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Multi-Magnification Image Search
in Digital Pathology
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Ricardo Gonzalez, and Hamid R. Tizhoosh

Abstract—This paper investigates the effect of magnifi-
cation on content-based image search in digital pathology
archives and proposes to use multi-magnification image
representation. Image search in large archives of digital
pathology slides provides researchers and medical profes-
sionals with an opportunity to match records of current
and past patients and learn from evidently diagnosed and
treated cases. When working with microscopes, patholo-
gists switch between different magnification levels while
examining tissue specimens to find and evaluate vari-
ous morphological features. Inspired by the conventional
pathology workflow, we have investigated several magnifi-
cation levels in digital pathology and their combinations to
minimize the gap between AI-enabled image search meth-
ods and clinical settings. The proposed searching frame-
work does not rely on any regional annotation and poten-
tially applies to millions of unlabelled (raw) whole slide im-
ages. This paper suggests two approaches for combining
magnification levels and compares their performance. The
first approach obtains a single-vector deep feature repre-
sentation for a digital slide, whereas the second approach
works with a multi-vector deep feature representation. We
report the search results of 20×, 10×, and 5× magnifica-
tions and their combinations on a subset of The Cancer
Genome Atlas (TCGA) repository. The experiments verify
that cell-level information at the highest magnification is
essential for searching for diagnostic purposes. In contrast,
low-magnification information may improve this assess-
ment depending on the tumor type. Our multi-magnification
approach achieved up to 11% F1-score improvement in
searching among the urinary tract and brain tumor sub-
types compared to the single-magnification image search.
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I. INTRODUCTION

IMAGE search and retrieval in digital pathology can assist
pathologists and medical professionals in different diagnos-

tic, research, and educational tasks. Experts users can search
through thousands of digital tissue slides through databases,
find the cases most similar to a query pathology slide, compare
current tissue samples with past patients, and recommend well-
informed diagnoses and treatments. Previous studies [1]–[6]
primarily defined content-based image search as a technology
where the search input (query) is a digital image, not a textual
description. A simple text-based search engine may use only
some keywords to find the most relevant cases, and might use a
retrieval function for estimating the relevance between the query
and candidate outputs [7]. However, a content-based image
retrieval (CBIR) obtains valuable visual information in digital
pathology slides. In CBIR, the output is determined based on
the “content” of images, e.g., tissue morphology and cell nuclei
distribution. As clinical pathology documents, reports, and other
metadata usually apply to the entire digital whole-slide image
(WSI) rather than specific locations within the WSI, the content-
based WSI search can retrieve invaluable information associated
with similar cases. In this fashion, an AI-driven content-based
WSI search engine can process a new WSI before any other
assessments. Then, this content-based WSI search engine can
find and present the most similar cases to this new patient in
the dataset, along with additional metadata including previous
diagnoses and treatments. A multi-magnification image search
engine allows pathologists to benefit from a content-based image
search method that actively exploits different magnifications for
better search performance.

Pathologists usually use various lenses of a microscope in
their detailed inspection of a tissue sample, switching between
different magnification as needed. They usually start with low
magnifications to identify regions of interest. Then, they look for
diagnostically relevant regions to make preliminary diagnoses.
Higher magnifications are often needed to confirm or rule out
those diagnoses [8]–[10]. The tradition of utilizing the highest
magnification power for many diagnosis tasks may be attributed
to the fact that in several tumors, a high mitotic rate and atypical
mitosis indicate malignancy [11].
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Fig. 1. Pyramidal structures of a whole slide image (WSI) in digital
pathology. The base magnification of a WSI is usually 20× or 40×.

As a logical expectation, an AI framework should emulate
what expert pathologists do. Ultimately, the closer an AI model
follows the pathologist’s routines, the more realistic and reliable
its results may become. Hence, we investigated content-based
search encompassing multiple magnification levels to parallel
what pathologists do. The preeminent motivation of this research
study is to develop the feature of adjustable digital magnifica-
tion power for a search engine because, conventionally, light
microscopy in pathology usually comes with interchangeable
several objective lenses.

Digital pathology slides are multi-resolution images. They
usually consist of three to five different magnification levels
since a typical light microscope conventionally has around four
objective lenses. However, the number of slide levels can vary
depending on the scanning protocol, and device [12]. Fig. 1
displays the pyramidal data structure of a sample whole slide
image (WSI). As it can be seen, the resolution of slide levels,
i.e., the number of pixels representing a specimen, increases with
the magnification level.

Even though distinct magnification levels are essential for
various assessments, and despite the availability of several mag-
nification levels, current methods in computational pathology
mainly evaluate digital slides at a single magnification level,
most often at 20×. Several morphological characteristics can
be recognized at low magnifications, including the spatial dis-
tribution of normal and abnormal tissue components, tumor
growth patterns, and heterogeneity. There are several examples
of the low-magnification applications; first, identifying reactive
epithelial alterations from dysplasia [13], secondly, estimating
the extent of histological patterns for classification (e.g., in pure
special type breast carcinomas [14]), and lastly, grading (e.g.,
in prostatic adenocarcinomas [15]). Hence, exploiting several
magnification levels is valuable for different pathology tasks.

