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Automatic Detection of Aortic Valve Events
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and Espen W Remme

Abstract—Background: Miniaturized accelerometers in-
corporated in pacing leads attached to the myocardium,
are used to monitor cardiac function. For this purpose
functional indices must be extracted from the acceleration
signal. A method that automatically detects the time of aor-
tic valve opening (AVO) and aortic valve closure (AVC) will
be helpful for such extraction. We tested if deep learning
can be used to detect these valve events from epicardially
attached accelerometers, using high fidelity pressure mea-
surements to establish ground truth for these valve events.
Method: A deep neural network consisting of a CNN, an
RNN, and a multi-head attention module was trained and
tested on 130 recordings from 19 canines and 159 record-
ings from 27 porcines covering different interventions. Due
to limited data, nested cross-validation was used to assess
the accuracy of the method. Result: The correct detection
rates were 98.9% and 97.1% for AVO and AVC in canines
and 98.2% and 96.7% in porcines when defining a correct
detection as a prediction closer than 40 ms to the ground
truth. The incorrect detection rates were 0.7% and 2.3% for
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AVO and AVC in canines and 1.1% and 2.3% in porcines.
The mean absolute error between correct detections and
their ground truth was 8.4 ms and 7.2 ms for AVO and AVC
in canines, and 8.9 ms and 10.1 ms in porcines. Conclusion:
Deep neural networks can be used on signals from epi-
cardially attached accelerometers for robust and accurate
detection of the opening and closing of the aortic valve.

Index Terms—Accelerometer, aortic valve opening,
aortic valve closure, deep learning, heart function.

I. INTRODUCTION

IN RECENT years, accelerometers have been miniaturized
enough to be incorporated in devices such as pacing elec-

trodes attached to the heart [1], [2]. As the function of the heart
is directly linked to motion, accelerometers attached on the heart
can be used for monitoring changes in heart function [3]. While
the acceleration signal has a complex waveform with multiple
oscillations during the cardiac cycle, integration once to velocity
and twice to displacement provides smoother waveforms similar
to velocity, displacement and strain waveforms obtained by
echocardiography. Attaching the accelerometer directly to the
heart, therefore allows extraction of functional information at a
level comparable to cardiac imaging. In contrast, most previous
studies on cardiac use of accelerometers have been focused
on non-invasive measurements of the vibrations on the skin
transmitted through layers of tissue by the beating heart, so
called, seismocardiography (SCG) [4]. While the myocardial
displacement of typically 1 cm produces accelerations of about
1 g (g = 9.81 m/s2), the skin vibrations have much lower
amplitude and produce an acceleration typically measured in
milli-g [5].

Invasive cardiac accelerometers are a relatively new technol-
ogy and currently the only commercial production for clinical
use is for cardiac resynchronization therapy where the sensor is
attached in the right atrium and ventricle [1], [2]. Our group has
proposed to incorporate such a sensor in the temporary pace-
maker leads that are routinely attached to the epicardium during
cardiac surgery [3]. This setup provides a novel method to mon-
itor cardiac function, without any additional surgical procedure,
during and after a cardiac surgery. The temporary pacemaker
leads remain attached during the post-operative days, which
is a critical phase where the patient needs to be continuously
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monitored. The incorporated 3-axes accelerometer offers direct
and continuous measurements of the heart motion in this period,
and may have added value as for example motion abnormalities
is often the first sign of dysfunction occurring prior to other
signs such as changes in ECG [3], [6], [7], while imaging such
as echocardiography cannot be used for continuous monitoring.

The acceleration signal is of limited suitability for direct
clinical interpretation for functional status of the heart due to
its complex waveform. Therefore, the signal must be processed
to extract simple indices that reflect cardiac function. This pro-
cess typically involves identification of specified time points in
each cardiac cycle where the indices are extracted. In previous
studies using epicardially attached accelerometers, early systolic
velocity and displacement extracted from accelerometer signals
were used for detecting ischemic events with high accuracy [7].
However, a reference time-point in the cardiac cycle is a prereq-
uisite to enable the extraction of such functional indices. In the
examples above, R-peaks from simultaneously recorded ECG
were used to mark the point of start systole in the recorded
acceleration signals.

While start systole is a relatively easy time-point to extract
due to its coincidence with the R-peak, other time points in the
cardiac cycle can be of high clinical interest to detect for cal-
culation of other functional indices. Several studies have shown
that post-systolic motion indices are helpful for assessment of
functional abnormalities [8]–[10] which requires the detection of
aortic valve closing (AVC). Additionally, the time-point of aortic
valve opening (AVO) can be of interest which marks the end of
the isovolumic contraction phase. For example, prolongation
of the pre-ejection phase, from electrical activation to AVO, is
a sign of reduced contractile function [11], [12] and it can be
quantified if the time point of AVO is known.

