is also consistent with the physiology of this evoked potential.
In fact, the P300 wave is expected to appear approximately
300 ms after the occurrence of a rare stimulus [13], followed by
a deflection, called N400, of a variable length. The time interval
we are proposing likely captures both these events, excluding
other parts of the signal that might introduce noise. In addition
to the improved SNR, a shorter input signal length would result in
a simpler classifier model, with fewer parameters, thus reducing
the computational cost. Additionally, this approach brought
improvements in P300 detection accuracy of 1.5% points for
P3CNET and 4.4% points for BCIAUT, with respect to using the
untrimmed EEG signal, reaching a mean accuracy of 86% for
both models in the single-session training-testing. On this topic,
it is worth stressing the importance of signal pre-processing
driven by domain knowledge, which is crucial even in AI appli-
cations. However, the accuracy improvement observed with the
signal trimming is no more valid when a different acquisition
setup is leveraged, as in the case of the GIB-UVa ERP-BCI
dataset. In fact, higher accuracy levels were reached when an

untrimmed signal was fed to the P3CNET model. On this topic,
we can suggest that a preliminary data exploration should be
performed to identify the setup-specific optimal window.

The second method to reduce calibration time focused on
reducing the number of calibration sessions. Starting from the
assumption that the maximum reachable accuracy is subject-
dependent, a model trained on more data from the same subject
would converge to that value. When the additional calibration
sessions do not cause meaningful accuracy improvements, cal-
ibration can stop, and the subject is ready for using the BCI
system. Both the BCIAUT and the P3CNET models suggest
that the calibration should stop after three sessions. This is
an improvement with respect to Amaral and colleagues’ ex-
periments [15], [16], where each session foresaw a specific
training. This time gain was paid in terms of overall accuracy, but
the performance seems to remain satisfactory, even with three-
sessions-only calibration. Indeed, the majority of test accuracies
were higher than 70% (66.67% sessions for BCIAUT, 76.67%
for P3CNET), and some sessions resulted in accuracies even
higher than 90% (36.67% sessions for BCIAUT, 35.00% for
P3CNET). Real-world trials would help in defining the optimal
balance between shorter calibration time and better P300 detec-
tion accuracy. In fact, poor detection performance would bring
a worsening in BCI experience, which could become frustrating
from a different point of view.

Then, we addressed the feasibility of simplifying the acquisi-
tion setup by reducing the number of EEG electrodes. To analyze
the importance of each channel, it was necessary to modify
the architectures by eliminating between-channel convolution.
This step brought a reduction in accuracy for both BCIAUT and
P3CNET, which needs to be taken into account when examining
the following steps. Nonetheless, the analysis shows that parieto-
occipitals electrodes (i.e., P3, Pz, P4, POz) were usually more
informative than the others, in accordance with the physiology
of P300 production. Indeed, the parietal and occipital lobes are
responsible for the elaboration of visual stimuli [27], [45], [46].

A small reduction in accuracy could be observed when the
less important channels were discarded from the training: from
81.83% to 78.23% for BCIAUT, and from 86.33% to 80.83%
for P3CNET. Such an accuracy reduction, though, is quite
low, confirming once more that the parietal electrodes were
still providing the most critical information for P300 classifi-
cation. However, we can notice high inter-subject variability
in channels importance, and discarding some electrodes might
unpredictably affect the performance. Therefore, we would sug-
gest that the original configuration should be preserved unless
subject-specific problems or hardware limitations would arise.

Another interesting finding was that applying transfer learn-
ing on a network pre-trained on subjects affected by Autism
Spectrum Disorder (the BCIAUT-P300 dataset) substantially
helped improve P300 detection accuracy for patients with motor
disabilities (almost +10% accuracy). We can hypothesize that
subjects suffering from a pathological condition might have
some difficulties in complying with the protocol and that a
pre-training is somehow helpful in catching even non-standard
patterns, such as smaller or delayed P300 deflections. This is
consistent with the result on healthy subjects that seem to find no
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benefit from networks pre-training. Their EEG patterns are likely
to show a clearer P300 wave than pathological subjects [47],
[48]. Further experiments would shed light on this finding. How-
ever, considering that the focus of our work was to ameliorate
the BCI process, especially for severely disabled patients, which
are the typical BCI users, we can conclude that also this method
was successful.

A. Limitations

A first limitation is that our bench-mark, the BCIAUT model,
could not be exactly replicated, as some information was missing
from the original paper. However, the superiority of the P3CNET
model was consistent in all our analyses, thus allowing us to
confirm that our model better suits the P300 identification task.

A second limitation is that the two CNN models, i.e., BCIAUT
and P3CNET, share part of the architecture. Therefore, it is
possible that similar behaviours are not due to the robustness
of the methodologies but to the similarity of the networks.

Another limitation is that we aimed at simplifying the cali-
bration procedure to improve the overall BCI user experience.
However, our focus was mainly on the optimization of the
training pipeline and not directly on the time needed to perform
the EEG experimental procedure. For example, the optimal
classification pipeline with a complex model could take more
time than a sub-optimal one without significant accuracy loss.

Last, some of the observations and comparisons are mainly
qualitative since the sample size was not adequate to perform
robust statistical tests. In fact, the original experimental data was
limited, and the number of CNN training that we could perform
was constrained by the available computational resources. In
future works, our approach could be translated to different
BCI protocols and datasets, further extending the domain of
application of the present findings.

V. CONCLUSION

In this work, we proposed different methods to improve
a P300-based BCI application. We devised an architecture,
P3CNET, that overpasses state-of-the-art accuracy in P300 de-
tection from EEG signals. However, our contribution goes be-
yond the simple accuracy improvement. First, we stressed the
importance of EEG signal pre-processing to optimize models
training by indicating the best trimming for the signal. Second,
we proposed a simplification of the acquisition procedure by
avoiding several unnecessary re-calibrations. Third, we provide
a method to potentially remove some electrodes from the ac-
quisition setup by leveraging explainable artificial intelligence
techniques. Finally, we proved the generalizability of such
methods and their domain adaptation capabilities. Therefore,
we proposed reliable methods that can be applied in different
BCI settings to improve the overall experience, with significant
benefits for users and operators.
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