A histopathology search tool that can perform at various mag-
nification levels is functionally valuable due to several reasons.
First, selecting the right magnification level for digital slide
evaluation depends on the type of histopathology assessment.
For instance, microinvasions are detectable at the highest mag-
nification [16], whereas distinguishing some well-differentiated
malignant tumors from benign tumors or non-tumoral lesions is
challenging at high magnifications [17], [18]. Also, each magni-
fication level contains some pieces of histopathology informa-
tion. At lower magnification levels, the contextual information
of glands and tissues is exploited, e.g., architectural patterns,

whereas, at higher magnification, cellular contents such as nuclei
and cytoplasm are more distinctive.

This research aims to develop adjustable digital magnification
power for a WSI search framework in digital pathology by
proposing two methods to combine magnification information.
Moreover, this paper investigates the effect of magnification on
content-based WSI search by comparing the performance of two
multi-magnification image search methods at 5×, 10×, 20×
magnifications, and all of their possible combinations.

The rest of this paper is structured as follows. Section II
reviews the literature related to either multi-magnification or
content-based image search in digital pathology. Section III
explains methods and procedures to process and represent
WSIs at multiple magnifications for content-based search. Sec-
tion IV begins by describing the dataset and then reports multi-
magnification search experiments. Section V interprets experi-
mental results and discusses findings from the investigation on
the effect of magnification on image search. Finally, a summary
and conclusions are presented in Section VI.

II. RELATED WORK

A. Multi-Magnification Investigation

Early studies on utilizing multiple magnification levels for
digital pathology, before the emerging of deep learning in the
computer vision field, are, among others, based on wavelet
approaches [19], [20]. Deep-Hipo [21] is among recent multi-
magnification studies that combined high and low magnifica-
tion information to locate cancerous regions. Having multi-
magnification receptive fields, Deep-Hipo takes two concentric
patches at 20× and 5× magnification and concatenated their
features to compute the cancer probability of the central pixel.

Much of the recent literature on histopathology image analysis
based on multiple magnification levels pays particular atten-
tion to semantic segmentation tasks [22]–[25]. HookNet is a
multi-magnification model for histopathology tissue segmenta-
tion [23]. Having collected two manually annotated datasets of
breast and lung tissues, Van Rijthoven et al. trained and evalu-
ated their proposed HookNet model. The model architecture of
HookNet included multiple branches to combine contextual in-
formation with fine details detectable only at the highest resolu-
tion. This network processed a pair of concentric patches at high
and low magnification levels to create a segmented map of its in-
put digital whole-slide. Results indicate that multi-magnification
models are generally more accurate than single magnification
models. Similarly, [24] adopted a multi-magnification approach
and proposed deep multi-magnification networks (DMMNs).
DMMNs approached the semantic segmentation task in breast
tissues via processing sets of patches from 20×, 10×, and
5× magnifications. The architecture of DMMNs is composed
of various combinations of multiple encoders, decoders, and
concatenation blocks. In the decoder part, feature maps of 5×
and 10× are concatenated with 20× feature maps to recover
local and contextual information. In other words, DMMNs en-
riched feature maps of the high magnification level with feature
maps of lower magnification levels to acquire better spatial
characteristics in the segmented image. Concerning the dataset,
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a pathologist partially annotated 38 breast digital whole slides
and classified regions into six tissue subtypes to prepare a private
dataset for the DMMNs study. The authors conclude that their
proposed deep multi-magnification network outperforms single-
magnification counterparts. In another relevant research paper,
two multi-magnification networks were presented to segment
WSIs using a U-Net-based network architecture [25]. In this
method, feature maps of lower resolutions were combined with
feature maps of higher resolutions to create accurate binary
masks. They used the CAMELYON16 dataset to train and test
their proposed networks.

Many other papers in digital pathology have also hinted at
combining context and detail information and investigation on
multiple magnification levels, including cervical cell segmen-
tation with a multi-scale CNN model [26], detecting regions
of interests based on a super-pixel algorithm [27], segmenta-
tion of the glands in the colon-rectal digital slides [28], cell
classification using a CNN model with multi-scale input and
multi-feature layers [29], urothelial carcinoma classification
at multi-magnifications using a pre-trained network [30], and
cancer subtype classification with a multi-instance CNN [31].