Opening and closing of the valves cause transitions in my-
ocardial motion, and distinct oscillations in the accelerome-
ter signals typically occur at these time-points. If there are
characteristic features in the signal that occur at these events,
algorithms that recognize these features may be developed
and used to detect the associated valve events. Several recent
studies on automatic detection of valve events by prominent
features in SCG signals have been performed using different
approaches such as temporal enveloping [13]–[15], continuous
wavelet transform [16], machine learning [17], [18], or signal
processing combinations [19]. We have also proposed a signal
processing method to detect mitral and aortic valve events on
measurements from epicardially attached accelerometers [20].
Typically, these SCG studies have used expert opinion based
annotation of recognizable features in the acceleration signals
and the methods have been tested mainly in normal individuals
and in few types of conditions with abnormal cardiac motion.
For an automatic detection algorithm to be useful in clinical
practice, there must be limited variations in the features between
patients and when cardiac function changes due to abnormalities
or medical interventions. Furthermore, such algorithms may
also require a good ECG signal where R-peak and possibly
T-wave detections are initially used to generate limited search
windows for the desired features. However, over the recent years
we have performed several animal studies collecting data from
epicardially attached accelerometers under a variety of cardiac

Fig. 1. Example cases showing the lack of common features for de-
termining aortic valve opening in the early systolic complex. The col-
ored waveforms from the 3-axis accelerometer represent measurements
from the three different heart coordinates: Blue: longitudinal direction,
Orange: circumferential direction, Green: radial direction. Black vertical
dashed lines: time point of ECG R-peak, Blue vertical dashed lines:
time point of aortic valve opening as defined by high fidelity pressure
measurements.

interventions that represent the changes in heart function we
expect to see in patients. From these data we have observed a
large change in the features so we have not found repeatable
features appearing consistently at the valve events which could
be used for annotation or detection of the events. Fig. 1 illustrates
recordings from three cases, demonstrating the challenge in
defining common features.

Deep learning is an alternative method to expert opinion
based feature extraction as this methodology may go deeper
in the level of abstraction to a point beyond where humans can
define the features, which means that features that may not be
visible to the human brain are “visible” to the computer. Some
recent articles have adopted deep learning for detection of valve
events from echocardiographic images [21], [22]. Furthermore,
in the case of ECG, deep learning has been extensively used
to classify and segment the signals, for example detection of
R-peak and segmentation of QRS waves [23], [24]. Machine and
deep learning have also been used to quantify cardiac function
from non-invasive wearable accelerometer and gyro signals [25],
[26].

In this study, as a proof of concept, we have developed a deep
neural network for automatic detection of aortic valve opening
and closing from epicardially attached accelerometer signals
and tested its performance under numerous interventions with
varying cardiac function. The study has been performed using
data recorded in previous canine and porcine experiments carried
out by our group where simultaneously acquired left ventricular
(LV) pressure was used as ground truth for annotating the true
valve events. Furthermore, the derived method did not depend on
ECG, which avoids problems with missing or bad ECG signal.

II. METHODOLOGY

A. Data Acquisition

The study was performed on data taken from previous ex-
periments performed at Oslo University Hospital. All proto-
cols were approved by the Norwegian Food Safety Authority
(FOTS), and all experiments were carried out in accordance with
Norwegian regulations concerning the use of animals in exper-
iments. Data comprised recordings from 19 mongrel canines
[FOTS ID: 17644] and 27 Norwegian Landrace porcines [FOTS
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Fig. 2. Histogram showing the recorded time for each intervention of
canines and porcines. The number of animals per intervention is given
by A and the number of recordings is given by S. Some animals have
multiple recordings per interventions to cover a larger data variety, e.g.
an animal could have different degrees of loading.

ID: 8628 and 9303]. They were acute experiments where the
animals were ventilated and surgically prepared as previously
described [3], [27], [28]. The experiments followed different
instrumentation protocols, but all of them had left ventricular
pressure (LVP) and acceleration signals recorded simultane-
ously during different interventions. LVP was recorded using
a calibrated micromanometer-tipped catheter (MPC-500, Mil-
lar Instruments Inc, Houston, TX). A tri-axial accelerometer
sensor (MPU9250, InvenSense Inc, San Jose, CA, USA) was
sutured to the epicardium in the LV apical, anterior region.
The accelerometer’s x-, y-, and z-axis were aligned with the
longitudinal, circumferential, and radial directions, respectively.
Depending on the protocol, data were recorded at either 650 Hz
or 1000 Hz in canines and either 250 Hz or 500 Hz in porcines.
The accelerometer sensor was calibrated to a unit of g.

B. Experimental Protocol

Fig. 2 shows the breakdown of interventions in the exper-
iments. In the canine experiments, data were obtained from:
baseline, right ventricular pacing (rvp), infusion of dobutamine,
induction of ischemia, induction of left bundle branch block
(LBBB) and subsequent bi-ventricular pacing for cardiac syn-
chronization therapy (CRT). Data were also collected in a few
animals combining LBBB with: infusion of dobutamine (lbbb-
dob), induction of ischemia (lbbbisc), or fluid loading (lbb-
bloading). Ischemia was induced by temporary occlusion of the
proximal left anterior descending coronary artery (LAD). LBBB
was induced by radio-frequency ablation of the left bundle

branch. Not all interventions were performed in all animals due
to differences in protocols.

In the porcine experiments, data were obtained from
two different experimental protocols. In the first case, data
were taken from six different settings: baseline, infusion of
adrenaline (epinephrine, 10 μg), infusion of beta-blocker (es-
molol, 100 mg), infusion of vasodilator (niprid, 0.1 mg), is-
chemia induced as described above, and fluid loading. In the
second set of porcine experiments, data were obtained during
baseline, fluid loading, and phlebotomy (i.e. unloading). In
some of the animals in the second set of porcine experiments,
data were recorded both with open (represented as baseline)
and closed chest (represented as baseline(cc)) during baseline.
Furthermore, in three animals in the second set of experiments,
data were recorded during infusion of dobutamine and infusion
of dobutamine during ischemia (ischemiadob).

C. Annotation and Preprocessing

The LVP trace was passed through a smoothing window of
50 ms to remove any potential artifacts in the signal. The rate of
change of the LVP (LV dP/dt) was then derived from the LVP
signal. The time-differentiated signal was then passed through
a smoothing window of 50 ms to remove any residual noise
in the signal. Data labels were then automatically generated
with the time point of maximum LV dP/dt taken as aortic valve
opening (AVO) and the time point of minimum LV dP/dt taken
as aortic valve closure (AVC) (Fig. 3). While minimum LV
dP/dt is an established marker of AVC [29], we have not found
a similar validation study of maximum LV dP/dt as a marker
of AVO. Therefore, we investigated this in animals where also
micromanometer measurements of aortic pressure (AoP) were
available and the AoP catheter was positioned immediately
proximal to the aortic valve to avoid transmission delay of the
pressure wave to more distal positions in the aorta. AVO defined
as the first point of rise in AoP, was compared to the time of
maximum LV dP/dt. Maximum LV dP/dt occurred on average
5±7 ms (±SD) before the upstroke of AoP (Fig. 4) in 2500
heartbeats from three interventions in 17 canines. The average
difference was less than 1% of the duration of the average
heartbeat and thus, time of maximum LV dP/dt was considered
an adequate label for AVO. While AoP recordings with verified
proximal catheter position were available in a few of the animals,
LVP was available in all animals. Hence, maximum LV dP/dt
was used as the label for AVO. Finally, the LV dP/dt signal and
generated data labels were manually checked and verified, where
recording parts with false or missing AVO or AVC points were
discarded.

The acceleration signals were re-sampled to a standard sam-
pling rate of 500 Hz. The static gravity component of the accel-
eration signal was removed with a moving average filter (Tukey
window of length 3 s with a cosine fraction of 0.5). To further
reduce the variability of the input data, we used the magnitude

of the acceleration only (amagnitude =
√

a2x + a2y + a2z). Using

the magnitude makes the approach insensitive to the orientation
of the sensor axes, which is an advantage when attaching the
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Fig. 3. Measured traces from a representative example where the
valve events defined using LV dP/dt as the ground truth are shown.
Onset Q in ECG coincide approximately with the onset of the systolic
accelerometer waves in this case. This could be due to a fusion of a
passive recoil of the ventricular wall following atrial induced filling with
the active contraction starting the closing motion of the mitral valve
leaflets. Long: longitudinal, Circ: circumferential, Rad: radial, AVO: aortic
valve opening (blue), AVC: aortic valve closure (red).

Fig. 4. Histogram showing the difference in timing of aortic valve
opening by time-point of maximum LV dP/dt - first time-point of increase
in aortic pressure.

sensor as it can be attached without concern for a specific
orientation relative to the heart axes.

D. Proposed Deep Neural Networks

The cyclic motion of the heart with the sequential valve events,
produces an acceleration signal with vibrations associated with
different phases of the heart cycle, as can be seen in Fig. 3.
The first module of the deep neural network was therefore a
convolutional neural network (CNN) which is suited for pattern
recognition of the typical vibrations associated with the valve

TABLE I
RESNET BLOCK

The residual network (ResNet) block is used within the CNN module. The ResNet
block can be seen as an activation before addition [30]. All layers use stride 1 and
no dilation or padding. The residual connection is illustrated in the RC column.

TABLE II
CNN MODULE

The table shows the CNN module for an input length of 1500 samples (3000 ms).
The value of k used is 1. It is a hyper parameter which defines the number of filters
in network. The CNN module is constructed to follow common best practices: Leaky
ReLU, normalization layers, and skip connections.

TABLE III
RNN MODULE

The initial cell states were both trainable and initialized as a normal distribution
with zero mean and unit variance.

events. The second module was a recurrent neural network
(RNN) which is suited for connecting temporal features in
relative close proximity in time. Finally, the third module was
an attention module capable of connecting information across
longer temporal distances. Fig. 5 shows the principle of the
proposed method.