B. Image Search in Digital Pathology

There is a considerable literature on content-based image
search in digital pathology ([1], [32]–[42]). SMILY [39], allows a
user to select a region of interest to obtain matches. A pre-trained
network condenses an input image into a feature vector. The net-
work architecture of the SMILY is a deep ranking network that
was pre-trained on the 5,000,000 natural images from 18,000
distinct classes. This network learned to extract discriminative
features by computing and comparing the embeddings of input
images. To evaluate the search performance in finding patches
with the same histologic features, SMILY adopted a dataset
manually annotated by pathologists. Top-5 scores have been
reported for patch-based searches at 40×, 20×, 10×, and 5×
magnification levels. In another experiment, pathologists com-
pared the search results of SMILY to random patches.

In another recent paper, [40] introduced a search engine,
named Yottixel, for real-time whole slide image retrieval in the
digital pathology. The authors used an unsupervised color-based
clustering method to extract a set of images at 20×magnification
from each WSI, then fed images to DenseNet [43] to extract
features. Next, the feature vectors were barcoded, i.e., binarized,
to create a Bunch of Barcodes for indexing digital slides. The
barcoding of gigapixel whole-slide images enables Yottixel to
perform millions of searches in real-time. KimiaNet [41] is
another recent research study that reports image representation
for search in digital pathology. In this study, the DenseNet topol-
ogy was re-trained at several stages by histopathology images
extracted at 20× magnification based on a high-cellularity patch
selection approach. KimiaNet was tested for image search on
three public histopathology datasets for multi-organ whole slide
image search.

III. MULTI-MAGNIFICATION SEARCH (MMS)

This section explains the methods employed in our content-
based search framework to compare digital slides at multiple

magnifications. The framework is based on representations pro-
vided by a deep convolutional neural network to find similar
digital slides via feature matching.

In the following subsections, the image search framework’s
data preparation and deep feature extraction steps are described,
respectively. Next, Section III-C and Section III-D explain two
searching methods based on those deep features. Both searching
methods can perform at a single magnification and also any com-
bination of magnifications. Concerning multi-magnification im-
age search, the first method obtains a single multi-magnification
feature vector of a WSI without demanding any pixel-level or
regional annotation. The primary purpose of the feature vector
representation for digital slides is to find the most similar slides
to a query slide based on the selected magnification level(s).
The second method performs on a multi-feature vector basis
and compares patch feature vectors to find similar slides at each
magnification, then takes a majority vote among magnifications.

A. Data Preparation

Since WSIs are gigapixel files and too large to be processed
by typical CNNs directly, a patch-based approach is usually
employed. Therefore, this paper also adopts a patching approach
to overcome the computational challenges of training a deep
CNN. The term “patch” here refers to a rather small sub-image
of a WSI with manageable dimensions. In the first step of
image search, RGB images with a manageable image size, e.g.,
1000× 1000 pixels, are extracted from tissue regions of a WSI
at various magnification levels, e.g., 5×, 10×, and 20×. The
patch size at all magnification levels stays the same. To identify
tissue regions and avoid patch extraction from backgrounds
and artifacts, binary masks are used. In a binary mask, pixels
belonging to tissue regions have a value of one, whereas pixels
belonging to background regions have zero value. This paper
uses a pre-trained U-Net [44] for generating the binary masks.
Next, we divide the binary mask image into grids to select
qualified patches mainly containing tissue.

B. Deep Feature Extraction

Pre-trained deep neural networks (DNNs) can learn to extract
content-based features from their input image. An example is
KimiaNet [41] which is a customized feature extractor for the
digital pathology. The architecture of KimiaNet includes four
dense blocks with several convolutional and pooling layers and
around seven million parameters. Model parameters of Kimi-
aNet are adjusted to derive histological characteristics from input
images. This feature extractor was trained at 20×magnification.
Therefore, we employ KimiaNet without any modification to
extract tissue features from 20× magnification patches. Note
that the term deep feature here indicates the output of the latest
pooling layer in the KimiaNet model architecture.

The last DenseNet-121 block [43], i.e., 20 percent of Kimi-
aNet layers, were re-trained with 10× and 5× magnification
patches to adjust this feature extractor to those magnifications.
In this fashion, we have changed the weights of the KimiaNet
according to different magnification levels, attempting to imitate
how a pathologist changes their microscope’s objective lenses.
As a result, different sets of parameters for the KimiaNet model
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architecture at three magnification levels were obtained. The
model architecture and configurations of our feature extrac-
tors are the same for all magnification levels. All versions
of KimiaNet were trained to classify patches, with a size of
1000× 1000× 3, from 30 primary diagnoses.

After training, in the feature extraction phase, the input of
KimiaNet is still a histopathology patch with 1000× 1000× 3
in dimension. As the KimiaNet output, we extract a feature
vector with a size of 1024× 1 representing the input patch.
Feature vectors generated by KimiaNet contain histological
characteristics and distinct features of the input patches as
the network has been trained with high-cellularity patches of
carcinoma images [41]. Note that most deep learning approaches
in digital pathology, including KimiaNet, are applied on patches
rather than the entire WSI due to the extremely large image size
of WSIs. This paper utilized two methods to represent an entire
WSI based on its patch features. Section III-C and Section III-D
explain single-vector and multi-vector methods, respectively.
WSI representations can be compared to find and retrieve the
most similar WSIs.