The CNN module can be viewed as sliding window filters
along the time dimension, where the window size is given by
the output neurons’ receptive field. The receptive field (RF ) was
68 samples (136 ms), and the stride (Δt) between the windows
was 8 samples (16 ms). A schematic diagram of the neural
network is shown in Fig. 6 and the corresponding modules are
described in details in Tables I, II, III, IV, V. Let i denote the
sliding window index. The network predicted: 1) whether an
AVO (t̂AVOi

) and/or AVC (t̂AV Ci
) were located within window

i; 2) if the network predicted an event, the position of the AVO
(ŵAV Oi

) or the AVC (ŵAV Ci
) within the window; and 3) the

classification of species (ŝi), porcine or canine.
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Fig. 5. The figure shows a schematic diagram of the four stages in the proposed approach as explained in detail in the text. The output of the
proposed neural network is predictions of the aortic valve opening and closure per window. Four such window estimates are plotted in (3) around
an aortic valve opening event where the true target is shown as the blue vertical line. The windows and their corresponding estimates are color
coded. The final event prediction (triangle) is calculated from the density of window estimates as shown in stage (4).

Fig. 6. A block diagram showing how the modules are connected in
the neural network. The window size of 136 ms given by the CNN output
neutrals receptive field is illustrated by the red, green, and blue dashed
lines.

TABLE IV
ATTENTION MODULE

The multi-head self-attention (MHA) and positional encoding (PE)
is defined as presented in [31]. The residual connection is illustrated
in the RC column.

The prediction of species was added as an auxiliary task to
regularize the network during training. Such regularization is
important because when training is stopped at a given epoch,
the network should perform well on the main predicted outputs
t̂AV Oi

, t̂AV Ci
, ŵAV Oi

, and ŵAV Ci
. These four outputs were

predicted for each module, and in addition the species prediction

TABLE V
OUTPUT MODULE

The output module connected to the CNN module have Cin of 128 · k,
not 256 · k as for the RNN and attention modules.

was a fifth output of the RNN and attention modules. The CNN
module did not have enough context to predict the species on
a per window level, and species was therefore not an output of
this module. The estimates from the CNN and the RNN modules
were included to improve the gradient flow. The output used
for the final predictions was, however, only from the attention
module.

With mathematical notation the prediction of the output tar-
gets can be described as follows. The superscripts c, r, and a
are used to indicate the module references, CNN, RNN, and
attention (ATT), respectively. Using u as a common term for the
three superscripts, the output vector yui of length five elements
is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yui [0] = t̂ u
AV Oi

yui [1] = ŵ u
AV Oi

yui [2] = t̂ u
AV Ci

yui [3] = ŵ u
AV Ci

yui [4] = ŝui

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Each output element is squeezed to a value between zero and
one using the sigmoid function. The classification target tAV Oi

is one if window i includes an AVO event and zero otherwise.
If an AVO event is located within window i, the regression
target wAV Oi denotes the normalized position of the AVO event
within the window. The same structure applies to the AVC targets
tAV Ci and wAV Ci. The target for the species predictions, (si),
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is the same for each window i as it does not change during the
recording.

The loss terms,LtAV O
,LtAV C

,Ls, are computed using cross-
entropy between the targets tAV O , tAV C , s and the network
outputs t̂ u

AV O , t̂ u
AV C , ŝu. The regression losses are calculated

using the L1 distance between the targetswAV O ,wAV C and the
network outputs ŵ u

AV O and ŵ u
AV C when events occur. The

loss, L, is a weighted linear combination of the five given losses
LtAV O

, LwAV O
, LtAV C

, LwAV C
, and Ls.

LtAV O
=

∑
u={c,r,a}

N∑
i=1

H(tAV Oi, t̂AV Ou
i
) (1)

LwAV O
=

∑
u={c,r,a}

N∑
i=1

tAV Oi · |wAV Oi − ŵAV Ou
i
| (2)

LtAV C
=

∑
u={c,r,a}

N∑
i=1

H(tAV Ci, t̂AV Cu
i
) (3)

LwAV C
=

∑
u={c,r,a}

N∑
i=1

tAV Ci · |wAV Ci − ŵAV Cu
i
| (4)

Ls =
∑

u={r,a}

N∑
i=1

H(si, ŝ
u
i ) (5)

L = λt(LtAV O
+ LtAV C

)

+ λw(LwAV O
+ LwAV C

) + λsLs (6)

N is used to denote the total number of windows. With the
example input size of 1500 samples (3000 ms) as given in
Table II, N equals 180. The cross-entropy function is given as
H . The weighing coefficients λt, λw, and λs are chosen such
that the individual losses get the same order of magnitude. The
values for λt, λw, and λs are 0.1, 1, 0.05, respectively.

E. Training and Augmentation

The total number of animals (46) is too small to perform the
typical training, validation, and test data set split. A small test set
would result in performance estimate with high variance. There-
fore, we conducted a nested cross-validation with one inner fold
and six outer folds. The data was split such that no recordings
from an animal that was used for testing purposes had been
seen by the network during training/validation. Furthermore, we
trained and tested the network on canines’ and porcines’ data sets
separately as well to see how that may alter the results. Fig. 7
illustrates how the folds were distributed. The validation data
sets were used to perform early stopping based on the multitask
loss, L.

The length of each recorded sequence was different for the var-
ious interventions and animals. The typical range was between
15 s and 30 s, with a minimum of 5 s and a maximum of 100 s.
During training, we randomly sampled short sub-sequences of
length 3 s. This was done to reduce the likelihood of overfitting
towards the longer sequences as the intra variability between
heartbeats is smaller than inter variability between recordings.

Fig. 7. Illustration of the nested cross-validation with one inner fold and
six outer folds.

The sequences used for validation were of length 3 s, and the
sequences used for testing were of maximum length 15 s.

The data was randomly augmented during training using time
warping and magnitude scaling. The signals were stretched and
gain adjusted with factors between 0.8 and 1.2.

F. Hyper-Parameter Search

A coarse hyper-parameter search was performed. The effect
of different normalization layers such as batch normalization
and group normalization were assessed as well as the effect of
changing the model sizes through the value of k = {1, 2, 3, 4}
(Table II). As for the general network architecture, we report re-
sults from the individual output stages CNN, RNN, and attention
(ATT) to determine their importance. Similarly, we evaluated
the effect of not using a data driven localization estimate by
setting wAV O and wAV O to the static value of 0.5. The max
pool operation (with stride=2 and kernel=2) is not equivariant
to translation. For this reason, we also experimented with Max
blur pool (MBP) [32]. The use of the sigmoid function in the
localization estimates has also been compared to the linear
activation function (no sigmoid).

AdamW was used as optimizer [33]. The learning rates tested
were 0.001 and 0.0001. The weight decay was fixed to 0.0001,
and batch size was 32. The weights in the convolutional layers
were initialized following Kaiming et al. [34], the hidden states
in the RNN were initialed by sampling from a uniform distri-
bution between ±1/

√
fanin, and the weights in the multi-head

attention were initialized following Xavier et al. [35].

G. Combining Network Output Into AVO and AVC
Estimates

The output from the proposed deep learning network was
AVO and AVC candidates for each window. As each window
had length (RF ) 136 ms and the stride between windows was
16 ms, an event had on average 8.5 overlapping windows. This
produced up to a maximum of 9 candidate predictions for each
event, and these predictions did not necessarily fall on the exact
same sample but had a temporal distribution. The output of each
window was therefore combined to give a final prediction as
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Fig. 8. First row: The acceleration magnitude is plotted together with
an aortic valve opening (AVO) event. The second row illustrates four
windows from running index i to i+ 3. The windows are color coded to
match their corresponding candidates. The third row shows the predic-
tion density, with its area under the curve A, and its standard deviation
σA.

described below for AVO only, as the steps were similar for
AVC.

The estimated likelihood that window i contained an AVO
was given by t̂AV Oi

. The global location was calculated by i ·
Δt+RF · ŵAV Oi

. Fig. 8 (second row) shows candidates from
four windows around an AVO event. The estimated candidate
likelihoods were re-scaled by,

ŝAV Oi
= (t̂AV Oi

− 0.5) · 2, (7)

and all re-scaled values (ŝAVOi
) smaller than zero were omitted.

The re-scaling was performed to make the contribution from
each window more representative. A candidate likelihood (e.g.
t̂AV Oi

) of 0.5 was considered to have zero confidence. A moving
average filter of length 60 ms was then applied to generate a
continuous prediction density curve, emphasizing regions with
high number of AVO candidates and suppressing regions with
few as illustrated in Fig. 8 third row.

A confidence score (C) with a corresponding position was
calculated for each nonzero region in the prediction density.
The confidence score of an AVO being present was given by
C = A/

√
σA, and the position was calculated by the center of

mass of A. Fig. 8 third row illustrates the predication density of
a nonzero region with the metrics σA and A. The approach also
included a three stage refinement process before reporting the
final AVO estimates:

1) Confidence scores below 0.4 were rejected.
2) If two or more confidence scores were closer than 300 ms,

the highest confidence score was kept only.

3) If an AVO confidence score was missing in between two
consecutive AVC confidence scores, the highest AVO
confidence score was reintroduced even if below 0.4.

The positions of the remaining confidence scores were the
final AVO estimates.

H. Evaluation

To evaluate the performance of the method, predicted valve
events were classified as correct or incorrect, and for the correct
predictions, the time distance to its true label was assessed.
To quantify whether AVO or AVC events had been detected,
or falsely introduced, we defined a detection distance limit
of 40 ms. If a final estimate lay within the duration of the
detection distance limit from a label, the estimate was deemed
as a correct detection. Correspondingly, if a final estimate was
located with a distance larger than the detection distance limit,
it was considered an incorrect detection. To assess the accuracy
in milliseconds, the incorrect beats with detection outside the
distance limit were excluded from this assessment as we wanted
to evaluate how accurate the correct predictions were. Numbers
from incorrect detections outside the detection distance limit,
for example 100 or 200 ms away, would conceal the degree
of accuracy of the correctly detected events and are considered
of limited interest. The correct and incorrect detection rates,
the mean absolute error (emae), and the root mean squared
error (ermse) are reported per intervention and combined for
all interventions.