C. Single-Vector WSI Representation: Median
Aggregation

In the context of WSI feature representation, the goal is
to obtain a single feature space so that WSIs with similar
histological features are close to each other. Up to this point,
patches, i.e., square images acquired from tissue regions of a
WSI at a specific magnification level, have been fed to KimiaNet
to generate deep feature vectors. In other words, each deep
feature vector (the output of KimiaNet as the feature extractor)
represents a patch, not the entire WSI. In the median aggregation
approach, we create a feature space for each magnification level.
To do so, we aggregate all patch feature vectors by taking the
median value with respect to feature positions to create a single
vector representing of the WSI at a specific magnification. The
aggregated vectors of different magnifications are concatenated
to create a multi-magnification vector representation. As each
WSI is represented by one vector in this method, we called it
Single-Vector. The distance between WSI feature single-vectors,
e.g. Euclidean distance, can be computed to compare WSIs.
Fig. 3 illustrates the single-vector method for the content-based
WSI search.

D. Multi-Vector WSI Representation: Median-of-Mins

The Multi-Vector method performs patch-to-patch and then
slide-to-slide comparisons to find and retrieve most similar
digital slides. The multi-vector method is the same as what
is proposed in [40] for single magnification. The procedure is
repeated for all magnification levels in an independent manner.
Fig. 4 illustrates the three independent search processes for a
query WSI at 5×, 10×, and 20× magnifications. In terms of
multi-magnification search, we consider all retrieved WSIs at
selected magnification levels for subsequent evaluations. We
called this method Multi-Vector because it represents a digital
slide with multiple feature vectors associated with its patches.

Fig. 2. Patch extraction procedure at 5×, 10×, and 20× magnification
levels. A binary mask is utilized for the tissue specimen detection.

Working with many feature vectors when operating on large
WSI archives can be prohibitively time-consuming. The cal-
culation of Hamming distance between binary codes is much
faster than calculating Euclidean distance between full-precision
feature vectors. In large-scale search problems, reducing the
demand for memory resources is another advantage of binary
feature vectors. Hence, hashing feature vectors would be re-
quired in case of multi-vector WSI representation. Instead of
the Min-Max barcoding algorithm as proposed before [40], this
paper uses the Sequential Non-Rigid Quantization (SNRQ) [45],
an unsupervised hashing approach, for barcoding patch feature
vectors. The non-rigid quantization (NRQ) method is an ex-
tended version of the iterative quantization (ITQ) method [46].
NRQ applies dimensionality reduction and utilizes non-rigid
transformations along with rigid transformations such as rota-
tion to further reduce the quantization error caused by hashing.
Sequential NRQ (SNRQ) is an efficient implementation of NRQ
based on sequential updates.

Let assume the test dataset containsnp patches fromns WSIs.
First, pairwise Hamming distances between barcoded feature
vectors of all patches are calculated, generating a patch-to-
patch-distance matrix with dimension of np × np. Note that
distances between patches of the same WSI are set to infinity
for convenient search purposes. In the next step, the minimum
distance from each patch to all patches of each WSI is calculated,
generating the patch-to-slide-distance matrix of dimensionnp ×
ns. Finally, pairwise distances between WSIs are calculated
by finding the median of patch-to-slide distances, generating
a slide-to-slide-distance matrix of dimension ns × ns. This
median-of-mins matching process repeated for all magnification
levels.
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Fig. 3. Searching framework for the single-vector WSI representation method using the median aggregation approach (Section III-C). The pen-
and-pad icon stands for metadata such as reports containing primary diagnosis.

Fig. 4. Image search among urinary tract WSIs using the multi-vector method. The search has been performed three times based on extracted
patches at 5×, 10×, and 20× magnification. The search at a single magnification is successful if at least two of the three search results show correct
primary diagnosis. The multi-magnification search (MMS) is successful if the majority of the search results at selected magnifications indicates the
same disease type as the query WSI.

IV. EXPERIMENTS ON MMS

A. Image Data

This research study has employed a comprehensive publicly
available dataset of hematoxylin and eosin (H&E)-stained digi-
tal whole slides images. The Cancer Genome Atlas (TCGA) [47]
has more than 30,000 digital slides including frozen sections and
diagnostic slides from the NIH’s pan-cancer analysis project. As
frozen sections generally showing somewhat lower image qual-
ity, they were eliminated to maintain a more consistent evalua-
tion [48]. At the outset, diagnostic pathology slides of the TCGA