As a smaller or larger detection distance limit would alter the
correct and incorrect detection rates of the method, an analysis
was performed to demonstrate the effect of varying the detection
distance limit from 20 ms to 60 ms.

Due to the lack of temporal information from behind and
in front of the current window, the approach is more likely to
perform worse close to the borders of the time limited recordings.
As the approach is to be used on continuous time series, AVO
and AVC events located closer to the start and end than 300 ms
were not included in the calculation of the results to avoid these
potential higher errors.

We have used a gradient based optimization method for
training the neural network. The seed to the pseudo random
number generator (which influence among others the network’s
weight initialization) was shown to have a significant impact
on the results. We quantified the sensitivity of the seed by per-
forming nested cross-validation 50 times using different seeds.
The reported results are from the hyper parameter configuration
initialized with the particular seed that gave the lowest average
error rate (AE) on the nested cross-validation data sets. The
average error rate is defined as:

AE =
1

4

∑
s={canine,

porcine}

∑
e={AV O,

AV C}

IDe,s + (100− CDe,s) (8)

where ID is the incorrect detection rate and CD is the correct
detection rate for all interventions.

We previously developed and tested an approach for detec-
tion of the valve events using a conventional signal processing
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Fig. 9. The top panel from the adrenaline intervention in a porcine,
illustrates a case with repeated failed detections of aortic valve closure
(AVC) with a systematic error around 81 ms. The bottom panel from
the ischemia intervention in a porcine, demonstrates a case with highly
varying heart rate where aortic valve opening (AVO) and AVC are still
detected with good accuracy for all beats. The blue and red triangles
indicate AVO and AVC predictions, respectively, where the vertical lines
are the corresponding references.

method [20]. The method employed different filter types (e.g.
Butterworth, Chebyshev etc.) over specific frequency bands to
emphasize the feature points associated with valve events on
the acceleration signals. Basic peak/valley detection algorithms
were then used to select these feature points associated with the
valve events. The signal processing method was developed and
validated on recordings from canines during only the three inter-
ventions: baseline, ischemia, and LBBB. We used this previous
signal processing method to detect AVO and AVC on the data
set of the current study including all interventions to compare
the results with the neural network based approach.

III. RESULTS

The hyper parameters (as explained in II-F) that yielded the
lowest average error rate given by (8) on the validation data sets
was batch normalization, model size k=1, learning rate=0.001.
The results reported in this section are on the test data sets.

The correct detection rates for AVO and AVC, pooling all
interventions, were 98.9% and 97.1% in the canines and 98.2%
and 96.7% in the porcines when defining a correct detection as
within 40 ms of its true event. The mean absolute error between
the correct detections and their corresponding targets was 8.4 ms
and 7.2 ms for AVO and AVC in the canines, and 8.9 ms and
10.1 ms in the porcines.

The most common failure mode of the approach, was a
systematic offset between the predictions and targets. This is
not surprising as the signal is often repetitive. Fig. 9 top panels,
illustrate this failure mode in case of the AVC. Irregular heart

Fig. 10. Histograms showing the detection error in canines and
porcines. The bias (ebias), the median absolute error (em), the mean
absolute error (emae), and the root mean square error (ermse) were
calculated using a detection distance limit of 40 ms. AVO: aortic valve
opening, AVC: aortic valve closure.

rhythm was not uncommon in several interventions with the
duration of heartbeats varying with a factor of 2.6 in the extreme
case as shown in bottom panels of Fig. 9. The method was
therefore not restricted to rely on a consistent heart rate, and
generally managed detection in cases with varying heart rates as
shown in the figure.

The details of the performance for different interventions are
given in Tables VI for canines and VII for porcines. The distribu-
tion of the detection errors is shown in Fig. 10. The figure shows
that the majority of the tails of the distributions are within 40 ms.
As can be inferred from the figure, the percentage of correct
detections would decrease if a narrower detection distance limit
was used to define the event as correct or incorrect. Correct and
incorrect detection rates as a function of the detection distance
limit in the range from 20 ms to 60 ms can be seen in Fig. 11.
The figure also visualizes the variation in performance of using
different seeds in the random number generator. The shaded
areas in the figure show the standard deviation from the mean in
the results from the 50 nested cross-validation runs. Table VIII
displays the variation in performance in detail using a detection
distance limit of 40 ms. The variation in true prediction was 2.6
percentage points in the worst case.

We tested the proposed method using individual species’ data
sets for training and testing. Using individual species’ data sets
yielded similar results to using merged data sets. Detailed results
are available in the supplementary material.