dataset were collected for our investigation. Some of the remain-
ing slides did not include 20× or higher magnification levels.
We only included diagnostic slides with 20× or higher levels of
magnification, and recorded one slide per patient. Next, these
slides were categorized based on morphology codes, primary
sites, and diagnosis, again omitting the groups with lower than
20 slides due to search purposes in the test phase. This grouping
allowed having a minimum of two WSIs from each class in the
test dataset. We finally recorded 8,611 permanent H&E stained
digital slides from 12 anatomic sites (categorization based on
established literature [48]). The anatomical site of a digital
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slide indicates the organ or body system biopsied. Anatomical
sites of this dataset consists of brain, endocrine, gastrointesti-
nal tract, gynecological, liver/pancreaticobiliary, melanocytic
malignancies, prostate/testis, pulmonary, urinary tract, breast,
head and neck, and mesenchymal. Next, following the procedure
proposed by the KimiaNet paper [41], we split the dataset with
a ratio of roughly 80, 10, and 10 percent into the train, test, and
validation sets, respectively. The train-valid-test split was with
respect to primary diagnoses. As a result, a test dataset of 744
WSIs, a validation dataset of 741 WSIs, and a training dataset of
7,126 WSIs were collected for our investigation. These digital
slides were not annotated by a pathologist at any regional or
pixel levels.

Next, concerning each WSI, regions containing tissue speci-
mens were segmented to remove background regions. The term
background here refers to non-informative pixels in a WSI, in-
cluding white-coloured backgrounds of a glass slide and artifacts
such as ink marker and extra stain. We used a pre-trained U-Net
model [44] to generate binary masks at the lowest magnification
level for identifying the background and foreground of a WSI.
After recognizing tissue regions (foreground), we extracted
high-, medium-, and low-resolution patches with a fixed size
of 1000× 1000 pixels (Fig. 2). Patches of this experiment were
extracted without any supervision or delineation of regions of
interest.

At 20× magnification, we utilized KimiaNet-IV [41] as the
feature extractor without any modification. Therefore, at 20×
magnification, the training and validation patches in this paper
were identical to those in the KimiaNet paper [41]. As reported
in the KimiaNet paper, a total of 242,202 histopathology 20×
magnification patches were extracted from those 7,126 WSIs
for training. Note that the KimiaNet paper used an algorithm
based on cellularity ratio to select training patches at 20×
magnification [41]. Generally, cell-level information might not
be well recognizable in low magnifications. Patch sampling,
on the other hand, is essential for computational convenience
and redundancy reduction in training. Therefore, at 10× mag-
nifications, we sampled training and validation patches in such
a way that patches were extracted from all across the tissue.
In this sampling, patches were uniformly distributed all over
the specimen area to optimise the sampling all tissue types in
each WSI. Ultimately, we recorded 190,257 training and 25,653
validation patches to fine-tune KimiaNet at 10× magnification.
At 5× magnification, we considered all extracted patches for
training because there were a manageable collection of patches
at 5× magnification (167,746 training, and 29,680 validation).

In the test phase at 20× magnification, due to a large and
unmanageable number of training samples, we sampled 20
percent of the tissue regions of each digital slide using the
same procedure with preserving the spatial diversity. Previous
studies [1], [40] have shown that a small percentage, usually a
range between 5 to 20 percent of patches, can be sufficient for
representing a TCGA digital slide. In our study, we collected
91,287 patches at 20× magnification from 744 test WSIs. In
terms of test patches at 10× and 5×magnifications, we recorded
every patch that mainly contains tissue texture (and not much
background). As a result, 97,389 and 20,397 test patches were

Fig. 5. Visualization of multi-magnification patch selection in three
gigapixel WSI samples from different organs. Green, blue, and black
bounding boxes indicate patches at 5×, 10×, and 20× magnification,
respectively. All patches are of size 1000× 1000 pixels.

collected for search experiments at 10× and 5× magnifications,
respectively. Fig. 5 shows three test WSIs and the location of
their extracted patches.

B. Assessment of the Search Accuracy

Manual comparing and contrasting WSIs is infeasible and at
best highly time-consuming and costly due to the complexity
of image search and also the large size of each WSI. A typ-
ical WSI in the TCGA dataset has around 4 to 5 slide levels
(magnifications), and in highest magnification, the image size
can be more than 100, 000× 100, 000 pixels with countless
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TABLE I
3-NEAREST NEIGHBORS ACCURACY (%) FOR THE HORIZONTAL SEARCH

AMONG TEST DATASET

details. Moreover, hand-operated assessment of content-based
WSI retrieval by pathology experts is prone to variability, and
therefore is impractical for a large-scale dataset. Hence, we
conducted algorithmic experiments to assess the performance
of our multi-magnification search framework.

In these experiments, we used the “leave-one-patient-out”
approach in the test dataset, i.e., excluding one WSI, finding
similar cases in the search space to this WSI, and repeating this
process for all WSIs in the test dataset. The search space of the
leave-one-out experiments is the test dataset since the training
and validation WSIs were already used for training the feature
extractor networks. We investigated the top-three most similar
WSIs to the query slide where the term query slide indicates
that excluded WSI. Next, we examined the majority vote among
those three most similar WSIs to the query slide to make a
prediction. One may examine the top-n search results for n > 3
if larger test datasets are available. Finally, the prediction via
majority vote was compared to the actual label, e.g., primary
diagnosis or tumor type associated with that query WSI. In other
words, these experiments consider a search successful if two
out of three matched cases have the same label as the query
slide. Taking the majority vote is much more rigorous than the
top-n accuracy in computer vision that assumes correctness if
at least one of the search results is correct. In this paper, two
types of search experiments, horizontal and vertical searching,
were performed to systematically assess the performance of our
multi-magnification search framework.

The first experiment, horizontal searching, measures how
accurate a WSI search method can find WSIs with similar
anatomical sites. In horizontal searching, the search space is
the entire test dataset. Table I reports the results of horizontal
search. This table compares the performance of proposed MMS
methods, single-vector and multi-vector, at 20× magnification
and Tri-Magnifications (TM) with the horizontal search results
reported in KimiaNet paper [41]. Note that the anatomical site
(organ) of any WSI is given since the organ of a biopsy is
known before any assessment. Therefore, horizontal search is
a basic algorithmic validation with limited clinical applications.

This paper performed horizontal searches as a fundamental
evaluation and sanity check. Further discussion on the horizontal
search results are provided in Section V.

As the primary site is a pivotal knowledge about a WSI, the
vertical searching experiment limits the search space for each
query WSI to WSIs with the same anatomical organ. Therefore,
we would be interested in identifying primary diagnosis for each
primary site. Accordingly, each query WSI was compared to
all other WSIs of the same primary site, with the intention of
finding cases with the same subtype of malignancy. In other
words, the search space in vertical searching is limited to one
anatomical site at each time. Note that among the 12 anatomical
sites, the classification (majority voting) experiments concern
9 anatomical sites with more than one subtype. The tumour
subtypes, i.e., primary diagnoses, and the number of WSIs
associated with each tumour subtype are presented in Table II.
For instance, there are 34, 11, 50, 28 WSIs in our test dataset with
a primary diagnosis of BLCA, KICH, KIRC, KIRP, respectively,
which all can be considered as a urinary tract tumor.

Since the vertical search has more clinical value than hori-
zontal searches, this paper thoroughly investigated the vertical
search experiment at three magnifications and all their combina-
tions. The results of vertical search experiments are reported in
Table II and Fig. 6. Seven experiments at 1) 5×, 2) 10×, 3) 20×,
4) 5× 10×, 5) 5× 20×, 6) 10× 20×, and 7) TriMagnification
(TM), i.e., 5× 10× 20× magnifications, using single-vector
and multi-vector methods, were conducted independently on
nine anatomical sites. Table II reports the F1-score for all tumor
subtypes in nine different anatomical sites. F1-score represents
both specificity and sensitivity of the search. Fig. 6(a) and (b)
show the overall accuracy achieved at each magnification using
the single-vector method and the multi-vector, respectively.

V. ANALYSIS AND DISCUSSION

This section interprets the WSI search results and describes
our findings. First, the results of the horizontal search, as a pre-
liminary evaluation with limited clinical applications, are briefly
discussed. Next, we thoroughly analyze the vertical search re-
sults to investigate the effect of magnification in content-based
WSI search. The goal is to suggest the best search method,
and above that, to suggest the most effective magnification
level (or combination of levels) relevant to each anatomical
site.

As Table II shows, our WSI search framework could accu-
rately find and retrieve WSIs with a similar tumor type in the
majority of cases, and our results are in line with previous studies
in the literature. The base of our multi-vector method is the
median-of-min approach which makes it somehow similar to
the method used in KimiaNet especially at single magnification
(20×). However, there are two significant differences between
multi-vector at 20×magnification and the method used in Kimi-
aNet. First, the multi-vector method used the SNRQ hashing
technique to convert each deep feature into 128 bits, while the
KimiaNet paper used the min-max hashing approach to convert
each deep feature into 1023 bits. Plus, our patching approach is
different from KimiaNet in some respects.



4618 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 9, SEPTEMBER 2022

TABLE II
PERCENTAGE OF F1-SCORE VERTICAL SEARCH RESULTS

“TM” Stands for Tri-Magnification, Indicates Analysis Based on Three Magnification Levels. See Table III for Subtype Abbreviation Codes.

Vertical search results are presented in Table II and Fig. 6. We
analyze the results to recommend the most effective magnifica-
tion level(s) as well as the optimal vertical search method for
searching among each anatomical site.

1) Brain: Using TriMagnification (TM) instead of 20×mag-
nification improved the single-vector method performance, in-
creasing the F1-score for Glioblastoma Multiforme (GBM) and
Low-grade Gliomas (LGG) from 0.83 and 0.78 to 0.89 and 0.87,
respectively. Results indicate that the single-vector algorithm at
TM may be the most appropriate configuration for searching
among brain tumors.