Lastly, detection of the valve events by deep learning had
higher feasibility than our previously proposed signal processing
(SP) method. The pooled results for all interventions in both
species are shown in Table IX. Several of the interventions
caused alterations in the acceleration trace which increased the
failing detection rate of the SP method.
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TABLE VI
COMBINED RESULT FROM ALL TEST FOLDS - CANINES

Results for each intervention on canines. The calculations were done using a detection distance limit of 40 ms. The mean absolute error (emae) and the root mean square error
(ermse) are calculated from the correct detections and the ground truth.

TABLE VII
COMBINED RESULT FROM ALL TEST FOLDS - PORCINES

Results for each intervention on porcine. The calculations were done using a detection distance limit of 40 ms. The mean absolute error (emae) and the root mean square
error (ermse) are calculated from the correct detections and the ground truth.

IV. DISCUSSION

In this study, we have shown that the opening and closing of
the aortic valve can be automatically detected by using deep neu-
ral networks on signals obtained through epicardially attached
accelerometers. We trained and tested the network on data from a
large set of interventions in canines and porcines. This was done
to verify that the proposed approach is not restricted to a single
species and works well under vastly varying cardiac motion
and functional settings. The results support the concept that the
continuous delineation of cardiac phases is possible from the
accelerometer signal alone. This may improve the monitoring
of cardiac function in cases where such an accelerometer is
attached to the heart, for example accelerometers incorporated
in CRT pace leads or the temporary pace leads that are routinely
placed during open-heart surgery.

A main strength of our study, is the relatively large number
of interventions from two different species, and the results

which showed equally good performance from both animals
in most cases using the deep learning approach. Several pre-
viously published methods to delineate valve events from SCG
signals are feature- and ECG-dependent. Such features could
include counting the number of peaks and troughs from the
ECG R-peak or T-wave and the amplitude of peaks and troughs
among others, which are then used in a decision tree based
machine learning approach or signal processing method. This
requires homogeneous data and may have limited accuracy,
and thus limited clinical value under other settings where the
signal morphology changes. We observed large variations in the
signal as seen in Fig. 1, and our previous signal method [20]
performed poorly in several of the tested interventions. On the
other hand, the deep learning neural network detected the aortic
valve events with high accuracy despite the large signal variation
and with no use of ECG, demonstrating the ability of this method
to identify patterns in such complex and varying signals. An
additional strength of our study was our access to and use of
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Fig. 11. Correct and incorrect detection rates as functions of the de-
tection distance limit. The average (μ) of the 50 nested cross-validation
runs using different seed to the random number generator, are given as
lines, and the shaded regions correspond to the ± standard deviations
(σ). AVO: aortic valve opening, AVC: aortic valve closure.

TABLE VIII
SENSITIVITY OF SEED

Summary of 50 nested cross-validation runs using different seeds
in the random number generator and a detection distance limit of
40 ms. μ= mean, σ= standard deviation, CD = Correct detections,
ID = Incorrect detections.

invasive LV pressure for reference of valve event time points. The
pressure was measured simultaneously and synchronously with
the accelerometer measurements, thus reducing subjectivity and
errors in valve event annotations.

A. Network Structure

The suggested network follows a hierarchical structure. The
backbone, the CNN module, is essential as it defines the local
feature extractor, the window size, and the step length Δt. The
window size of 136 ms was chosen such that the CNN module
had adequate contextual information to perform independent
predictions. The class imbalance of t̂AV O and t̂AV C is given by
the ratio between the window size (136 ms) and the average heart
cycle lengths. The average heart cycle length was 500 ms for

TABLE IX
COMPARISON BETWEEN SIGNAL PROCESSING (SP) AND NEURAL NETWORK

(NN) BASED DETECTION OF AORTIC VALVE EVENTS

Pooled results from all interventions in canines and porcines.

canines and 600 ms for porcines resulting in class imbalances.
We typically seek to balance the classes which could be achieved
by increasing the window size. However, we have observed
in previous research that the detection error can increase with
increased window size [22].

B. Hyper-Parameter Sensitivity Analysis

We experienced a large dependence on the selected seed to the
random number generator. To trust the evaluation of different
network configurations, we performed nested cross-validation
with 50 different seeds (training 300 models per configuration).
The result of our hyper-parameter sensitivity analysis on the
test data sets is available in the supplementary materials. The
attention module was included to yield global context to each
window estimate. However, the results show no improvement
over the RNN module. The performance increase with increased
value of k. We did not find improved performance of using a
data driven localization estimate compared to a static value of
0.5 in the case of the output stages RNN and ATT. However, the
improvement is significant for the CNN output stage, where the
window detector is less ideal. The confidence score threshold
was reduced from 0.4 to 0.15 in the case of the static value of
0.5 to achieve a fair comparison to the data driven localization
estimate.

We consider the max pool operation (with stride 2 and kernel
size 2) to be problematic as it lacks translational equivariance. In
an attempt to improve the data driven localization estimate, we
tested Max blur pool (MBP). However, Max blur pool showed
inferior performance to max pool.

Averaging over both species, canines and porcines, we did not
find a performance difference between batch normalization and
group normalization. However, interestingly, we found group
normalization to favor canines, and batch normalization to favor
porcines. For this reason, when applying this method on data
from humans, the selection of normalization layer should the
evaluated.

C. Results on Interventions

The neural network predicted the opening and closing of the
aortic valve with reasonable accuracy on most of the interven-
tions in both species, except for ischemiadob in porcines, and
ischemia in canines. The lower accuracy in these interventions
may have been attributed to the low number of recordings
available for training and testing for these cases, or one or a few
potentially bad recordings, or noisy data could result in lower
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accuracy for the detected events as well. The acceleration traces
and the distinct patterns associated with valve events changed
entirely in cases where two interventions were combined i.e.
infusion of dobutamine during ischemia (ischemiadob). This
change in characteristic vibration pattern in the signal combined
with the lower number of training data for these interventions
could have contributed to a worse detection accuracy than other
interventions.

D. Limitations

Our method is not without limitations. As opposed to SCG,
which can be acquired non-invasively from the outside of the
chest, our sensors are placed invasively on the heart for direct
measurements of cardiac motion. Our method will be limited to
patients where such high fidelity monitoring of cardiac function
is required such as in cardiac surgery patients or patients in need
of CRT. Another limitation of the proposed approach is that
the data set is relatively small. Rather than having a traditional
train, validation, and test split, we used nested cross validation
to validate the accuracy of the proposed network. However,
the small size of the data set is offset by the fact that the
data were non-homogeneous with varying cardiac function and
motion. Furthermore, the proposed method was developed in
two different species which may pose a limitation as the cardiac
motion and corresponding motion signal morphology may differ
between the species. Our method may have to be modified and
trained on human data before it can be applied in patients.
However, we have previously directly translated a method for
detection of ischemia from epicardial accelerometers in porcines
to patients and obtained similar accuracy, indicating that my-
ocardial motion is relatively similar [7]. Methods and data from
chest-worn sensors in animals may be more difficult to translate
to human use due to the additional difference in anatomy be-
tween the heart and skin including position of the heart within
the chest. If the underlying cardiac motion is identical, such
anatomical differences may alter the signal transmission to the
skin and result in different signal morphology. Zia et al. [36] and
Lin et al. [37] analyzed such non-invasive data from porcines
and mentioned such a potential confounder. All methods must
therefore be validated in humans before applications in patients.

The output from a neural network is only as good as the quality
of its training data and correctly marked labels. Unfortunately,
in some experiments the recorded LVP signal had artifacts that
might have been introduced due to the pressure catheter touching
the LV wall. These artifacts were further amplified when LV
dP/dt was derived from the noisy LVP signals. Furthermore, the
LV dP/dt signal frequently did not have a clear ‘V-shaped’ peak
and trough for maximum LV dP/dt and minimum LV dP/dt,
respectively, but instead had a ‘W-shape’ twin peak that would
have made the marked AVO/AVC labels inconsistently even
between consecutive beats. Therefore, the smoothing window
of 50 ms was applied to both the LVP and LV dP/dt signals to
remove these artifacts and to make the process of automatic label
generation more robust and easier. This may have introduced
inaccuracies in the labeling of the true events, but was still
considered an improvement over using unfiltered LVP and LV

dP/dt signals to generate the labels. If the recorded LVP signals
had been free of artifacts so no filtering/smoothing had to be
applied to the signals, the mean error between the marked AVO
and AVC labels and the predicted outputs would potentially be
even lower.

Lastly, the results reported excludes AVO and AVC events
closer to the beginning and the end of the sequence than 300 ms.

E. Future Work

This was a proof of concept study on canines and porcines.
However, clinical studies need to be carried out to validate the
proposed neural network on patient data. The same concept can
be translated to accelerometer signals from humans. Further-
more, the deep learning approach to detect valve events can be
further expanded to detect the opening and closing of the mitral
valve as well. This may further improve monitoring of cardiac
function by allowing more functional indices to be automatically
calculated in real-time, such as the cardiac performance index
(Tei index) which is the sum of the duration of the isovolumic
contraction and relaxation periods divided by the duration of
ejection. Lastly, a comparison of acceleration waveforms taken
directly from the heart and SCG signals measured from the chest
should be conducted, as it would lead to a better insight on the
origin of SCG signals.

V. CONCLUSION

Deep neural networks can be used to automatically detect
aortic valve opening and closing times using accelerometers
attached to the heart. The proposed approach can handle a broad
range of heart rates and does not require additional sensor inputs
such as ECG. The method provided accurate and robust predic-
tions on data from both porcines and canines, covering multiple
interventions with varying cardiac motion and heart function.
The results encourage translation of the method to the clinic
for further investigations on how it can improve monitoring of
cardiac function in patients.

SUPPLEMENTARY MATERIAL

The supplementary materials, data presented in this study,
and the corresponding python code are available through this
link https://theinterventioncentre.github.io/aortic-valve-event-
detection/, and can be freely used for other publications with
reference to this article.
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