2) Endocrine: The class imbalance challenge in this dataset
is noticeable. Adrenocortical carcinoma (ACC), pheochromo-
cytoma and paraganglioma (PCPG), and thyroid carcinoma
(THCA) have 6, 15, and 51 samples, respectively. This disparity
in the number of subtype samples markedly affects the search
performance. There are not enough samples of ACC tumors,
causing confusion in finding two or more similar cases and
resulting in zero F1-scores in the evaluation using some mag-
nifications/methods. Overall, results indicate that utilizing 10×
magnification along with 20× magnification has been beneficial
for the multi-vector method, improving the F1-score accuracy
of PCPG and THCA by three and two percent, respectively,
compared to 20× magnification. These results support using the
single-vector method at 20× magnification or at the 10× 20×
magnifications.

3) Gastrointestinal Tract: The single-vector method at 20×
magnification achieved the most accurate results concerning

the image search among gastrointestinal tract tumors. However,
the multi-vector method at 5× 20× magnification surprisingly
showed 12 percent F1-score improvement compared to the
previously suggested configuration for searching for colon ade-
nocarcinoma (COAD) cases.

4) Gynecological Tumors: The limited number of sam-
ples for uterine carcinosarcoma tumors (UCS) negatively af-
fected the performance of the single-vector method at 10×
and 5× magnifications and their combination. Interestingly,
the multi-vector method showed satisfactory performance
across all magnifications. However, more samples are re-
quired for a more reliable assessment. Overall, the single-
vector method at 20× magnification is the best configu-
ration for diagnosis-related searches among gynecological
WSIs.

5) Liver, Pancreaticobiliary: The single-vector method at TM
achieved the most accurate results. Interestingly, single-vector
method 5× achieved the F1-score of 0.99 concerning liver
hepatocellular carcinoma (LIHC).

6) Melanocytic Malignancies: Since there are only four sam-
ples of uveal melanoma (UVM) tumors, only three samples
were left in the leave-one-out approach. Therefore, finding two
or more UVM matches within three retrieved samples can be
considered slightly unlikely. Overall, the single-vector method at
5×, 5× 10×, and the multi-vector method at 20× and 5× 20×
magnifications achieved the most accurate results. Since the
computational complexity using the single-vector method at
5× magnification is less than other configurations, representing
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Fig. 6. Accuracy histogram for vertical search experiments with re-
spect to the magnification level and anatomical site. The vertical axis
shows fraction of correct subtype classifications. For each anatomical
site, the total image search accuracy at different magnification levels is
visualized.

WSIs with melanocytic malignancies using the single-vector
method at 5× magnification is preferred.

7) Prostate: Image search at 20× achieved accurate re-
sults with 0.99 and 0.96 F1-score for prostate adenocarcinoma
(PRAD) and testicular germ cell tumors (TGCT), respectively.
These results are regardless of the searching method. Combining
lower magnification levels information with 20× magnification
information using the single-vector method also achieved simi-
lar results as for the 20× magnification.

8) Pulmonary: Top results concerning lung tumors, i.e.,
Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Car-
cinoma (LUSC), were achieved using the single-vector method
at 20× magnification, and also the combination of 20× magni-
fication with one lower magnification, i.e., 10× 20× and 5×
20×. Concerning Mesothelioma (MESO) diseases, the multi-
vector method showed an unanticipated improvement in the
F1-score compared to the single-vector method at 20× mag-
nification, improving from 67 to 80 percent.

9) Urinary Tract: The most apparent advantage of utilizing
multi-magnification can be seen in searching among urinary
tract tumor cases. Both MMS methods achieved higher-accuracy

Fig. 7. T-SNE visualizations of digital slide embeddings (Single-Vector
method). Each point displays a feature vector associated with one digital
slide in the test dataset. Each color is associated with one anatomical
site. Tumor types of the same anatomical are indicated by different
markers, e.g., plus, x, point, and star. T-SNE visualizations show a clear
class discrimination of single-vector representations.

results for most urinary tract tumor cases compared to sin-
gle magnification counterparts. For instance, 10 and 4 per-
cent F1-accuracy improvement in the single-vector method and
the multi-vector method were observed for KIRP, respectively.
These results indicate that employing low and medium magnifi-
cation along with high magnification can improve the assessment
of urinary tract tumors.

Moreover, the following important findings were observed:
� The results confirmed that the high magnification infor-

mation played an essential role in diagnosis-based evalu-
ations. The searching at 20× magnification or its combi-
nation with other magnifications outperformed searching
at other magnification levels. As seen in Table II and



4620 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 9, SEPTEMBER 2022

Fig. 6, searching at 20× magnification, the combination
of 10× 20× magnifications, or TriMagnifications (TM)
reported the highest accuracy results in most anatomical
sites. The general trend of successful searches is also vis-
ible among searching at the mentioned magnifications re-
gardless of the searching methods. In 7 out of 9 anatomical
sites, both search methods achieved more than 80 percent
classification accuracy at the mentioned magnifications
(Fig. 6). The 20× magnification (both searching methods)
acquired above 80 percent F1-score accuracy in the clas-
sification of 13 tumor subtypes. This value for 10× 20×
and TM is 12 and 13 subtypes, respectively. Considering a
lower threshold of 65 percent, both search methods could
achieve an F1-score above this threshold tumor subtypes
with at 20×, 10× 20×, and TM is 20, 21, and 18 (out
of 26 primary diagnosis types), respectively. It must be
pointed out that the highest magnification is usually used
by pathologists for confirming a diagnosis [8]–[11].

� Many of the “primary diagnosis” labels obtained from the
TCGA (see Table III) referred to groups of tumors with
different morphologies (e.g., LGG, THCA, ESCA, CESC,
OV, CHOL, SKCM, PRAD, and TGCT). It is possible
that multiple magnifications improved the assessment of
urinary tract tumors because only specific types of tumors
were included in this anatomical site (i.e., BLCA, KICH,
KIRC, and KIRP). However, this improvement was not
seen for the specific types of tumors included in “Pul-
monary”.

� Using the single-vector method for the brain,
liver/pancreas, and urinary tract tumor cases, TM
achieved the highest overall classification accuracy
(Fig. 6(a)), and the highest F1-score in most subtypes
(Table II) in comparison with all other magnification
settings. Results show that exploiting single-vector
method at TriMagnification (TM) for representing WSIs
can improve morphology assessments. Accordingly,
if one of the anatomical sites mentioned earlier is a
diagnostic consideration, evaluation based on multiple
magnification levels using the single-vector method is
highly recommended.

� Concerning the multi-vector method, 20× magnification
has achieved slightly higher accuracy compared to the
TriMagnification (TM) in many cases. This method at
TriMagnification votes between retrieved WSIs of single-
magnifications. As a potential solution to improve the
accuracy of TM, a weighted majority voting approach
may emphasize the 20× magnification. The suggested
approach may be more successful with trainable weights.

� In comparison between methods at TriMagnification
(TM), the single-vector method tends to be more suc-
cessful in combining all magnifications than the multi-
vector method. That means the single-vector WSI rep-
resentation method performed more accurately than the
multi-vector method at TM in finding cases with the same
tumor subtypes in most anatomical sites. The reported
search accuracy associated with the brain, gynecological,
liver/pancreaticobiliary, prostate/testis, and urinary tract

TABLE III
TCGA CANCER SUBTYPES [48]

tumors supports this finding. Another advantages of the
single-vector method is less computational complexity,
more efficient storage, and faster searching.

� Our results provide further support for the hypothesis
that there is a direct relationship between the number
of WSIs in the test dataset and the search accuracy [1].
ACC, USC, CHOL, UVM, and MESO are tumor subtypes
with less than six samples in the test dataset. Due to
the limited number of samples, the search framework
was unsuccessful in finding two or more similar WSIs
at some magnifications. Besides, top accuracy results are
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associated with BLCA, PRAD, and THCA, with 34, 40,
and 51 samples, respectively.

VI. SUMMARY AND CONCLUSION

We proposed a novel multi-magnification search tool to find
similar digital slides without demanding any user annotation.
The magnification level can be selected in our content-based
search framework to find similar tumor types and type of
malignancy more accurately. This multi-magnification search
framework works based on the deep feature vectors and is
empowered with two independent search methods to measure
content-based similarities between WSIs.

Our main contribution was to investigate three magnification
levels and their combinations to retrieve similar WSIs. Also, we
proposed two content-based image searching methods for multi-
magnification searching. A subset of the TCGA dataset with 12
anatomical sites and 30 tumor subtypes was employed for our
evaluations. Patches were collected on a unsupervised basis –
neither annotation provided by pathologists nor segmentation of
tissue types were used.

We achieved a significant accuracy improvement for diag-
nosis tasks concerning kidney tumors, e.g., F1-score of 0.93
for Kidney renal papillary cell carcinoma (KIRP) using the
TriMagnification search compared to 0.83 F1-score using the
single magnification (20×) counterpart. The results confirmed
that enriching high magnification search information with low
magnification search information is a promising way to increase
search accuracy in some cases. Also, the results showed that the
highest magnification, containing the cell-level information and
detailed morphological features, is an essential resolution for
diagnostic tasks (the most accurate results were achieved using
the 20× magnification or a combination of 20× magnification
with other magnifications).

In conclusion, the investigation of various magnification lev-
els in digital slide search has shown promising improvements in
many cases. These experiments implied that depending on the
tumor type, we need different magnifications and combinations
of magnifications for an accurate and reliable search and clas-
sification. Therefore, magnification level selection is a valuable
option for a digital pathology search framework.
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